EP2091030B1 - Robustes Auswerten eines Temperaturmesssignals mittels einer dynamischen Anpassung eines Rechenmodells - Google Patents

Robustes Auswerten eines Temperaturmesssignals mittels einer dynamischen Anpassung eines Rechenmodells Download PDF

Info

Publication number
EP2091030B1
EP2091030B1 EP08101644A EP08101644A EP2091030B1 EP 2091030 B1 EP2091030 B1 EP 2091030B1 EP 08101644 A EP08101644 A EP 08101644A EP 08101644 A EP08101644 A EP 08101644A EP 2091030 B1 EP2091030 B1 EP 2091030B1
Authority
EP
European Patent Office
Prior art keywords
signal
temperature measurement
input
temp
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08101644A
Other languages
English (en)
French (fr)
Other versions
EP2091030A1 (de
Inventor
Martin Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP08101644A priority Critical patent/EP2091030B1/de
Application filed by Siemens AG filed Critical Siemens AG
Priority to ES08101644T priority patent/ES2337960T3/es
Priority to PT08101644T priority patent/PT2091030E/pt
Priority to DK08101644.6T priority patent/DK2091030T3/da
Priority to AT08101644T priority patent/ATE454685T1/de
Priority to DE502008000303T priority patent/DE502008000303D1/de
Priority to CN200910134613.3A priority patent/CN101520936B/zh
Priority to US12/372,199 priority patent/US8188872B2/en
Publication of EP2091030A1 publication Critical patent/EP2091030A1/de
Application granted granted Critical
Publication of EP2091030B1 publication Critical patent/EP2091030B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • G08B29/26Self-calibration, e.g. compensating for environmental drift or ageing of components by updating and storing reference thresholds

