EP2100479B1 - Mikrowellenheizungseinrichtung - Google Patents

Mikrowellenheizungseinrichtung Download PDF

Info

Publication number
EP2100479B1
EP2100479B1 EP07856371A EP07856371A EP2100479B1 EP 2100479 B1 EP2100479 B1 EP 2100479B1 EP 07856371 A EP07856371 A EP 07856371A EP 07856371 A EP07856371 A EP 07856371A EP 2100479 B1 EP2100479 B1 EP 2100479B1
Authority
EP
European Patent Office
Prior art keywords
microwave
frequency
microwaves
drying
objects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07856371A
Other languages
English (en)
French (fr)
Other versions
EP2100479A1 (de
Inventor
Marcel Mallah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fricke und Mallah Microwave Technology GmbH
Original Assignee
Fricke und Mallah Microwave Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fricke und Mallah Microwave Technology GmbH filed Critical Fricke und Mallah Microwave Technology GmbH
Priority to PL07856371T priority Critical patent/PL2100479T3/pl
Publication of EP2100479A1 publication Critical patent/EP2100479A1/de
Application granted granted Critical
Publication of EP2100479B1 publication Critical patent/EP2100479B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/241Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening using microwave heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/046Microwave drying of wood, ink, food, ceramic, sintering of ceramic, clothes, hair

Definitions

  • the invention relates to a micro-roll heating device having the features of the preamble of independent claim 1 and a method for heating of heating material, such.
  • Example for drying of ceramic moldings with microwaves, preferably using this drying device, with the features of the preamble of the independent claim. 7
  • the energy input to the core of a product is usually associated with conventional drying processes with conventional heat generation for a very long time, since the temperature gradient is slow from the Layer surface spreads into the interior of the product to be dried.
  • microwaves have a comparatively high penetration depth for well-insulating products, such as ceramic materials, and also heat the irradiated volume more uniformly through direct coupling.
  • microwave dryers are in principle well suited for all drying tasks of materials or moldings with embedded aqueous components or solvents which a Dipolmoment, i. have a high dielectric constant.
  • microwave drying are therefore also extensively used industrially for the production process of the soot or diesel particle filters (RPF), which are also required in large quantities, and also known as microparticle filters.
  • RPF diesel particle filters
  • These large-sized ceramic components with a micro-honeycomb structure and preferably a cylindrical geometry are needed in large numbers in the auto industry. They usually consist of silicon carbide (SiC) or mixed ceramics with a high silicon carbide content.
  • SiC silicon carbide
  • mixed ceramics with a high silicon carbide content.
  • microwave ovens are increasingly gaining in importance because of the aforementioned advantageous properties of microwave radiation.
  • continuous-flow drying systems are particularly frequently used for the heat treatment of ceramic materials.
  • the drying methods used for various tasks are implemented there by arranging, controlling and parameterizing the various system components.
  • the dry material on a belt conveyor is usually transported through several heating zones and the drying time can be regulated by the belt speed.
  • microwave generators are arranged, preferably above and below the belt conveyor, by means of which acting in the drying zones antennas microwaves are radiated to the dry matter.
  • the dry material such as Microparticle filter body are heated as uniformly as possible in its entire volume on the drying section.
  • microwave dryers are often equipped with additional hot air atomizing systems and corresponding suction devices to support the drying process and to remove the resulting vapors.
  • the high humidity in the oven should prevent the different degrees of shrinkage, as well as the formation of cracks and wrinkles.
  • the high moisture content in this known solution should also lead to undesirably prolonged drying times and increase the necessary heating power for the drying process.
  • the frequency of the microwave generators used here should be selected from a frequency range of 300 MHz to 300 GHz.
  • This proposed method requires a complex signal processing, and an associated with the monitoring sensors control electronics. It is to be expected that in the operation of the sensors to be monitored and the controls of the microwave generators in such a heat and moisture-contaminated work environments with frequent failures is to be expected. So that in addition to the high plant technical requirements of this solution also doubts about the reliability and functionality of the sensor system (image recognition) are appropriate for longer periods of operation.
  • a microwave drying process for synthetic polymers which separates volatile polar vehicles such as water or organic solvents from non-polar materials by passing the respective material through at least one resonator cavity of a pneumatic conveyor.
  • the polymer may be passed through a first resonator cavity in which microwaves at a frequency of 915 MHz act on the polymer and through a second resonator cavity in microwaves at a frequency of 2.450 GHz act on the dry matter.
  • the different frequencies of the microwave radiation are on the changing, d, h. adjusted decreasing moisture content of the polymer.
  • the areas in which the different microwaves act on the material are delimited by screening grids.
  • the pneumatic conveyor is suitable for granular or powdery materials which are free-flowing.
  • various inorganic materials, such as ceramics are mentioned as dry matter.
  • the microwave generators can be provided for the emission of microwaves of different frequencies.
  • the radiation of microwaves at frequencies of 2410 and 2450 MHz is proposed to expose these insects to the difference frequency of 40 MHz.
  • irradiation with microwaves of 2410 MHz, 2420 MHz, 2420 MHz, 2430 MHz, 2440 MHz and 2450 MHz is proposed.
  • one of the described microwave heating devices which may have microwave generators radiating at different microwave frequencies, has been used to cure a fiberglass sailboat mast.
  • a microwave continuous furnace which has an elongated working space and a conveyor belt for objects to be treated.
  • the objects are exposed to microwaves at different frequencies as they move. This is to keep the absorption of the microwaves constant, which is proportional to the product of the electricity constant, the loss factor and the frequency. Since the dielectric constant and the loss factor with the temperature and the humidity of the object, in the case of a drying operation, an object to be dried must be subjected to microwaves of increasing frequency, while in the case of a heating process, an object to be heated is to be subjected to falling frequencies of microwave frequency in order to adhere the absorption constantly. As an example of an object to be heated meals are given.
  • the object of the present invention is therefore to propose a microwave heating method and a microwave heating device, which avoid the disadvantages of prior art methods and tracking devices for heating material in the form of solids and allow as far as possible stress-free uniform drying, in particular in the volume of the ceramic dry material. At the same time, however, the necessary drying times in the drying devices used should also be optimized in order to reduce costs.
  • a microwave heating device having the features of independent claim 1 and a method for microwave heating with the features of independent claim 7, which is equipped with one or more microwave generators, which are designed such that the dry matter to be treated at a first microwave frequency of the irradiated by one or more microwave generators and irradiated simultaneously or successively with a second frequency from the lower frequency range of the internationally permissible lower frequency band by one or more microwave generators, the upper frequency band of the International permissible microwave frequencies (ISM frequencies).
  • ISM frequencies International permissible microwave frequencies
  • microwave generators In all known from the practice microwave drying devices microwave generators are used, which operate at a frequency of 2.45 GHz, ie with the same frequency as the world's popular microwave household appliances.
  • This ISM frequency Industrial, Scientific and Medical applications is one of the microwave frequencies permitted worldwide for heating purposes.
  • the drying process using this frequency does not provide satisfactory results and is associated with some difficulties, which is caused in particular by the low penetration of the microwaves into the ceramic material. It has been found that the penetration depth is an important measure of the location of the heat development in the volume of the material to be heated. But the size and geometry of the dry material play a crucial role in the formation of the internal temperature profile. According to the fact that the distribution of the internal heat sources in relation to the layer thickness of the material to be heated can be influenced by the microwave frequency used, it is proposed according to the invention to irradiate the dry matter to be heated with one or more different microwave frequencies, preferably equal to or at a high frequency greater 2.45 GHz and a lower frequency equal to or less than 1000 MHz.
  • inventive application of these mechanisms in a microwave drying device enable a new more efficient drying process by irradiation of the ceramic dry material by matched microwaves of different frequencies and a process Gestelitze controlled microwave power, which avoids the disadvantages of previously known methods.
  • the inventive microwave drying device is equipped with a plurality of microwave generators, which are each technically constructed so that they can radiate different frequencies, preferably from the upper and the lower frequency range on the dry material.
  • the proposed drying device for supporting the drying process can advantageously be supplemented and supported by further system components.
  • the additional arrangement of a known hot-air atomization system with suction device for supporting the drying process and removal of moisture has proved to be advantageous.
  • one or more additional dampening systems in the drying zones of the continuous ovens or drying chambers result in more uniform drying of the workpieces under a controlled steam atmosphere.
  • the cracking and deformation on the surface of the ceramic moldings can be minimized and significant quality improvements can be achieved.
  • microwave drying devices are known in the prior art in different embodiments for drying ceramic shaped bodies.
  • dry goods such as assemblies of sanitary engineering or the particularly important ceramic filter inserts of silicon carbide (SiC) for soot particulate filter of the automotive industry microwave generators are used with a frequency of 2.45 GHz.
  • SiC silicon carbide
  • the underlying microwave drying device ( Fig. 1 ) initially does not differ fundamentally from known plant concepts and is designed as a continuously operating continuous drying kiln 1 for ceramic shaped bodies with a plurality of microwave generators 3,4.
  • Absorber zones 6, 12 are also provided for the dry material inlet and outlet on the drying oven, which are adapted to the type and geometry of the dry material to be introduced.
  • the two absorber zones should prevent the escape of microwave radiation into the surroundings of the furnace, but in particular from the furnace entrance area 12 and the exit area 6. In the case of larger-volume products or for higher product throughputs, combined reflection and absorption locks in the entry and exit areas can also be used advantageously.
  • the arrangement of several field guides 8 in the ceiling region of the drying chamber 11 is advantageous.
  • the dry material is conveyed by means of continuous conveyor belt 7 through the drying chamber 11 of the furnace.
  • the drying chamber is constantly supplied with certain quantities of fresh air to remove the moisture arising from the drying process 5, 9 and is sucked off at the outlet 10.
  • a chamber furnace 2 is shown.
  • the dry material is placed on an arranged in the drying chamber 13 turntable 14 and rotated comparable to domestic microwave ovens during drying.
  • the coupling of the present invention different frequencies via the coupling elements 3 and 4.
  • the chamber furnace requires a continuous ventilation and exhaust 9, 10 for the removal of moisture.
  • ceramic shaped bodies are used as cylindrical filter inserts for microparticle filters.
  • Their honeycomb cell structure is particularly sensitive to greater temperature and humidity differences during drying, which can lead to material tensions, cracks or fractures and jeopardizes the usability.
  • the microwave generators for generating a higher frequency and the microwave generators for generating a lower frequency are arranged above and below the conveyor belt of the individual drying zones.
  • the high-frequency microwave generators operate at a frequency of 2.45 GHz. In this frequency range, the microwaves couple into near-surface areas, which leads to increased heat development in these areas.
  • the microwave frequency is increased from 2.45 GHz to 5.8 GHz, in particular by selecting a suitable dielectric, not only does the penetration depth of the Radiation, but also the heating power density directly below the surface of the dry material is increased.
  • microwaves from the frequency range of 900 MHz to 1000 MHz have a much greater penetration depth into the ceramic material to be dried.
  • the heat input is increased in the inner volume of the dry material, whereby the drying process is accelerated significantly accelerated.
  • microwave fields in this lower permissible frequency range increasingly show inhomogeneities in the field distribution, so that in certain cases the arrangement of suitable reflectors in the drying chambers is advantageous.
  • the low frequency microwave generators operate at a frequency of 915 MHz and are mounted primarily in the rear of the continuous furnace.
  • the penetration depth and thus the microwave frequency used has proved to be an important measure of the geometric distribution (heat sources) of the heat development in the volume of the material to be heated, the size and geometry of the dry material in the formation of the internal temperature profile plays a role to be considered.
  • the microwave energy can be used very effectively for the selection of suitable frequencies for particular material geometries and very advantageously for the drying process.
  • the present inventive method for microwave drying and the proposed microwave drying device allow a dry treatment of particular large-volume ceramic moldings, which compared to known methods and equipment faster product throughput, thus allowing shorter drying times, and largely stress and crack-free products.
  • the microwave heating device according to the invention and the method according to the invention can also be used for heating other materials than ceramics and for purposes other than drying, such as for heating preforms in the manufacture of components made of fiber composite or wood materials or for heat-induced curing, for example. Networking of various substances ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Drying Of Solid Materials (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Furnace Details (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Electric Ovens (AREA)
  • Resistance Heating (AREA)

