EP2089456A1 - Method for the production of flameproofed fiber composite materials or prepregs - Google Patents

Method for the production of flameproofed fiber composite materials or prepregs

Info

Publication number
EP2089456A1
EP2089456A1 EP07822488A EP07822488A EP2089456A1 EP 2089456 A1 EP2089456 A1 EP 2089456A1 EP 07822488 A EP07822488 A EP 07822488A EP 07822488 A EP07822488 A EP 07822488A EP 2089456 A1 EP2089456 A1 EP 2089456A1
Authority
EP
European Patent Office
Prior art keywords
fiber
polymer
flame retardant
flame
flameproofing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07822488A
Other languages
German (de)
French (fr)
Inventor
Herbert Costard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flasin GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2089456A1 publication Critical patent/EP2089456A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/245Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using natural fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture

Definitions

  • the invention relates to an optimized process for improving the flame retardancy of fiber composites or prepregs, especially for the production of thermosets. But it is also applicable to the production of flame-retardant thermoplastics or mixtures of thermoplastics and thermosets.
  • fiber composites are formed from semifinished fiber products such as nonwovens, fabrics, loops or rovings including glass fibers, carbon fibers, synthetic fibers or natural fibers, such as cotton, flax or hemp. (Ut .: Flemming, Ziegmann, Roth, Faserverbundbau und, Berlin 1995) embedded in a polymeric matrix system.
  • Prepregs are formed from monomers intended for polymerization and fiber semi-finished products embedded therein, as well as other additives. They are semi-finished products that can be processed by machine. By using prepregs it is possible to achieve a consistent and high quality. By curing under high temperatures, short cycle times are possible.
  • polymeric matrix systems are mainly unsaturated polyester resins, epoxy resins and phenolic resins used, more recently, resin systems based on natural oil. Furthermore, multi-component materials (polymer blends) are used to adapt the technical and chemical properties of the corresponding application. All these materials are summarized below under the term polymer.
  • processing aids and for the change in properties additives can be mixed in the plastics, such as emulsifiers and catalysts.
  • thermosets but also in thermoplastics, other additives are often used. They serve as extenders for resin reduction, to improve the surface quality, to reduce the brittleness and to increase the rigidity and optionally to increase the flame resistance (Ref: Hellerich, Harsche, Haenle, Material Guide plastics, Kunststoff 2001).
  • the quantitative use of these additives is limited because in the entry of the polymer in the semifinished fiber product, a certain viscosity can not be exceeded, otherwise a uniform penetration of the fiber composite is not possible and thus the strength of the fiber composite would fall sharply.
  • the addition of such substances also limits the percentage of the polymer, whereby a decrease in the strength of the fiber composite occurs.
  • Flame retardants added as the polymer matrix or the monomer or molten thermoplastic intended for the polymerization and to increase the rigidity and, if appropriate, to increase the flame resistance (LJt: Hellerich, Harsche, Haenle, Material Guide Plastics, Kunststoff 2001).
  • the quantitative use of these additives is limited because in the entry of the polymer in the semifinished fiber product, a certain viscosity can not be exceeded, otherwise a uniform penetration of the fiber composite is not possible and thus the strength of the fiber composite would fall sharply.
  • the addition of such substances also limits the percentage of the polymer, whereby a decrease in the strength of the fiber composite occurs.
  • Flame retardants added to the polymer matrix or to the monomer or molten thermoplastic used for the polymerization are, for example, aluminum hydroxide Al (OH) 3 , halogen-splitting or phosphorus-containing products.
  • Al (OH) 3 aluminum hydroxide
  • halogen-splitting or phosphorus-containing products For environmental reasons, the halogen-containing products have been replaced by newer, more expensive, but less effective products.
  • Aluminum hydroxide releases water or steam when reacted by the action of heat; the phosphorus-containing products enter into nonflammable gases with the combustible substances. In the polymers registered flame retardants often adversely affect the physical properties of the plastics and often have a negative impact on the processing.
  • the flame retardant When using natural fibers in the composite material, additional requirements are imposed on flame retardancy, because the natural fibers are combustible substances, essentially cellulose. Thus, the flame retardant must be further designed, in particular to be extended to an appropriate treatment of the fibers. In contrast, the flame retardant in glass fiber composites only has the task to control or restrict the burning behavior of the plastic.