Definitions

  • the present invention relates to the technical field of evaluation of measurement signals of a temperature measuring device for the purpose of at least partially eliminating a thermal inertia, which are caused by one or more heat capacities, in particular in the case of strong temperature changes.
  • the present invention relates to an apparatus and a method for evaluating a temperature measurement signal of a temperature measuring device using a computer model.
  • the present invention relates to a danger detector for outputting an alarm message as a function of a temperature detected within a monitoring area, the danger detector having a device of the type mentioned above.
  • the present invention relates to a computer-readable storage medium and to a program element which contain instructions for carrying out the method according to the invention for evaluating a temperature measurement signal of a temperature-measuring device.
  • Known thermal hazard detectors include at least one temperature sensor for detecting a temperature within a monitoring range.
  • the temperature sensor In order to ensure a fast response and thus meet the commercial standards EN54-5, UL521 and FM3210, the temperature sensor should be as free from surrounding thermal mass as possible.
  • thermal decoupling between the temperature sensor and adjacent thermal masses is limited in practice.
  • a spatial separation between the temperature sensor and adjacent thermal masses would require a relatively large cavity within a thermal hazard alarm.
  • this cavity should be well flowed through by the ambient air.
  • the temperature sensor should be located in the middle of the cavity.
  • a large cavity is not available due to space problems in the rule.
  • the effective space requirement of such a hazard detector would be very large. This would be unsatisfactory also from an aesthetic point of view.
  • thermal hazard alarm In order to improve the response of a thermal hazard alarm, it is also known to condition the primary temperature measurement signal of a temperature sensor with a view to a faster signal rise with larger temperature changes. As is known, this can be done in an evaluation logic of a thermal hazard alarm.
  • the evaluation logic often includes a thermal model of the temperature sensor and / or the housing of the danger detector. By an appropriate procedure involving inversion of this thermal model, the signal evaluation can be improved for faster response. In this case, a so-called. Virtual temperature is calculated, which then represents the alarm criterion for the thermal hazard detector.
  • GB 2209086 discloses a fire detector with a temperature sensor.
  • the present invention is based on the object of evaluating a temperature measurement signal by means of a computer model with regard to (a) to avoid or at least reduce false alarms and (b) to improve a short trip time for real alerts.
  • a device for evaluating a temperature measuring signal of a temperature measuring device which device is suitable in particular for evaluating a time-variable temperature measuring signal of a temperature measuring device of a danger detector.
  • the described apparatus comprises a modeling unit having (a) a first input for receiving an input signal indicative of the temperature measurement signal, (b) a second input for receiving a feedback signal, and (c) an output for outputting an output signal.
  • the output signal can be generated by means of a computer model stored in the modeling unit as a function of the input signal and the feedback signal.
  • the feedback signal depends directly or indirectly on the output signal.
  • the described evaluation device is based on the finding that unwanted artifacts can be avoided in the determination of a real temperature profile by dynamically adapting the calculation model in the course of the evaluation of a temperature profile primarily detected by the temperature measurement device.
  • Such artefacts may be, for example, unwanted overshoots, which may occur during a temperature evaluation by means of a conventional evaluation device without the use of a feedback signal, in particular with relatively abrupt temperature changes.
  • the described dynamic adaptation of the calculation model thus allows a robust tracking of the actual present room temperature.
  • the model settings of the computational model are changed on the basis of the duration of the temperature measurement or the duration of the temperature evaluation of dynamically acquired measured variables.
  • the calculated temperature signal is stabilized, so that the robustness of the danger detector is improved in particular under real, difficult environmental conditions, such as, for example, strongly fluctuating temperatures and / or strong flow velocities.
  • the input signal used by the evaluation unit is indicative of the temperature measurement signal. This may mean that the temperature measurement signal and the input signal are identical. Likewise, the input signal can also result from a gain, which is preferably linear, from the temperature measurement signal.
  • the calculation model has at least one model parameter whose value is determined by the feedback signal.
  • the at least one model parameter may reflect physical effects such as the magnitude of the thermal coupling between the temperature measuring device and the medium whose temperature is being measured.
  • the model parameter can also take into account the heat capacity or the thermal inertia of the temperature measuring device and / or other components of a hazard detector, which components are thermally coupled to the temperature measuring device.
  • a separate model parameter is used for each separate influence on the temperature measurement caused by physical effects. There is no principal upper limit with regard to the number of usable model parameters.
  • the computer model represents the inversion of a thermal model of the temperature measuring device.
  • the thermal model takes into account the heat capacity of the temperature measuring device, wherein the heat capacity may also be the thermal mass of a thermally coupled to the temperature measuring device housing.
  • the heat capacity naturally leads to a strong attenuation of the temperature measurement signal compared to the actual temperature change within a monitoring range of the thermal hazard alarm.
  • the heat capacity of other components such as holders for the temperature measuring device, the solder joints of the temperature measuring device and / or a housing of a hazard alarm can be taken into account, with which housing the temperature measuring device is thermally coupled.
  • the thermal model which describes the thermal response of the temperature measuring device with temperature changes, can be described for example by a first or higher order electrical low-pass filter.
  • a higher-order low-pass filter is a rear single-load circuit of a plurality of low-pass filters, the number of low-pass filters connected in series corresponding to the order.
  • the inversion of the thermal model represents a first or higher order electrical high pass.
  • overshoots can also be largely avoided even in the case of so-called step responses to an abrupt temperature change.
  • the alarm initiation can be kept simple without increasing the false alarm rate.
  • a criterion for alarm initiation could be, for example, by comparing the calculated temperature with a predetermined threshold.
  • thermal model which may be a high pass, depends in general terms on various parameters (P1, P2, P3, ). These are changed as a function of input variables and output variables (X1, X2, X3, ). In general terms, this can be represented as follows:
  • P1, P2, P3, ... are characteristic parameters of thermal model inversion, such as time constants or multiplication factors.
  • the characteristic parameters P1, P2, P3,... Can result from a linear combination of the measured variables X1, X2, X3,.
  • the parameters P1, P2, P3,... Can also result from the measured variables X1, X2, X3,... By means of a nonlinear function.
  • a threshold value decision can, for example, set the parameter P1 defining a characteristic time constant equal to 2 min as soon as the measured variable X1 has a temperature gradient of more than 5 K per second.
  • the device additionally comprises a slope calculation unit having (a) at least one input for directly or indirectly recording the output signal of the modeling unit and (b) an output for providing the feedback signal.
  • the slope calculation unit is set up in such a way that in that the feedback signal provided is indicative of the temporal change of the output signal.
  • the characteristic time constant (s) of the thermal model inversion is thus changed depending on the steepness of the output signal. This causes a reduction of the time constant for steep transients which thus results in a damping of the output signal.
  • the modeling unit thus represents an adaptive filter in this case, which is changed as a function of the transients of the output signal or of the calculated output temperature.
  • the device additionally comprises an output filter unit having (a) an input for receiving the output signal of the modeling unit, and (b) an output for outputting an evaluation signal.
  • the input of the output filter unit is connected to a first input of the slope calculation unit '.
  • the output of the output filter unit is connected to a second input of the slope calculation unit.
  • the output filter unit can be, for example, a low-pass filter and, in particular, a low-time constant low-pass filter. This can then interact with the slope calculation unit in such a way that the slope of the output signal of the modeling unit is ascertained virtually instantaneously.
  • the device additionally has a first summation unit, which is arranged between the output of the modeling unit and the input of the output filter unit.
  • the summation unit can ensure that a modified signal compared to the immediate output signal of the modeling unit is supplied to the input of the output filter unit.
  • a first input of the first summation unit can be connected directly to the output of the modeling unit.
  • a second input of the first summation unit can be supplied directly with the input signal of the modeling unit or the temperature measurement signal.
  • an input signal is provided with a negative sign for the signal addition by the first summation unit, so that the first summation unit can also be referred to as a subtraction unit.
  • the device additionally has a second summation unit and a multiplication unit, which are arranged between the output of the first summation unit and the input of the output filter unit.
  • the multiplication unit can be connected downstream of the first summation unit and multiply the output signal of the first summation unit by a specific multiplication factor.
  • the multiplication factor can be supplied via a special input by means of a suitable signal.
  • the multiplication factor can be adjusted at any time in a suitable manner.
  • the multiplied signal can then be supplied to a first input of the second summation unit.
  • a second input of the second summation unit, the input signal of the modeling unit or the temperature measurement signal can be supplied.
  • the output signal of the second summation unit adds an addition between the multiplied signal and the output signal of the multiplication unit on the one hand and the original temperature measurement signal on the other.
  • a hazard alarm for outputting an alarm message in response to a sensed temperature within a surveillance area.
  • the danger detector has (a) a temperature measuring device for detecting the temperature within the monitoring area and (b) a device of the type described above for evaluating a temperature measuring signal of the temperature measuring device.
  • the danger detector is based on the knowledge that the above-described evaluation device for evaluating the primary temperature measurement signal of the temperature measuring device can help to avoid unwanted artifacts such as overshoots in the attempt to determine the real temperature profile in the monitoring area.
  • the evaluation device is set up to dynamically adapt the respectively used calculation model in the course of an evaluation. Model settings of the computational model can be calculated on the basis of dynamically acquired measured variables online, i. be changed instantaneously.
  • the danger detector described may be a thermal or a so-called.
  • Combination detector which in addition to a thermal sensor input another, for example, has an optical sensor input.
  • the various sensor inputs can be suitably combined in the evaluation of the respective measured variables with regard to rapid and at the same time false-alarm-proof initiation of alarm messages.
  • a method for evaluating a time-varying temperature measurement signal of a temperature measuring device is specified.
  • the method is particularly suitable for evaluating a time variable temperature measuring signal of a temperature measuring device of a hazard detector.
  • the method comprises (a) receiving an input signal indicative of the temperature measurement signal from a first input of a modeling unit, (b) receiving a feedback signal from a second input of the modeling unit, and (c) outputting an output signal at a Output of the modeling unit.
  • the output signal is generated by means of a mathematical model stored in the modeling unit as a function of the input signal and the feedback signal. Furthermore, the feedback signal depends directly or indirectly on the output signal.
  • the analysis method described is also based on the knowledge that unwanted artifacts such as overshoots in the determination of a real temperature profile can be avoided by dynamically adapting the computer model in the course of the evaluation of the temperature profile primarily detected by the temperature measuring device.
  • the model settings of the computational model are changed based on the duration of the temperature measurement or the temperature evaluation of dynamically acquired measured variables. Apart from unavoidable running times of the measurement signals and / or of a required computing or evaluation time, the evaluation thus takes place instantaneously with the temperature measurement by the temperature measuring device.
  • a computer-readable storage medium in which a program for evaluating a time-varying temperature measurement signal of a temperature measuring device, in particular for evaluating a time-variable temperature measurement signal of a temperature measuring device of a danger detector is stored.
  • the program when executed by a processor, is set up to perform the above procedure.
  • a program element for evaluating a time-varying temperature measuring signal of a temperature measuring device in particular for evaluating a time-variable temperature measuring signal of a temperature measuring device of a danger detector, is described.
  • the program element when executed by a processor, is set up to perform the above procedure.
  • the program and / or program element may be implemented as a computer-readable instruction code in any suitable programming language such as JAVA, C ++, etc.
  • the program and / or the program element can be stored on a computer-readable storage medium (CD-ROM, DVD, removable drive, volatile or non-volatile memory, built-in memory / processor, etc.).
  • the instruction code may program a computer or other programmable device to perform the desired functions.
  • the program and / or the program element can be provided in a network, such as the Internet, from which it can be downloaded by a user as required.
  • the invention can be implemented either by means of a computer program, ie by means of software, or by means of one or more special electrical circuits, ie in hardware or in any hybrid form, ie by means of software components and hardware components.
  • FIG. 1 shows a thermal hazard detector 100, which has a NTC (negative temperature coefficient) resistance temperature measuring device 102.
  • An output signal ntc_in the temperature measuring device 102 is supplied to an evaluation device 110.
  • the output signal ntc_in thus represents the input signal for the evaluation device 110.
  • the evaluation device 110 is set up in such a way that, in the case of a dangerous situation, a time increase of the output signal ntc_in is optimized with respect to the fastest possible triggering of the alarm and avoidance of artifacts that could lead to false alarms ,
  • a microprocessor 105 Downstream of the evaluation device 110 is a microprocessor 105 which checks the evaluation signal virtual_temp provided by the evaluation device 110 with regard to its relevance for a dangerous situation and, if necessary, initiates an alarm message.
  • the alarm message is acoustically via a microprocessor 105 downstream amplifier 107 and connected to the amplifier 107 speaker 108th
  • microprocessor 105 and the evaluation device 110 can also be realized by means of a common component, for example a microcontroller. The same applies to the microprocessor 105 and the amplifier 107.
  • the evaluation device 110 has an input 111 and an output 112.
  • the input 111 is supplied with the output signal ntc_in in the temperature measuring device 102.
  • the evaluation signal virtual_temp is provided.
  • the evaluation device 110 also has three components which are each connected to the input 111 via a suitable signaling line. How out FIG. 1 As can be seen, the input 111 of the evaluation device 110 is connected to a first input of a modeling unit 120. In addition, the input 111 is connected to the positive input 131 of a first summation unit 130 designed as a subtraction unit and to a first input 151 of a second summation unit 150.
  • a thermal model of the temperature measuring device 102 is stored.
  • the thermal model also takes into account thermal masses or heat capacities that are associated with the temperature measuring device 102 thermally coupled. This is especially true for a in FIG. 1 , not shown housing of the hazard detector 100th
  • this thermal inertia is described by a low-pass behavior.
  • This low-pass behavior is determined by at least one characteristic time constant, which represents an important parameter of the thermal model.
  • an output signal iir_model is supplied to the modeling unit 120 via an output 123 of the modeling unit 120 to a negative input 132 of the subtraction unit 130.
  • the modeling unit 120 is a low-pass filter.
  • the difference signal diff formed in the subtraction unit 130 between the input signal ntc_in and the output signal iir_model is then supplied via an output 133 of the subtraction unit 130 to an input 141 of a multiplication unit 140.
  • the difference signal diff is multiplied by a factor, which factor is calculated by means of a control signal factor_model via a control input 146 of the multiplication unit 140 is determined.
  • This multiplication factor can also be readjusted or corrected at any time during operation of the evaluation device 110.
  • the multiplied signal mult is supplied to a second input 152 of the second summation unit 150.
  • the multiplied signal mult is then added to the input signal ntc_in fed via the first input 151 of the second summation unit 150.
  • a summation signal pre_temp is formed, which represents the output signal of the second summation unit 150.
  • the output signal pre_temp is fed via an output 153 of the second summation unit 153 to an input 161 of an output filter unit 160.
  • the output filter unit 160 represents a low-pass filter.
  • the low-pass filter can be a low-pass filter of any order.
  • the low-pass converts the output signal pre_temp into a filtered evaluation signal virtual_temp, which is provided at an output 162 of the output filter unit 160.
  • the evaluation signal virtual_temp is supplied to the microprocessor 105 via the output 112 of the evaluation device 110.
  • the feedback of the evaluation signal virtual_temp to the modeling unit 120 is described, which makes the modeling unit 120 the adaptive filter:
  • the feedback takes place via a slope calculation unit 170.
  • the slope calculation unit 170 has (a) a first input 171, (b) a second input 172, to which the evaluation signal virtual_temp is supplied, and (c) an output 173.
  • the feedback signal slope determines the characteristic time constant of the model inversion.
  • the modeling unit 120 thus represents an adaptive filter which is changed as a function of the output transient.
  • the steepness of the evaluation signal virtual_temp is measured as the difference between the signal at the input 161 and the signal at the output 162 of the low-pass linear output filter 160.
  • the low pass of the output filter has a comparatively short time constant.
  • the difference signal can be compared in the modeling unit 120 with a threshold value. If the threshold is exceeded, the model's time constant is set to a shorter value. In this case, for example, a comparatively large time constant is selected when the feedback signal slope is small. If the feedback signal slope is comparatively large, then a smaller time constant is chosen for the thermal model currently used in the modeling unit 120. This dependence of the time constant used by the feedback signal slope thus represents an adaptive control in the evaluation of the output signal ntc_in the temperature measuring device 102.
  • FIG. 2 shows in a diagram 290 in an illustrative manner the characteristic behavior of the described evaluation device 110. It is based on a sudden temperature change from 5 ° Celsius to 50 ° Celsius in a monitored room.
  • the temperature measuring device 102 thus supplies as input signal ntc_in a corresponding spring response 291. This is attenuated as a result of the thermal mass of the temperature measuring device and shows the characteristic behavior of a second-order low-pass filter.
  • the reference numeral 292 is in FIG. 2 a standard implementation of a known evaluation device shown, which in comparison to the step response has a faster increase and thus would be suitable in principle for a quick alarm triggering. To avoid an extremely strong overshoot, the standard implementation has an artificial increase limit. Despite this increase in limitation, however, the evaluation signal 292 has an overshoot, which briefly rises above an alarm threshold 295 at about 90 s after the beginning of the abrupt temperature change and thus triggers a false alarm.
  • Reference numeral 293 is the temporal behavior of the evaluation signal virtual_temp in the FIG. 1 shown evaluation device 110 shown. It can be seen very nicely that the signal 293 as well as the evaluation signal 293 rises steeply. Thus, in the case of a thermally displayed danger situation as well as a timely alarm is possible. In addition, an overshoot is advantageously avoided in the signal 293 and the evaluation signal 293 is always sufficiently far from the alarm limit 295. Thus, an undesirable false alarm can be reliably avoided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

