EP2104376A2 - Method for active occlusion reduction with plausibility test and corresponding hearing aid - Google Patents

Method for active occlusion reduction with plausibility test and corresponding hearing aid Download PDF

Info

Publication number
EP2104376A2
EP2104376A2 EP09153568A EP09153568A EP2104376A2 EP 2104376 A2 EP2104376 A2 EP 2104376A2 EP 09153568 A EP09153568 A EP 09153568A EP 09153568 A EP09153568 A EP 09153568A EP 2104376 A2 EP2104376 A2 EP 2104376A2
Authority
EP
European Patent Office
Prior art keywords
transfer function
rvm
microphone
transducer
ear canal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09153568A
Other languages
German (de)
French (fr)
Other versions
EP2104376B1 (en
EP2104376A3 (en
Inventor
Georg-Erwin Arndt
Frank Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Siemens Medical Instruments Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Medical Instruments Pte Ltd filed Critical Siemens Medical Instruments Pte Ltd
Publication of EP2104376A2 publication Critical patent/EP2104376A2/en
Publication of EP2104376A3 publication Critical patent/EP2104376A3/en
Application granted granted Critical
Publication of EP2104376B1 publication Critical patent/EP2104376B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/30Monitoring or testing of hearing aids, e.g. functioning, settings, battery power
    • H04R25/305Self-monitoring or self-testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/05Electronic compensation of the occlusion effect

Definitions

  • the present invention relates to a method for active occlusion reduction in a hearing device.
  • a sound in an auditory canal is recorded by a microphone with the output of a corresponding microphone signal and the recorded microphone signal is filtered by means of an adaptive filter.
  • the filtered microphone signal is fed back to an input of a receiver, which is used to output sound into the ear canal.
  • At least a portion of a transducer transfer function defined for the transmission path from the earphone input to the ear canal to the microphone output is measured, and the adaptive filter is adjusted in response to it.
  • a hearing device here means any sound-emitting device that can be worn in or on the ear, such as a hearing aid, a headset, headphones and the like.
  • Hearing aids are portable hearing aids that are used to care for the hearing impaired.
  • different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (IDO), e.g. Concha hearing aids or canal hearing aids (ITE, CIC).
  • BTE behind-the-ear hearing aids
  • RIC hearing aid with external receiver
  • IDO in-the-ear hearing aids
  • ITE canal hearing aids
  • the hearing aids listed by way of example are worn on the outer ear or in the ear canal.
  • bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.
  • Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer.
  • the input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic Receiver, e.g. B. an induction coil.
  • the output transducer is usually used as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B. bone conduction, realized.
  • the amplifier is usually integrated in a signal processing unit. This basic structure is in FIG. 1 shown using the example of a behind-the-ear hearing aid. In a hearing aid housing 1 for carrying behind the ear, one or more microphones 2 for receiving the sound from the environment are installed.
  • a signal processing unit 3 which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them.
  • the output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal.
  • the sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier.
  • the power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5
  • An unpleasant effect when wearing a hearing aid is that your own voice sounds unnatural. This is due to the fact that one's own voice is led via bone conduction into the auditory canal and there causes a certain sound pressure, especially at lower frequencies. If the auditory canal is open, the corresponding pressure waves can be directed to the outside. However, if the auditory canal is closed by the hearing aid, a high sound pressure builds up here, which is called an occlusion effect and, since it is unnatural, is perceived as unpleasant.
  • a generic method for active occlusion reduction in hearing aids is from the document WO 2004/021740 A1 'and the publication WO 2006/037156 A1 known.
  • the transducer transfer function from the input of the listener via the ear canal to the output of the ear canal microphone is described in detail in the first-mentioned document. It can be determined very accurately in situ with the hearing aid as a measuring device.
  • the Transformer transfer function is complex, ie a function of magnitude and phase versus frequency.
  • the measured transducer transfer function is used to determine in a computer the optimal configuration of digital signal processing for active occlusion reduction. In principle, this optimization process could also be completely automatic. However, there is the problem that in certain situations, the algorithm is irreversibly incorrectly changed, or that a lot of computing time is needed. In these situations, a manual intervention is necessary or helpful.
  • the object of the present invention is thus to further automate an adaptive implementation of an active occlusion reduction.
  • this object is achieved by a method for active occlusion reduction in a hearing device by recording a sound in an ear canal through a microphone with output of a corresponding microphone signal, filtering the microphone signal by means of an adjustable filter, feeding back the filtered microphone signal to an input of a listener who for outputting sound into the ear canal, measuring at least a portion of a transducer transmission function defined for the transmission path from the earphone input via the ear canal to the microphone output, and adjusting the tunable filter in response to the transducer transmission function, the transducer transmission function undergoing an automatic plausibility check and the adjustable filter is only changed if the transducer transfer function is plausible according to a predetermined criterion.
  • the term "adjustable" does not exclude that a Tel of the filter is adaptive, ie is automatically adaptable by an adaptation rule.
  • the invention provides a hearing device with active occlusion reduction comprising a receiver for sound output in an auditory canal, a microphone for recording a sound in the ear canal and for outputting a corresponding microphone signal, an adjustable filter for filtering the microphone signal, wherein the filtered microphone signal to the input a measuring device for measuring at least a part of a Wandlerübertragungsfunktion which is defined for the transmission path from the entrance of the listener via the ear canal to the output of the microphone, and an adjusting means for adjusting the adjustable filter in response to the transducer transfer function, and a testing device for the automatic plausibility check of the transducer transfer function, wherein the adjustable filter is only changeable by the adjusting means when the transducer transfer function according to a vo criterion is plausible.
  • the measured part of the transformer transfer function for the plausibility check is smoothed.
  • certain measurement uncertainties can be compensated.
  • the transducer transmission function is measured in a first frequency range and extrapolated in a second frequency range on the basis of the measured data using a model. So that can For example, a safely measurable range can be used to estimate a less secure area to be measured for the converter function or the plausibility check.
  • the transducer transmission function can be assessed as not plausible if its magnitude in a given frequency range is less than a predetermined threshold.
  • a blockage of the hearing device with cerumen can be detected.
  • the transducer transfer function can also be considered implausible if its phase is within a predetermined frequency range below a predetermined minimum phase. This can also be checked, for example, if one of the components involved is defective or the measurement signal was too quiet.
  • the transducer transfer function may be considered implausible if its value, including magnitude and phase, is outside a given tolerance tube in the space defined by the coordinates, phase and frequency. With such a tolerance tube, it can be detected whether the hearing device works correctly within a certain scope.
  • the tolerance tube can also be used to keep the computing time for the change of the algorithm within a certain range. For example, if the transducer transfer function is not in a very tight tolerance tube, changing the algorithm may quickly bring about a small change in the fit of the hearing aid in the ear, and a longer computation time can be avoided.
  • FIG. 2 is an ITE hearing aid 10 shown in cross section, as it is inserted into an ear canal 11.
  • the ear canal 11 is closed by a tympanic membrane 12.
  • Between the eardrum 12 and the eardrum end of the ITE hearing aid 10 results in a closed space 13.
  • the seclusion of this space leads to the known, unpleasant Okissesions monoen.
  • the ITE hearing aid 10 has an outwardly directed microphone 14 in order to record the ambient sound (see microphone 2 of FIG. 1 ).
  • the microphone signal is forwarded to a signal processing unit 15, which processes and amplifies the signal in the usual way (compare signal processing unit 3 of FIG. 1 ).
  • the processed signal is supplied to a receiver 16 or 4, which converts the signal into a sound and emits it into the auditory canal 13. Due to the own voice, an unnaturally high noise sound pressure arises in the ear canal space 13 due to the occlusion by the ITE hearing device 10 (for example also in the case of an earpiece of a BTE hearing device). This can be passively activated by a vent or active with the in FIG.
  • the transfer function V represents the acoustic signal path in the auditory canal space 13 from the earpiece 16 to the auditory canal microphone 17. It depends on the individual shape of the auditory canal 11, on the depth of insertion of the ITE hearing device 10, on the shell shape of the ITE device 10, but also on the degree of occlusion. However, for a particular wearing situation, this transfer function V is fixed. On the other hand, the transfer function S of the loop filter 18 is variable. It is, for example, the one in the publication WO 2004/021740 A1 adapted manner, so that the occlusion effect is reduced as much as possible.
  • the transducer transmission function of the transmission path 19 from the input of the handset 16, through the ear canal space 13 to the output of the ear canal microphone 17, ie the product RVM, measured.
  • This measured transducer transfer function RVM of the transmission path 19 is complex, ie both the amplitude and the phase of a signal is influenced during the transmission. Depending on the feature (eg hearing device is too loose), it is better to evaluate the amplitude, the phase information or other properties of the measured transducer transfer function RVM.
  • the system itself is out of order or unable to operate properly. This is the case, for example, when the handset 16 or auditory canal microphone 17 has failed, or the sound output of the handset 16 and / or the sound output of the auditory canal microphone 17 is blocked by cerumen. In such cases, the transformer transfer function is not plausible. With a Plausibility check these cases can be detected. It follows the principle of the block diagram of Fig. 4 , In this case, the transducer transfer function is measured in a first step S1. Under certain circumstances, the measurement data scatter strongly, so that according to step S2 a smoothing of the raw data of the measured transfer function is necessary. Furthermore, it may be necessary to extrapolate the measured data. For certain frequencies, especially low frequencies, it is usually difficult to determine the transducer transfer function. The accuracy for this frequency range can be increased by determining model-based parameters in a higher frequency range and applying this model in the poorly measurable frequency range.
  • the extrapolation of the transformer transfer function can be performed using the example of a first order high pass according to FIG. 3 be explained.
  • the transfer function of a first-order high pass is completely described by the corner frequency f g . If it is known that a first-order high pass is present in an unknown system to be measured, only the corner frequency f g needs to be determined.
  • the model parameter corner frequency f g is determined by taking measurement data from a frequency range classified as "reliable". In the example of FIG. 3 is the phase ⁇ and the amplitude A of a high-pass first order including the corner frequency f g shown. The data in the high-frequency range are classified as reliable and therefore the amplitude A and the phase ⁇ is drawn there with a solid line.
  • the parameter corner frequency f g is determined by varying the cut-off frequency f g of a parameterizable high-pass transfer function such that the measured data coincide as far as possible with the correctly parameterized high-pass transfer function.
  • the high-pass transfer function thus found is now used for the non-reliably measurable, here the low, frequency ranges (see dashed amplitude). and phase history in FIG. 3 ).
  • the measured and supplemented by extrapolation transformer transfer function for the plausibility check can now be evaluated.
  • step S4 the phase of the transducer transfer function can be extracted.
  • the phase can not assume any values at low frequencies in the range of 100 Hz.
  • a minimum phase is given at low frequencies.
  • the typical value of the minimum phase can be specified depending on the converter. If there is a lower measured phase than the minimum phase, the measurement result itself does not have to be in order. For example, the measurement signal may have been too quiet if the S / N ratio was temporarily too low. In this case, the measurement must be repeated with a louder measurement signal in order to obtain a valid measurement result.
  • the measured transducer transfer function according to step S1 or a transfer function prepared according to step S2 can also be evaluated directly, which is indicated by the arrow S5 in FIG FIG. 4 is indicated. In most cases, however, it is favorable to perform a normalization of the transfer function at an arbitrary frequency for the evaluation, which is indicated by step S6 in FIG FIG. 4 is indicated.
  • the data obtained from steps S3 to S6 can now be compared, for example, with certain threshold values or evaluated on the basis of specific criteria in accordance with step S7.
  • the phase can be compared to a minimum phase.
  • the amount of the transfer function should not be below a minimum amount for a larger frequency range.
  • the normalized measured or extrapolated transfer function which in fact represents a spatial curve in the amplitude-phase frequency space, can be compared, for example, with a tolerance tube around this curve. If the tolerance hose is never left, the measured transfer function is accepted as valid or plausible.
  • a decision is made as to whether the transfer function is valid or not valid or plausible or not plausible. Only after decided plausibility is the occlusion reduction optimized by adapting the loop filter S.
  • the advantage of this approach is that only meaningful transducer transfer functions are used for determining the optimal configuration of the signal processing (in particular the loop filter).
  • the optimization algorithm is thus protected from converging into an unfavorable state by an inappropriate transducer transfer function.
  • this leads to a limitation of the solution space for the algorithm and thus to a shortening of the computation time.
  • an indication of the cause of the fault can be given.
  • the indication of a leak can be given if the cutoff frequency of the high-pass transfer function is relatively high.