  • a percentage increase in the flame retardant in the polymer matrix is, as stated above, already in glass fiber composites one Limit set.
  • the penetration of the liquid polymer therefore requires a lower viscosity of the polymer in natural fiber applications compared to glass fiber semifinished products.
  • the glass fiber semi-finished products are smooth-drawn filaments which result in an open semi-finished fiber product.
  • the semi-finished natural fiber products are plant cells and bundles of plant cells, some of which are connected to each other at the middle lamellae and by OH groups. In this structure, the polymer must be able to penetrate, in order to achieve good fiber-matrix adhesion.
  • a flame-retardant composite material is to be specified, which avoids the disadvantages of the known fiber composites, which result from the increase in viscosity of the polymer by the flame retardant.
  • the object is achieved by a method according to
  • Claim 1 or a composite material according to claim 10.
  • the dependent claims 2-9 and 11 and 12 give advantageous Further education.
  • the object is achieved according to the invention by forming a flameproofing agent-containing cover layer in the region of at least one surface of the fiber composite material in the production of flame-retardant fiber composites containing polymer material embedded in the polymer.
  • the polymer used for embedding the fiber material or provided for the polymerization of monomer and / or the molten thermoplastic may also contain property-modifying additives.
  • Such additives can also develop a flame retardant effect.
  • the essential concentration of the flame retardant is in the topcoat.
  • NFK natural fiber composite materials
  • GRP glass fiber composite materials
  • the inventive method is thus particularly advantageous in the application to natural fiber composites, but can also be applied to all other fiber composites, such as glass fiber composites.
  • conventional fiber composites can also be equipped so that they correspond to increased flame protection conditions without a loss of strength of the fiber composite material is expected. That is, fiber composites, which currently can only meet the cost of their stability or not increased flame retardance requirements, can now be equipped with an additional, superficial flame retardant and thus be used even with increased flame retardance requirements.
  • the flame retardant concentration to be provided in the polymer used for embedding can be significantly reduced or a use of flame retardant material in the polymer used for embedding can be completely dispensed with (compare claim 5).
  • a lower viscosity of the polymer can be achieved than is possible with conventional methods with equally strong flameproofing equipment.
  • a better impregnation of the fibers and / or a better connection between polymer and fiber can be achieved. This makes it possible to produce fiber composite material with stronger flame retardant for the same stability or higher stability with the same fire protection equipment.
  • the flame retardant is largely on the surface of the fiber composite material and thus has a much more active in case of fire, in contrast to the method of complete entry of the flame retardant in the polymer, in which only a selective release of the flame retardant, for example Water or water vapor when using aluminum hydroxide, takes place, depending on the mass fraction of the flame retardant on the polymer.
  • the flame retardant for example Water or water vapor when using aluminum hydroxide
  • cover layer forming a fire protection layer, for example of aluminum hydroxide enclosed in polymer (compare claim 4), to apply further layers, such as, for example, coatings and / or foliations.
  • Cover layer is to be understood here as an underlying fiber composite material against fire protective layer, so a covering this layer.
  • Flame retardant according to claim 2 applied to the fiber composite material before the polymer used for embedding or the molten thermoplastic is completely cured.
  • the flame retardant can be bound to or in a region near the surface of the fiber composite material. It is particularly advantageous to roll in the flame retardant after application even before complete curing of the polymer used for embedding or of the molten thermoplastic or in prepregs in the pressing and polymerization in the tool in the composite and encase with the polymer.
  • the technical preparation of the prepregs is preferably carried out on the known prepreg or SMC systems with the addition of a spreading or coating device for aluminum hydroxide, for a
  • Aluminum hydroxide dispersion or for a polymer which is highly concentrated with aluminum hydroxide When nonwovens are used, especially in the case of thin nonwovens, a prior hydroentanglement of the nonwovens should be carried out in order to increase the breaking length and to improve the drapability of the nonwovens and thus of the prepregs.
  • the flame retardant according to claim 3 act as a curing agent.
  • the fiber material prior to embedding in polymer or molten thermoplastic or intended for polymerization monomer by soaking, spraying, Coating or other methods with flame retardant material can be combined with a flameproofing device according to claim 1, as intended in the context of this invention, but is not reliant on flame retardancy according to claim 1 and, taken in isolation, can constitute an independent (separate) invention.