  • Die vorliegende Erfindung betrifft das technische Gebiet der Auswertung von Messsignalen einer Temperaturmesseinrichtung zum Zwecke der zumindest teilweisen Eliminierung einer thermischen Trägheit, die durch eine oder durch mehrere Wärmekapazitäten insbesondere bei starken Temperaturänderungen verursacht sind. Die vorliegende Erfindung betrifft insbesondere eine Vorrichtung und ein Verfahren zum Auswerten eines Temperaturmesssignals einer Temperaturmesseinrichtung unter Verwendung eines Rechenmodells. Ferner betrifft die vorliegende Erfindung einen Gefahrmelder zum Ausgeben einer Alarmmeldung in Abhängigkeit einer innerhalb eines Überwachungsbereiches erfassten Temperatur, wobei der Gefahrmelder eine Vorrichtung des oben genannten Typs aufweist. Außerdem betrifft die vorliegende Erfindung ein computerlesbares Speichermedium sowie ein Programm-Element, welche Instruktionen zur Durchführung des erfindungsgemäßen Verfahrens zum Auswerten eines Temperaturmesssignals einer Temperaturmesseinrichtung enthalten.
  • Bekannte thermische Gefahrmelder weisen mindestens einen Temperatursensor zum Erfassen einer innerhalb eines Überwachungsbereichs vorliegenden Temperatur auf. Um ein schnelles Ansprechverhalten zu gewährleisten und somit die für einer kommerzielle Vermarktung relevanten technischen Normen EN54-5, UL521 und FM3210 zu erfüllen, sollte der Temperatursensor möglichst frei von umgebenden thermischen Massen sein.
  • Einer thermischen Entkopplung zwischen dem Temperatursensor und angrenzenden thermischen Massen sind jedoch in der Praxis Grenzen gesetzt.
  • So würde eine räumliche Separation zwischen dem Temperatursensor und angrenzenden thermischen Massen beilspielsweise einen relativ großen Hohlraum innerhalb eines thermischen Gefahrmelders erfordern. Um eine gute thermische Ankopplung des Temperatursensors an den Überwachungsbereich zu gewährleisten, sollte dieser Hohlraum gut von der Umgebungsluft durchströmt werden können. Ferner sollte der Temperatursensor in der Mitte des Hohlraumes angeordnet sein. Insbesondere bei Kombinationsmeldern, welche neben einem thermischen Sensoreingang noch einen weiteren, beispielsweise einen optischen Sensoreingang aufweisen, steht ein solch großer Hohlraum aufgrund von Platzproblemen in der Regel nicht zur Verfügung. Außerdem würde der effektive Platzbedarf eines derartigen Gefahrmelders sehr groß sein. Dies wäre auch aus ästhetischen Gesichtpunkten unbefriedigend.
  • Außerdem gibt es auch durch gesetzliche Vorschriften bestimmte Einschränkungen bezüglich der Anordnung eines Temperatursensors. Dieser muss beispielsweise von mechanischen Einflüssen geschützt werden, was dazu führt, dass der Temperatursensor nicht komplett frei montiert werden kann und somit stets eine nicht zu vermeidende und nicht unerhebliche thermische Kopplung zu anderen Komponenten des Gefahrmelders aufweist .
  • Um das Ansprechverhalten eines thermischen Gefahrmelders zu verbessern ist es ferner bekannt, das primäre Temperaturmesssignal eines Temperatursensors im Hinblick auf einen schnellleren Signalanstieg bei größeren Temperaturänderungen aufzubereiten. Dies kann bekannterweise in einer Auswertelogik eines thermischen Gefahrmelders erfolgen. Die Auswertelogik enthält dazu häufig ein thermisches Modell des Temperatursensors und/oder des Gehäuses des Gefahrmelders. Durch eine geeignete Prozedur, welche eine Inversion dieses thermischen Modells beinhaltet, kann die Signalauswertung im Hinblick auf ein schnelleres Ansprechverhalten verbessert werden. Dabei wird eine sog. virtuelle Temperatur berechnet, die dann das Alarmkriterium für den thermischen Gefahrmelder darstellt.
  • Eine derartige starre Implementierung der Inversion eines thermischen Modells für die Signalauswertung hat jedoch unter Anderem folgende Nachteile:
    1. 1) Vom Prinzip her ist jede Modellierung des Ansprechens des Temperatursensors und/oder des Gehäuses ein Tiefpass. Die Modellinversion ergibt demzufolge vom Verhalten her einen Hochpass. Das bedeutet, dass z.B. bei Sprungantworten die Modellinversion zu Überschwingern neigt. Dies stellt ein gängiges Problem in der Regelungstechnik dar. Wird ein Überschwinger jedoch zu groß, kann versehentlich ein unerwünschter Falschalarm ausgelöst werden. Deshalb können entsprechende Gefahrmelder vor allem die in Europa geltende gesetzliche Norm EN54-5 und die in China geltende Norm GB4716 häufig nicht erfüllen, welche u. a. vorschreiben, dass bei einer abrupten Temperaturänderung von 5 Grad Celsius auf 50 Grad Celsius kein Alarm ausgelöst werden darf. Dies wird auch als sog. Step Response Test bezeichnet.
    2. 2) Die amerikanische gesetzliche Norm FM3210 für thermische Gefahrmelder weist jedem Melder einen sogenannten RTI (rate of time index) Wert zu. Dieser Wert wird im wesentlichen über den sogenannten "plunge tunnel test" ermittelt. Dabei wird gemessen, wie schnell ein thermischer Gefahrmelder ein Alarmsignal ausgibt, wenn er abrupt in einen 197° Celsius heißen Ofen eingeführt wird. Wird dann beispielsweise aufgrund der oben beschriebenen Limitation 1) zum Zwecke der Reduzierung von Überschwingern eine künstliche Verzögerung der Ansprechempfindlichkeit eingeführt, beispielsweise in Form einer Anstiegsbegrenzung ("slope limitation"), so wird der thermische Gefahrmelder zu spät alarmieren und keinen gültigen RTI Wert erhalten. Damit ist eine legale Vermarktung eines derartigen Gefahrmelders in den USA nicht möglich.
  • GB 2209086 offenbart einen Feuerdetektor mit einem Temperatursensor.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Auswertung eines Temperaturmesssignals mittels eines Rechenmodells im Hinblick auf (a) eine Vermeidung oder zumindest Reduzierung von Falschalarmmeldungen und (b) eine kurze Auslösezeit für echte Alarmmeldungen zu verbessern.
  • Diese Aufgabe wird gelöst durch die Gegenstände der unabhängigen Patentansprüche. Vorteilhafte Ausführungsformen der vorliegenden Erfindung sind in den abhängigen Ansprüchen beschrieben.
  • Gemäß einem ersten Aspekt der Erfindung wird eine Vorrichtung zum Auswerten eines Temperaturmesssignals einer Temperaturmesseinrichtung beschrieben, welche Vorrichtung insbesondere zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals einer Temperaturmesseinrichtung eines Gefahrmelders geeignet ist. Die beschriebene Vorrichtung weist auf eine Modellierungseinheit mit (a) einem ersten Eingang zum Aufnehmen eines Eingangssignals, welches für das Temperaturmesssignal indikativ ist, (b) einem zweiten Eingang zum Aufnehmen eines Rückkopplungssignals, und (c) einem Ausgang zum Ausgeben eines Ausgangssignals. Erfindungsgemäß ist das Ausgangssignal mittels eines in der Modellierungseinheit gespeicherten Rechenmodells in Abhängigkeit von dem Eingangssignal und dem Rückkopplungssignal generierbar. Ferner hängt das Rückkopplungssignal direkt oder indirekt von dem Ausgangssignal ab.
  • Der beschriebenen Auswertevorrichtung liegt die Erkenntnis zugrunde, dass durch eine dynamische Anpassung des Rechenmodells im Verlauf der Auswertung eines von der Temperaturmesseinrichtung primär erfassten Temperaturverlaufs unerwünschte Artefakte bei der Bestimmung eines realen Temperaturverlaufs vermieden werden können. Solche Artefakte können beispielsweise unerwünschte Überschwinger sein, die bei einer Temperaturauswertung mittels einer herkömmlichen Auswertevorrichtung ohne die Verwendung eines Rückkopplungssignals insbesondere bei relativ abrupten Temperaturänderungen auftraten können.
  • Die beschriebene dynamische Anpassung des Rechenmodells erlaubt also ein robustes Tracking der realen vorliegenden Raumtemperatur.
  • Bei der dynamischen Anpassung des Rechenmodells werden also die Modelleinstellungen des Rechenmodells anhand während der Laufzeit der Temperaturmessung bzw. der Laufzeit der Temperaturauswertung dynamisch erfasster Messgrößen verändert.
    Dadurch wird das das berechnete Temperatursignal stabilisiert, so dass die Robustheit des Gefahrmelders insbesondere bei realen, schwierigen Umweltbedingungen wie beispielsweise stark schwankende Temperaturen und/oder starke Anströmungsgeschwindigkeiten verbessert wird.
    Das von der Auswerteeinheit verwendete Eingangssignal ist für das Temperaturmesssignal indikativ. Dies kann bedeuten, dass das Temperaturmesssignal und das Eingangssignal identisch sind. Ebenso kann sich das Eingangssignal auch durch eine Verstärkung, die bevorzugt linear ist, aus dem Temperaturmesssignal ergeben.
  • Gemäß einem Ausführungsbeispiel der Erfindung weist das Rechenmodell zumindest einen Modellparameter auf, dessen Wert durch das Rückkopplungssignal bestimmt wird.
  • Der zumindest eine Modellparameter kann dabei physikalische Effekte wie beispielsweise die Stärke der thermischen Kopplung zwischen der Temperaturmesseinrichtung und des Mediums, dessen Temperatur gemessen wird, widerspiegeln. Der Modellparameter kann auch die Wärmekapazität bzw. die thermische Trägheit der Temperaturmesseinrichtung und/oder anderer Komponenten eines Gefährmelders berücksichtigen, welche Komponenten thermisch mit der Temperaturmesseinrichtung gekoppelt sind. Bevorzugt wird für jeden separaten durch physikalische Effekte verursachten Einfluss auf die Temperaturmessung ein eigener Modellparameter verwendet. Dabei gibt es hinsichtlich der Anzahl an verwendbaren Modellparameter keine prinzipielle Obergrenze.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung stellt das Rechenmodell die Inversion eines thermischen Modells der Temperaturmesseinrichtung dar.