Description

    TECHNISCHES GEBIET DER ERFINDUNG
  • Die Erfindung betrifft eine Mikrowollenheizungseinrichtung mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 1 und ein Verfahren zur Erwärmung von Erwärmungsgut, wie z. B. zur Trocknung von keramischen Formkörpern mit Mikrowellen, vorzugsweise unter Verwendung dieser Trockeneinrichtung, mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 7.
  • Durch eine zunehmend leistungsfähigere Mikrowellentechnik und die fortschreitende Automatisierung von Steuerungsvorgängen bei der Bestrahlung von keramischen Materialien mit Mikrowellen im Rahmen von industriellen Trocknungseinrichtungen und Prozessen wird diese Technik einem immer breiter werdenden Anwendungsbereich zugänglich. Im Mittelpunkt der vorliegenden Erfindung stehen daher industrielle Trocknungsverfahren und Mikrowellenheizungseinrichtungen zur Behandlung verschiedenartiger, insbesondere keramischer Materialien und mineralischer isolationswerkstoffen,
  • STAND DER TECHNIK
  • Die seit längerem bekannten besonderen physikallschen Eigenschaften von Mikrowellen, die Oberfläche eines bestrahlten Objekts zu durchdringen und in das Volumen wärmeerzeugend einzukoppeln, begründen deren bevorzugte Verwendung für der schnellen Erwärmung von Festkörpern oder Flüssigkeiten und deren Verwendung in industriellen Trocknungsprozessen.
  • Die Energieeinbringung bis zum Kern eines Produktes ist bei herkömmlichen Trocknungsverfahren mit konventioneller Wärmeerzeugung gewöhnlich mit einem sehr langen Zeitaufwand verbunden, da sich der Temperaturgradient nur langsam von der Schichtoberfläche in das Innere des zu trocknenden Produkts ausbreitet. Im Gegensatz dazu haben Mikrowellen bei gut isolierenden Produkten, wie keramische Materialien eine vergleichsweise hohe Eindringtiefe und erwärmen das bestrahlte Volumen durch direkte Einkopplung auch gleichmäßiger.
  • Die Gefahr einer Überhitzung der äußeren Oberflächen des zu behandelnden Trockenguts, wie sie bei anderen konventionellen Trocknungsverfahren durchaus besteht und sich der Wärmeeintrag auf die Oberfläche des Trockengutes konzentriert ist hier weitgehend ausgeschlossen.
  • So sind Mikrowellentrockner prinzipiell gut geeignet für alle Trocknungsaufgaben von Werkstoffen oder Formteilen mit eingelagerten wässrigen Bestandteilen oder auch Lösemittel, welche ein Dipolmoment, d.h. eine hohe Dielektrizitätskonstante aufweisen.
  • Die Vorteile der Mikrowellentrocknung werden deshalb auch für den Herstellungsprozess der in großen Stückzahlen benötigten Ruß- oder Dieselpartikelfilter (RPF), auch Mikropartikelfilter genannt, industriell umfangreich genutzt. Diese großformatigen keramischen Bauelemente mit mikro-wabenförmiger Struktur und vorzugsweise einer zylindrischen Geometrie werden in der Autoindustrie in großen Stückzahlen benötigt. Sie bestehen meist aus Siliziumkarbit (SiC) oder Mischkeramiken mit einem hohen Siliziumkarbitanteil. Zur Trocknung solcher keramischen Formteile werden Trockenöfen unterschiedlicher Bauarten und mit verschiedenen Heizsystemen (Gas- oder Elektroheizung) eingesetzt. Dabei gewinnen Mikrowellenöfen wegen der genannten vorteilhaften Eigenschaften der Mikrowellenstrahlung zunehmend an Bedeutung.
  • Neben den für bestimmte Anwendungszwecke verwendeten Mikrowellen-Kammeröfen für die chargenweise (Stapelverarbeitung) Wärmebehandlung von Trockengütern, werden besonders häufig Durchlauf-Trocknungsanlagen zur Wärmebehandlung von keramischen Materialien verwendet. Die für verschiedene Aufgaben verwendeten Trocknungsverfahren werden dort durch die Anordnung, Steuerung und Parametrierung der verschiedenen Anlagenkomponenten realisiert. In Durchlauföfen wird das Trockengut auf einem Bandförderer meist durch mehrere Heizzonen befördert und die Trockenzeit lässt sich über die Bandgeschwindigkeit regeln. In den Heizzonen sind Mikrowellengeneratoren angeordnet, vorzugsweise oberhalb und unterhalb des Bandförderers, mittels deren in die Trockenzonen hineinwirkenden Antennen Mikrowellen auf das Trockengut abgestrahlt werden. Dabei soll das Trockengut, wie beispielsweise Mikropartikelfilterkörper möglichst gleichmäßig in seinem gesamten Volumen auf der Trockenstrecke erwärmt werden.
  • Weiterhin sind derartige Mikrowellentrockner oft mit zusätzlichen Heißluft-Verdüsungssystemen und entsprechenden Absaugeinrichtungen zur Unterstützung der des Trocknungsprozesses und zur Abführung der entstehenden Dämpfe ausgestattet.
  • Als weitere zusätzliche Hilfseinrichtung können in unterschiedlichen Bauformen verfügbare Befeuchtungssysteme installiert werden, deren Aufgabe die Herstellung einer kontrollierten Dampfatmosphäre in den Trockenzonen ist. Durch die Befeuchtung wird einer Übertrocknung der Oberfläche entgegengewirkt, was ohne diese Maßnahme leicht zu Oberflächenspannungen und zur Rissbildung bei den empfindlichen keramischen Oberflächen führen kann.
  • Solche, auch als Hybrid-Trocknungsanlagen bezeichneten Durchlauföfen, können neben Mikrowellen als Wärmequelle auch weitere zusätzliche Heizelemente oder Wärmequellen aufweisen, die elektrisch oder gasbetrieben sein können.
  • Diese in den bekannten industriellen Mikrowellen-Trocknungsanlagen verwendeten Trocknungsverfahren weisen jedoch auch erhebliche Nachteile in der Homogenität der Feldverteilung und der Heizleistungsdichte im Volumen auf. Das hat besonders negative Auswirkungen bezüglich der hier zu betrachtenden großvolumigeren keramischen Formkörper und führt speziell bei Dieselpartikelfilter zu unerwünschten Qualitätseinbußen, wie zur Verringerung der Lebensdauer der Filterkörpern und vermindern deren Filterwirkung, was deren Verwendbarkeit beeinträchtigt.
  • Um die in bekannten Mikrowellen-Trocknungseinrichtungen häufig auftretende Risse, Spannungen und Verformungen im Trockengut, also dem Keramikkörper und seiner Oberfläche zu verhindern, ist ein möglichst gleichmäßiger Wärmeeintrag durch die abgestrahlten Mikrowellen in das Volumen des Trockengutes notwendig. Daher wurde versucht dieses Ziel mit den Mitteln einer möglichst gleichmäßigen Feldverteilung des Mikrowellenfeldes über die gesamte Trockenstrecke zu erreichen. Mittels bestimmter Maßnahmen, wie die zusätzliche Anordnung von Reflektoren und spezielle Antennenkonstruktionen sollte die Homogenität und Stabilität des Mikrowellenfeldes verbessert und ein gleichmäßigerer Trocknungsvorgang für die Gesamtheit der eingebrachten Keramikkörper erreicht werden.
  • Auch wurde zur Vermeidung von derartigen Trocknungsfehlern vorgeschlagen, mehrere Mikrowellenreflektoren an vorbestimmten Stellen in den Trocknungskammern oder verteilt in einzelnen Trockenzonen unter bestimmten Abstrahlwinkeln anzuordnen. Dem mit diesen bekannten Maßnahmen einhergehenden, nicht unerheblichen zusätzlichen anlagentechnische Aufwand zur Homogenisierung der Feldverteilung und Fokussierung auf das Trockengut, stehen nur begrenzte Verbesserungen im Trocknungsprozess gegenüber. Aus der DE 10 201 299 A1 ist ein weiteres Verfahren bekannt, bei dem der Trocknungsprozess eines als Katalysatorträger ausgebildeter keramischer Wabenkörpers für Autoabgasreinigungssysteme in einer hochgradig feuchten Umgebung mit einem Feuchtigkeitsgehalt von mindestens 70 % erfolgt und er gleichzeitig mit Mikrowellen bestrahlt wird.
