EP2102434A2 - Barre nervurée composite renforcée de fibres flexible - Google Patents

Barre nervurée composite renforcée de fibres flexible

Info

Publication number
EP2102434A2
EP2102434A2 EP07862985A EP07862985A EP2102434A2 EP 2102434 A2 EP2102434 A2 EP 2102434A2 EP 07862985 A EP07862985 A EP 07862985A EP 07862985 A EP07862985 A EP 07862985A EP 2102434 A2 EP2102434 A2 EP 2102434A2
Authority
EP
European Patent Office
Prior art keywords
bar
set forth
fibers
cross sectional
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07862985A
Other languages
German (de)
English (en)
Other versions
EP2102434A4 (fr
Inventor
Brian J. Knouff
Alan Fatz
A. Dean Thompson
William P. Junk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DT Search and Design LLC
Original Assignee
DT Search and Design LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DT Search and Design LLC filed Critical DT Search and Design LLC
Publication of EP2102434A2 publication Critical patent/EP2102434A2/fr
Publication of EP2102434A4 publication Critical patent/EP2102434A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/14Twisting

Definitions

  • reinforcing members When concrete is employed as a structural material, it is conventional to incorporate reinforcing members to enhance the tensile strength of the structure.
  • the reinforcing members are usually comprised of a rigid rod or bar, such as a steel rod or bar. Such reinforcing members are typically referred to as "rebar".
  • U. S. Patent No. 6,048,598 to Bryan, III et al. discloses a twisted rope rebar having individual fibers bound to each other by a thermosetting resin.
  • U. S. Patent No. 5,580,642 to Okamoto et al. discloses a reinforcing member comprised of reinforcing fibers and thermoplastic fibers.
  • U. S. Patent Nos. 5,593,536 and 5,626,700 to Kaiser disclose an apparatus for forming reinforcing structural rebar including a combination of pultrusion and SMC (sheet molding compound).
  • the modified pultrusion produces a rebar having a core of thermoset resin reinforcing material and an outer sheet molding compound.
  • U S Patent No. 5,077,113 to Kakihara et al. proposes an inner filament bundle layer spirally wound around a fiber-reinforced core, a plurality of intermediate filament bundles oriented axi ⁇ lly along the core, and an outer filament bundle spirally wound around the core and the other bundles.
  • U. S. Patent No. 4,620,401 to L'Esperance et al. proposes a fiber reinforced thermosetting resin core and a plurality of continuous fibers helically wound around the core and impregnated with the thermosetting resin.
  • the Jackson U. S. Patent No. 2,425,883 discloses a rod or bar formed of fine glass fibers with a phenolic resin cured under heat.
  • the present invention provides an improved composite reinforcement bar or rebar structure.
  • the rebar structure is generally formed by continuous fibers embedded in a thermoplastic resin matrix to form a reinforcement bar.
  • the bar is flattened to achieve a cross sectional aspect ratio greater than one to one.
  • the bar is then twisted in a substantially helical manner.
  • the bar has a substantially elliptical cross sectional shape with a cross sectional aspect ratio of about two to one and a twist pitch of about 30 centimeters.
  • the matrix may be a thermoplastic resin such as polypropylene, and the fibers may be formed of glass.
  • the thermoplastic resin matrix allows the matrix to be softened by the application of heat to thereby bend or flex the bar to desired shapes. The capability of being conveniently bent is also aided by the cross sectional shape and aspect ratio and by the twist applied to the bar. Once bent to a desired shape, the bar is allowed to cool and re-harden to a substantially rigid state.
  • Fig. 1 J s a diagrammatic view of a pultrusion process for forming the flexible fiber reinforced composite rebar of the present invention.
  • Fig. 2 is a fragmentary perspective view of a length of the flexible fiber reinforced composite rebar of the present invention.
  • Fig. 3 is a greatly enlarged cross sectional view of the rebar taken on line 3-3 of Fig. 2.
  • the reference numeral 1 generally designates a flexible fiber reinforced composite reinforcement bar or rebar structure embodying the present invention.
  • the rebar structure 1 generally includes a plurality of reinforcement fibers 2 (Figs. 2 and 3) embedded within a thermoplastic resin matrix 3.
  • the rebar structure 1 is twisted in a generally helical manner.
  • Fig. 1 diagrammatically illustrates system and process 10 for manufacturing the rebar structure 1.
  • the fibers 2 are provided in the form of "ravings" or twisted strands on the spools 14.
  • the fibers 2 may be man made or artificial continuous filaments, such as carbon, glass, aramid, organic and/or metallic fiber.
  • the creel arrangement 12 provides the fibers with optimum pre-tension in order to maximize the impregnation of the polymer 3 into the fibers 2.
  • the particular arrangement of the creel system 12 may vary depending upon the form of the reinforcement/roving 2 provided by the suppliers.
  • the fibers move through a guides 16 which might consist of guide pins and tensioners, depending upon the final size of the end product.
  • the illustrated process 10 includes a dryer 20 into which thermoplastic resin 3 is fed.
  • a heater component 22 heats the thermoplastic resin to a plastic state.
  • a screw “pump” 24 forces the heated resin into the impregnation chamber 18.