  • Das thermische Modell berücksichtigt dabei die Wärmekapazität der Temperaturmesseinrichtung, wobei die Wärmekapazität auch die thermische Masse eines mit der Temperaturmesseinrichtung thermisch gekoppelten Gehäuses sein kann. Die Wärmekapazität führt naturgemäß zu einer starken Dämpfung des Temperaturmesssignals im Vergleich zu der tatsächlichen Temperaturänderung innerhalb eines Überwachungsbereichs des thermischen Gefahrmelders. Dabei kann auch die Wärmekapazität von anderen Komponenten wie beispielsweise Halterungen für die Temperaturmesseinrichtung, die Lötstellen der Temperaturmesseinrichtung und/oder ein Gehäuse eines Gefahrmelders berücksichtigt werden, mit welchem Gehäuse die Temperaturmesseinrichtung thermisch gekoppelt ist.
  • Das thermische Modell, welches das thermische Ansprechverhalten der Temperaturmesseinrichtung bei Temperaturänderungen beschreibt, kann beispielsweise durch einen elektrischen Tiefpass erster oder höherer Ordnung beschrieben werden. Ein Tiefpass höherer Ordnung ist in diesem Zusammenhang eine Hintereinaderschaltung mehrerer Tiefpässe, wobei die Anzahl der hintereinander geschalteten Tiefpässe der Ordnung entspricht. In diesem Fall stellt die Inversion des thermischen Modells einen elektrischen Hochpass erster oder höherer Ordnung dar. Infolge der beschriebenen Rückkopplung können jedoch auch bei sog. Sprungantworten auf eine abrupte Temperaturänderung Überschwinger weitgehend vermieden werden. Da dadurch die Raumtemperatur robust und schnell berechnet werden kann, kann die Alarminitiierung einfach gehalten werden ohne dass dadurch die Falschalarmrate steigt. Ein Kriterium für eine Alarminitiierung könnte beispielsweise durch Vergleichen der berechneten Temperatur mit einem vorgegebenen Schwellwert sein.
  • Im Falle der Beschreibung des Ansprechverhaltens der Temperaturmesseinrichtung mittels eines Tiefpasses stellt naturgemäß zumindest eine charakteristische Zeitkonstante einen wichtigen Modellparameter dar.
  • Die Umkehrung des thermische Modell, welches ein Hochpass sein kann, hängt in allgemeiner Form von verschiedenen Parametern (P1, P2, P3, ...) ab. Diese werden in Abhängigkeit von Eingangsgrößen und Ausgangsgrößen (X1, X2, X3, ...) verändert. In allgemeiner Form lässt sich dies so darstellen:
  • ThermModellInversion (P1, P2, P3, ...) = f(X1, X2, X3, ...)
  • P1, P2, P3, ... sind charakteristische Parameter der thermischen Modellinversion wie beispielsweise Zeitkonstanten oder Multiplikationsfaktoren. Die charakteristischen Parameter P1, P2, P3, ... können sich aus einer linearen Kombination der Messgrößen X1, X2, X3, ... ergeben. Alternativ können sich die Parameter P1, P2, P3, ... auch mittels einer nicht linerre Funktion aus den Messgrößen X1, X2, X3, ... ergeben.
  • Ein Beispiel für eine nicht lineare Abhängigkeit der Parameter P1, P2, P3, ... von den Messgrößen X1, X2, X3, ... ist ein sog. Schwellwertentscheid. Ein Schwellwertentscheid kann beispielsweise den eine charakteristische Zeitkonstante definierenden Parameter P1 gleich 2 min setzten, sobald die Messgröße X1 eine Temperatursteigung von mehr als 5 K pro Sekunde aufweist.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die-Vorrichtung zusätzlich auf eine Steigungsberechnungseinheit mit (a) zumindest einem Eingang zum direkten oder indirekten Aufnehmen des Ausgangssignals der Modellierungseinheit und (b) einem Ausgang zum Bereitstellen des Rückkopplungssignals. Dabei ist die Steigungsberechnungseinheit derart eingerichtet, dass das bereitgestellte Rückkopplungssignal indikativ ist für die zeitliche Änderung des Ausgangssignals.
  • Dies kann bedeuten, dass die Steilheit der berechneten Ausgangstemperatur bzw. des Ausgangssignals als Input für eine kontrollierte Änderung der Modellparameter der thermischen Modellinversion dient.
  • Die charakteristische Zeitkonstante(n) der thermischen Modellinversion wird (werden) somit in Abhängigkeit von der Steilheit des Ausgangssignales verändert. Dies bewirkt bei steilen Transienten eine Verkleinerung der Zeitkonstanten welche somit im Ergebnis eine Dämpfung des Ausgangssignals bewirkt. Die Modellierungseinheit stellt somit in diesem Fall ein adaptives Filter dar, welches in Abhängigkeit von den Transienten des Ausgangssignals bzw. der berechneten Ausgangstemperatur verändert wird.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Vorrichtung zusätzlich auf eine Ausgangsfiltereinheit mit (a) einem Eingang zum Aufnehmen des Ausgangssignals der Modellierungseinheit, und (b) einem Ausgang zum Ausgeben eines Auswertungssignals. Dabei ist der Eingang der Ausgangsfiltereinheit mit einem ersten Eingang der Steigungsberechnungseinheit verbunden'. Ferner ist der Ausgang der Ausgangsfiltereinheit mit einem zweiten Eingang der Steigungsberechnungseinheit verbunden.
  • Die Ausgangsfiltereinheit kann beispielsweise ein Tiefpass und insbesondere ein Tiefpass mit niederer Zeitkonstante sein. Dieser kann dann mit der Steigungsberechnungseinheit derart zusammen wirken, dass die Steigung des Ausgangssignals der Modellierungseinheit quasi instantan ermittelt wird.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Vorrichtung zusätzlich eine erste Summationseinheit auf, welche zwischen dem Ausgang der Modellierungseinheit und dem Eingang der Ausgangsfiltereinheit angeordnet ist.
  • Die Summationseinheit kann dafür sorgen, dass dem Eingang der Ausgangsfiltereinheit ein im Vergleich zum dem unmittelbaren Ausgangssignal der Modellierungseinheit modifiziertes Signal zugeführt wird. Dabei kann ein erster Eingang der ersten Summationseinheit direkt mit dem Ausgang der Modellierungseinheit verbunden sein. Einem zweiten Eingang der ersten Summationseinheit kann direkt das Eingangssignal der Modellierungseinheit bzw. das Temperaturmesssignal zugeführt werden. Bevorzugt wird für die Signaladdition durch die erste Summationseinheit ein Einganssignal mit einem negativen Vorzeichen versehen, so dass die erste Summationseinheit auch als Subtraktionseinheit bezeichnet werden kann.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Vorrichtung zusätzlich eine zweite Summationseinheit und eine Multiplikationseinheit auf, welche zwischen dem Ausgang der ersten Summationseinheit und dem Eingang der Ausgangsfiltereinheit angeordnet sind.
  • Dabei kann die Multiplikationseinheit der ersten Summationseinheit nachgeschaltet sein und das Ausgangssignal der ersten Summationseinheit mit einem bestimmten Multiplikationsfaktor multiplizieren. Der Multiplikationsfaktor kann dabei über einen speziellen Eingang mittels eines geeigneten Signals zugeführt werden. Damit kann der Multiplikationsfaktor jederzeit in geeigneter Weise angepasst werden.
  • Das multiplizierte Signal kann dann einem ersten Eingang der zweiten Summationseinheit zugeführt werden. Einem zweiten Eingang der zweiten Summationseinheit kann das Eingangssignal der Modellierungseinheit bzw. das Temperaturmesssignal zugeführt werden. In diesem Fall stellt das Ausgangssignal der zweiten Summationseinheit eine Addition zwischen dem multiplizierten Signal bzw. dem Ausgangssignal der Multiplikationseinheit auf der einen Seite und dem ursprünglichen Temperaturmesssignal auf der anderen Seite dar.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Gefahrmelder zum Ausgeben einer Alarmmeldung in Abhängigkeit einer erfassten Temperatur innerhalb eines Überwachungsbereiches geschaffen. Der Gefahrmelder weist auf (a) eine Temperaturmesseinrichtung zum Erfassen der Temperatur innerhalb des Überwachungsbereiches und (b) eine Vorrichtung der oben beschriebenen Art zum Auswerten eines Temperaturmesssignals der Temperaturmesseinrichtung.
  • Dem Gefahrmelder liegt die Erkenntnis zugrunde, dass die oben beschriebene Auswertevorrichtung zum Auswerten des primären Temperaturmesssignals der Temperaturmesseinrichtung dazu beitragen kann, unerwünschte Artefakte wie beispielsweise Überschwinger bei dem Versuch der Bestimmung des realen Temperaturverlauf in dem Überwachungsbereich zu vermeiden. Die Auswertevorrichtung ist erfindungsgemäß dazu eingerichtet, das jeweils verwendete Rechenmodell im Verlauf einer Auswertung dynamisch anzupassen. Dabei können Modelleinstellungen des Rechenmodells anhand von dynamisch erfassten Messgrößen online d.h. instantan verändert werden.