Abstract

The method involves receiving sound in an auditory canal (11) by a microphone (17) by outputting microphone signals. The signals are filtered by a loop filter (18). The filtered signals are feedback to an input of a receiver. Part of transducer transmission function defined for a transmission path (19) from the input of the receiver via the canal to the output of the microphone, is measured. The filter is adjusted based on the function, which is subjected to an automatic plausibility check. The filter is only altered if the function is plausible according to a predefined criterion. An independent claim is also included for a hearing aid for active occlusion reduction.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur aktiven Okklusionsreduktion bei einer Hörvorrichtung. Dabei wird ein Schall in einem Gehörgang durch ein Mikrofon unter Ausgabe eines entsprechenden Mikrofonsignals aufgenommen und das aufgenommene Mikrofonsignal mit Hilfe eines adaptiven Filters gefiltert. Das gefilterte Mikrofonsignal wird an einen Eingang eines Hörers, der zur Schallausgabe in den Gehörgang dient, rückgekoppelt. Mindestens ein Teil einer Wandlerübertragungsfunktion, die definiert ist für die Übertragungsstrecke vom Eingang des Hörers über den Gehörgang zum Ausgang des Mikrofons, wird gemessen und in Abhängigkeit von ihr wird das adaptive Filter eingestellt. Unter einer Hörvorrichtung wird hier jedes im oder am Ohr tragbare, schallausgebende Gerät, wie beispielsweise ein Hörgerät, ein Headset, Kopfhörer und dergleichen, verstanden.The present invention relates to a method for active occlusion reduction in a hearing device. In this case, a sound in an auditory canal is recorded by a microphone with the output of a corresponding microphone signal and the recorded microphone signal is filtered by means of an adaptive filter. The filtered microphone signal is fed back to an input of a receiver, which is used to output sound into the ear canal. At least a portion of a transducer transfer function defined for the transmission path from the earphone input to the ear canal to the microphone output is measured, and the adaptive filter is adjusted in response to it. A hearing device here means any sound-emitting device that can be worn in or on the ear, such as a hearing aid, a headset, headphones and the like.

Hörgeräte sind tragbare Hörvorrichtungen, die zur Versorgung von Schwerhörenden dienen. Um den zahlreichen individuellen Bedürfnissen entgegenzukommen, werden unterschiedliche Bauformen von Hörgeräten wie Hinter-dem-Ohr-Hörgeräte (HdO), Hörgerät mit externem Hörer (RIC: receiver in the canal) und In-dem-Ohr-Hörgeräte (IdO), z.B. auch Concha-Hörgeräte oder Kanal-Hörgeräte (ITE, CIC), bereitgestellt. Die beispielhaft aufgeführten Hörgeräte werden am Außenohr oder im Gehörgang getragen. Darüber hinaus stehen auf dem Markt aber auch Knochenleitungshörhilfen, implantierbare oder vibrotaktile Hörhilfen zur Verfügung. Dabei erfolgt die Stimulation des geschädigten Gehörs entweder mechanisch oder elektrisch.Hearing aids are portable hearing aids that are used to care for the hearing impaired. In order to meet the numerous individual needs, different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (IDO), e.g. Concha hearing aids or canal hearing aids (ITE, CIC). The hearing aids listed by way of example are worn on the outer ear or in the ear canal. In addition, bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.