  • the impregnation chamber 18, an important component of the process 10, includes two parts.
  • a first part 26 the fibers 2 come into contact with the thermoplastic polymer 3 pumped into the impregnation chamber 18.
  • the design of the chamber 18 enables creation of high shear zones for the thermoplastic polymer 3 that results in significant reduction of the viscosity thereof. This reduction of the viscosity tremendously improves the impregnation of the high viscous polymeric material 3 into the fibers 2.
  • the impregnated fibers 2 are converged into a consolidated impregnated rebar 30. Depending upon the final shape required, the consolidated rebar 30 is given its final shape while it is still hot.
  • the cooler system 32 Once the rebar 30 with its final shape leaves the impregnation chamber 18, it goes through a cooler system 32.
  • the design of the cooler system depends upon the final form of the product.
  • the cooler system 32 might be in the form of a long tube with water sprinklers (not shown) attached along its length. The sprinklers would be used to spray water on the thermoplastic rebar 30 to cool its surface.
  • the impregnated rebar 30 next moves through the puller 36.
  • the puller 36 pulls the impregnated rebar 30 though the entire device throughout the manufacturing process 10.
  • the impregnated rebar enters a cutter station 38, which cuts the final product to its required length.
  • thermoplastic rebar 30 consists of E-glass, or electrical grade glass, as the fiber reinforcement 2 and polypropylene as the thermoplastic matrix 3.
  • the fiber volume ratio is approximately 45% of the total volume of the rebar 30, a representative value for typical long fiber thermoplastic processes.
  • a thermoplastic rebar design optimization was performed using ABAQUSTM finite element analysis software (Dassault Systemes Societe Anonyme France, www.simulia.com).
  • An optimal profile for the rebar 30 was found to be an elliptical cross sectional shape having an aspect ratio of about 2:1, with specific dimensions varying for different rebar sizes.
  • the rebar 30 has a major axis of about 0.75 inch (19.05 mm) and a minor axis of about 0.375 inch (9.53 mm). It is foreseen that the rebar 30 could alternatively have other flattened shapes which are not specifically elliptical. Further, the optimal profile also includes a twist pitch of 30 centimeters (cm) or about one twist per 12 inches of rebar 30. Alternatively, the twist pitch may fall within a range of about 6 to 24 inches (15.24 to 60.96 cm). An example profile is illustrated below in Figure 2, and additional highlights of the design optimization are described below.
  • thermoplastic matrix 3 was chosen over thermoset because a thermoplastic material has the potential for being bendable in the field.
  • One embodiment of the rebar structure incorporates a polypropylene resin as the thermoplastic matrix 3.
  • other thermoplastic resins could be advantageously employed for use in some applications and environments. Bending the rebar 30 may require onsite heating, which will reduce the stresses resulting from the applied bending force. The heating is preferably not of a temperature which would actually melt the thermoplastic material 3, but only to temporarily soften the rebar 30 for bending. The heating temperature may range from about 150 to 200F (65.6 to 93.3 0 C).
  • a rebar structure 1 having an elliptical cross-section with bends along the major axis appears to meet the demands of being bendable in the field.
  • the elliptical shape minimizes transverse stress, while twists allow ease of bending without having to align the rebar.
  • the twist pitch represents the resolution of bend length; that is, if the pitch is 30 cm, the rebar can only be bent every 30 cm. It was determined that increasing the twists in the rebar 30 (that is, decreasing the twist pitch) increases stress and strain values. Of the many twist pitches considered during analysis, the profile which showed the least longitudinal stress was the pitch 30 cm. Further, rebar was found to be optimally bendable in the horizontal to normal plane of the cross section, that is, about the major axis.
  • thermoplastic rebar structure 1 meeting the criteria of bendability in the field yet not requiring alignment included a polypropylene matrix 3 with E-glass fibers 2 at a 45% fiber volume ratio, a substantially elliptical profile with an aspect ratio of about 2:1 , and a twist pitch of about 30 centimeters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention concerne une structure de barre nervurée composite renforcée de fibres flexible qui comprend une pluralité de fibres continues incorporées dans une résine thermoplastique. La structure de barre nervurée présente une forme en coupe transversale elliptique avec un rapport de côtés d'environ deux pour un et une torsion avec un pas de torsion d'environ 30 cm. La matrice de résine thermoplastique permet de courber la structure de barre nervurée sur le terrain par l'application de chaleur pour ramollir la structure et la refroidir ensuite pour la ramener à un état rigide.
EP07862985A 2006-12-14 2007-12-14 Barre nervurée composite renforcée de fibres flexible Withdrawn EP2102434A4 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US87482806P 2006-12-14 2006-12-14
US11/955,637 US20080141614A1 (en) 2006-12-14 2007-12-13 Flexible fiber reinforced composite rebar
PCT/US2007/025711 WO2008076400A2 (fr) 2006-12-14 2007-12-14 Barre nervurée composite renforcée de fibres flexible

