EP2090786B1 - Structuration de boîtier destinée à la stabilisation de l'écoulement dans une machine de traitement des écoulements - Google Patents

Structuration de boîtier destinée à la stabilisation de l'écoulement dans une machine de traitement des écoulements Download PDF

Info

Publication number
EP2090786B1
EP2090786B1 EP09150842.4A EP09150842A EP2090786B1 EP 2090786 B1 EP2090786 B1 EP 2090786B1 EP 09150842 A EP09150842 A EP 09150842A EP 2090786 B1 EP2090786 B1 EP 2090786B1
Authority
EP
European Patent Office
Prior art keywords
duct
blade
casing
accordance
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP09150842.4A
Other languages
German (de)
English (en)
Other versions
EP2090786A3 (fr
EP2090786A2 (fr
Inventor
Carsten Clemen
Henner Schrapp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP2090786A2 publication Critical patent/EP2090786A2/fr
Publication of EP2090786A3 publication Critical patent/EP2090786A3/fr
Application granted granted Critical
Publication of EP2090786B1 publication Critical patent/EP2090786B1/fr
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0246Surge control by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface

Definitions

  • the invention relates to a housing with at least one housing structuring for stabilizing the flow in the region of the blade tips of the rotor blades in a turbomachine. Furthermore, the invention relates to a use of the housing in a compressor of a gas turbine. Moreover, the invention relates to a method for stabilizing the flow in the region of the blade tips of the blades in a fluid flow machine by means of the housing.
  • a fluid flow machine especially in a compressor
  • the pressure of a fluid is continuously increased by means of a rotor with blades and a stator with vanes.
  • the stability of the flow of the fluid in the compressor has a significant influence on the efficiency of the compressor and the life of the blades. Therefore, it is an important goal in the design of compressors to reduce flow instabilities, such as those that occur particularly in the blade tip flow around the blades (slit flow), in order to increase the stability limit of the compressor.
  • adjustable guide wheels To actively influence the compressor stability include e.g. adjustable guide wheels.
  • Fig. 1 is a compressor 1 of a jet engine, not shown, with a compressor housing 2, a compressor duct 3, blades 4 and adjustable vanes 5 with adjusting devices 6 according to the prior art shown schematically.
  • the air 7 flows into the compressor and leaves it as compressed air 8.
  • the functioning of the adjustable guide vanes 5 is characterized in that the angle of attack of the moving blades 4 is tracked with a change in the speed of the compressor 1 in order to adjust the flow conditions, that the stability of the housing and profile boundary layers on the rotor blades 4 is maintained.
  • adjustable vanes are very complicated in their construction. There are many items needed, making the compressor heavier and more expensive. In particular, in jet engines, however, an increase in weight through additional facilities is to be avoided. In addition, the adjustment are susceptible to failure. This increases both the maintenance and maintenance costs.
  • Fig. 2 shows a compressor 1 with a channel 10 for returning a partial flow from a rear compressor stage to a front compressor stage, which is known in practice.
  • the compressor 1 of a jet engine essentially comprises a compressor housing 2, a compressor duct 3, blades 4 and vanes 5.
  • the air 7 flows into the compressor and leaves it as compressed air 8.
  • the channel 10 is arranged between the compressor housing 2 and the bypass inner housing 9 of the jet engine. Behind a downstream compressor stage is a tapping point 11, which opens into the channel 10, which leads to a Einblasestelle 12 in front of an upstream compressor stage.
  • Passive influences on compressor stability include casing treatments in the form of small recesses mounted in front of or above the blade tips of the blades on the circumference of the compressor housing and affecting the blade tip flow.
  • the compressor 1 of a jet engine comprises a compressor housing 2, a compressor duct 3, Blades 4 and Vanes 5.
  • the air 7 flows into the compressor and exits it as compressed air 8.
  • At the leading edge 41 of the blade tip 40 of the first blade 4 is a recess 13.
  • the influence of the flow in the area of the blade tip 40 is characterized achieved that the flow at the downstream end of the recess 13 enters the recess 13 and exits at the upstream end of the recess 13 again and thus circulated. This happens because the pressure at the downstream end of the recess 13 is greater than at the upstream end. This pressure difference causes the local recirculation of the flow. As a result, a small amount of energy is transported into the front region of the blade tip 40.