Hörgeräte besitzen prinzipiell als wesentliche Komponenten einen Eingangswandler, einen Verstärker und einen Ausgangswandler. Der Eingangswandler ist in der Regel ein Schallempfänger, z. B. ein Mikrofon, und/oder ein elektromagnetischer Empfänger, z. B. eine Induktionsspule. Der Ausgangswandler ist meist als elektroakustischer Wandler, z. B. Miniaturlautsprecher, oder als elektromechanischer Wandler, z. B. Knochenleitungshörer, realisiert. Der Verstärker ist üblicherweise in eine Signalverarbeitungseinheit integriert. Dieser prinzipielle Aufbau ist in FIG 1 am Beispiel eines Hinter-dem-Ohr-Hörgeräts dargestellt. In ein Hörgerätegehäuse 1 zum Tragen hinter dem Ohr sind ein oder mehrere Mikrofone 2 zur Aufnahme des Schalls aus der Umgebung eingebaut. Eine Signalverarbeitungseinheit 3, die ebenfalls in das Hörgerätegehäuse 1 integriert ist, verarbeitet die Mikrofonsignale und verstärkt sie. Das Ausgangssignal der Signalverarbeitungseinheit 3 wird an einen Lautsprecher bzw. Hörer 4 übertragen, der ein akustisches Signal ausgibt. Der Schall wird gegebenenfalls über einen Schallschlauch, der mit einer Otoplastik im Gehörgang fixiert ist, zum Trommelfell des Geräteträgers übertragen. Die Energieversorgung des Hörgeräts und insbesondere die der Signalverarbeitungseinheit 3 erfolgt durch eine ebenfalls ins Hörgerätegehäuse 1 integrierte Batterie 5.Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer. The input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic Receiver, e.g. B. an induction coil. The output transducer is usually used as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B. bone conduction, realized. The amplifier is usually integrated in a signal processing unit. This basic structure is in FIG. 1 shown using the example of a behind-the-ear hearing aid. In a hearing aid housing 1 for carrying behind the ear, one or more microphones 2 for receiving the sound from the environment are installed. A signal processing unit 3, which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them. The output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal. The sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier. The power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5

Ein unangenehmer Effekt beim Tragen eines Hörgeräts besteht darin, dass die eigene Stimme unnatürlich klingt. Dies liegt daran, dass die eigene Stimme über Knochenleitung in den Gehörgang geleitet wird und dort einen gewissen Schalldruck insbesondere bei tieferen Frequenzen verursacht. Ist der Gehörgang offen, so können die entsprechenden Druckwellen nach außen geleitet werden. Ist der Gehörgang allerdings durch das Hörgerät verschlossen, so baut sich hier ein hoher Schalldruck auf, der als Okklusionseffekt bezeichnet wird und, da er unnatürlich ist, als unangenehm empfunden wird.An unpleasant effect when wearing a hearing aid is that your own voice sounds unnatural. This is due to the fact that one's own voice is led via bone conduction into the auditory canal and there causes a certain sound pressure, especially at lower frequencies. If the auditory canal is open, the corresponding pressure waves can be directed to the outside. However, if the auditory canal is closed by the hearing aid, a high sound pressure builds up here, which is called an occlusion effect and, since it is unnatural, is perceived as unpleasant.

Ein gattungsgemäßes Verfahren zur aktiven Okklusionsreduktion bei Hörgeräten ist aus der Druckschrift WO 2004/021740 A1 ' und der Druckschrift WO 2006/037156 A1 bekannt. Die Wandlerübertragungsfunktion vom Eingang des Hörers über den Gehörgang bis zum Ausgang des Gehörgangsmikrofons ist in der erstgenannten Druckschrift näher beschrieben. Sie kann in situ mit dem Hörgerät als Messgerät sehr genau bestimmt werden. Die Wandlerübertragungsfunktion ist komplex, d. h. eine Funktion von Betrag und Phase über der Frequenz.A generic method for active occlusion reduction in hearing aids is from the document WO 2004/021740 A1 'and the publication WO 2006/037156 A1 known. The transducer transfer function from the input of the listener via the ear canal to the output of the ear canal microphone is described in detail in the first-mentioned document. It can be determined very accurately in situ with the hearing aid as a measuring device. The Transformer transfer function is complex, ie a function of magnitude and phase versus frequency.

In einer nicht vollständig adaptiven Implementierung der aktiven Okklusionsreduktion wird die gemessene Wandlerübertragungsfunktion dazu verwendet, um in einem Rechner die optimale Konfiguration der digitalen Signalverarbeitung für die aktive Okklusionsreduktion zu bestimmen. Dieser Optimierungsprozess könnte grundsätzlich auch vollständig automatisch ablaufen. Dabei besteht jedoch das Problem, dass in gewissen Situationen der Algorithmus irreversibel falsch verändert wird, oder dass sehr viel Rechenzeit benötigt wird. In diesen Situationen ist ein manueller Eingriff notwendig bzw. hilfreich.In a not fully adaptive active occlusion reduction implementation, the measured transducer transfer function is used to determine in a computer the optimal configuration of digital signal processing for active occlusion reduction. In principle, this optimization process could also be completely automatic. However, there is the problem that in certain situations, the algorithm is irreversibly incorrectly changed, or that a lot of computing time is needed. In these situations, a manual intervention is necessary or helpful.

Die Aufgabe der vorliegenden Erfindung besteht somit darin, eine adaptive Implementierung einer aktiven Okklusionsreduktion weiter zu automatisieren.The object of the present invention is thus to further automate an adaptive implementation of an active occlusion reduction.

Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren zur aktiven Okklusionsreduktion bei einer Hörvorrichtung durch Aufnehmen eines Schalls in einem Gehörgang durch ein Mikrofon unter Ausgabe eines entsprechenden Mikrofonsignals, Filtern des Mikrofonsignals mit Hilfe eines einstellbaren Filters, Rückkoppeln des gefilterten Mikrofonsignals an einen Eingang eines Hörers, der zur Schallausgabe in den Gehörgang dient, Messen mindestens eines Teils einer Wandlerübertragungsfunktion, die definiert ist für die Übertragungsstrecke vom Eingang des Hörers über den Gehörgang zum Ausgang des Mikrofons, und Einstellen des einstellbaren Filters in Abhängigkeit von der Wandlerübertragungsfunktion, wobei die Wandlerübertragungsfunktion einer automatischen Plausibilitätsprüfung unterzogen wird und das einstellbare Filter nur verändert wird, wenn die Wandlerübertragungsfunktion gemäß einem vorgegebenen Kriterium plausibel ist. Der Begriff "einstellbar" schließt nicht aus, dass ein Tel des Filters adaptiv ist, d. h. durch eine Adaptionsvorschrift automatisch anpassbar ist.According to the invention, this object is achieved by a method for active occlusion reduction in a hearing device by recording a sound in an ear canal through a microphone with output of a corresponding microphone signal, filtering the microphone signal by means of an adjustable filter, feeding back the filtered microphone signal to an input of a listener who for outputting sound into the ear canal, measuring at least a portion of a transducer transmission function defined for the transmission path from the earphone input via the ear canal to the microphone output, and adjusting the tunable filter in response to the transducer transmission function, the transducer transmission function undergoing an automatic plausibility check and the adjustable filter is only changed if the transducer transfer function is plausible according to a predetermined criterion. The term "adjustable" does not exclude that a Tel of the filter is adaptive, ie is automatically adaptable by an adaptation rule.