Publications (2)

Publication Number Publication Date
EP2102434A2 true EP2102434A2 (fr) 2009-09-23
EP2102434A4 EP2102434A4 (fr) 2009-11-25

Family

ID=39525468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07862985A Withdrawn EP2102434A4 (fr) 2006-12-14 2007-12-14 Barre nervurée composite renforcée de fibres flexible

Country Status (6)

Country Link
US (1) US20080141614A1 (fr)
EP (1) EP2102434A4 (fr)
JP (1) JP2010513751A (fr)
AU (1) AU2007334387A1 (fr)
CA (1) CA2671371A1 (fr)
WO (1) WO2008076400A2 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002796A1 (de) * 2011-01-17 2012-07-19 Sgl Carbon Se Trägerelement für die Aufnahme in einem Zug- oder Lastträgergurt
DK2697800T3 (en) 2011-04-12 2017-02-27 Southwire Co Llc Electric transmission cables with composite cores
WO2012142107A1 (fr) 2011-04-12 2012-10-18 Ticona Llc Tiges thermoplastiques renforcées par des fibres continues et procédé de pultrusion pour leur fabrication
WO2012141688A1 (fr) 2011-04-12 2012-10-18 Ticona Llc Moule et procédé d'imprégnation de stratifils de fibres
CA2832823C (fr) 2011-04-12 2020-06-02 Ticona Llc Ame composite pour cables electriques de transmission
JP6045566B2 (ja) 2011-04-12 2016-12-14 ティコナ・エルエルシー 繊維ロービングを含浸するためのダイの含浸区分及び方法
TW201303192A (zh) 2011-04-12 2013-01-16 Ticona Llc 用於水下應用之臍管
CA2775445C (fr) 2011-04-29 2019-04-09 Ticona Llc Matrice et methode d'impregnation des rubans de fibres
PL2701886T3 (pl) 2011-04-29 2017-06-30 Ticona Llc Dysza z rozpraszającą strumień bramką przejściową oraz sposób impregnowania włókien niedoprzędów
CA2775442C (fr) 2011-04-29 2019-01-08 Ticona Llc Section d'impregnation avec surface en amont et methode d'impregnation des rubans de fibres
CA2746281A1 (fr) * 2011-07-14 2013-01-14 Pultrall Inc. Tige courbee de renforcement ayant une resistance mecanique amelioree a l`endroit de sa courbure et methode pour produire celle-ci
WO2013016121A1 (fr) 2011-07-22 2013-01-31 Ticona Llc Extrudeuse et procédé de fabrication de structures en résine à haute densité de fibres
WO2013086267A1 (fr) 2011-12-09 2013-06-13 Ticona Llc Section d'imprégnation de matrice pour imprégner des mèches de fibres
WO2013086259A1 (fr) 2011-12-09 2013-06-13 Ticona Llc Filière et procédé d'imprégnation de stratifils de fibres
US9289936B2 (en) 2011-12-09 2016-03-22 Ticona Llc Impregnation section of die for impregnating fiber rovings