  • the interaction of the flow recirculation with the blade tip overflow leads to a stabilization of the gap flow and thus of the compressor.
  • housing With trained in the axial direction of channels housing are for example from the GB 2 408 546 A , of the EP 0 614 014 A1 , of the EP 0 046 173 A1 , of the US 2003/0152455 A1 and the GB 2 245 312 A known. Furthermore, from the WO 95/34745 A1 a housing with distributed circumferentially wells known.
  • the recesses are not speed dependent, but can be optimally designed only for one operating point. This means that they are insufficient for stability enhancement under all operating conditions.
  • the invention is therefore based on the object to provide a housing that increases the compressor stability, is simple in design, has a low weight, works reliably and does not heat the fluid in the fluid flow machine.
  • the object is achieved in a housing with at least one housing structuring for stabilizing the flow in the area of the blade tips of the rotor blades in a fluid flow machine, wherein the housing structuring is arranged at least in one stage on the inner circumference of the housing.
  • the housing structure is formed as a channel comprising a first end and a second end, wherein the first end opens in the region of the blade tips of a blade ring in the interior of the housing and the second end is closed.
  • the length 1 of the channel at the second end is in a range between a minimum length l min and a maximum length l max speed-dependent adjustable.
  • Static pressure fields which form on the blades, pull past the channel and cause the air column in the channel to vibrate. At a certain speed, a standing wave is formed in the duct. This creates at the mouth of the channel a pulsating mass flow which stabilizes the flow between the blade tips of the blades and the housing.
  • the natural frequency of the air column in the channel can be set to any operating state of the fluid flow machine.
  • the housing according to the invention thus combines the advantages of the passive housing structures, which are formed by recesses in the housing (simple design, low weight, no return of hot fluid) with the advantages of active flow control by Verstellleitrate (speed-dependent control).
  • the l length adjustable channel allows future compressors to be designed with higher loaded rotor tips, which can be achieved, for example, by reducing rotor blade counts. This leads to a weight and cost reduction.
  • the arrangement is simple in construction and works reliably.
  • the weight of the compressor is not increased by the channel.
  • the temperature of the flow in the compressor is not increased, as for example in a return of fluid.
  • the channel has a taper at the first end.
  • the rejuvenation enhances the effect of the pulsating mass flow.
  • the channel is rectilinear at least in the range between l min and l max and has a constant cross-section in this region, wherein at the second end of the channel in the longitudinal direction of the channel in the range between l min and l max movable Piston is arranged.
  • the movable piston makes it easy to adjust the length l of the channel.
  • the arrangement of the piston is very easy to implement, requires few parts and has a lower weight than a Verstellleitradsystem according to the prior art.
  • the position of the piston may be controllable by means of an electric, hydraulic or pneumatic drive.
  • an electric drive for example, a stepper motor comes into question. These drives are reliable and can be easily installed in the fluid flow machine.
  • the channel is arranged substantially radially to the inner periphery of the housing.
  • a channel can be easily made, for example, by a core during casting or by subsequent drilling.
  • the channel is arranged at an angle to the longitudinal axis of the housing. Also such a channel can be easily made by a casting core or drilling.
  • the channel is arcuately curved outside the range between l min and l max . This shape allows a length of the channel that exceeds the thickness of the housing wall.
  • the channel is arcuately curved in the region of the first end and in the region between l min and l max parallel to the longitudinal axis of the housing. This arrangement is advantageous when the piston is to move in the axial direction.
  • the position of the first end of the channel is between the trailing edge of the blade and a distance of 1.3 times the axial chord length l ax of the blade at the blade tip as measured from the trailing edge of the blade. This position range is optimal for stabilizing the flow between the blade tips of the blades and the housing.
  • the housing is used in a compressor of a gas turbine.
  • compressor stability is particularly important.