Darüber hinaus ist erfindungsgemäß vorgesehen eine Hörvorrichtung mit aktiver Okklusionsreduktion umfassend einen Hörer zur Schallausgabe in einen Gehörgang, ein Mikrofon zum Aufnehmen eines Schalls in dem Gehörgang und zum Ausgeben eines entsprechenden Mikrofonsignals, ein einstellbares Filter zum Filtern des Mikrofonsignals, wobei das gefilterte Mikrofonsignal an den Eingang des Hörers rückgekoppelt ist, eine Messeinrichtung zum Messen mindestens eines Teils einer Wandlerübertragungsfunktion, die definiert ist für die Übertragungsstrecke vom Eingang des Hörers über den Gehörgang zum Ausgang des Mikrofons, und eine Einstelleinrichtung zum Einstellen des einstellbaren Filters in Abhängigkeit von der Wandlerübertragungsfunktion, sowie einer Prüfungseinrichtung zur automatischen Plausibilitätsprüfung der Wandlerübertragungsfunktion, wobei das einstellbare Filter durch die Einstelleinrichtung nur veränderbar ist, wenn die Wandlerübertragungsfunktion gemäß einem vorgegebenen Kriterium plausibel ist.In addition, the invention provides a hearing device with active occlusion reduction comprising a receiver for sound output in an auditory canal, a microphone for recording a sound in the ear canal and for outputting a corresponding microphone signal, an adjustable filter for filtering the microphone signal, wherein the filtered microphone signal to the input a measuring device for measuring at least a part of a Wandlerübertragungsfunktion which is defined for the transmission path from the entrance of the listener via the ear canal to the output of the microphone, and an adjusting means for adjusting the adjustable filter in response to the transducer transfer function, and a testing device for the automatic plausibility check of the transducer transfer function, wherein the adjustable filter is only changeable by the adjusting means when the transducer transfer function according to a vo criterion is plausible.

In vorteilhafter Weise wird entsprechend der vorliegenden Erfindung vor der Adaption des Okklusionsreduktionsalogrithmus überprüft, ob die gemessene Wandlerübertragungsfunktion plausibel ist. Damit kann sichergestellt werden, dass der Algorithmus, der die optimale Konfiguration bestimmt, nicht in eine Ausnahmesituation läuft, aus der er nicht oder nur schwer wieder herauskommt. Dies verhindert einen zu großen Lösungsraum für den Algorithmus bzw. ein zu hohes Maß an unnötiger Rechenzeit.Advantageously, it is checked according to the present invention before the adaptation of Okklusionsreduktionsalogrithmus whether the measured transducer transfer function is plausible. This ensures that the algorithm that determines the optimal configuration does not run into an exceptional situation that makes it difficult or impossible for it to come out. This prevents a too large solution space for the algorithm or an excessive amount of unnecessary computation time.

Vorzugsweise wird der gemessene Teil der Wandlerübertragungsfunktion für die Plausibilitätsprüfung geglättet. Damit können gewisse Messunsicherheiten ausgeglichen werden.Preferably, the measured part of the transformer transfer function for the plausibility check is smoothed. Thus, certain measurement uncertainties can be compensated.

Weiterhin kann es von Vorteil sein, wenn die Wandlerübertragungsfunktion in einem ersten Frequenzbereich gemessen und in einem zweiten Frequenzbereich auf der Basis der gemessenen Daten mit Hilfe eines Modells extrapoliert wird. Damit kann beispielsweise ein sicher messbarer Bereich dazu herangezogen werden, um einen weniger sicher zu messenden Bereich für die Wandlerfunktion bzw. die Plausibilitätsprüfung abschätzen zu können.Furthermore, it may be advantageous if the transducer transmission function is measured in a first frequency range and extrapolated in a second frequency range on the basis of the measured data using a model. So that can For example, a safely measurable range can be used to estimate a less secure area to be measured for the converter function or the plausibility check.

Entsprechend einer Ausführungsvariante kann die Wandlerübertragungsfunktion als nicht plausibel beurteilt werden, wenn ihr Betrag in einem vorgegebenen Frequenzbereich geringer als eine vorgegebene Schwelle ist. Damit kann beispielsweise eine Verstopfung der Hörvorrichtung mit Cerumen erkannt werden.According to an embodiment variant, the transducer transmission function can be assessed as not plausible if its magnitude in a given frequency range is less than a predetermined threshold. Thus, for example, a blockage of the hearing device with cerumen can be detected.

Darüber hinaus kann die Wandlerübertragungsfunktion auch als nicht plausibel gelten, wenn ihre Phase in einem vorgegebenen Frequenzbereich unterhalb einer vorgegebenen Mindestphase liegt. Damit kann beispielsweise auch überprüft werden, ob eine der beteiligten Komponenten defekt ist oder das Messsignal zu leise war.In addition, the transducer transfer function can also be considered implausible if its phase is within a predetermined frequency range below a predetermined minimum phase. This can also be checked, for example, if one of the components involved is defective or the measurement signal was too quiet.

Weiterhin kann die Wandlerübertragungsfunktion als nicht plausibel gelten, wenn ihr Wert einschließlich Betrag und Phase außerhalb eines vorgegebenen Toleranzschlauchs in dem Raum, der durch die Koordinaten Betrag, Phase und Frequenz definiert ist, liegt. Mit einem derartigen Toleranzschlauch kann erkannt werden, ob die Hörvorrichtung in einem gewissen Rahmen korrekt arbeitet. Der Toleranzschlauch kann aber auch dazu eingesetzt werden, um die Rechenzeit für die Veränderung des Algorithmus in einem gewissen Rahmen zu halten. Liegt die Wandlerübertragungsfunktion beispielsweise nicht in einem sehr engen Toleranzschlauch, so kann von einem Verändern des Algorithmus eine kleine Veränderung des Sitzes der Hörvorrichtung im Ohr rasch den gewünschten Erfolg bringen und eine längere Rechenzeit vermieden werden.Furthermore, the transducer transfer function may be considered implausible if its value, including magnitude and phase, is outside a given tolerance tube in the space defined by the coordinates, phase and frequency. With such a tolerance tube, it can be detected whether the hearing device works correctly within a certain scope. However, the tolerance tube can also be used to keep the computing time for the change of the algorithm within a certain range. For example, if the transducer transfer function is not in a very tight tolerance tube, changing the algorithm may quickly bring about a small change in the fit of the hearing aid in the ear, and a longer computation time can be avoided.

Die vorliegende Erfindung wird anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:

FIG 1
den prinzipiellen Aufbau eines Hörgeräts gemäß dem Stand der Technik;
FIG 2
eine Prinzipskizze eines In-dem-Ohr-Hörgeräts mit den wesentlichen Komponenten zur aktiven Okklusionsreduktion;
FIG 3
eine hochpassartige Wandlerübertragungsfunktion und
FIG 4
ein Blockdiagramm zur erfindungsgemäßen Plausibilitätsprüfung für Wandlerübertragungsfunktionen.
The present invention will be further explained with reference to the accompanying drawings, in which:
FIG. 1
the basic structure of a hearing aid according to the prior art;
FIG. 2
a schematic diagram of an in-the-ear hearing aid with the essential components for active occlusion reduction;
FIG. 3
a high-pass type transformer transfer function and
FIG. 4
a block diagram of the inventive plausibility check for transformer transmission functions.

Die nachfolgend näher geschilderten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.The embodiments described in more detail below represent preferred embodiments of the present invention.

In FIG 2 ist ein IdO-Hörgerät 10 im Querschnitt dargestellt, wie es in einen Gehörgang 11 eingesetzt ist. Der Gehörgang 11 ist durch ein Trommelfell 12 abgeschlossen. Zwischen dem Trommelfell 12 und dem trommelfellseitigen Ende des IdO-Hörgeräts 10 ergibt sich ein abgeschlossener Raum 13. Die Abgeschlossenheit dieses Raums führt zu den bekannten, unangenehmen Okklusionseffekten.In FIG. 2 is an ITE hearing aid 10 shown in cross section, as it is inserted into an ear canal 11. The ear canal 11 is closed by a tympanic membrane 12. Between the eardrum 12 and the eardrum end of the ITE hearing aid 10 results in a closed space 13. The seclusion of this space leads to the known, unpleasant Okklusionseffekten.