  • Der hohe Luftfeuchtigkeitsgehalt im Ofen soll die verschieden starken Schrumpfungsvorgänge, sowie die Bildung von Rissen und Runzeln verhindern. Allerdings dürfte der hohe Feuchtigkeitseintrag bei dieser bekannten Lösung auch zu unerwünscht verlängerten Trocknungszeiten führen und die notwendige Heizleistung für den Trockenvorgang erhöhen.
  • Mit der in der DE 10 353 784 A1 offenbarten Vorrichtung wird zur Verfahrensverbesserung versucht, den Trocknungsvorgang keramischer Formgegenstände gezielt zu steuern, indem die örtliche Verteilung und Lage des Trockengutes in einer Trockenkammer sensorisch erfasst und zur Steuerung der Mikrowellen-Abstrahlleistung und/oder Abstrahlrichtung einer Vielzahl von angeordneten Mikrowellengeneratoren verwendet wird. Die verwendete Frequenz der Mikrowellengeneratoren soll hier aus einem Frequenzbereich von 300 MHz bis 300 GHz auszuwählen sein.
  • Dieses vorgeschlagene Verfahren erfordert eine aufwendige Signalverarbeitung, sowie eine mit den Überwachungssensoren verbundenen Steuerelektronik. Dabei ist zu erwarten, dass beim Betrieb der zu überwachenden Sensoren und die Steuerungen der Mikrowellengeneratoren in einer solchen wärme- und feuchtigkeitsbelasteten Arbeitsumgebungen mit häufigen Ausfällen zu rechnen ist. So dass neben dem hohen anlagetechnischen Erfordernissen dieser Lösung auch Zweifel an der Zuverlässigkeit und Funktionstüchtigkeit des Sensorsystems (Bilderkennung) über längere Betriebszeiträume angebracht sind.
  • Aus der US-A-3,771,234 ist ein Mikrowellentrock ungsprozess für synthetisch Polymere bekannt, mit dem flüchtige polare Vehikel, wie beispielsweise Wasser oder organische Lösungsmittel, von nicht polaren Materiallen getrennt werden, Indem das Jeweilige Material durch mindestens eine Resonatorkavität eines pneumatischen Förderers hindurchgeführt wird. Für die Trocknung eines Polymers, wie beispielsweise von Polyvinylchlorid, kann das Polymer durch eine erste Resonatorkavität geführt werden, in der Mikrowellen mit einer Frequenz von 915 MHz auf das Polymer einwirken, und durch eine zweite Resonatorkavität, In der Mikrowellen mit einer Frequenz von 2,450 GHz auf das Trockengut einwirken. Die unterschiedlichen Frequenzen der Mikrowellenstrahlung sind auf den sich ändernden, d, h. abfallenden Feuchtigkeitsgehalt des Polymers abgestimmt. Die Bereiche, in denen die verschiedenen Mikrowellen auf das Material einwirken, sind durch Abschirmgitter gegeneinander abgegrenzt. Der pneumatische Förderer ist für gekörnte oder pulverförmige Materialien geeignet, die freiflleßend sind. Neben Polymeren werden als Trockengut auch verschiedene anorganische Materiallen, wie beispielsweise Keramiken, erwähnt.
  • Aus der AU 565,393 B2 ist eine Mikrowellenbehandlung von Materialien mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 6 sowie eine entsprechende Mikrowellenheizungseinrichtung mit den Merkmalen des Oberbegriffs des unabhängigen Patentanspruchs 1 bekannt. Hierbei können die Mikrowellengeneratoren zur Abstrahlung von Mikrowellen unterschiedlicher Frequenz vorgesehen sein. So wird zur Abtötung von insekten die Abstrahlung von Mikrowellen mit Frequenzen von 2410 und 2450 MHz vorgeschlagen, um diese Insekten der Differenzfrequenz von 40 MHz auszusetzen. Zur Behandlung von befallenem Welzen wird eine Bestrahlung mit Mikrowellen von 2410 MHz, 2420 MHz, 2420 MHz, 2430 MHz, 2440 MHz und 2450 MHz vorgeschlagen. Weiter wird berichtet, dass eine der beschriebenen Mikrowellenheizungseinrichtungen, die bei unterschiedlichen Mikrowellenfrequenzen abstrahlende Mikrowellengeneratoren aufweisen kann, zur Aushärtung eines Segelbootmastes aus Fiberglas verwendet wurde.
  • Aus der DE 18 18 464 U ist ein Mikrowellen-Durchlaufofen bekannt, der einen langgestreckten Arbeitsraum und ein Transportband für zu behandeinde Objekte aufweist. Dabei werden die Objekte im Zuge Ihrer Bewegung nacheinander Mikrowellen mit unterschiedlichen Frequenzen ausgesetzt. Hierdurch soll die Absorption der Mikrowellen konstant gehalten werden, die proportional dem Produkt aus der Elektrizitätskonstanten, dem Verlustfaktor und der Frequenz ist. Da die Dielektrizitätskonstante und der Verlustfaktor mit der Temperatur und der Feuchte des Objekts steigen, muss im Falle eines Trocknungsvorgangs ein zu trocknendes Objekt mit Mikrowellen steigender Frequenz beaufschlagt werden, während im Falle eines Erwärmungsvorgangs ein zu erwärmendes Objekt mit Mikrowellen fallender Frequenz zu beaufschlagen Ist, um die Absorption konstant zu haften. Als Beispiel für ein zu erwärmende Objekt werden Speisen angegeben.
  • AUFGABE DER ERFINDUNG
  • Aufgabe der vorliegende Erfindung ist es daher, ein Mikrowellenerwärmungsverfahren und eine Mikrowellenheizungseinrichtung vorzuschlagen, welche die Nachteile vorbekannter Verfahren und Tracknungseinrichtungen für Erwärmungsgut in Form von Festkörpern vermeiden und eine weitmöglichst spannungsfrei gleichmäßige Trocknung, insbesondere im Volumen des keramischen Trockenguts ermöglichen. Dabei sollen aber auch die notwendigen Trocknungszeiten In den verwendeten Trocknungseinrichtungen zur Verringerung der Kosten optimiert werden.
  • Die Aufgabe der Erfindung wird durch die Merkmale des ersten und sechsten Patentanspruchs gelöst. In den jeweiligen Unteransprüchen sind weitere vorteilhafte Ausgestaltungen der Erfindung angegeben.
  • LÖSUNG
  • Erfindungsgemaß werden eine Mikrowellenheizungseinrichtung mit den Merkmalen des unabhängigen Patentanspruchs 1 und ein Verfahren zur Mikrowellenerwärmung mit den Merkmalen des unabhängigen Patentanspruchs 7 angegeben, welche mit ein oder mehreren Mikrowellengeneratoren ausgestattet ist, die derart ausgestaltet sind, dass das zu behandelnde Trockengut mit einer ersten Mikrowellenfrequenz aus dem oberen Frequenzband der International zulässigen Mikrowellenfrequenzen (ISM-Frequenzen) durch ein oder mehrere Mikrowellengeneratoren bestrahlt und gleichzeitig oder nacheinander mit einer zweiten Frequenz aus dem unterem Frequenzbereich des international zulässigen unteren Frequenzbandes durch ein oder mehrere Mikrowellengeneratoren bestrahlt wird. Dabei werden durch die verwendeten Frequenzen aus dem oberen Frequenzbereich geringere Eindringtiefen, aber eine gleichmäßigeren Feldverteilung der Mikrowellen realisiert und durch die verwendeten Bestrahlungsfrequenzen aus dem unteren Frequenzbereich wird eine höhere Eindringtiefe und eine bessere Einkopplung in die tieferen Schichten des Volumens realisiert.
  • BESCHREIBUNG DER ERFINDUNG
  • Bei allen aus der Praxis bekannten Mikrowellen-Trockeneinrichtungen werden Mikrowellengeneratoren eingesetzt, die mit einer Frequenz von 2,45 GHz arbeiten, also mit der gleichen Frequenz wie die welt verbreiteten Mikrowellenhaushaltsgeräte. Diese ISM-Frequenz (Industrial, Scientific and Medical applications) ist eine der weltweit für Erwärmungszwecke zugelassenen Mikrowellenfrequenzen.