  • the compressor is exposed to high pressures due to pressure and temperature and should not be additionally burdened by flow instabilities.
  • the solution of the problem in a method for stabilizing the flow in the area of the blade tips of the blades in a fluid flow machine by means of the housing, which forms a static pressure field on each blade.
  • the static pressure field travels past the first end of the channel during rotation of the blade and causes the fluid column in the channel to vibrate, creating a standing wave in the channel. which creates a pulsating mass flow at the first end of the channel.
  • This method is based on a simple principle and is very reliable.
  • the method results in that an increase in the compressor pumping limit can be achieved without adversely affecting the compressor efficiency, and that the increase in the pumping limit for the entire speed range of the compressor can be optimally utilized.
  • the standing wave is generated by tuning the natural frequency of the fluid column to the blade follower frequency so that the natural frequency of the fluid column is a multiple of the blade follower frequency of the blades.
  • the tuning of the natural frequency of the fluid column enables an improvement of the stability in all operating areas of the fluid flow machine.
  • the natural frequency of the fluid column can be adjusted as a function of speed by adjusting the length l of the channel.
  • the length l of the channel By adjusting the length l of the channel, a simple adjustment of the natural frequency of the air column in the channel is possible.
  • This formula allows a precise determination of the optimal length 1 of the channel for each operating range.
  • the adaptation of the length l of the channel as a function of the aerodynamic speed of the compressor leads to the fact that always forms a defined flow state in the channel, whereby the channel is maximally effective and the compressor stability is maximally increased. Since the aerodynamic speed is available to the engine computer, the control of the length l of the channel is very easy and reliable to implement. Since the length l of the channel is optimally adapted to all speeds, an improvement in the compressor efficiency is also to be expected.
  • Determining the maximum length of the channel ensures that the channel is not set too long.
  • Fig. 4a, 4b, 4c and 4d each show a part of a housing, which is designed as a compressor housing 2 in a jet engine, not shown, a rotor blade 4 and a channel 20 with a piston 30th
  • the compressor housing 2 encloses the compressor duct 3, which is circular in cross-section.
  • the compressor duct 3 contains rotor blades arranged radially on a shaft or rotor disk, not shown. In the Fig. 4a-d only one blade 4 is shown in each case.
  • the rotor blade 4 has a blade tip 40, an upstream leading edge 41 and a downstream trailing edge 42. Between the blade tip 40 of the blade 4 and the compressor housing 2, there is a gap 43 in the compressor duct 3.
  • the channel 20 is arranged in the region of the blade tip 40 of the blade 4.
  • the channel 20 has a first end 21 and a second end 22.
  • the first end 21 of the channel 20 opens in the region of the blade tip 40 of the blade 4 in the compressor passage 3 and in the gap 43.
  • the second end 22 of the channel 20 is clearly spaced from the first end 21 and closed by the adjustable piston 30.
  • This channel 20 can be arbitrary in number, extent and shape in the axial direction and in the circumferential direction. It can be any number of channels 20 of the four embodiments, which in the Fig. 4a-d shown are arranged on the circumference of the compressor housing 2.
  • further channels 20 may be arranged on the moving blades of further compressor stages.
  • Fig. 4a the first embodiment of the channel 20 is shown in the compressor housing 2.
  • the channel 20 extends in a straight line and radially to the inner periphery of the compressor housing 2.
  • the first end 21 of the channel 20 opens in the downstream region of the blade tip 40 of the blade 4 in the gap 43 between the blade tip 40 and the compressor housing.
  • Fig. 4b the second embodiment of the channel 20 is shown in the compressor housing 2.
  • the channel 20 is rectilinear and is inclined at an acute angle to the non-illustrated longitudinal axis of the compressor housing 2, wherein the apex of the angle points in the flow direction.
  • the first end 21 of the channel 20 opens in the upstream region of the blade tip 40 of the blade 4 in the gap 43 between the blade tip 40 and the compressor housing. 2
  • Fig. 4c the third embodiment of the channel 20 is shown in the compressor housing 2.
  • the channel 20 extends straight at the second end 22 and radially to the inner periphery of the compressor housing 2.