Das IdO-Hörgerät 10 besitzt ein nach außen gerichtetes Mikrofon 14, um den Umgebungsschall aufzunehmen (vgl. Mikrofon 2 von FIG 1). Das Mikrofonsignal wird weitergeleitet an eine Signalverarbeitungseinheit 15, die in üblicher Weise das Signal verarbeitet und verstärkt (vgl. Signalverarbeitungseinheit 3 von FIG 1). In üblicher Weise wird das verarbeitete Signal einem Hörer 16 bzw. 4 zugeführt, der das Signal in einen Schall wandelt und in den Gehörgangsraum 13 abgibt. Durch die eigene Stimme entsteht in dem Gehörgangsraum 13 aufgrund der Okklusion durch das IdO-Hörgerät 10 (beispielsweise auch bei einem Ohrstück eines HdO-Hörgeräts) ein unnatürlich hoher Störschalldruck. Dieser lässt sich passiv durch einen Vent oder aktiv mit dem in FIG 2 dargestellten Schaltungsaufbau reduzieren (kurz: Okklusionsreduktion). Mit einem Gehörgangsmikrofon 17 wird der Schall in dem Gehörgangsraum 13, der den erhöhten Anteil aufgrund der eigenen Stimme enthält, aufgenommen. Das Ausgangssignal des Gehörgangsmikrofons 17 wird über ein Schleifenfilter 18 zu dem Eingang des Hörers 16 mit negativem Vorzeichen ggf. über weitere digitale Signalverarbeitungselemente (z. B. AD-Wandler) rückgekoppelt. Die Einzelübertragungsfunktionen sind R, V, M und S. Daraus resultiert die Rückkopplungsfunktion 1/(1+ RVMS). Diese gilt es beispielsweise für einen Frequenzbereich von 200 bis 300 Hz kleiner als 1 zu halten. Die Übertragungsfunktionen R des Hörers 16 und M des Gehörgangsmikrofons 17 sind gerätespezifisch vorgegeben. Die Übertragungsfunktion V repräsentiert den akustischen Signalpfad im Gehörgangsraum 13 vom Hörer 16 zum Gehörgangsmikrofon 17. Sie hängt von der individuellen Form des Gehörgangs 11, von der Einsetztiefe des IdO-Hörgeräts 10, von der Schalenform des IdO-Geräts 10 aber auch vom Okklusionsgrad ab. Für eine bestimmte Tragesituation ist diese Übertragungsfunktion V jedoch fest vorgegeben. Variabel hingegen ist die Übertragungsfunktion S des Schleifenfilters 18. Sie ist beispielsweise auf die in der Druckschrift WO 2004/021740 A1 dargestellten Weise zu adaptieren, damit der Okklusionseffekt möglichst weit reduziert wird. Hierzu wird die Wandlerübertragungsfunktion der Übertragungsstrecke 19 vom Eingang des Hörers 16, durch den Gehörgangsraum 13 bis zum Ausgang des Gehörgangsmikrofons 17, also das Produkt RVM, gemessen. Diese gemessene Wandlerübertragungsfunktion RVM der Übertragungsstrecke 19 ist komplex, d. h. sowohl die Amplitude als auch die Phase eines Signals wird bei der Übertragung beeinflusst. Je nach Merkmal (z. B. Hörgerät sitzt zu locker) ist es günstiger, die Amplituden-, die Phaseninformation oder sonstige Eigenschaften der gemessenen Wandlerübertragungsfunktion RVM auszuwerten.The ITE hearing aid 10 has an outwardly directed microphone 14 in order to record the ambient sound (see microphone 2 of FIG FIG. 1 ). The microphone signal is forwarded to a signal processing unit 15, which processes and amplifies the signal in the usual way (compare signal processing unit 3 of FIG FIG. 1 ). In the usual way, the processed signal is supplied to a receiver 16 or 4, which converts the signal into a sound and emits it into the auditory canal 13. Due to the own voice, an unnaturally high noise sound pressure arises in the ear canal space 13 due to the occlusion by the ITE hearing device 10 (for example also in the case of an earpiece of a BTE hearing device). This can be passively activated by a vent or active with the in FIG. 2 Reduce the circuitry shown (short: occlusion reduction). With an auditory canal microphone 17, the sound in the ear canal space 13, which contains the increased proportion due to their own voice, is recorded. The output signal of the auditory canal microphone 17 is fed back via a loop filter 18 to the input of the receiver 16 with a negative sign, possibly via further digital signal processing elements (eg AD converters). The single transfer functions are R, V, M and S. This results in the feedback function 1 / (1+ RVMS). This applies, for example, to keep less than 1 for a frequency range of 200 to 300 Hz. The transfer functions R of the earpiece 16 and M of the auditory canal microphone 17 are specified device-specific. The transfer function V represents the acoustic signal path in the auditory canal space 13 from the earpiece 16 to the auditory canal microphone 17. It depends on the individual shape of the auditory canal 11, on the depth of insertion of the ITE hearing device 10, on the shell shape of the ITE device 10, but also on the degree of occlusion. However, for a particular wearing situation, this transfer function V is fixed. On the other hand, the transfer function S of the loop filter 18 is variable. It is, for example, the one in the publication WO 2004/021740 A1 adapted manner, so that the occlusion effect is reduced as much as possible. For this purpose, the transducer transmission function of the transmission path 19 from the input of the handset 16, through the ear canal space 13 to the output of the ear canal microphone 17, ie the product RVM, measured. This measured transducer transfer function RVM of the transmission path 19 is complex, ie both the amplitude and the phase of a signal is influenced during the transmission. Depending on the feature (eg hearing device is too loose), it is better to evaluate the amplitude, the phase information or other properties of the measured transducer transfer function RVM.

Es kann jedoch der Fall eintreten, dass das System an sich nicht in Ordnung ist oder nicht ordnungsgemäß arbeiten kann. Dies ist beispielsweise dann der Fall, wenn der Hörer 16 oder Gehörgangsmikrofon 17 ausgefallen ist, bzw. der Schallausgang des Hörers 16 und/oder der Schallausgang des Gehörgangsmikrofons 17 durch Cerumen verstopft ist. In derartigen Fällen ist die Wandlerübertragungsfunktion nicht plausibel. Mit einer Plausibilitätsprüfung können diese Fälle erkannt werden. Sie erfolgt nach dem Prinzip des Blockdiagramms von Fig. 4. Dabei wird in einem ersten Schritt S1 die Wandlerübertragungsfunktion gemessen. Unter Umständen streuen die Messdaten stark, so dass gemäß Schritt S2 eine Glättung der Rohdaten der gemessenen Übertragungsfunktion notwendig ist. Des Weiteren kann es notwendig sein, die gemessenen Daten zu extrapolieren. Für bestimmte Frequenzen, insbesondere niedrige Frequenzen, ist es in der Regel schwierig, die Wandlerübertragungsfunktion zu bestimmen. Die Genauigkeit für diesen Frequenzbereich kann erhöht werden, indem modellbasierte Parameter in einem höheren Frequenzbereich bestimmt werden und dieses Modell im schlecht messbaren Frequenzbereich angewendet wird.However, it may be the case that the system itself is out of order or unable to operate properly. This is the case, for example, when the handset 16 or auditory canal microphone 17 has failed, or the sound output of the handset 16 and / or the sound output of the auditory canal microphone 17 is blocked by cerumen. In such cases, the transformer transfer function is not plausible. With a Plausibility check these cases can be detected. It follows the principle of the block diagram of Fig. 4 , In this case, the transducer transfer function is measured in a first step S1. Under certain circumstances, the measurement data scatter strongly, so that according to step S2 a smoothing of the raw data of the measured transfer function is necessary. Furthermore, it may be necessary to extrapolate the measured data. For certain frequencies, especially low frequencies, it is usually difficult to determine the transducer transfer function. The accuracy for this frequency range can be increased by determining model-based parameters in a higher frequency range and applying this model in the poorly measurable frequency range.