  • Der beschriebene Gefahrmelder kann ein thermischer oder ein sog. Kombinationsmelder sein, welcher neben einem thermischen Sensoreingang ein weiteren, beispielsweise einen optischen Sensoreingang aufweist. Bei einem Kombinationsmelder können die verschiedenen Sensoreingänge in geeigneter Weise bei der Auswertung der jeweiligen Messgrößen im Hinblick auf eine schnelle und zugleich fehlalarmsichere Initiierung von Alarmmeldungen kombiniert werden.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals einer Temperaturmesseinrichtung angegeben. Das Verfahren eignet sich insbesondere zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals einer Temperaturmesseinrichtung eines Gefahrmelders. Das Verfahren weist auf (a) ein Aufnehmen eines Eingangssignals, welches für das Temperaturmesssignal indikativ ist, von einem ersten Eingang einer Modellierungseinheit, (b) ein Aufnehmen eines Rückkopplungssignals von einem zweiten Eingang der Modellierungseinheit, und (c) ein Ausgeben eines Ausgangssignals an einem Ausgang der Modellierungseinheit. Erfindungsgemäß wird das Ausgangssignal mittels eines in der Modellierungseinheit gespeicherten Rechenmodells in Abhängigkeit von dem Eingangssignal und dem Rückkopplungssignal generiert. Ferner hängt das Rückkopplungssignal direkt oder indirekt von dem Ausgangssignal ab.
  • Auch dem beschriebenen Auswerteverfahren liegt die Erkenntnis zugrunde, dass durch eine dynamische Anpassung des Rechenmodells im Verlauf der Auswertung der von der Temperaturmesseinrichtung primär erfassten Temperaturverlaufs unerwünschte Artefakte wie beispielsweise Überschwinger bei der Bestimmung eines realen Temperaturverlaufs vermieden werden können.
  • Bei der beschriebenen dynamischen Anpassung des Rechenmodells werden die Modelleinstellungen des Rechenmodells anhand während der Laufzeit der Temperaturmessung bzw. der Temperaturauswertung dynamisch erfasster Messgrößen verändert. Die Auswertung erfolgt also abgesehen von nicht zu vermeidenden Laufzeiten von Messsignalen und/oder von einer erforderlichen Rechen- bzw. Auswertezeit instantan mit der Temperaturmessung durch die Temperaturmesseinrichtung.
  • Es wird darauf hingewiesen, dass das beschriebene Auswerteverfahren in analoger Weise zu der oben beschriebenen Auswertevorrichtung weitergebildet werden kann. Dies bedeutet, dass oben beschriebene Merkmale der vorrichtungsbezogenen Ansprüche auch mit den Merkmalen des beschriebenen Verfahrens zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals kombiniert werden können.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein computerlesbares Speichermedium beschrieben, in dem ein Programm zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals einer Temperaturmesseinrichtung, insbesondere zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals einer Temperaturmesseinrichtung eines Gefahrmelders, gespeichert ist. Das Programm ist, wenn es von einem Prozessor ausgeführt wird, zum Durchführen des oben genannten Verfahrens eingerichtet.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Programm-Element zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals einer Temperaturmesseinrichtung, insbesondere zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals einer Temperaturmesseinrichtung eines Gefahrmelders, beschrieben. Das Programm-Element ist, wenn es von einem Prozessor ausgeführt wird, zum Durchführen des oben genannten Verfahrens eingerichtet.
  • Das Programm und/oder das Programm-Element kann als computerlesbarer Anweisungscode in jeder geeigneten Programmiersprache wie beispielsweise in JAVA, C++ etc. implementiert sein. Das Programm und/oder das Programm-Element kann auf einem computerlesbaren Speichermedium (CD-Rom, DVD, Wechsellaufwerk, flüchtiger oder nicht-flüchtiger Speicher, eingebauter Speicher/Prozessor etc.) abgespeichert sein. Der Anweisungscode kann einen Computer oder andere programmierbare Geräte derart programmieren, dass die gewünschten Funktionen ausgeführt werden. Ferner kann das Programm und/oder das Programm-Element in einem Netzwerk wie beilspielsweise dem Internet bereitgestellt werden, von dem es bei Bedarf von einem Nutzer herunter geladen werden kann.
  • Die Erfindung kann sowohl mittels eines Computerprogramms, d.h. mittels einer Software, als auch mittels einer oder mehrerer spezieller elektrischer Schaltungen, d.h. in Hardware oder in beliebig hybrider Form, d.h. mittels Software-Komponenten und Hardware-Komponenten, realisiert werden.
  • Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung derzeit bevorzugter Ausführungsformen. Die einzeigen Figuren der Zeichnung dieser Anmeldung sind lediglich als schematisch und als nicht maßstabsgetreu anzusehen.
  • Figur 1
    zeigt einen thermischen Gefahrmelder mit einer Temperaturmesseinrichtung und einer einen adaptiven filter darstellenden Auswerteeinheit für das Temperaturmesssignal der Temperaturmesseinrichtung.
    Figur 2
    zeigt in einem direkten Vergleich das zeitliche Verhalten (a) einer auf einem adaptiven Filter basierenden Temperaturauswertung gemäß einem Ausführungsbeispiel der Erfindung und (b) einer bekannten Temperaturauswertung unter Verwendung einer künstlichen Anstiegsbegrenzung.
  • Figur 1 zeigt einen thermischen Gefahrmelder 100, welcher eine als NTC (negative temperatur coefficient) Widerstand Temperaturmesseinrichtung 102 aufweist. Ein Ausgangssignal ntc_in der Temperaturmesseinrichtung 102 wird einer Auswertevorrichtung 110 zugeführt. Das Ausgangssignal ntc_in stellt somit das Eingangssignal für die Auswertevorrichtung 110 dar.
  • Wie nachfolgend noch genauer erläutert wird, ist die Auswertevorrichtung 110 derart eingerichtet, dass im Falle einer Gefahrensituation ein zeitlicher Anstieg des Ausgangssignals ntc_in in Hinblick auf zum einen eine möglichst schnelle Alarmauslösung und zum anderen eine Vermeidung von Artefakten, die zu Falschalarmmeldungen führen könnten, optimiert wird.
  • Der Auswertevorrichtung 110 ist ein Mikroprozessor 105 nachgeschaltet, welcher das von der Auswertevorrichtung 110 bereitgestellte Auswertungssignal virtual_temp im Hinblick auf seine Relevant für eine Gefahrensituation überprüft und ggf. eine Alarmmeldung veranlasst. Gemäß dem hier dargestellten Ausführungsbeispiel erfolgt die Alarmmeldung akustisch über einen dem Mikroprozessor 105 nachgeschalteten Verstärkter 107 und einem mit dem Verstärker 107 verbundenen Lautsprecher 108.
  • Es wird darauf hingewiesen, dass der Mikroprozessor 105 und die Auswertevorrichtung 110 auch mittels eines gemeinsamen Bauteils, beispielsweise eines Mikrocontrollers, realisiert werden können. Das gleiche gilt für den Microprozessor 105 und den Verstärker 107.
  • Die Auswertevorrichtung 110 weist einen Eingang 111 und einen Ausgang 112 auf. Dem Eingang 111 wird das Ausgangssignal ntc_in der Temperaturmesseinrichtung 102 zugeführt. An dem Ausgang 112 wird das Auswertungssignal virtual_temp bereit gestellt.
  • Gemäß dem hier dargestellten Ausführungsbeispiel weist die Auswertevorrichtung 110 ferner drei Komponenten auf, die jeweils mit dem Eingang 111 über eine geeignete Signalisierungsleitung verbunden sind. Wie aus Figur 1 ersichtlich, ist der Eingang 111 der Auswertevorrichtung 110 mit einem ersten Eingang einer Modellierungseinheit 120 verbunden. Außerdem ist der Eingang 111 mit dem positiven Eingang 131 einer als Subtraktionseinheit ausgebildeten ersten Summationseinheit 130 und mit einem ersten Eingang 151 einer zweiten Summationseinheit 150 verbunden.
  • In der Modellierungseinheit 120 ist ein thermisches Modell der Temperaturmesseinrichtung 102 gespeichert. In dem thermischen Modell sind auch thermische Massen bzw. Wärmekapazitäten berücksichtigt, die mit der Temperaturmesseinrichtung 102 thermisch gekoppelt sind. Dies gilt insbesondere für ein in Figur 1. nicht dargestelltes Gehäuse des Gefahrmelders 100.
  • Die thermischen Massen führen dabei in bekannter Weise dazu, dass der von der Temperaturmesseinrichtung 102 angezeigte Temperaturverlauf dem wahren, real existierenden Temperaturverlauf hinter her hinkt. Gemäß dem hier dargestellten Ausführungsbeispiel wird diese thermische Trägheit durch ein Tiefpassverhalten beschrieben. Dieses Tiefpassverhalten wird durch zumindest eine charakteristische Zeitkonstante bestimmt, welche einen wichtigen Parameter des thermischen Modells darstellt.
  • Im Gegensatz zu bekannten Auswerteverfahren für Temperaturmesssignale muss bei der hier beschriebenen Auswertevorrichtung 100 die charakteristische Zeitkonstante nicht unbedingt konstant sein. Vielmehr hängt die charakteristische Zeitkonstante von einem Rückkopplungssignal slope ab (T_model = f(slope)). Wie später noch detailliert erläutert wird, ist gemäß dem hier dargestellten Ausführungsbeispiel die Stärke des Rückkopplungssignals slope abhängig von der aktuellen Steigung bzw. der Stärke der zeitlichen Änderung des Auswertungssignal virtual_temp.
  • Wie aus Figur 1 ferner ersichtlich, wird ein Ausgangssignal iir_model der Modellierungseinheit 120 über einen Ausgang 123 der Modellierungseinheit 120 einem negativen Eingang 132 der Subtraktionseinheit 130 zugeführt. Gemäß dem hier dargestellten Ausführungsbeispiel ist die Modellierungseinheit 120 ein Tiefpassfilter. Das in der Subtraktionseinheit 130 gebildete Differenzsignal diff zwischen dem Eingangssignal ntc_in und dem Ausgangssignal iir_model wird dann über einen Ausgang 133 der Subtraktionseinheit 130 einem Eingang 141 einer Multiplikationseinheit 140 zugeführt. In der Multiplikationseinheit 140 wird das Differenzsignal diff mit einem Faktor multipliziert, welcher Faktor mittels eines Steuersignals factor_model über einen Steuereingang 146 der Multiplikationseinheit 140 bestimmt wird. Auch dieser Multiplikationsfaktor kann während des Betriebs der Auswertevorrichtung 110 jederzeit in geeigneter Weise nachgestellt bzw. korrigiert werden.