  • the first end 21 of the channel 20 extends arcuately, tapers in the direction of the compressor passage 3 and flows upstream of the leading edge 41 of the blade 4 just before the gap 43rd between the blade tip 40 and the compressor housing 2 in the compressor duct 3rd
  • Fig. 4d the fourth embodiment of the channel 20 is shown in the compressor housing 2.
  • the channel 20 extends only at the second end 22 in a straight line and parallel to the longitudinal axis of the compressor housing 2, not shown.
  • the first end 21 of the channel 20 extends arcuately, tapers in the direction of the compressor passage 3 and flows upstream of the leading edge 41 of the blade 4 just before the gap 43 between the blade tip 40 and the compressor housing 2 in the compressor passage 3rd
  • Fig. 5 is the third embodiment according to Fig. 4c shown enlarged for the channel 20 in the compressor housing 2.
  • the air flow 7 is fed to the compressor stage formed by the rotor blade 4 and the guide blade 5.
  • the compressed air stream 8 exits the compressor stage.
  • the channel 20 includes the first end 21 and the second end 22 in which the piston 30 is located.
  • the blade 4 includes the blade tip 40, the leading edge 41 and the trailing edge 42. Between the blade tip 40 and the compressor housing 2 is the gap 43.
  • the axial distance between the leading edge 41 and the trailing edge 42 at the blade tip 40 is the chord length l ax .
  • the position of the channel 20 may be between the trailing edge 42 of the blade 4 and 1.3 times the axial chord length l ax measured from the trailing edge 42. This area is in Fig. 5 characterized by l pos .
  • Fig. 6 is the fourth embodiment according to Fig. 4d shown enlarged for the channel 20 in the compressor housing 2.
  • the compressor housing 2, with the compressor duct 3, the rotor blade 4 and the duct 20 with the piston 30 are again visible.
  • the duct 20 comprises a center line 23, the first end 21 and the second end 22, in which the piston 30 is located.
  • the blade 4 comprises the blade tip 40, the leading edge 41 and the trailing edge 42.
  • the gap 43 is located between the blade tip 40 and the compressor housing 2.
  • the aerodynamic speed n results from the mechanical compressor speed divided by the root of the compressor inlet temperature. This aerodynamic speed n is available to the engine computer.
  • k is any natural number (0, 1, 2, ...) over which the length l of the channel 20 can be increased without negatively affecting its effect.
  • is the isentropic exponent
  • R is the specific gas constant
  • z is the blade number of the blade ring on which the channel 20 acts on the flow.
  • the adjustment of the length l of the channel 20 is realized by means of the piston 30, which moves in the part of the channel 20 which lies between the minimum length l min and the maximum length l max of the channel 20.
  • the piston 30 serves to change the length l of the channel 20 in such a way that, according to equation (2), the length l appropriate to the current aerodynamic rotational speed n is set.
  • the channel 20 is designed such that the piston 30 fits, ie the channel 20 is rectilinear in this region and has a constant cross section.
  • the method of the piston 30 is controlled by the aerodynamic speed n of the compressor and realized by means of a suitable mechanism, for example electrically (eg by a stepping motor), hydraulically or pneumatically.
  • a suitable mechanism for example electrically (eg by a stepping motor), hydraulically or pneumatically.
  • the length l of the channel 20 must be selected so that a standing wave is generated in it.
  • the movable piston 30 is moved between the minimum length l min and the maximum length l max of the channel 20.
  • the travel s of the piston 30 is, as described above, dependent on the aerodynamic speed n.
  • two quantities must be matched to one another. These are the blade rate of the blade ring to be controlled and the volume of the channel 20.
  • Each blade 4 of the blade ring surrounds a static pressure field. This moves past the first end 21 of the channel 20 and vibrates the air column in the channel 20.
  • the piston 30 makes it possible to vary the volume of the channel 20.
  • the volume is now adjusted to the compressor speed in such a way that the blade repetition frequency coincides with a multiple of the natural frequency of the air column in the channel 20, a resonance occurs and a standing wave of maximum amplitude is formed in the channel 20.
  • the standing wave on the piston 30 shows a node, and the speed is zero.
  • the standing wave has a belly.
  • a pulsating mass flow which stabilizes the flow in the region of the blade tips 40 of the rotor blades 4, is formed at the first end 21 of the channel 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (16)