  • the flame retardant can also be obtained alone or at least for the most part by equipping the fiber material with flame retardant material, for example, by impregnating, spraying, coating or the like of the fiber material.
  • a flame retardant fiber composite according to this separate invention may consist of flame retardant fiber material embedded in polymer, monomer intended for polymerization, and / or molten thermoplastic.
  • the polymer, the monomer intended for the polymerization and / or the molten thermoplastic can be equipped with additional flame retardant or be free from such.
  • the fiber composite material may further be provided with a flame retardant layer on its surface, but is not necessarily dependent on such depending on Flammtikan Kunststoff.
  • the amount of applied to the fibers or registered in this flame retardant can be varied so that depending on the type of polymer and application, only a small amount or no flame retardant must be mixed into the polymer used for embedding.
  • the applied to the fiber especially natural fiber
  • Flame retardant material according to the invention is particularly chosen so that it allows the subsequently registered polymer to penetrate through the flame retardant material up to or into the fiber to allow good fiber / matrix adhesion or by the applied to the fiber flame retardant no or no essential To cause waste of the total strength in the composite.
  • the outer layers with a high proportion of flame retardants, such as Al (OH) 3 , provided to achieve the desired flame retardancy, without affecting the overall strength significantly negative.
  • flame retardants such as Al (OH) 3
  • a flame-retardant fiber composite material or prepreg including embedded in polymer fiber material wherein the concentration of at least one flame retardant at least in the region of at least one surface is higher than average in the rest of the composite material or at least one surface increases.
  • a layer is arranged with an increased flame retardant concentration, which is higher than the rest of the fiber composite.
  • the increase in the flame retardant concentration can be designed to be fluid or sudden.
  • Flame retardant Frazier GP with an active ingredient concentration of 15%, Schill + Seilacher AG impregnated and then dried paper fleece 100% cotton linters with a basis weight of 180 g / m 2 and a thickness of 0.5 mm in phenolic resin (Bakelite PHL 2485, Hexion Specialty Chemicals GmbH).
  • the fiber mass fraction in the produced prepreg (honeycomb sandwich 3.7 mm with Nomex honeycomb 3.00 mm, EURO Composites) amounted to about 50 percent by weight.
  • the fire test gave the following values: Fire length 60 s vertical 120 mm
  • flame retardant Feravon GP with an active ingredient concentration of 15%, Schill + Seilacher AG
  • wet fleece made of 100% bleached flax with 15 mm fiber length and a basis weight of 180 g / m 2 and a thickness of 0.5mm embedded in phenolic resin (Bakelite PHL 2485, Hexion Specialty Chemicals GmbH).
  • Aluminum hydroxide was embedded in the polymer on the surfaces.
  • the fiber mass fraction in the produced prepreg honeycomb sandwich 3.7 mm with Nomex honeycomb 3.00 mm, EURO Composites
  • the fire test gave the following values:
  • Fiber composites were performed: glass fabric 7781, basis weight 296 g / m 2 , thickness 0.4 mm;
  • Fiber mass fraction in prepreg about 65% by weight
  • Aluminum hydroxide on prepreg surface Fire length 60 s vertical 101 mm Fire length 12 s vertical 15 mm Heat release peak 5 min 19 kW / m 2 Heat release 2 min 15 kW min / m 2 [0052 ] Glass fabric 7781, basis weight 296 g / m 2 , thickness 0.4 mm;
  • Fiber mass fraction in prepreg about 65% by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The invention relates to an optimized method for improving the flameproofing of fiber composite materials or prepregs, particularly for the production of thermosets. An upper limit already exists on the percentage increase in flameproofing agent for glass fiber composites. However, the application of natural fibers in the composite increases the demands placed on the flameproofing. Thus the problem addressed by this invention is to offer a new method for the flameproofing of natural fiber composites and composites with increased flameproofing, and for the flameproofing of conventional fiber composites, which avoids the disadvantages of known methods which are created by increasing the viscosity of the polymer with flameproofing agent. Furthermore, a flameproofed composite should be offered, which avoids the disadvantages of known fiber composites which are created by increasing the viscosity of the polymer with flameproofing agent. The problem is solved, in addition to a device according to the invention, in that during the production of flameproofed fiber composite materials containing fiber material embedded in polymer, a cover layer is constructed containing flameproofing agent in the area of at least one surface area of the fiber composite materials.