  • Über einen Ausgang 143 der Multiplikationseinheit 140 wird das multiplizierte Signal mult einem zweiten Eingang 152 der zweiten Summationseinheit 150 zugeführt. In der zweiten Summationseinheit 150 wird das multiplizierte Signal mult dann mit dem über den ersten Eingang 151 der zweiten Summationseinheit 150 zugeführten Eingangssignal ntc_in addiert. Dadurch wird ein Summationssignal pre_temp gebildet, welches das Ausgangssignal der zweiten Summationseinheit 150 darstellt.
  • Wie aus Figur 1 ferner ersichtlich, wird das Ausgangssignal pre_temp über einen Ausgang 153 der zweiten Summationseinheit 153 einem Eingang 161 einer Ausgangsfiltereinheit 160 zugeführt. Gemäß dem hier dargestellten Ausführungsbeispiel stellt die Ausgangsfiltereinheit 160 einen Tiefpass dar. Der Tiefpass kann dabei ein Tiefpass beliebiger Ordnung sein. Der Tiefpass wandelt das Ausgangssignal pre_temp in ein gefiltertes Auswertungssignal virtual_temp um, welches an einem Ausgang 162 der Ausgangsfiltereinheit 160 bereit gestellt wird. Wie bereits oben beschrieben wird das Auswertungssignal virtual_temp über den Ausgang 112 der Auswertevorrichtung 110 dem Mikroprozessor 105 zugeführt.
  • Im Folgenden wird die Rückkopplung des Auswertungssignal virtual_temp zu der Modellierungseinheit 120 beschrieben, welche die Modellierungseinheit 120 zu dem adaptiven Filter macht: Gemäß dem hier dargestellten Ausführungsbeispiel erfolgt die Rückkopplung über eine Steigungsberechnungseinheilt 170. Die Steigungsberechnungseinheit 170 weist auf (a) einen ersten Eingang 171, welchem das Ausgangssignal pre_temp zugeführt wird, (b) einen zweiten Eingang 172, welchem das Auswertungssignal virtual_temp zugeführt wird, und (c) einen Ausgang 173. An dem Ausgang 173 wird das Rückkopplungssignal slope über einen zweiten Eingang 122 der Modellierungseinheit 120 zugeführt. Gemäß dem hier dargestellten Ausführungsbeispiel wird in der Steigungsberechnungseinheit 170 basierend auf den beiden Signalen pre_temp und virtual_temp die Steigung, d.h. die Stärke der zeitlichen Änderung des Ausgangssignal pre_temp und/oder des Auswertungssignal virtual_temp bestimmt. Dieser Zusammenhang kann allgemein durch folgende Gleichung beschrieben werden:
    slope = f(pre_temp, virtual_temp)
  • Gemäß dem hier dargestellten Ausführungsbeispiel bestimmt das Rückkopplungssignal slope die charakteristische Zeitkonstante der Modellinversion.
  • Bei der in Figur 1 dargestellten Auswertevorrichtung 110 wird somit die charakteristische Zeitkonstante der thermischen Modellinversion in Abhängigkeit von der der Steilheit des Auswertungssignals virtual_temp verändert. Dies bewirkt bei einem besonders steilen Transienten eine Verkleinerung der Zeitkonstante, welche im Ergebnis eine Dämpfung des Auswertungssignals virtual_temp bewirkt. Die Modellierungseinheit 120 stellt somit ein adaptives Filter dar, welches in Abhängigkeit des Ausgangstransienten verändert wird.
  • Dabei wird die Steilheit des Auswertungssignals virtual_temp als Differenz zwischen dem Signal an dem Eingang 161 und dem Signal an dem Ausgang 162 des als Tiefpass ausgebildeten linearen Ausgangsfilters 160 gemessen. Der Tiefpass des Ausgangsfilters weist dabei eine vergleichsweise kurze Zeitkonstante auf. Das Differenzsignal kann in der Modellierungseinheit 120 mit einem Schwellwert verglichen werden. Bei einem überschreiten des Schwellwertes wird die Zeitkonstante des Modells auf einen kürzeren Wert gesetzt. Dabei wird beispielsweise eine vergleichsweise große Zeitkonstante gewählt, wenn das Rückkopplungssignal slope klein ist. Wenn das Rückkopplungssignal slope vergleichsweise groß ist, dann wird eine kleinere Zeitkonstante für das in der Modellierungseinheit 120 aktuell verwendete thermische Modell gewählt. Diese Abhängigkeit der verwendeten Zeitkonstante von dem Rückkopplungssignal slope stellt damit eine adaptive Regelung bei der Auswertung des Ausgangssignals ntc_in der Temperaturmesseinrichtung 102 dar.
  • Figur 2 zeigt in einem Diagramm 290 auf anschauliche Weise das charakteristische Verhalten der beschriebenen Auswertevorrichtung 110. Dabei wird eine schlagartige Temperaturänderung von 5° Celsius auf 50° Celsius in einem überwachten Raum zugrunde gelegt. Die Temperaturmesseinrichtung 102 liefert somit als Eingangssignal ntc_in eine entsprechende Springantwort 291. Diese ist infolge der thermischen Masse der Temperaturmesseinrichtung gedämpft und zeigt das charakteristische Verhalten eines Tiefpasses zweiter Ordnung.
  • Mit dem Bezugszeichen 292 ist in Figur 2 eine Standardimplementierung einer bekannten Auswertevorrichtung dargestellt, welche zwar im Vergleich zu der Sprungantwort einen schnelleren Anstieg aufweist und somit prinzipiell für eine schnelle Alarmauslösung geeignet wäre. Zur Vermeidung eines extrem starken Überschwingers weist die Standardimplementierung eine künstliche Anstiegsbegrenzung auf. Trotz dieser Anstiegsbegrenzung weist das Auswertungssignal 292 jedoch einen Überschwinger auf, welche bei ca. 90 s nach dem Beginn der schlagartigen Temperaturänderung kurzzeitig über eine Alarmschwelle 295 ansteigt und somit einen Falschalarm auslöst.
  • Es wird darauf hingewiesen, dass der Überschwinger zwar durch eine stärkere Anstiegsbegrenzung vermieden oder zumindest reduziert werden könnte. Dies hätte jedoch einen deutlich langsameren Anstieg des Auswertungssignals 292 zu Folge, so dass echte Alarmmeldungen nur deutlich verzögert ausgelöst werden könnten. Dies würde also bedeuten, dass die amerikanische Norm FM3210 nicht erfüllt werden könnte.
  • Mit dem. Bezugszeichen 293 ist das zeitliche Verhalten des Auswertungssignals virtual_temp der in der Figur 1 dargestellten Auswertevorrichtung 110 dargestellt. Man sieht sehr schön, dass das Signal 293 ebenso wie das Auswertungssignal 293 steil ansteigt. Damit ist im Falle einer thermisch angezeigten Gefahrensituation ebenso eine zeitnahe Alarmierung möglich. Außerdem wird bei dem Signal 293 auf vorteilhafte Weise ein Überschwingen vermieden und das Auswertungssignal 293 ist stets ausreichend weit von der Alarmgrenze 295 beabstandet. Somit kann ein unerwünschter Falschalarm zuverlässig vermieden werden.
  • Die beschriebene Auswertevorrichtung 110 mit der einen adaptiven Filter darstellenden Modellierungseinheit 120 weist insbesondere folgende Vorteile auf:
    1. 1) Die Auswertevorrichtung 110 trägt auf vorteilhafte Weise zu einer Stabilisierung eines an sich instabilen Rechenmodells bei, welches die Inversion eines thermischen Modells darstellt, welches die thermische Trägheit der Temperaturmesseinrichtung und ggf. die thermische Trägheit von mit der Temperaturmesseinrichtung thermisch gekoppelte Wärmekapazitäten beschreibt. Das Rechenmodell ist vom Verhalten her einem Hochpass ähnlich. Die beschriebene Temperaturauswertung führt bei gleichzeitig schnellem Ansprechen zu keinen bzw. zu lediglich sehr kleinen Überschwingen. Die Dynamik der Temperaturauswertung wird insbesondere nicht durch bekannte künstliche Steilheitsbegrenzungen eingeengt. Damit ergeben sich weitere Vorteile auch unter "realen" Bedingungen, welche in den relevanten Normen nicht getestet werden. Beispielsweise wird der Gefahrenmelder auch bei stark schwankenden Temperaturen oder hohen Windgeschwindigkeiten robuster. Unter diesen Bedingungen verändern sich normalerweise die Parameter eines thermischen Systems drastisch. Beispielsweise kann bei hohen Windgeschwindigkeiten der Sensor plötzlich anders angeströmt werden und dadurch sehr viel schneller reagieren. Ein "starres" System hätte hier einige Probleme mit auftretenden Instabilitäten.
    2. 2) Durch die beschriebene Rückkopplung bzw. durch die adaptive Filterung können alle für thermische Gefahrenmelder relevanten Normen wie insbesondere die Normen EN54-5 AlS und BS und die Norm FM3210 erfüllt werden. Dies ist insofern bemerkenswert, da diese Normen, wie oben bereits dargestellt, eigentlich gegensätzliche Anforderungen enthalten (die FM3210 erfordert eine möglichst schnelle Alarmierung, die EN54-5 "S" erfordert eine Vermeidung von Falschalarmen).
    3. 3) Ein weiterer Vorteil der beschriebenen Auswertevorrichtung 110 besteht darin, dass obige Normen mit dem gleichen Algorithmus erfüllt werden können. Es muss also keine umständliche Umparametrierung erfolgen. Damit wird ein mit der Auswertevorrichtung 110 bestückter Gefahrmelder so gut, dass alle relevanten Normen erfüllt werden können.
    4. 4) Die beschriebene Auswertevorrichtung 110 kann bei herkömmlichen thermischen Gefahrmeldern durch eine einfache Programmmierung realisiert werden. Spezielle Hardware Komponenten sind in der Regel nicht erforderlich.