  1. Carter (2) comprenant au moins une structure de carter destinée à stabiliser l'écoulement dans la zone des bouts d'aube des aubes mobiles (4) dans une machine à écoulement, sachant que la structure de carter est disposée au moins dans un étage sur le contour intérieur du carter (2), que la structure de carter est formée en tant que canal (20) qui comprend une première extrémité (21) et une seconde extrémité (22), la première extrémité (21) débouchant dans la zone des bouts d'aube d'une couronne d'aubes mobiles à l'intérieur du carter (2) et la seconde extrémité (22) étant fermée, caractérisé en ce que la longueur l du canal (20) à la seconde extrémité (22) est réglable en fonction de la vitesse de rotation dans une gamme comprise entre une longueur minimale lmini et une longueur maximale lmaxi.
  2. Carter (2) selon la revendication n° 1, caractérisé en ce que le canal (20) présente un rétrécissement à la première extrémité (21).
  3. Carter (2) selon la revendication n° 1 ou n° 2, caractérisé en ce que le canal (20) est rectiligne au moins dans la gamme entre lmini et lmaxi et présente une section transversale constante dans ladite gamme, sachant qu'à la seconde extrémité (22) du canal (20) est disposé un piston (30) mobile dans la direction longitudinale du canal (20) dans la gamme entre lmini et lmaxi.
  4. Carter (2) selon la revendication n° 3, caractérisé en ce que la position du piston (30) est réglable au moyen d'un entraînement électrique, hydraulique ou pneumatique.
  5. Carter (2) selon une des revendications n° 1 à n° 4, caractérisé en ce que le canal (20) est disposé pour l'essentiel radialement par rapport au contour intérieur du carter (2).
  6. Carter (2) selon une des revendications n° 1 à n° 4, caractérisé en ce que le canal (20) est disposé selon un angle par rapport à l'axe longitudinal du carter (2).
  7. Carter (2) selon une des revendications n° 1 à n° 4, caractérisé en ce que le canal (20) est incurvé en forme d'arc hors de la gamme entre lmini et lmaxi.
  8. Carter (2) selon une des revendications n° 1 à n° 4, caractérisé en ce que le canal (20) est incurvé en forme d'arc dans la zone de la première extrémité (21) et parallèle à l'axe longitudinal du carter (2) dans la gamme entre lmini et lmaxi.
  9. Carter (2) selon une des revendications n° 1 à n° 8, caractérisé en ce que la position d'un point d'intersection d'un axe de canal du canal (20) et du contour intérieur du carter (2), se situe entre le bord de fuite (42) de l'aube mobile (4) et une distance mesurée à partir du bord de fuite (42) de l'aube mobile (4) qui est 1,3 fois la longueur de la corde axiale lax de l'aube mobile (4) au bout d'aube (40).
  10. Utilisation du carter (2) selon une des revendications n° 1 à n° 9 dans un compresseur (1) d'une turbine à gaz.
  11. Procédé destiné à stabiliser l'écoulement dans la zone des bouts d'aube (40) des aubes mobiles (4) dans une machine à écoulement moyennant le carter (2) selon une des revendications n° 1 à n° 10, sachant qu'un champ de pression statique se forme sur chaque aube mobile (4), et que pendant la rotation de l'aube mobile (4), le champ de pression statique passe devant la première extrémité du canal (20) et provoque la mise en vibration de la colonne de fluide dans le canal (20), sachant que dans le canal (20) est générée une onde stationnaire par laquelle est formé un flux massique pulsant à la première extrémité (21) du canal (20).
  12. Procédé selon la revendication n° 11, caractérisé en ce que l'onde stationnaire est générée en ajustant la fréquence propre de la colonne de fluide sur la fréquence de répétition des pales de telle manière que la fréquence propre de la colonne de fluide est un multiple de la fréquence de répétition des pales des aubes mobiles (4).
  13. Procédé selon la revendication n° 12, caractérisé en ce que la fréquence propre de la colonne de fluide est ajustée par le réglage de la longueur l du canal (20) en fonction de la vitesse de rotation.
  14. Procédé selon la revendication n° 13, caractérisé en ce que la longueur l du canal (20) est calculée selon la formule: l n = 1 2 k + 1 4 κ R nz ,
    Figure imgb0013
    l est la longueur du canal,
    k est un nombre naturel quelconque,
    κ est l'exposant isentropique,
    R est la constante du gaz spécifique,
    n est le régime aérodynamique du rotor du compresseur, et
    z est le nombre d'aubes de la couronne d'aubes mobiles.
  15. Procédé selon la revendication n° 14, caractérisé en ce que la longueur minimale lmini du canal (20) est calculée selon la formule: l min i = 1 2 k min i + 1 4 κ R n max i z , où k mini k ,
    Figure imgb0014
    lmini est la longueur minimale du canal,
    kmini est un nombre naturel quelconque,
    κ est l'exposant isentropique,
    R est la constante du gaz spécifique,
    nmaxi est le régime maximal aérodynamique du rotor du compresseur, et
    z est le nombre d'aubes de la couronne d'aubes mobiles.
  16. Procédé selon la revendication n° 14, caractérisé en ce que la longueur maximale lmaxi du canal (20) est calculée selon la formule: l max i = 1 2 k + 1 4 κ R n min i z ,
    Figure imgb0015
    lmaxi est la longueur maximale du canal,
    k est un nombre naturel quelconque,
    κ est l'exposant isentropique,
    R est la constante du gaz spécifique,
    nmini est le régime minimal aérodynamique du rotor du compresseur, et
    z est le nombre d'aubes de la couronne d'aubes mobiles.
EP09150842.4A 2008-02-15 2009-01-19 Structuration de boîtier destinée à la stabilisation de l'écoulement dans une machine de traitement des écoulements Ceased EP2090786B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008009604A DE102008009604A1 (de) 2008-02-15 2008-02-15 Gehäusestrukturierung zum Stabilisieren der Strömung in einer Strömungsarbeitsmaschine