Description

Verfahren zur Herstellung flammgeschützter Faserverbundwerkstoffe oder Prepregs Process for the production of flame-retardant fiber composites or prepregs
Technisches GebietTechnical area
[0001] Die Erfindung bezieht sich auf ein optimiertes Verfahren zur Verbesserung des Flammschutzes von Faserverbundwerkstoffen oder Prepregs, besonders für die Herstellung von Duroplasten. Sie ist aber auch bei der Herstellung von flammgeschützten Thermoplasten beziehungsweise Mischungen aus Thermoplasten und Duroplasten anwendbar.The invention relates to an optimized process for improving the flame retardancy of fiber composites or prepregs, especially for the production of thermosets. But it is also applicable to the production of flame-retardant thermoplastics or mixtures of thermoplastics and thermosets.
Stand der TechnikState of the art
[0002] Diese Faserverbundwerkstoffe werden gebildet aus Faserhalbzeugen wie beispielsweise aus Vliesen, Geweben, Gelegen oder Rovings beinhaltend Glasfasern, Kohlefasern, Synthesefasern oder Naturfasern, wie beispielsweise Baumwolle, Flachs oder Hanf. (Ut.: Flemming, Ziegmann, Roth, Faserverbundbauweisen, Berlin 1995) eingebettet in ein polymeres Matrixsystem.These fiber composites are formed from semifinished fiber products such as nonwovens, fabrics, loops or rovings including glass fibers, carbon fibers, synthetic fibers or natural fibers, such as cotton, flax or hemp. (Ut .: Flemming, Ziegmann, Roth, Faserverbundbauweisen, Berlin 1995) embedded in a polymeric matrix system.
[0003] Prepregs werden gebildet aus zur Polymerisation vorgesehenen Monomeren und darin eingebetteten Faserhalbzeugen, sowie weiteren Zusatzstoffen. Sie sind Halbzeuge, die maschinell verarbeitbar werden können. Durch die Verwendung von Prepregs ist es möglich, eine gleichmäßige und hohe Qualität zu erzielen. Durch die Aushärtung unter hohen Temperaturen sind kurze Taktzeiten möglich.Prepregs are formed from monomers intended for polymerization and fiber semi-finished products embedded therein, as well as other additives. They are semi-finished products that can be processed by machine. By using prepregs it is possible to achieve a consistent and high quality. By curing under high temperatures, short cycle times are possible.
[0004] Als polymere Matrixsysteme werden vorwiegend ungesättigte Polyesterharze, Epoxidharze und Phenolharze eingesetzt, neuerdings auch Harzsysteme auf Naturölbasis. Weiterhin sind Mehrkomponentenwerkstoffe (Polymermischungen) in der Anwendung, um die technischen und chemischen Eigenschaften der entsprechenden Anwendung anzupassen. All diese Materialien seien im Folgenden unter dem Begriff Polymer zusammengefasst.As polymeric matrix systems are mainly unsaturated polyester resins, epoxy resins and phenolic resins used, more recently, resin systems based on natural oil. Furthermore, multi-component materials (polymer blends) are used to adapt the technical and chemical properties of the corresponding application. All these materials are summarized below under the term polymer.
[0005] Als Verarbeitungshilfen und zur Eigenschaftsveränderung können in die Kunststoffe Zusatzstoffe eingemischt werden, wie zum Beispiel Emulgatoren und Katalysatoren.As processing aids and for the change in properties additives can be mixed in the plastics, such as emulsifiers and catalysts.