Claims (11)

  1. Vorrichtung zum Auswerten eines Temperaturmesssignals (ntc_in) einer Temperaturmesseinrichtung (102), insbesondere zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals (ntc_in) einer Temperaturmesseinrichtung (102) eines Gefahrmelders (100), die Vorrichtung (110) aufweisend eine Modellierungseinheit (120) mit
    • einem ersten Eingang (121) zum Aufnehmen eines Eingangssignals (ntc_in), welches für das Temperaturmesssignal indikativ ist,
    • einem zweiten Eingang (122) zum Aufnehmen eines Rückkopplungssignals (slope), und
    • einem Ausgang (123) zum Ausgeben eines Ausgangssignals (iir_model, pre_temp, virtual_temp),
    - wobei das Ausgangssignal (iir_model, pre_temp, virtual_temp) mittels eines in der Modellierungseinheit (120) gespeicherten Rechenmodells in Abhängigkeit von dem Eingangssignal (ntc_in) und dem Rückkopplungssignal (slope) generierbar ist, und
    - wobei das Rückkopplungssignal (slope) direkt oder indirekt von dem Ausgangssignal (iir_model, pre_temp, virtual_temp) abhängt,
    - wobei das Rechenmodell ein thermisches Modell der Temperaturmesseinrichtung (102) aufweist.
  2. Vorrichtung nach Anspruch 1, bei der
    das Rechenmodell zumindest einen Modellparameter (T_model) aufweist, dessen Wert durch das Rückkopplungssignal (slope) bestimmt wird.
  3. Vorrichtung nach einem der Ansprüche 1 bis 2, bei der
    das Rechenmodell die Inversion des thermischen Modells der Temperaturmesseinrichtung (102) darstellt.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, zusätzlich aufweisend
    eine Steigungsberechnungseinheit (170) mit
    • zumindest einem Eingang (171, 172) zum direkten oder indirekten Aufnehmen des Ausgangssignals (pre_temp, virtual_temp) der Modellierungseinheit (120) und
    • einem Ausgang zum Bereitstellen des Rückkopplungssignals (slope),
    wobei die Steigungsberechnungseinheit (170) derart eingerichtet ist, dass das bereitgestellte Rückkopplungssignal (slope) indikativ ist für die zeitliche Änderung des Ausgangssignals (pre_temp, virtual_temp).
  5. Vorrichtung nach Anspruch 4, zusätzlich aufweisend eine Ausgangsfiltereinheit (160) mit
    • einem Eingang (161) zum Aufnehmen des Ausgangssignals (iir_model, pre_temp) der Modellierungseinheit (120), und
    • einem Ausgang (162) zum Ausgeben eines Auswertungssignals (virtual_temp),
    wobei
    - der Eingang (161) der Ausgangsfiltereinheit (160) mit einem ersten Eingang (171) der Steigungsberechnungseinheit (170) verbunden ist und
    - der Ausgang (162) der Ausgangsfiltereinheit (160) mit einem zweiten Eingang (172) der Steigungsberechnungseinheit (170) verbunden ist.
  6. Vorrichtung nach Anspruch 5, zusätzlich aufweisend
    eine erste Summationseinheit (130), welche
    zwischen dem Ausgang (123) der Modellierungseinheit (120) und dem Eingang (161) der Ausgangsfiltereinheit (160) angeordnet ist.
  7. Vorrichtung nach Anspruch 6, zusätzlich aufweisend
    eine zweite Summationseinheit (150) und eine Multiplikationseinheit (140), welche
    zwischen dem Ausgang (133) der ersten Summationseinheit (130) und dem Eingang (161) der Ausgangsfiltereinheit (160) angeordnet sind.
  8. Gefahrmelder zum Ausgeben einer Alarmmeldung in Abhängigkeit einer erfassten Temperatur innerhalb eines Überwachungsbereiches, der Gefahrmelder (100) aufweisend
    • eine Temperaturmesseinrichtung (102) zum Erfassen der Temperatur innerhalb des Überwachungsbereiches und
    • eine Vorrichtung (110) nach einem der Ansprüche 1 bis 7 zum Auswerten eines Temperaturmesssignals (ntc_in) der Temperaturmesseinrichtung (102).
  9. Verfahren zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals (ntc_in) einer Temperaturmesseinrichtung (102), insbesondere zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals (ntc_in) einer Temperaturmesseinrichtung (102) eines Gefahrmelders (100), das Verfahren aufweisend
    • Aufnehmen eines Eingangssignals (ntc_in), welches für das Temperaturmesssignal indikativ ist, von einem ersten Eingang (121) einer Modellierungseinheit (120),
    • Aufnehmen eines Rückkopplungssignals (slope) von einem zweiten Eingang (122) der Modellierungseinheit (120), und
    • Ausgeben eines Ausgangssignals (iir_model, pre_temp, virtual_temp) an einem Ausgang (123) der Modellierungseinheit (120),
    - wobei das Ausgangssignal (iir_model, pre_temp, virtual_temp) mittels eines in der Modellierungseinheit (120) gespeicherten Rechenmodells in Abhängigkeit von dem Eingangssignal (ntc_in) und dem Rückkopplungssignal (slope) generiert wird,
    - wobei das Rückkopplungssignal (slope) direkt oder indirekt von dem Ausgangssignal (iir_model, pre_temp, virtual_temp) abhängt, und
    - wobei das Rechenmodell ein thermisches Modell der Temperaturmesseinrichtung (102) aufweist.
  10. Computerlesbares Speichermedium, in dem ein Programm zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals (ntc_in) einer Temperaturmesseinrichtung (102), insbesondere zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals (ntc_in) einer Temperaturmesseinrichtung (102) eines Gefahrmelders (100), gespeichert ist, das, wenn es von einem Prozessor (110) ausgeführt wird, zum Durchführen des Verfahrens nach Anspruch 9 eingerichtet ist.
  11. Programm-Element
    zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals (ntc_in) einer Temperaturmesseinrichtung (102), insbesondere zum Auswerten eines zeitlich veränderlichen Temperaturmesssignals (ntc_in) einer Temperaturmesseinrichtung (102) eines Gefahrmelders (100),
    das, wenn es von einem Prozessor (110) ausgeführt wird, zum Durchführen des Verfahrens nach Anspruch 9 eingerichtet ist.
EP08101644A 2008-02-15 2008-02-15 Robustes Auswerten eines Temperaturmesssignals mittels einer dynamischen Anpassung eines Rechenmodells Active EP2091030B1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES08101644T ES2337960T3 (es) 2008-02-15 2008-02-15 Evaluacion fiable de una señal de medicion de temperaturas mediante la adaptacion dinamica de un modelo matematico.
PT08101644T PT2091030E (pt) 2008-02-15 2008-02-15 Avaliação robusta de um sinal de medição de temperatura por meio de uma adaptação dinâmica de um modelo computacional
DK08101644.6T DK2091030T3 (da) 2008-02-15 2008-02-15 Robust fortolkning af et temperatursignal ved hjælp af en dynamisk tilpasning af en beregningsmodel
AT08101644T ATE454685T1 (de) 2008-02-15 2008-02-15 Robustes auswerten eines temperaturmesssignals mittels einer dynamischen anpassung eines rechenmodells
EP08101644A EP2091030B1 (de) 2008-02-15 2008-02-15 Robustes Auswerten eines Temperaturmesssignals mittels einer dynamischen Anpassung eines Rechenmodells
DE502008000303T DE502008000303D1 (de) 2008-02-15 2008-02-15 Robustes Auswerten eines Temperaturmesssignals mittels einer dynamischen Anpassung eines Rechenmodells
CN200910134613.3A CN101520936B (zh) 2008-02-15 2009-02-16 借助计算模型的动态调整鲁棒地分析温度测量信号
US12/372,199 US8188872B2 (en) 2008-02-15 2009-02-17 Robust evaluation of a temperature measurement signal by using a dynamic adaptation of a computational model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08101644A EP2091030B1 (de) 2008-02-15 2008-02-15 Robustes Auswerten eines Temperaturmesssignals mittels einer dynamischen Anpassung eines Rechenmodells