Die Extrapolation der Wandlerübertragungsfunktion kann am Beispiel eines Hochpasses erster Ordnung gemäß FIG 3 erläutert werden. Die Übertragungsfunktion eines Hochpasses erster Ordnung ist vollständig durch die Eckfrequenz fg beschrieben. Ist bekannt, dass ein Hochpass erster Ordnung in einem unbekannten zu messenden System vorhanden ist, muss nur noch die Eckfrequenz fg bestimmt werden. Der Modellparameter Eckfrequenz fg wird dadurch bestimmt, dass Messdaten aus einem als "verlässlich" eingestuften Frequenzbereich hergenommen werden. Im Beispiel von FIG 3 ist die Phase ϕ und die Amplitude A eines Hochpasses erster Ordnung einschließlich der Eckfrequenz fg dargestellt. Die Daten im hochfrequenten Bereich sind als zuverlässig eingestuft und daher ist die Amplitude A und die Phase ϕ dort mit einer durchgezogenen Linie eingezeichnet. Der Verlauf der Wandlerübertragungsfunktion im tieferfrequenten Bereich ist jedoch aufgrund der Messungen ungewiss. Mit den zuverlässigen Daten aus dem hochfrequenten Bereich wird über die Variation der Eckfrequenz fg einer parametrierbaren Hochpassübertragungsfunktion der Parameter Eckfrequenz fg so bestimmt, dass sich die Messdaten mit der richtig parametrierten Hochpassübertragungsfunktion möglichst decken. Die so gefundene Hochpassübertragungsfunktion wird jetzt für die nicht verlässlich messbaren, hier die niedrigen, Frequenzbereiche eingesetzt (vgl. gestrichelter Amplituden- und Phasenverlauf in FIG 3). Somit kann nun die gemessene und durch Extrapolation ergänzte Wandlerübertragungsfunktion für die Plausibilitätsprüfung ausgewertet werden.The extrapolation of the transformer transfer function can be performed using the example of a first order high pass according to FIG. 3 be explained. The transfer function of a first-order high pass is completely described by the corner frequency f g . If it is known that a first-order high pass is present in an unknown system to be measured, only the corner frequency f g needs to be determined. The model parameter corner frequency f g is determined by taking measurement data from a frequency range classified as "reliable". In the example of FIG. 3 is the phase φ and the amplitude A of a high-pass first order including the corner frequency f g shown. The data in the high-frequency range are classified as reliable and therefore the amplitude A and the phase φ is drawn there with a solid line. The course of the transducer transfer function in the lower frequency range, however, is uncertain due to the measurements. With the reliable data from the high-frequency range, the parameter corner frequency f g is determined by varying the cut-off frequency f g of a parameterizable high-pass transfer function such that the measured data coincide as far as possible with the correctly parameterized high-pass transfer function. The high-pass transfer function thus found is now used for the non-reliably measurable, here the low, frequency ranges (see dashed amplitude). and phase history in FIG. 3 ). Thus, the measured and supplemented by extrapolation transformer transfer function for the plausibility check can now be evaluated.

Wenn der Übertragungsweg 19 vom Eingang des Hörers 16 zum Ausgang des Gehörgangsmikrofons 17 gesperrt ist, ist der Betrag der Übertragungsfunktion RVM für einen gewissen Frequenzbereich klein. Im Hinblick auf die Plausibilität ist es also notwendig, gemäß Schritt S3 die Amplitude der Übertragungsfunktion zu extrahieren bzw. ihren Betrag auszuwerten. Dadurch können Fälle erfasst werden, bei denen der Hörer 16 oder das Gehörgangsmikrofon 17 defekt sind. Es kann aber auch der akustische Übertragungsweg vom Hörer zum Mikrofon blockiert sein, z. B. durch Verstopfung mit Cerumen.When the transmission path 19 is blocked from the input of the listener 16 to the output of the auditory canal microphone 17, the amount of the transfer function RVM is small for a certain frequency range. With regard to the plausibility, it is therefore necessary to extract the amplitude of the transfer function or to evaluate its value in accordance with step S3. As a result, cases can be detected in which the handset 16 or the ear canal microphone 17 are defective. But it may also be blocked the acoustic transmission path from the listener to the microphone, z. B. by clogging with cerumen.

Weiterhin kann gemäß Schritt S4 die Phase der Wandlerübertragungsfunktion extrahiert werden. Hinsichtlich der Plausibilitätsprüfung ist bekannt, dass die Phase bei tiefen Frequenzen im Bereich von 100 Hz nicht beliebige Werte annehmen kann. Durch eine Reihe von Hochpässen (Hörer, Mikrofon, analoger Mikrofonvorverstärker) ist nämlich bei tiefen Frequenzen eine Mindestphase gegeben. Der typische Wert der Mindestphase kann wandlerabhängig angegeben werden. Liegt eine niedrigere gemessene Phase als die Mindestphase vor, muss das Messergebnis selbst nicht in Ordnung sein. Z. B. könnte das Messsignal zu leise gewesen sein, wenn das S/N-Verhältnis temporär zu gering war. In diesem Fall muss die Messung mit einem lauteren Messsignal wiederholt werden, um ein valides Messergebnis zu erhalten.Furthermore, according to step S4, the phase of the transducer transfer function can be extracted. With regard to the plausibility check, it is known that the phase can not assume any values at low frequencies in the range of 100 Hz. Through a series of high passes (listener, microphone, analogue microphone preamplifier) a minimum phase is given at low frequencies. The typical value of the minimum phase can be specified depending on the converter. If there is a lower measured phase than the minimum phase, the measurement result itself does not have to be in order. For example, the measurement signal may have been too quiet if the S / N ratio was temporarily too low. In this case, the measurement must be repeated with a louder measurement signal in order to obtain a valid measurement result.

Unter Umständen kann die gemessene Wandlerübertragungsfunktion gemäß Schritt S1 bzw. eine gemäß Schritt S2 aufbereitete Übertragungsfunktion auch direkt ausgewertet werden, was mit dem Pfeil S5 in FIG 4 angedeutet ist. Meist ist es jedoch günstig, für die Auswertung eine Normierung der Übertragungsfunktion bei einer beliebigen Frequenz durchzuführen, was durch Schritt S6 in FIG 4 angedeutet ist.Under certain circumstances, the measured transducer transfer function according to step S1 or a transfer function prepared according to step S2 can also be evaluated directly, which is indicated by the arrow S5 in FIG FIG. 4 is indicated. In most cases, however, it is favorable to perform a normalization of the transfer function at an arbitrary frequency for the evaluation, which is indicated by step S6 in FIG FIG. 4 is indicated.

Die aus den Schritten S3 bis S6 erhaltenen Daten lassen sich nun entsprechend Schritt S7 beispielsweise mit bestimmten Schwellwerten vergleichen bzw. anhand bestimmter Kriterien auswerten. So kann beispielsweise, wie erwähnt, die Phase mit einer Mindestphase verglichen werden. Auch der Betrag der Übertragungsfunktion soll für einen größeren Frequenzbereich nicht unterhalb eines Mindestbetrags liegen. Die normierte gemessene bzw. extrapolierte Übertragungsfunktion, die ja eine räumliche Kurve in dem Raum Amplitude-Phase-Frequenz darstellt, kann beispielsweise mit einem Toleranzschlauch um diese Kurve verglichen werden. Wird der Toleranzschlauch nie verlassen, so wird die gemessene Übertragungsfunktion als valide bzw. plausibel akzeptiert. Es erfolgt also basierend auf dem Vergleich von Schritt S7 in Schritt S8 eine Entscheidung, ob die Übertragungsfunktion gültig oder nicht gültig bzw. plausibel oder nicht plausibel ist. Erst nach entschiedener Plausibilität wird die Okklusionsreduktion optimiert, indem das Schleifenfilter S adaptiert wird.The data obtained from steps S3 to S6 can now be compared, for example, with certain threshold values or evaluated on the basis of specific criteria in accordance with step S7. For example, as mentioned, the phase can be compared to a minimum phase. Also, the amount of the transfer function should not be below a minimum amount for a larger frequency range. The normalized measured or extrapolated transfer function, which in fact represents a spatial curve in the amplitude-phase frequency space, can be compared, for example, with a tolerance tube around this curve. If the tolerance hose is never left, the measured transfer function is accepted as valid or plausible. Thus, based on the comparison of step S7 in step S8, a decision is made as to whether the transfer function is valid or not valid or plausible or not plausible. Only after decided plausibility is the occlusion reduction optimized by adapting the loop filter S.