Publications (3)

Publication Number Publication Date
EP2090786A2 EP2090786A2 (fr) 2009-08-19
EP2090786A3 EP2090786A3 (fr) 2011-04-20
EP2090786B1 true EP2090786B1 (fr) 2016-10-12

Family

ID=40524595

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09150842.4A Ceased EP2090786B1 (fr) 2008-02-15 2009-01-19 Structuration de boîtier destinée à la stabilisation de l'écoulement dans une machine de traitement des écoulements

Country Status (3)

Country Link
US (1) US8262351B2 (fr)
EP (1) EP2090786B1 (fr)
DE (1) DE102008009604A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2434164A1 (fr) * 2010-09-24 2012-03-28 Siemens Aktiengesellschaft Traitement de carter variable
US9567942B1 (en) * 2010-12-02 2017-02-14 Concepts Nrec, Llc Centrifugal turbomachines having extended performance ranges
CN102700031A (zh) * 2011-03-28 2012-10-03 三一电气有限责任公司 风力发电机叶片制作过程中的加热方法及制作用加热装置
DE112013005165T5 (de) * 2012-11-28 2015-08-13 Borgwarner Inc. Verdichterstufe eines Turboladers mit Strömungsverstärker
US11702945B2 (en) 2021-12-22 2023-07-18 Rolls-Royce North American Technologies Inc. Turbine engine fan case with tip injection air recirculation passage
US11946379B2 (en) 2021-12-22 2024-04-02 Rolls-Royce North American Technologies Inc. Turbine engine fan case with manifolded tip injection air recirculation passages
US11732612B2 (en) 2021-12-22 2023-08-22 Rolls-Royce North American Technologies Inc. Turbine engine fan track liner with tip injection air recirculation passage
CN114517794B (zh) * 2022-03-01 2024-07-09 大连海事大学 一种跨音速轴流压气机联合机匣处理结构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2079536A5 (fr) * 1970-02-04 1971-11-12 Snecma
US4117669A (en) * 1977-03-04 1978-10-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus and method for reducing thermal stress in a turbine rotor
CH646757A5 (de) * 1980-08-20 1984-12-14 Sulzer Ag Radialverdichter.
GB2245312B (en) * 1984-06-19 1992-03-25 Rolls Royce Plc Axial flow compressor surge margin improvement
CZ48394A3 (en) * 1993-03-04 1994-09-14 Abb Management Ag Radial-flow compressor with a flow-stabilizing casing
EP0774050B1 (fr) * 1994-06-14 1999-03-10 United Technologies Corporation Structure de stator a rainures circonferentielles interrompues
CA2169230A1 (fr) * 1995-02-13 1996-08-14 Lawrence Sirovich Methode et appareil pour le controle de la turbulence dans une couche limite et dans d'autres domaines relies a l'ecoulement de fluides le long d'une paroi
US6231301B1 (en) 1998-12-10 2001-05-15 United Technologies Corporation Casing treatment for a fluid compressor
AU2001221812A1 (en) * 2000-11-30 2002-06-11 Honeywell Garrett Sa Variable geometry turbocharger with sliding piston
GB2385378B (en) * 2002-02-14 2005-08-31 Rolls Royce Plc Engine casing
GB2408546B (en) * 2003-11-25 2006-02-22 Rolls Royce Plc A compressor having casing treatment slots
DE10355241A1 (de) 2003-11-26 2005-06-30 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit Fluidzufuhr
US7097414B2 (en) 2003-12-16 2006-08-29 Pratt & Whitney Rocketdyne, Inc. Inducer tip vortex suppressor
DE102007056953B4 (de) 2007-11-27 2015-10-22 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit Ringkanalwandausnehmung