[0006] Bei Duroplasten, aber auch bei Thermoplasten, werden häufig weitere Zusatzstoffe eingesetzt. Sie dienen als Streckmittel zur Harzeinsparung, zur Verbesserung der Oberflächengüte, zur Verminderung der Sprödigkeit und zur Erhöhung der Steifigkeit sowie gegebenenfalls zur Erhöhung der Flammbeständigkeit (Lit.: Hellerich, Harsche, Haenle, Werkstoff-Führer Kunststoffe, München 2001). Der mengenmäßige Einsatz dieser Zusatzstoffe ist begrenzt, weil bei dem Eintrag des Polymers in das Faserhalbzeug eine gewisse Viskosität nicht unterschritten werden kann, da sonst eine gleichmäßige Durchdringung des Faserverbundes nicht möglich ist und damit die Festigkeiten des Faserverbundwerkstoffes stark abfallen würden. Der Zusatz solcher Stoffe begrenzt zudem den prozentualen Anteil des Polymers, wodurch ein Absinken der Festigkeit des Faserverbundwerkstoffes erfolgt.In thermosets, but also in thermoplastics, other additives are often used. They serve as extenders for resin reduction, to improve the surface quality, to reduce the brittleness and to increase the rigidity and optionally to increase the flame resistance (Ref: Hellerich, Harsche, Haenle, Material Guide plastics, Munich 2001). The quantitative use of these additives is limited because in the entry of the polymer in the semifinished fiber product, a certain viscosity can not be exceeded, otherwise a uniform penetration of the fiber composite is not possible and thus the strength of the fiber composite would fall sharply. The addition of such substances also limits the percentage of the polymer, whereby a decrease in the strength of the fiber composite occurs.
[0007] Als der Polymermatrix beziehungsweise dem zur Polymerisation vorgesehenem Monomer oder aufgeschmolzenen Thermoplast beigemengte Flammschutzmittel und zur Erhöhung der Steifigkeit sowie gegebenenfalls zur Erhöhung der Flammbeständigkeit (LJt: Hellerich, Harsche, Haenle, Werkstoff-Führer Kunststoffe, München 2001). Der mengenmäßige Einsatz dieser Zusatzstoffe ist begrenzt, weil bei dem Eintrag des Polymers in das Faserhalbzeug eine gewisse Viskosität nicht unterschritten werden kann, da sonst eine gleichmäßige Durchdringung des Faserverbundes nicht möglich ist und damit die Festigkeiten des Faserverbundwerkstoffes stark abfallen würden. Der Zusatz solcher Stoffe begrenzt zudem den prozentualen Anteil des Polymers, wodurch ein Absinken der Festigkeit des Faserverbundwerkstoffes erfolgt.Flame retardants added as the polymer matrix or the monomer or molten thermoplastic intended for the polymerization and to increase the rigidity and, if appropriate, to increase the flame resistance (LJt: Hellerich, Harsche, Haenle, Material Guide Plastics, Munich 2001). The quantitative use of these additives is limited because in the entry of the polymer in the semifinished fiber product, a certain viscosity can not be exceeded, otherwise a uniform penetration of the fiber composite is not possible and thus the strength of the fiber composite would fall sharply. The addition of such substances also limits the percentage of the polymer, whereby a decrease in the strength of the fiber composite occurs.
[0007] Als der Polymermatrix beziehungsweise dem zur Polymerisation vorgesehenem Monomer oder aufgeschmolzenen Thermoplast beigemengte Flammschutzmittel kommen zum Beispiel Aluminiumhydroxyd AI(OH)3, halogenabspaltende oder phosphorhaltige Produkte zur Anwendung. Aus Umweltschutzgründen sind die halogenhaltigen Produkte durch neuere, teurere, allerdings weniger wirksame Produkte ersetzt worden. Aluminiumhydroxyd gibt bei Temperatureinwirkung durch Umsetzung Wasser beziehungsweise Wasserdampf ab, die phosphorhaltigen Produkte gehen mit den brennbaren Substanzen Verbindungen zu nicht brennbaren Gasen ein. In den Polymeren eingetragene Flammschutzmittel beeinflussen oft negativ die physikalischen Eigenschaften der Kunststoffe und wirken sich vielfach auch auf die Verarbeitung negativ aus.Flame retardants added to the polymer matrix or to the monomer or molten thermoplastic used for the polymerization are, for example, aluminum hydroxide Al (OH) 3 , halogen-splitting or phosphorus-containing products. For environmental reasons, the halogen-containing products have been replaced by newer, more expensive, but less effective products. Aluminum hydroxide releases water or steam when reacted by the action of heat; the phosphorus-containing products enter into nonflammable gases with the combustible substances. In the polymers registered flame retardants often adversely affect the physical properties of the plastics and often have a negative impact on the processing.