Der Vorteil dieser Vorgehensweise besteht darin, dass nur sinnvolle Wandlerübertragungsfunktionen für die Bestimmung der optimalen Konfiguration der Signalverarbeitung (insbesondere des Schleifenfilters) herangezogen werden. Der Optimierungsalgorithmus ist also davor geschützt, durch eine nicht sinnvolle Wandlerübertragungsfunktion in einen ungünstigen Zustand zu konvergieren. Dies führt insgesamt zur Einschränkung des Lösungsraums für den Algorithmus und damit zur Verkürzung der Rechenzeit. Weiterhin kann bei bestimmten Eigenschaften der gemessenen Übertragungsfunktion ein Hinweis für die Fehlerursache gegeben werden. So kann beispielsweise der Hinweis auf ein Leck gegeben werden, wenn die Eckfrequenz der hochpassartigen Übertragungsfunktion verhältnismäßig hoch ist.The advantage of this approach is that only meaningful transducer transfer functions are used for determining the optimal configuration of the signal processing (in particular the loop filter). The optimization algorithm is thus protected from converging into an unfavorable state by an inappropriate transducer transfer function. Overall, this leads to a limitation of the solution space for the algorithm and thus to a shortening of the computation time. Furthermore, given certain properties of the measured transfer function, an indication of the cause of the fault can be given. Thus, for example, the indication of a leak can be given if the cutoff frequency of the high-pass transfer function is relatively high.

Claims (7)

Verfahren zur aktiven Okklusionsreduktion bei einer Hörvorrichtung durch - Aufnehmen eines Schalls in einem Gehörgang (13) durch ein Mikrofon (17) unter Ausgabe eines entsprechenden Mikrofonsignals, - Filtern des Mikrofonsignals mit Hilfe eines einstellbaren Filters (18), - Rückkoppeln des gefilterten Mikrofonsignals an einen Eingang eines Hörers (16), der zur Schallausgabe in den Gehörgang (13) dient, - Messen mindestens eines Teils einer Wandlerübertragungsfunktion (RVM), die definiert ist für die Übertragungsstrecke (19) vom Eingang des Hörers (16) über den Gehörgang (13) zum Ausgang des Mikrofons (17), und - Einstellen des einstellbaren Filters (18) in Abhängigkeit von der Wandlerübertragungsfunktion (RVM), dadurch gekennzeichnet, dass - die Wandlerübertragungsfunktion einer automatischen Plausibilitätsprüfung unterzogen wird und - das einstellbare Filter (18) nur verändert wird, wenn die Wandlerübertragungsfunktion (RVM) gemäß einem vorgegebenen Kriterium plausibel ist. A method for active occlusion reduction in a hearing by - Recording a sound in an ear canal (13) by a microphone (17) with the output of a corresponding microphone signal, Filtering the microphone signal by means of an adjustable filter (18), - Feedback the filtered microphone signal to an input of a handset (16), which serves for sound output into the ear canal (13), - Measuring at least a part of a transducer transfer function (RVM), which is defined for the transmission path (19) from the input of the listener (16) via the ear canal (13) to the output of the microphone (17), and Adjusting the adjustable filter (18) in dependence on the transformer transfer function (RVM), characterized in that - The transformer transfer function is subjected to an automatic plausibility check and - The adjustable filter (18) is only changed if the transducer transfer function (RVM) is plausible according to a predetermined criterion. Verfahren nach Anspruch 1, wobei der gemessene Teil der Wandlerübertragungsfunktion (RVM) für die Plausibilitätsprüfung geglättet wird.The method of claim 1, wherein the measured part of the transducer transfer function (RVM) for the plausibility check is smoothed. Verfahren nach Anspruch 1 oder 2, wobei die Wandlerübertragungsfunktion (RVM) in einem ersten Frequenzbereich gemessen und damit in einem zweiten Frequenzbereich extrapoliert wird.The method of claim 1 or 2, wherein the transducer transfer function (RVM) is measured in a first frequency range and thus extrapolated in a second frequency range. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Wandlerübertragungsfunktion (RVM) als nicht plausibel gilt, wenn ihr Betrag in einem vorgegebenen Frequenzbereich geringer als eine vorgegebene Schwelle ist.Method according to one of the preceding claims, wherein the transducer transfer function (RVM) is considered implausible if its amount in a predetermined frequency range is less than a predetermined threshold. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Wandlerübertragungsfunktion (RVM) als nicht plausibel gilt, wenn ihre Phase in einem vorgegebenen Frequenzbereich unterhalb einer vorgegebenen Mindestphase liegt.Method according to one of the preceding claims, wherein the transducer transfer function (RVM) is considered implausible if its phase is within a predetermined frequency range below a predetermined minimum phase. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Wandlerübertragungsfunktion (RVM) als nicht plausibel gilt, wenn ihr Wert einschließlich Betrag und Phase außerhalb eines vorgegebenen Toleranzschlauchs in dem Raum, der durch die Koordinaten Betrag, Phase und Frequenz definiert ist, liegt.Method according to one of claims 1 to 3, wherein the transducer transfer function (RVM) is considered implausible if its value including magnitude and phase outside a predetermined tolerance hose in the space, which is defined by the coordinates of magnitude, phase and frequency. Hörvorrichtung mit aktiver Okklusionsreduktion umfassend - einen Hörer (16) zur Schallausgabe in einen Gehörgang (13), - ein Mikrofon (17) zum Aufnehmen eines Schalls in dem Gehörgang (13) und zum Ausgeben eines entsprechenden Mikrofonsignals, - ein einstellbares Filter (18) zum Filtern des Mikrofonsignals, wobei das gefilterte Mikrofonsignal an den Eingang des Hörers (16) rückgekoppelt ist, - eine Messeinrichtung zum Messen mindestens eines Teils einer Wandlerübertragungsfunktion (RVM), die definiert ist für die Übertragungsstrecke (19) vom Eingang des Hörers (16) über den Gehörgang (13) zum Ausgang des Mikrofons (17), und - eine Einstelleinrichtung zum Einstellen des einstellbaren Filters (18) in Abhängigkeit von der Wandlerübertragungsfunktion (RVM),
gekennzeichnet durch
- eine Prüfungseinrichtung zur automatischen Plausibilitätsprüfung der Wandlerübertragungsfunktion (RVM), wobei - das einstellbare Filter (18) durch die Einstelleinrichtung nur veränderbar ist, wenn die Wandlerübertragungsfunktion (RVM) gemäß einem vorgegebenen Kriterium plausibel ist.
Comprising hearing device with active occlusion reduction a receiver (16) for sound output in an auditory canal (13), a microphone (17) for picking up a sound in the ear canal (13) and outputting a corresponding microphone signal, - An adjustable filter (18) for filtering the microphone signal, wherein the filtered microphone signal is fed back to the input of the listener (16), - A measuring device for measuring at least a part of a transducer transfer function (RVM), which is defined for the transmission path (19) from the input of the listener (16) via the ear canal (13) to the output of the microphone (17), and a setting device for setting the adjustable filter (18) as a function of the transducer transfer function (RVM),
marked by
- A test device for automatic plausibility test of the transformer transfer function (RVM), wherein - The adjustable filter (18) by the adjusting means is changeable only if the transducer transfer function (RVM) is plausible according to a predetermined criterion.
EP09153568.2A 2008-03-20 2009-02-25 Method for active occlusion reduction with plausibility test and corresponding hearing aid Active EP2104376B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008015264A DE102008015264A1 (en) 2008-03-20 2008-03-20 Method for active occlusion reduction with plausibility check and corresponding hearing device

Publications (3)

Publication Number Publication Date
EP2104376A2 true EP2104376A2 (en) 2009-09-23
EP2104376A3 EP2104376A3 (en) 2010-06-09
EP2104376B1 EP2104376B1 (en) 2014-11-26

Family

ID=40791171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09153568.2A Active EP2104376B1 (en) 2008-03-20 2009-02-25 Method for active occlusion reduction with plausibility test and corresponding hearing aid

Country Status (4)