  • Wie beschrieben, liefert der Trocknungsprozess bei Anwendung dieser Frequenz keine befriedigenden Ergebnisse und ist mit einigen Schwierigkeiten verbunden, was insbesondere durch die geringe Eindringtiefe der Mikrowellen in den keramischen Werkstoff verursacht wird. Es wurde gefunden, dass die Eindringtiefe ein wichtiges Maß für den Ort der Wärmeentwicklung im Volumen des zu erwärmenden Materials ist. Aber auch die Größe und die Geometrie des Trockengutes spielen bei der Ausbildung des inneren Temperaturprofils eine entscheidende Rolle. Gemäß der Tatsache, dass die Verteilung der inneren Wärmequellen im Bezug auf die Schichtdicke des zu erwärmenden Materials durch die verwendete Mikrowellenfrequenz beeinflussbar ist, wird erfindungsgemäß vorgeschlagen, dass zu erwärmende Trockengut mit einer oder mehreren unterschiedlichen Mikrowellenfrequenzen zu bestrahlen, vorzugsweise mit einer hohen Frequenz gleich oder größer 2,45 GHz und einer niedrigeren Frequenz gleich oder kleiner 1000 MHz. Untersuchungen zum Verhalten von Mikrowellenstrahlung beim Einkoppeln in Festkörper haben ergeben, dass sich die Eindringtiefe der Mikrowellenstrahlung entgegengesetzt proportional zu steigenden Frequenzen hin ändert. Also je höher die Frequenz der verwendeten Strahlung, desto geringer die Eindringtiefe. In diesem Zusammenhang wurde weiterhin gefunden, dass sich die Wärmeerzeugung im Trockengut um so stärker innerhalb des Oberflächenbereichs konzentriert, je höher die Frequenz der verwendeten Mikrowellenstrahlung, bei gleichen dielektrischen Eigenschaften des Trockengutes ist.
  • Insbesondere die erfinderische Anwendung dieser Mechanismen in einer Mikrowellen-Trocknungseinrichtung ermöglichen ein neues wirksameres Trocknungsverfahren mittels Bestrahlung des keramischen Trockengutes durch aufeinander abgestimmte Mikrowellen unterschiedlicher Frequenzen und einer verfahrensgestegesteuerten Mikrowellenleistungen, welches die Nachteile bisher bekannter Verfahren vermeidet.
  • Die erfinderische Mikrowellen-Trocknungseinrichtung ist mit mehreren Mikrowellengeneratoren ausgestattet, welche jeweils technisch derart aufgebaut sind, dass sie verschiedene Frequenzen, vorzugsweise aus dem oberen und dem unteren Frequenzbereich auf das Trockengut abstrahlen können.
  • Dabei kann die vorgeschlagene Trocknungseinrichtung zur Unterstützung des Trocknungsprozesses vorteilhaft durch weitere Anlagenkomponenten ergänzt und unterstützt werden. So hat sich die zusätzliche Anordnung eines an sich bekannten Heißluft-Verdüsungssystem mit Absaugeinrichtung zur Unterstützung des Trockenvorgangs und Abführung der Feuchtigkeit als vorteilhaft erwiesen.
  • Andererseits führen ein oder mehrere zusätzliche Befeuchtungssysteme in den Trockenzonen der Durchlauföfen oder Trockenkammern zu einer gleichmäßigeren Trocknung der Werkstücke unter einer kontrollierten Dampfatmosphäre. So können insbesondere die Rissbildung und Verformung auf der Oberfläche der keramischen Formteile minimiert und erhebliche Qualitätsverbesserungen erzielt werden.
  • In der realen Konstruktion eines Mikrowellen-Trockenofens ist auch immer die allseitige Bestrahlung des Trockengutes so weit wie möglich vorzusehen, sowie die im Ofenraum auftretenden Reflexion der Mikrowellen zu berücksichtigen. Bei Anordnung mehrer Mikrowellengeneratoren bildet sich oft ein komplexes Mikrowellenfeld heraus, welches das Wärmgut umgibt, das aber ohne besondere Maßnahmen sehr inhomogen verteilt ist. Dies beruht auf der Natur der Mikrowellenstrahlung und der speziellen Form und Ausgestaltung des Ofenraums, der als Mikrowellen-Resonator wirkt.
  • Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Patentansprüchen, der Beschreibung und den Zeichnungen. Die in der Beschreibungseinleitung genannten Vorteile von Merkmalen und von Kombinationen mehrerer Merkmale sind lediglich beispielhaft und können alternativ oder kumulativ zur Wirkung kommen, ohne dass die Vorteile zwingend von erfindungsgemäßen Ausführungsformen erzielt werden müssen. Weitere Merkmale sind den Zeichnungen - insbesondere den dargestellten Geometrien und den relativen Abmessungen mehrerer Bauteile zueinander sowie deren relativer Anordnung und Wirkverbindung - zu entnehmen. Die Kombination von Merkmalen unterschiedlicher Ausführungsformen der Erfindung oder von Merkmalen unterschiedlicher Patentansprüche ist ebenfalls abweichend von den gewählten Rückbeziehungen der Patentansprüche möglich und wird hiermit angeregt. Dies betrifft auch solche Merkmale, die in separaten Zeichnungen dargestellt sind oder bei deren Beschreibung genannt werden. Diese Merkmale können auch mit Merkmalen unterschiedlicher Patentansprüche kombiniert werden. Ebenso können in den Patentansprüchen aufgeführte Merkmale für weitere Ausführungsformen der Erfindung entfallen.
  • KURZBESCHREIBUNG DER FIGUREN
  • Die Erfindung soll nun anhand eines konkreten Ausführungsbeispiels näher erläutert werden.
  • Es zeigen:
  • Fig. 1
    den erfindungsgemäßen Mikrowellenofen als Durchlauf-Trockenofen 1
    Fig. 2
    den erfindungsgemäßen Mikrowellenofen, welcher als Kammerofen 2 ausgebil- det ist.
    FIGURENBESCHREIBUNG
  • Wie schon angegeben sind aus dem Stand der Technik sind zahlreiche Mikrowellen-Trocknungseinrichtungen in unterschiedlichen Ausgestaltungen zur Trocknung von keramischen Formkörpern bekannt. Speziell bei geometrisch größeren Trockengütern, wie Baugruppen der Sanitärtechnik oder den besonders wichtigen keramischen Filtereinsätzen aus Siliziumcarbid (SiC) für Russpartikelfilter der Automobilindustrie werden Mikrowellengeneratoren mit einer Frequenz von 2,45 GHz verwendet. Dabei wird versucht, die durch partielle Überhitzung von Oberflächenbereichen und der Ausbildung ungleichmäßiger Wärmegradienten im Volumen entstehenden Qualitätsmängel (Rissbildung und Verformungen usw.) des Trockenguts durch die schon beschrieben Maßnahmen zu bekämpfen.
  • Auch die in diesem Ausführungsbeispiel zugrunde gelegte Mikrowellen-Trockeneinrichtung (Fig. 1) unterscheidet sich zunächst nicht grundlegend von bekannten Anlagenkonzepten und ist als kontinuierlich arbeitender Durchlauf-Trockenofen 1 für keramische Formkörper mit mehreren Mikrowellengeneratoren 3,4 ausgebildet. Für den Trockengutein- und -austritt am Trockenofen sind noch Absorberzonen 6, 12 vorgesehen, welche angepasst sind an die Art und Geometrie des einzubringenden Trockengutes. Weiterhin sollen die beiden Absorberzonen den Austritt von Mikrowellenstrahlung in die Umgebung des Ofens, insbesondere jedoch aus dem Ofeneingangsbereich 12 und dem Ausgangsbereich 6 verhindern. Bei vorliegend großvolumigeren Produkten oder für höhere Produktdurchsätze, sind auch kombinierte Reflexions- und Absorptionsschleusen im Ein- und Ausgangsbereich vorteilhaft einsetzbar.