US9283708B2 (en) 2011-12-09 2016-03-15 Ticona Llc Impregnation section for impregnating fiber rovings
EP2788408B1 (fr) 2011-12-09 2020-07-08 Ticona LLC Bande polymère asymétrique renforcée par des fibres
CA2773042A1 (fr) 2012-03-23 2013-09-23 Pultrall Inc. Tige courbee de renforcement ayant une resistance mecanique amelioree a l'endroit de sa courbure et methode pour produire celle-ci
US9410644B2 (en) 2012-06-15 2016-08-09 Ticona Llc Subsea pipe section with reinforcement layer
DE102015100386A1 (de) * 2015-01-13 2016-07-14 Technische Universität Dresden Bewehrungsstab aus Filamentverbund und Verfahren zu dessen Herstellung
US10036165B1 (en) * 2015-03-12 2018-07-31 Global Energy Sciences, Llc Continuous glass fiber reinforcement for concrete containment cages
DK178510B1 (da) * 2015-03-31 2016-04-18 Fiberline Composites As Halvfabrikat og konstruktionselement lavet ud fra samme
US10480320B2 (en) * 2017-03-06 2019-11-19 Minova International Limited Oval bar
DE102017107948A1 (de) * 2017-04-12 2018-10-18 Technische Universität Dresden Bewehrungsstab zum Einbringen in eine Betonmatrix sowie dessen Herstellungsverfahren, ein Bewehrungssystem aus mehreren Bewehrungsstäben sowie ein Betonbauteil
DE102017120143A1 (de) 2017-09-01 2019-03-07 Groz-Beckert Kg Biegeverfahren und Biegevorrichtung zum Biegen eines Verbundwerkstoffstabes
DE102017219774A1 (de) 2017-11-07 2019-05-09 Leichtbau-Zentrum Sachsen Gmbh Verfahren und Anlage zur Herstellung von Faser-Matrix-Verbund-Profilen mit axial rotierendem Querschnitt und einstellbarer Faserorientierung
CA3116064A1 (fr) 2018-11-19 2020-05-28 Shoujie Li Barre d'armature composite
CN113352651B (zh) * 2020-07-22 2022-06-24 江苏易鼎复合技术有限公司 一种裸露的连续形变复合材料型材
JP2023062721A (ja) * 2021-10-22 2023-05-09 学校法人金沢工業大学 コンクリート補強用複合材料およびコンクリート補強筋

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB611492A (en) * 1946-05-02 1948-10-29 John Lloyd Bannister Improvements in reinforcing bars
FR1068604A (fr) * 1949-12-10 1954-06-29 Armature pour béton
US5650220A (en) * 1995-05-26 1997-07-22 Owens-Corning Fiberglas Technology, Inc. Formable reinforcing bar and method for making same
US5727357A (en) * 1996-05-22 1998-03-17 Owens-Corning Fiberglas Technology, Inc. Composite reinforcement
US6612085B2 (en) * 2000-01-13 2003-09-02 Dow Global Technologies Inc. Reinforcing bars for concrete structures