Publications (2)

Publication Number Publication Date
EP2091030A1 EP2091030A1 (de) 2009-08-19
EP2091030B1 true EP2091030B1 (de) 2010-01-06

Family

ID=39590919

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08101644A Active EP2091030B1 (de) 2008-02-15 2008-02-15 Robustes Auswerten eines Temperaturmesssignals mittels einer dynamischen Anpassung eines Rechenmodells

Country Status (8)

Country Link
US (1) US8188872B2 (de)
EP (1) EP2091030B1 (de)
CN (1) CN101520936B (de)
AT (1) ATE454685T1 (de)
DE (1) DE502008000303D1 (de)
DK (1) DK2091030T3 (de)
ES (1) ES2337960T3 (de)
PT (1) PT2091030E (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044674B2 (en) * 2009-11-06 2011-10-25 Infineon Technologies Ag Semiconductor device with thermal fault detection
US10204182B2 (en) * 2013-04-01 2019-02-12 Ademco, Inc. System for obtaining and classifying energy characteristics

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399428A (en) * 1978-03-02 1983-08-16 United Brands Company Thermostat
US4223385A (en) * 1978-09-21 1980-09-16 Westinghouse Electric Corp. Control of workpiece heating
JPS6455696A (en) * 1987-08-26 1989-03-02 Hochiki Co Fire judging device
JP3231887B2 (ja) * 1993-03-31 2001-11-26 能美防災株式会社 熱感知器
GB2278207B (en) * 1993-05-17 1996-05-15 Ea Tech Ltd Heating control apparatus
US5654904A (en) * 1994-05-18 1997-08-05 Micron Technology, Inc. Control and 3-dimensional simulation model of temperature variations in a rapid thermal processing machine
US5583780A (en) * 1994-12-30 1996-12-10 Kee; Robert J. Method and device for predicting wavelength dependent radiation influences in thermal systems
US6207936B1 (en) * 1996-01-31 2001-03-27 Asm America, Inc. Model-based predictive control of thermal processing
US5712802A (en) * 1996-04-16 1998-01-27 General Electric Company Thermal protection of traction inverters
WO2001079942A1 (fr) * 2000-04-14 2001-10-25 Omron Corporation Unite de commande, regulateur de temperature et appareil de traitement thermique
KR100944660B1 (ko) * 2001-12-26 2010-03-04 가부시키가이샤 고마쓰 세이사쿠쇼 열매체 유체를 이용해서 대상물의 온도를 조절하기 위한장치 및 방법
CN2606884Y (zh) * 2003-03-25 2004-03-17 首安工业消防股份有限公司 可进行温度实时监视模拟量线型感温探测器
CN200997084Y (zh) * 2006-12-28 2007-12-26 和舰科技(苏州)有限公司 一种反应室温度监控装置
CN201004189Y (zh) * 2007-01-29 2008-01-09 湖南工业职业技术学院 快速温升环保型波峰焊温控装置
PL1956460T3 (pl) * 2007-02-08 2009-04-30 Nordiq Goeteborg Ab Sterowanie systemem ogrzewania opartym na wymaganej mocy cieplnej

Also Published As

Publication number Publication date
PT2091030E (pt) 2010-03-08
ES2337960T3 (es) 2010-04-30
US20090207030A1 (en) 2009-08-20
US8188872B2 (en) 2012-05-29
CN101520936B (zh) 2013-04-24
DE502008000303D1 (de) 2010-02-25
EP2091030A1 (de) 2009-08-19
ATE454685T1 (de) 2010-01-15
CN101520936A (zh) 2009-09-02
DK2091030T3 (da) 2010-05-03

Similar Documents

Publication Publication Date Title
EP1231475B1 (de) Verfahren und Vorrichtung zur Zustandserfassung von technischen Systemen wie Energiespeicher
EP1687788B1 (de) Verfahren und computerprogramm zum erkennen von unaufmerksamkeiten des fahrers eines fahrzeugs
DE102009061036B4 (de) Vorrichtung und Verfahren zur Residuengenerierung zur Erkennung von fehlerhaften Transienten, Drift oder Oszillationen im Systemverhalten eines Systems eines Flugzeugs, und Flugzeug
DE19622806A1 (de) Verfahren und Vorrichtung zum Erfassen eines Feuers mit verschiedenen Arten von Feuersensoren
EP2079990A1 (de) Verfahren und vorrichtung zum überprüfen eines sensorsignals
DE19629275A1 (de) Verfahren und Vorrichtung zur Unterscheidung verschiedener Arten eines Feuers
EP2988181A1 (de) Regeleinrichtung mit lernfähiger Fehlerkompensation
WO2002069297A1 (de) Verfahren zur branderkennung
DE102016001920A1 (de) Steuervorrichtung zum Melden von Wartungs- und Inspektionszeiten signalgesteuerter Peripheriegeräte
DE102016108475A1 (de) Einschlaferfassungsvorrichtung
WO2015144908A1 (de) Verfahren und system zum betreiben einer anzeigevorrichtung
EP2091030B1 (de) Robustes Auswerten eines Temperaturmesssignals mittels einer dynamischen Anpassung eines Rechenmodells
DE3620614A1 (de) Verfahren zum filtern eines verrauschten signals
DE102014223444A1 (de) Verfahren zur Überwachung eines Abgassensors
EP2318893A1 (de) Verfahren zum bereitstellen eines pilotwarn-signals für einen piloten eines flugzeuges, computerprogrammprodukt und warnvorrichtung
DE102011002870B4 (de) Verfahren zum Überwachen des dynamischen thermischen Verhaltens eines Schaltfelds einer elektrischen Schaltanlage sowie elektrische Schaltanlage
EP2297717B1 (de) Bestimmung einer alarmierungszeit eines gefahrmelders
DE102010046141A1 (de) Verfahren zum Betreiben eines Schaltfelds einer elektrischen Schaltanlage
EP3454154A1 (de) Automatisierte erkennung von statistischen abhängigkeiten zwischen prozessmeldungen
DE102020128648A1 (de) Analysator
EP2206024B1 (de) Verfahren zur überwachung der güte eines regelkreises in einem kraftwerk
DE10259719B4 (de) Verfahren zur Minimierung des Fehlers einer Messgröße
DE102019127426A1 (de) Entfernung von Wellenform-DC-Störung
EP2154529B1 (de) Verfahren zur Auswertung von Gassensorsignalen
DE102012106306A1 (de) Verfahren zur Signalverarbeitung eines Sensorsignals eines Inertialsensors mittels Tiefpassfilterung sowie Tiefpassfiltervorrichtung

Legal Events

Date Code Title Description
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502008000303

Country of ref document: DE

Date of ref document: 20100225

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20100225

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2337960

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100406

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20100228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100406

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

26N No opposition filed

Effective date: 20101007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20120213

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100215

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150220 AND 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008000303

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

Effective date: 20150407

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 454685

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20150421

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20151009

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20150916

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS SCHWEIZ AG

Effective date: 20160414

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20170201

Year of fee payment: 10

Ref country code: DK

Payment date: 20170216

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230202

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230109

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230209

Year of fee payment: 16

Ref country code: IT

Payment date: 20230221

Year of fee payment: 16

Ref country code: DE

Payment date: 20220620

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230522

Year of fee payment: 16

Ref country code: CH

Payment date: 20230504

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240304

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240226

Year of fee payment: 17