Country Link
US (1) US8553917B2 (en)
EP (1) EP2104376B1 (en)
DE (1) DE102008015264A1 (en)
DK (1) DK2104376T3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198307A1 (en) 2013-06-12 2014-12-18 Phonak Ag Method for operating a hearing device capable of active occlusion control and a hearing device with active occlusion control
WO2014198306A2 (en) 2013-06-12 2014-12-18 Phonak Ag Method for operating a hearing device capable of active occlusion control and a hearing device with user adjustable active occlusion control
WO2018103899A1 (en) * 2016-12-09 2018-06-14 Sivantos Pte. Ltd. A method for monitoring electro-acoustic performance of a hearing device and hearing device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058313A1 (en) 2003-09-11 2005-03-17 Victorian Thomas A. External ear canal voice detection
US9219964B2 (en) 2009-04-01 2015-12-22 Starkey Laboratories, Inc. Hearing assistance system with own voice detection
US8477973B2 (en) 2009-04-01 2013-07-02 Starkey Laboratories, Inc. Hearing assistance system with own voice detection
EP2378788A3 (en) * 2010-04-13 2012-01-25 Sony Corporation Device and method for in-ear sound generation
EP2640095B2 (en) 2012-03-15 2020-11-18 Sonova AG Method for fitting a hearing aid device with active occlusion control to a user
US10129668B2 (en) * 2013-12-31 2018-11-13 Gn Hearing A/S Earmold for active occlusion cancellation
DE102016011719B3 (en) 2016-09-30 2017-09-07 Rheinisch-Westfälische Technische Hochschule Aachen Active suppression of the occlusion effect in hearing aids
IT201700066873A1 (en) * 2017-06-15 2018-12-15 Maurizio Casaluce ACOUSTIC APPARATUS AND METHOD TO REDUCE THE AUTOPHONY
KR102191423B1 (en) * 2018-11-14 2020-12-15 주식회사 오르페오사운드웍스 Noise blocking headset waking up by keyword
EP3896990A4 (en) * 2018-12-14 2022-01-26 Sony Group Corporation Acoustic device and acoustic system
DE102020209906A1 (en) 2020-08-05 2022-02-10 Sivantos Pte. Ltd. Method of operating a hearing aid and hearing aid
DE102020209907A1 (en) 2020-08-05 2022-02-10 Sivantos Pte. Ltd. Method of operating a hearing aid and hearing aid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021740A1 (en) 2002-09-02 2004-03-11 Oticon A/S Method for counteracting the occlusion effects
WO2006037156A1 (en) 2004-10-01 2006-04-13 Hear Works Pty Ltd Acoustically transparent occlusion reduction system and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402496A (en) * 1992-07-13 1995-03-28 Minnesota Mining And Manufacturing Company Auditory prosthesis, noise suppression apparatus and feedback suppression apparatus having focused adaptive filtering
US6658122B1 (en) * 1998-11-09 2003-12-02 Widex A/S Method for in-situ measuring and in-situ correcting or adjusting a signal process in a hearing aid with a reference signal processor
US8311228B2 (en) * 2006-06-01 2012-11-13 Personics Holdings Inc. Ear input sound pressure level monitoring system
JP4886851B2 (en) * 2006-08-07 2012-02-29 ヴェーデクス・アクティーセルスカプ Hearing aid, occlusion effect and direct transmission sound measurement method, and vent size determination method
US20100027823A1 (en) * 2006-10-10 2010-02-04 Georg-Erwin Arndt Hearing aid having an occlusion reduction unit and method for occlusion reduction
US8150044B2 (en) * 2006-12-31 2012-04-03 Personics Holdings Inc. Method and device configured for sound signature detection
US8378965B2 (en) * 2007-04-10 2013-02-19 Immersion Corporation Vibration actuator with a unidirectional drive
EP1981310B1 (en) * 2007-04-11 2017-06-14 Oticon A/S Hearing instrument with linearized output stage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021740A1 (en) 2002-09-02 2004-03-11 Oticon A/S Method for counteracting the occlusion effects
WO2006037156A1 (en) 2004-10-01 2006-04-13 Hear Works Pty Ltd Acoustically transparent occlusion reduction system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198307A1 (en) 2013-06-12 2014-12-18 Phonak Ag Method for operating a hearing device capable of active occlusion control and a hearing device with active occlusion control
WO2014198306A2 (en) 2013-06-12 2014-12-18 Phonak Ag Method for operating a hearing device capable of active occlusion control and a hearing device with user adjustable active occlusion control
WO2018103899A1 (en) * 2016-12-09 2018-06-14 Sivantos Pte. Ltd. A method for monitoring electro-acoustic performance of a hearing device and hearing device

Also Published As

Publication number Publication date
DK2104376T3 (en) 2015-03-09
US20090238387A1 (en) 2009-09-24
EP2104376B1 (en) 2014-11-26
EP2104376A3 (en) 2010-06-09
DE102008015264A1 (en) 2009-10-01
US8553917B2 (en) 2013-10-08

Similar Documents

Publication Publication Date Title
EP2104376B1 (en) Method for active occlusion reduction with plausibility test and corresponding hearing aid
EP2180726B2 (en) Sound localization in binaural hearing aids
EP2178313B1 (en) Method and hearing aid for parameter adaption by determining a speech intelligibility threshold
DE102006047965A1 (en) Method for the reduction of occlusion effects with acoustic device locking an auditory passage, involves using signal from transmission path of audio signal, and transmission function is observed by output of output converter
DE102007017761A1 (en) Method for adapting a binaural hearing aid system
EP2434779A2 (en) Method for adjusting a hearing aid with in-situ audiometry and hearing aid
EP2988529B1 (en) Adaptive separation frequency in hearing aids
DE102011006129B4 (en) Hearing device with feedback suppression device and method for operating the hearing device
DE102006042083B4 (en) Method and device for determining an effective vein
DE102010043496B3 (en) Hearing aid and method for operating a hearing aid with a humidity sensor
EP3413588B1 (en) Method for characterizing a speaker in a hearing device, hearing device and test device for a hearing device
EP3448063B1 (en) Method for fitting a hearing aid
DE102014218672B3 (en) Method and apparatus for feedback suppression
EP2053877A1 (en) Method and device for adapting a hearing aid using DPOAE
EP2606660B1 (en) Method for fitting a hearing device using percentile analysis
EP2434781A1 (en) Method for reconstructing a speech signal and hearing aid
DE102013207080B4 (en) Binaural microphone adaptation using your own voice
EP2635048B1 (en) Amplification of a speech signal based on the input level
EP2897383B1 (en) Method and device for analysis of hearing aid settings
DE102010007336B4 (en) Method for compensating a feedback signal and hearing device
DE102011089865B4 (en) Method for adapting a frequency compression device of a hearing device and corresponding adaptation device
DE102008036803B3 (en) Arrangement and method for controlling a feedback suppression in hearing devices
WO2021186033A1 (en) Adaptive sound control
DE102007035175A1 (en) Method for obtaining individual hearing situation data of user of hearing device, involves obtaining recording device by user in individual hearing situation
DE102009018425A1 (en) Hearing device e.g. behind-the-ear hearing aid, has telephone coil for receiving telephone signal, and suppression circuit directly connected to output of telephone coil or transmission coil before signal processing device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101112

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20140326

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140617

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 698757

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010265

Country of ref document: DE

Effective date: 20150108

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20150302

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009010265

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009010265

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150326

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150326

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150227

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010265

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009010265

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009010265

Country of ref document: DE

Owner name: SIVANTOS PTE. LTD., SG

Free format text: FORMER OWNER: SIEMENS MEDICAL INSTRUMENTS PTE. LTD., SINGAPORE, SG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

26N No opposition filed

Effective date: 20150827

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 698757

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230217

Year of fee payment: 15

Ref country code: DK

Payment date: 20230220

Year of fee payment: 15

Ref country code: CH

Payment date: 20230307

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230221

Year of fee payment: 15

Ref country code: DE

Payment date: 20230216

Year of fee payment: 15