  • Die Einkopplung der hoch- und niederfrequenten Mikrowellen erfolgt über mehrere in die Decke und den Bodenbereich der Trockenkammern eingelassene Einkoppelelemente 3 und 4, beispielsweise auf die Abgabefrequenz abgestimmte Schlitzantennen, so dass vorzugsweise eine gleichmäßige Verteilung der Mikrowellen (auch bei Stufenbetrieb) gewährleistet ist.
  • Um eine besonders gleichmäßige Mikrowellenfeldverteilung zu erreichen, ist die Anordnung von mehreren Feldführern 8 im Deckenbereich der Trockenkammer 11 vorteilhaft.
  • Wie in Fig. 1 dargestellt, wird das Trockengut mittels kontinuierlichen Förderbands 7 durch die Trockenkammer 11 des Ofens befördert. Dabei werden der Trockenkammer je nach Trockenaufgabe ständig bestimmte Mengen Frischluft zu Abtransport der aus dem Trockenprozess entstehenden Feuchtigkeit zugeführt 5, 9 und am Ausgang 10 abgesaugt.
  • In Fig. 2 ist in eine weitere Ausgestaltung der Erfindung ein Kammerofen 2 dargestellt. Hier wird das Trockengut auf einen in der Trockenkammer 13 angeordneten Drehteller 14 aufgelegt und vergleichbar mit häuslichen Mikrowellenherden während der Trocknung gedreht. Die Einkopplung der erfindungsgemäß unterschiedlichen Frequenzen erfolgt über die Koppelelemente 3 und 4. Auch der Kammerofen benötigt eine kontinuierliche Be-und Entlüftung 9, 10 zum Abtransport der Feuchtigkeit.
  • Als großvolumiges Trockengut werden keramische Formkörper als zylinderförmige Filtereinsätze für Mikropartikelfilter verwendet. Deren wabenförmige Zellenstruktur ist gegenüber größeren Temperatur und Feuchtigkeitsunterschieden während der Trocknung besonders empfindlich, was zu Materialspannungen, Rissen oder Brüchen führen kann und die Verwendbarkeit gefährdet. Die Mikrowellengeneratoren zur Erzeugung einer höheren Frequenz und die Mikrowellengeneratoren zur Erzeugung einer niedrigeren Frequenz sind oberhalb und unterhalb des Transportbandes der einzelnen Trockenzonen angeordnet.
  • Die Hochfrequenz-Mikrowellengeneratoren arbeiten mit einer Frequenz von 2,45 GHz. In diesem Frequenzbereich koppeln die Mikrowellen in oberflächennahe Bereiche ein, was zu einer verstärkten Wärmeentwicklung in diesen Bereichen führt.
  • Wird beispielsweise die Mikrowellenfrequenz insbesondere durch Auswahl eines geeigneten Dielektrikums von 2,45 GHz auf 5,8 GHz erhöht verringert sich nicht nur die Eindringtiefe der Strahlung, sondern auch die Heizleistungsdichte direkt unter der Oberfläche des Trockengutes wird erhöht.
  • Umgekehrt ist festzustellen, dass insbesondere Mikrowellen aus dem Frequenzbereich von 900 MHz bis 1000 MHz eine weitaus höhere Eindringtiefe in das zu trocknende keramische Material haben. Dadurch wird der Wärmeeintrag in das innere Volumen des Trockengutes gesteigert, wodurch der Trocknungsprozess beschleunigt signifikant beschleunigt wird.
  • Allerdings zeigen Mikrowellenfelder in diesem unteren zulässigen Frequenzbereich verstärkt Inhomogenitäten in der Feldverteilung, so dass in bestimmten Fällen die Anordnung von geeigneten Reflektoren in den Trockenkammern vorteilhaft ist.
  • In diesem Ausführungsbeispiel arbeiten die Niedrigfrequenz-Mikrowellengeneratoren mit einer Frequenz von 915 MHz und sind vorwiegend im hinteren Teil des Durchlaufofens angebracht.
  • Bei der erfindungsgemäßen kombinierten Anwendung der beiden unterschiedlichen Frequenzen von 2,45 GHz und 915 MHz werden jeweils unterschiedliche Eindringtiefen der einkoppelnden Mikrowellen an den zu trocknenden keramischen Formkörpern realisiert. Die dadurch sowohl im oberflächennahen Bereich, als auch im Volumen des als keramischer Wabenfilter ausgebildeten Trockengutes erzielte Heizleistungsdichte sorgt für einen wesentlich gleichmäßigeren Temperaturgradienten und dadurch auch für einen kontinuierlichen schnelleren und spannungsfreien Trocknungsprozess.
  • Da sich die Eindringtiefe und damit die verwendete Mikrowellenfrequenz als ein wichtiges Maß für die geometrische Verteilung (Wärmequellen) der Wärmeentwicklung im Volumen des zu erwärmenden Materials erwiesen hat, spielt auch die Größe und Geometrie des Trockengutes bei der Ausbildung des inneren Temperaturprofils eine zu berücksichtigende Rolle.
  • Erfindungsgemäß kann also die Mikrowellenenergie durch die Auswahl geeigneter Frequenzen für bestimmte Materialgeometrien sehr wirksam und für den Trocknungsprozess sehr vorteilhaft genutzt werden.
  • In Verbindung mit weiteren technologischen Maßnahmen, wie einem variablem Druckniveau der in den Trockenzonen herrschenden Atmosphäre können selbst schwierige Trocknungsaufgaben schonend und bei relativ geringen Temperaturen durchgeführt werden.
  • Da sich mit der erfinderischen Mikrowellentrockentechnik spezielle Mikrowellenfelder mit einer recht hohen Energiedichten erzielen lassen, ist insbesondere die Konstruktion von Platz sparenden kompakten Trocknungseinrichtungen möglich.
  • Mit diesem Multifrequenzverfahren werden alle Produktschichten, auch die tiefer liegenden Bereiche unmittelbar und sofort mit der gleichen oder auf den Trocknungsverlauf abgestimmter Mikrowellenenergiemenge beaufschlagt. Dies hat bei den zu trocknenden keramischen Produkten insbesondere den Vorteil, dass das Produkt selbst chemisch und physikalisch homogener und in seiner Struktur erhalten bleibt.
  • Das vorliegende erfinderische Verfahren zur Mikrowellentrocknung und die vorgeschlagene Mikrowellen-Trocknungseinrichtung erlauben eine Trockenbehandlung von insbesondere großvolumigen keramischen Formkörpern, welche gegenüber bekannten Verfahren und Anlagen einen schnelleren Produktdurchsatz, also kürzere Trocknungszeiten ermöglicht, sowie weitgehend spannungs- und rissfreie Produkte erzielt.
  • Auch Verformungen an der Oberfläche oder andere Unebenheiten und Qualitätsmängel des keramischen Trockengutes werden durch die erfinderische Mikrowellen-Multifrequenzbehandlung im Trocknungsprozess vermieden, was ebenfalls zu erheblichen Kosteneinsparungen führt.
  • Die erfindungsgemäße Mikrowellenerwärmungseinrichtung und das erfindungsgemäße Verfahren sind auch zur Erwärmung anderer Materialien als Keramiken und zu anderen zwecken als zur Trocknung einsetzbar, wie bspw. zum Erwärmen von Vorformen bei der Herstellung von Bauteilen aus Faserverbund- oder Holzwerkstoffen oder zur wärmeinduzierten Aushärtung bspw. Vernetzung verschiedenster Substanzen.
  • BEZUGSZEICHENLISTE
  • 1
    Mikrowellen-Trockenofen als Durchlaufofen ausgebildet
    2
    Mikrowellen-Trockenofen als Kammerofen ausgebildet
    3
    Mikrowelleneinkopplung 2,45 FH, Einkoppelelement
    4
    Mikrowelleneinkopplung 915 MHz, Einkoppelelement
    5
    Zuluft/Umluft für den Heißluft/Mischbetrieb
    6
    Absorberzone zur Verhinderung der Mikrowellen-Leckstrahlung
    7
    Förderband (einfach oder reversibel)
    8
    Feldführer für Mikrowellen
    9
    Zuluft-Zuführung
    10
    Abluft-Zuführung
    11
    Mikrowellentrockenkammer des Durchlaufofens
    12
    Absorberzone
    13
    Mikrowellentrockenkammer des Kammerofens aus Metall beliebiger Form
    14
    Drehteller mit Trockengut