Also Published As

Publication number Publication date
US8262351B2 (en) 2012-09-11
EP2090786A3 (fr) 2011-04-20
US20090208324A1 (en) 2009-08-20
DE102008009604A1 (de) 2009-08-20
EP2090786A2 (fr) 2009-08-19

Similar Documents

Publication Publication Date Title
EP2090786B1 (fr) Structuration de boîtier destinée à la stabilisation de l'écoulement dans une machine de traitement des écoulements
DE60201109T2 (de) Axial durchströmte Hydraulikmaschine
EP2138727B1 (fr) Bande de recouvrement d'aube dotée d'un passage
EP2108784B1 (fr) Turbomachine dotée d'un composant d'injecteur de fluide
EP0545953B1 (fr) Stabilisation des caracteristiques de fonctionnement dans des compresseurs centrifuges radiaux
EP1659293B1 (fr) Turbomachine
EP2582921B1 (fr) Turbomachine à réduction de bruit
DE602004006922T2 (de) Leitschaufelanordnung für ein Gasturbinentriebwerk
EP0990090B1 (fr) Pale de rotor d'un moteur a ecoulement axial
EP3408503B1 (fr) Turbomachine avec diffuseur à aubes
DE2262883A1 (de) Zentrifugalpumpe mit variablem diffusor
DE3127214A1 (de) "ueberschallverdichter"
EP2773854B1 (fr) Turbomachine
DE2853340A1 (de) Vorrichtung zum erzeugen eines vorwirbels am verdichtereingang eines turbinen-triebwerkes
EP1970542B1 (fr) Décalage d'aube en fonction d'étranglement dans des turbomachines
DE102015206384A1 (de) Deckbandanordnung einer Schaufelreihe von Stator- oder Rotorschaufeln
DE102012000889A1 (de) Fluggasturbine mit justierbarem Fan
DE102016217093A1 (de) Koppelbolzen sowie Turbine mit Koppelbolzen
EP0131719A2 (fr) Dispositif variable de guidage
EP0086466A1 (fr) Contrôle d'éntrée de la volute d'une turbine radiale
WO2019034740A1 (fr) Diffuseur pour compresseur radial
EP2292934A2 (fr) Compresseur axial doté d'un générateur d'impulsions d'écoulement
WO2014012725A1 (fr) Diffuseur parallèle pour une machine à fluide
DE102017114007A1 (de) Diffusor für einen Radialverdichter
DE10029807C1 (de) Abgasturbolader für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20111020

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160511

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHRAPP, HENNER

Inventor name: CLEMEN, CARSTEN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013202

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013202

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200129

Year of fee payment: 12

Ref country code: GB

Payment date: 20200127

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200127

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009013202

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210119

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803