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2425883A (en) * 1941-08-08 1947-08-19 John G Jackson Concrete structural element reinforced with glass filaments
US4376834A (en) * 1981-10-14 1983-03-15 The Upjohn Company Polyurethane prepared by reaction of an organic polyisocyanate, a chain extender and an isocyanate-reactive material of m.w. 500-20,000 characterized by the use of only 2-25 percent by weight of the latter material
CA1238205A (fr) * 1985-04-26 1988-06-21 Cerminco Inc. Tige de renfort pour structures en beton arme
JPH0718206B2 (ja) * 1989-09-14 1995-03-01 帝人株式会社 構造用ロッドの製造方法
JPH05269726A (ja) * 1992-03-25 1993-10-19 Mitsui Constr Co Ltd 土木建築構造物補強材
MX9700059A (es) * 1994-06-28 1997-12-31 Marshall Ind Composites Aparato para formar barra estructural de refuerzo.
US5891560A (en) * 1997-07-02 1999-04-06 The Dow Chemical Company Fiber-reinforced composite and method of making same
US6048598A (en) * 1997-12-17 2000-04-11 Balaba Concrete Supply, Inc. Composite reinforcing member
DE10108357A1 (de) * 2001-02-21 2002-08-29 Sika Ag, Vorm. Kaspar Winkler & Co Armierungsstab sowie Verfahren zu dessen Herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB611492A (en) * 1946-05-02 1948-10-29 John Lloyd Bannister Improvements in reinforcing bars
FR1068604A (fr) * 1949-12-10 1954-06-29 Armature pour béton
US5650220A (en) * 1995-05-26 1997-07-22 Owens-Corning Fiberglas Technology, Inc. Formable reinforcing bar and method for making same
US5727357A (en) * 1996-05-22 1998-03-17 Owens-Corning Fiberglas Technology, Inc. Composite reinforcement
US6612085B2 (en) * 2000-01-13 2003-09-02 Dow Global Technologies Inc. Reinforcing bars for concrete structures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008076400A2 *

Also Published As

Publication number Publication date
US20080141614A1 (en) 2008-06-19
CA2671371A1 (fr) 2008-06-26
AU2007334387A1 (en) 2008-06-26
JP2010513751A (ja) 2010-04-30
WO2008076400A3 (fr) 2008-10-09
WO2008076400A2 (fr) 2008-06-26
EP2102434A4 (fr) 2009-11-25

Similar Documents

Publication Publication Date Title
US20080141614A1 (en) Flexible fiber reinforced composite rebar
EP0531667B1 (fr) Poignée composite et méthode de fabrication
JP5198419B2 (ja) アルミニウム導体コンポジットコア強化ケーブルおよび製造方法
US9093191B2 (en) Fiber reinforced composite core for an aluminum conductor cable
EP0402309B1 (fr) Profilé en matière composite compacte et son procédé de fabrication
Portnov et al. FRP Reinforcing bars—designs and methods of manufacture (Review of Patents)
JP5996557B2 (ja) 成形された部分を含む繊維強化された鉄筋、および、成形された鉄筋部分を含むコンクリートパネル
EP2981732B1 (fr) Dispositif de ressort hybride
EP2623303A1 (fr) Levier composite et outil de frappe et procédé pour sa fabrication
US9682527B2 (en) Laminated composite structure and related method
WO1998031891A1 (fr) Ameliorations apportees aux barres d'armatures
JP4803499B2 (ja) 筋金棒及び筋金棒形成装置
CN101611205A (zh) 挠性纤维加强复合钢筋
CN113039332B (zh) 复合钢筋
EP2889132B1 (fr) Cheville de renfort pour une structure composite stratifiée et procédés associés
JP3679590B2 (ja) コンクリート構造物の補強方法
JP3088061B2 (ja) 繊維強化樹脂複合筋材及びその製造方法
US5804012A (en) Process for manufacturing a filament wound, localized strength tool handle
WO1995033109A1 (fr) Materiau de renforcement composite a base de resine renforcee par fibres, et son procede de production
JPH04224154A (ja) コンクリート補強部材の製造法
AU2021104691A4 (en) FRP reinforcement bar with improved recycled glass coating
JP3121424U (ja) 炭素繊維コンクリート補強筋
KR101614850B1 (ko) 다분할 조각 구조의 섬유보강폴리머 보강재 및 그 제작방법
JPH03129040A (ja) コンクリート補強筋とその製造方法
WO2004073948A2 (fr) Thermoplastiques renforces de fibres

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090713

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

A4 Supplementary search report drawn up and despatched

Effective date: 20091027

RIC1 Information provided on ipc code assigned before grant

Ipc: E04H 12/00 20060101AFI20090714BHEP

Ipc: B29C 70/00 20060101ALI20091021BHEP

17Q First examination report despatched

Effective date: 20100201

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110701