Claims (13)

  1. Mikrowellenheizungseinrichtung mit einem Mikrowellen-Durchlaufofen (1) oder Mikrowellen-Kammerofen (2), der Erwärmungsgut in Form von Festkörpern aufnimmt, und mit mehreren Mikrowellengeneratoren zur Abstrahlung von Mikrowellen mit einer Frequenz von 300 MHz bis 5,8 GHz und zur Einkopplung in das Erwärmungsgut in dem Mikrowellen-Durchlaufofen (1) oder Mikrowellen-Kammerofen (2), dadurch gekennzeichnet, dass ein oder mehrere der Mikrowollengeneratoren zur Abstrahlung von Mikrowellen mit einer ersten Frequenz aus einem oberen Mikrowellenfrequenzbereich größer als 1 GHz ausgelegt sind, wobei deren Eindringtiefe In das Erwärmungsgut geringer ist, und ein oder mehrere der Mlkrowellengeneratoren zur Abstrahlung von Mikrowellen mit einer zweiten Frequenz aus einem unteren Mikrowellenfrequenzbereich nicht größer als 1 GHz ausgelegt sind, wobei deren Eindringtiefe In das Erwärmungsgut höher ist.
  2. Mikrowellenheizungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die erste Frequenz aus dem oberen Mikrowellenfrequenzbereich in einem Bereich von 2,45 bis 5,8 GHz Ilegt und dass die zweite Frequenz aus dem unterem Mikrowellenfrequenzbereich In einem Bereich von 900 MHz bis 1000 MHz liegt.
  3. Mikrowellenheizungseinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mikrowellengeneratoren sowohl die Mikrowellen mit der ersten Frequenz als auch die Mikrowellen mit der zweiten Frequenz in eine Trockenkammer (11, 13) des Durchlaufofens (1) oder Mikrowellen-Kammerofens (2) einkoppeln.
  4. Mikrowellenheizungseinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie als Mikrowellen-Durchlaufofen (1) mit einem oder mehreren Trockenmodulen ausgelegt Ist.
  5. Mikrowellenheizungseinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Mikrowellenofen als Mikrowellen-Hybridofen ausgebildet ist, welcher zur Unterstützung der Mehrfrequenz-Mikrowellantrocknung und besseren Abführung der entstehenden Dämpfe ein zusätzliches Heißluft-Verdüsungssystem mit Absaugeinrichtung und/oder mindestens ein Befeuchtungssystem zur Bereitstellung einer kontrollierten Dempfatmosphäre aufweist.
  6. Mikrowellenheizungseinrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein oder mehrere zusätzliche Heizeinrichtungen konventioneller Bauart zur Unterstützung und Ergänzung angeordnet sind, welche vorzugsweise als Gasheizung und/oder elektrisch betrieben Helzelemente ausgebildet sind.
  7. Verfahren zur Erwärmung von Erwärmungsgut in Form großvolumiger Festkörper durch Behandlung mit Mikrowellen aus einem Frequenzbereich der weitweit zugelassenen ISM-Frequenzen für Erwärmungszwecke von 300 MHz bis 5,8 GHz, dadurch gekennzeichnet, dass das Erwärmungsgut zur Realisierung unterschiddilcher Eindringtiefen in das Erwärmungsgut mit Mikrowellen einer ersten Frequenz aus einem oberen Mikrowellenfrequenzbereich von 2,45 bis 5,8 GHz, für einen bestimmten Zeitraum behandelt wird und gleichzeitig oder nacheinander mit Mikrowellen einer zweiten Frequenz aus einem unterem Mikrowellenfrequenzbereich von 900 MHz bis 1000 MHz für einen bestimmten Zeitraum behandelt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das zu behandeinde Erwärmungsgut Formkörper aus dem Bereich der technischen Keramik umfasst.
  9. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das zu behandelnde Erwärmungsgut keramische Strukturen oder Filterkörper für Ruß- oder Dieselpartikelfilter umfasst.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die keramischen Strukturen oder Filterkörper zur Herstellung Ruß- oder Dieselpartikelfiltar als wesentlichen Bestandtell Siliziumcarbid (SiC) enthalten.
  11. Verfahren nach einem der Ansprüche 7 und 8 zur Trocknung von keramischen Formteilen aus dem Bereich der Sanitärkeramik, dadurch gekennzeichnet, dass das Trockengut zur Realisierung unterschiedlicher Eindringtlefen mit Mikrowellen einer ersten Frequenz aus dem oberen Mikrowellenfrequenzbereich, vorzugsweise von 2,45 bis 5,8 GHz für einen bestimmten Zeitrum behandelt wird und gleichzeitig oder nacheinander mit Mikrowellen einer zweiten Frequenz aus dem unterem Mikrowellenfrequenzbereich, vorzugsweise von 900 MHz bis 1000 MHz für einen bestimmten Zeitraum behandelt wird, wobei eine Mikrowollenbehandlung mit weiteren Mikrowellenfrequenzen vorgesehen wird.
  12. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das zu behandelnde Erwärmungsgut eine Vorform oder ein Teil einer Vorform für ein Bauteil aus einem Faserverbund- oder Holzwerkstoff ist.
  13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass Mikrowellen unterschiedlicher Frequenzen gleichzeitig, nacheinander, In beliebigen zeitlichen und/oder räumlichen Abständen zueinander oder in einem beliebigen Frequenzfolgenwachsel auf die zu trocknenden keramischen Formtelle einwirken.
EP07856371A 2006-12-06 2007-12-05 Mikrowellenheizungseinrichtung Not-in-force EP2100479B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07856371T PL2100479T3 (pl) 2006-12-06 2007-12-05 Mikrofalowe urządzenie ogrzewające

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006057780 2006-12-06
DE102007028595 2007-06-19
PCT/EP2007/010530 WO2008067996A1 (de) 2006-12-06 2007-12-05 Mikrowellenheizungseinrichtung

Publications (2)

Publication Number Publication Date
EP2100479A1 EP2100479A1 (de) 2009-09-16
EP2100479B1 true EP2100479B1 (de) 2011-02-02

Family

ID=39325611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07856371A Not-in-force EP2100479B1 (de) 2006-12-06 2007-12-05 Mikrowellenheizungseinrichtung

Country Status (7)

Country Link
US (1) US20090302031A1 (de)
EP (1) EP2100479B1 (de)
JP (1) JP2010511980A (de)
AT (1) ATE497686T1 (de)
DE (1) DE502007006433D1 (de)
PL (1) PL2100479T3 (de)
WO (1) WO2008067996A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017114660A1 (de) 2015-12-30 2017-07-06 Sig Technology Ag Vorrichtung und verfahren zum erhitzen von zuschnitten und/oder packungsmänteln und/oder verpackungen aus verbundmaterial durch orientierungspolarisation
DE102017114733A1 (de) 2017-06-30 2019-01-03 Sig Technology Ag Vorrichtung und Verfahren zum Erhitzen von Zuschnitten und/oder Packungsmänteln und/oder Verpackungen aus Verbundmaterial durch Orientierungspolarisation
EP3888885A1 (de) 2020-04-02 2021-10-06 Fricke und Mallah Microwave Technology GmbH Mikrowellen-durchlaufofen

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9545735B2 (en) * 2008-08-20 2017-01-17 Corning Incorporated Methods for drying ceramic greenware using an electrode concentrator
JP5345437B2 (ja) * 2009-03-26 2013-11-20 日本碍子株式会社 ハニカム成形体の乾燥方法
CN102814268B (zh) * 2012-07-09 2015-07-15 上海志鹤水性涂料科技有限公司 微波水性木器漆家具提水干燥涂装设备及涂装方法
DE102016119463A1 (de) 2016-10-12 2018-04-12 Siempelkamp Maschinen- Und Anlagenbau Gmbh Durchlaufofen zur kontinuierlichen Erwärmung einer Pressgutmatte
FR3058138B1 (fr) * 2016-10-28 2019-02-01 Centre National De La Recherche Scientifique Procede de traitement thermique d’une piece en materiau ceramique par micro-ondes
US9849708B1 (en) 2017-02-23 2017-12-26 Ricoh Company, Ltd. Microwave dryer of a print system with modulation of the microwave source using frequency shift keying
DE102018105390B4 (de) 2018-03-08 2020-08-20 Siempelkamp Maschinen- Und Anlagenbau Gmbh Durchlaufofen und Anlage zur Herstellung von Holzwerkstoffplatten
DE102018105385B4 (de) 2018-03-08 2020-01-30 Siempelkamp Maschinen- Und Anlagenbau Gmbh Durchlaufofen und Anlage zur Herstellung von Holzwerkstoffplatten
EP3732985A1 (de) * 2019-05-02 2020-11-04 Metalquimia, S.A.U. Auftauanlage und auftauverfahren von rohen gefrorenen fleischprodukten in einem trommeltumbler
CN110328862A (zh) * 2019-07-18 2019-10-15 佛山市高明金石建材有限公司 一种石英石生产线上的固化加热装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1183615B (de) * 1959-04-15 1964-12-17 Litton Industries Inc Hoechstfrequenz-Heizvorrichtung
DE1818464U (de) * 1960-07-04 1960-09-22 Mikrowellen Ges M B H Deutsche Mikrowellen-durchlaufofen.
US3448384A (en) * 1965-10-23 1969-06-03 Allan W Scott Integral microwave radiating and generating unit for heating
US3977089A (en) * 1969-09-09 1976-08-31 Exxon Research And Engineering Company Microwave drying process for synthetic polymers
US3771234A (en) * 1969-09-09 1973-11-13 Exxon Research Engineering Co Microwave drying process for synthetic polymers
US4055001A (en) * 1971-11-18 1977-10-25 Exxon Research & Engineering Co. Microwave drying process for synthetic polymers
AU565393B2 (en) * 1983-08-23 1987-09-17 Microwave Power Consultants Pty Ltd Microwave treatment of materials
EP0788725B1 (de) * 1994-10-24 2002-04-17 Matsushita Electric Industrial Co., Ltd. Dampferzeuger mit induktions beheizung
AUPP396998A0 (en) * 1998-06-09 1998-07-02 University Of Melbourne, The A method for increasing the permeability of wood
JP4103984B2 (ja) * 2001-01-16 2008-06-18 株式会社デンソー ハニカム成形体の製造方法及び乾燥装置
DE10201299A1 (de) * 2001-01-16 2002-08-29 Denso Corp Verfahren zur Anfertigung eines Wabenkörpers und Trockensystem
US6872927B2 (en) * 2001-12-26 2005-03-29 Lambda Technologies, Inc. Systems and methods for processing pathogen-contaminated mail pieces
JP4133252B2 (ja) * 2002-11-19 2008-08-13 株式会社デンソー セラミック成形体の乾燥方法及び乾燥装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017114660A1 (de) 2015-12-30 2017-07-06 Sig Technology Ag Vorrichtung und verfahren zum erhitzen von zuschnitten und/oder packungsmänteln und/oder verpackungen aus verbundmaterial durch orientierungspolarisation
DE102015122976A1 (de) 2015-12-30 2017-07-20 Sig Technology Ag Vorrichtung und Verfahren zum Erhitzen von Zuschnitten und/oder Packungsmänteln und/oder Verpackungen aus Verbundmaterial durch Orientierungspolarisation
DE102017114733A1 (de) 2017-06-30 2019-01-03 Sig Technology Ag Vorrichtung und Verfahren zum Erhitzen von Zuschnitten und/oder Packungsmänteln und/oder Verpackungen aus Verbundmaterial durch Orientierungspolarisation
EP3888885A1 (de) 2020-04-02 2021-10-06 Fricke und Mallah Microwave Technology GmbH Mikrowellen-durchlaufofen

Also Published As

Publication number Publication date
DE502007006433D1 (de) 2011-03-17
EP2100479A1 (de) 2009-09-16
JP2010511980A (ja) 2010-04-15
US20090302031A1 (en) 2009-12-10
ATE497686T1 (de) 2011-02-15
PL2100479T3 (pl) 2011-07-29
WO2008067996A1 (de) 2008-06-12

Similar Documents

Publication Publication Date Title
EP2100479B1 (de) Mikrowellenheizungseinrichtung
EP1060355B1 (de) Verfahren und vorrichtung zum mikrowellensintern von kernbrennstoff
EP1639865B1 (de) Mikrowellenresonator, eine aus einem solchen mikrowellenresonator modular aufgebaute prozessstrasse, ein verfahren zum betreiben und nach diesem verfahren thermisch prozessierte gegenstände/ werkstücke mittels mikrowelle
EP2227447B1 (de) Verfahren zur trocknung von keramischen wabenkörpern
EP1777993B1 (de) Mikrowellenautoklav
DE4313806A1 (de) Vorrichtung zum Erhitzen von Materialien in einer mit Mikrowellen bestrahlbaren Heizkammer und Verfahren zum Herstellen von keramischem Gut, bei dem das Rohgut mittels Mikrowellen getrocknet wird
JP2015505747A (ja) 押出成形ハニカム構造体を効率的にマイクロ波乾燥させるシステム及び方法
DE10201299A1 (de) Verfahren zur Anfertigung eines Wabenkörpers und Trockensystem
WO2006056175A1 (de) Mikrowellen-durchlauftrockner in mehretagenbauweise für plattenförmige produkte, insbesondere faserplatten
DE112005002751T5 (de) Dieselpartikelfilter mit Mikrowellenregeneration
DE2232065C3 (de) Mikrowellen-Erhitzungseinrichtung
EP3095571B1 (de) Verfahren zur mikrowellentrocknung eines wabenförmigen körpers
EP1681102B1 (de) Verfahren und Vorrichtung zum Trocknen von Lackschichten
DE102007000573A1 (de) Verfahren zum Herstellen eines kompakten Wabenkörpers und Trocknungsgerät zum Gebrauch bei einem derartigen Verfahren
DE2451253A1 (de) Verfahren zum sintern keramischer erzeugnisse und vorrichtung zur durchfuehrung des verfahrens
WO1982001411A1 (en) A method for drying wooden products
DE2928846A1 (de) Verfahren zum herstellen von - insbesondere scheibenfoermigen - formstuecken aus einem schleifmaterial
WO2008006681A2 (de) Strahlungsgerät, verfahren und anordnung zur pulverbeschichtung von holzwerkstoffen
EP3168194A1 (de) Verfahren zum trocknen von feuchten substanzmengen durch mikrowellen
EP2621246B1 (de) Anordnung und Verfahren zur Erwärmung eines Mediums mittels Mikrowellenstrahlung
DE102018204670A1 (de) Verfahren zur Herstellung einer Wabenstruktur
WO2016180889A1 (de) Vorrichtung zum kontinuierlichen erwaermen von material
DE202015102422U1 (de) Vorrichtung zum kontinuierlichen Erwärmen von Material
EP3236710A1 (de) Verfahren und vorrichtung zur thermischen behandlung von feststoffen
AT502830B1 (de) Wärmebehandlungsofen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090625

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007006433

Country of ref document: DE

Date of ref document: 20110317

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007006433

Country of ref document: DE

Effective date: 20110317

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110202

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110602

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110602

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110513

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110503

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E010867

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110502

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007006433

Country of ref document: DE

Effective date: 20111103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

BERE Be: lapsed

Owner name: FRICKE UND MALLAH MICROWAVE TECHNOLOGY G.M.B.H.

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111205

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 20.09.2012 REAKTIVIERT WORDEN.

Ref country code: CH

Ref legal event code: NV

Representative=s name: RIEDERER HASLER & PARTNER PATENTANWAELTE AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111205

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 497686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20141216

Year of fee payment: 8

Ref country code: DE

Payment date: 20141205

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20141229

Year of fee payment: 8

Ref country code: FR

Payment date: 20141212

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20150115

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007006433

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151206

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151205