[0008] Beim Einsatz von Naturfasern im Verbundwerkstoff ergeben sich zusätzliche Anforderungen an den Flammschutz, weil es sich bei den Naturfasern um brennbare Substanzen, im Wesentlichen um Cellulose, handelt. Somit muss der Flammschutz weiter ausgelegt, insbesondere auf eine entsprechende Behandlung der Fasern ausgedehnt, werden. Im Gegensatz dazu hat das Flammschutzmittel bei Glasfaserverbundwerkstoffen nur die Aufgabe, das Brennverhalten des Kunststoffes zu steuern bzw. einzuschränken.When using natural fibers in the composite material, additional requirements are imposed on flame retardancy, because the natural fibers are combustible substances, essentially cellulose. Thus, the flame retardant must be further designed, in particular to be extended to an appropriate treatment of the fibers. In contrast, the flame retardant in glass fiber composites only has the task to control or restrict the burning behavior of the plastic.
[0009] Einer prozentualen Erhöhung der Flammschutzmittel in der Polymermatrix ist, wie oben dargelegt, bereits bei Glasfaserverbundwerkstoffen eine Grenze gesetzt.A percentage increase in the flame retardant in the polymer matrix is, as stated above, already in glass fiber composites one Limit set.
[0010] Bei gewichtsmäßig gleicher Masse haben Naturfasern auf Grund ihres geringeren spezifischen Gewichtes, bei ähnlichem Volumen eine höhere Faserdichte im Faserhalbzeug. Die Durchdringung mit dem flüssigen Polymer setzt bei Naturfaseranwendungen gegenüber Glasfaserhalbzeugen deshalb eine geringere Viskosität des Polymers voraus. Bei den Glasfaserhalbzeugen handelt es sich um glatt gezogene Filamente, die ein offenes Faserhalbzeug ergeben. Bei den Naturfaserhalbzeugen handelt es sich um Pflanzenzellen und Pflanzenzellenbündel, die zum Teil an den Mittellamellen und durch OH-Gruppen miteinander verbunden sind. In diese Struktur muss das Polymer eindringen können, um eine gute Faser-Matrix-Haftung zu erreichen. Dem Eintrag von Zusatzstoffen und damit auch von Flammschutzmitteln in das Polymer sind so insbesondere bei Naturfasern mit der konventionellen Methode des Eintrages von Flammschutzmitteln in das Polymer wegen des Viskositätsanstiegs enge Grenzen gesetzt. Deshalb ist diese Verfahrensweise für Flammschutzmaßnahmen mit einem erhöhten Flammschutzbedarf wie beispielsweise bei Naturfaserprepregs oder flammempfindlichen Polymeren nicht geeignet.In terms of weight equal mass natural fibers have due to their lower specific weight, with a similar volume, a higher fiber density in the semifinished fiber product. The penetration of the liquid polymer therefore requires a lower viscosity of the polymer in natural fiber applications compared to glass fiber semifinished products. The glass fiber semi-finished products are smooth-drawn filaments which result in an open semi-finished fiber product. The semi-finished natural fiber products are plant cells and bundles of plant cells, some of which are connected to each other at the middle lamellae and by OH groups. In this structure, the polymer must be able to penetrate, in order to achieve good fiber-matrix adhesion. The entry of additives and thus also of flame retardants in the polymer are so narrow limits especially in natural fibers with the conventional method of entry of flame retardants in the polymer because of the viscosity increase. Therefore, this procedure is not suitable for flame retardancy measures with an increased need for flame retardance, as for example with natural fiber prepregs or flame-sensitive polymers.
Darstellung der ErfindungPresentation of the invention
[0011] Somit ist es Aufgabe dieser Erfindung, ein neues Verfahren für denThus, it is an object of this invention, a new method for the
Flammschutz von Naturfaserverbundwerkstoffen und Verbundwerkstoffen mit erhöhten Flammschutzanforderungen, sowie für den Flammschutz von herkömmlichen Faserverbundwerksoffen anzugeben, welches die Nachteile der bekannten Verfahren, die durch die Viskositätserhöhung des Polymers durch Flammschutzmittel entstehen, vermeidet. Darüber hinaus soll ein flammgeschützter Verbundwerkstoff angegeben werden, der die Nachteile der bekannten Faserverbundstoffe, die durch die Viskositätserhöhung des Polymers durch das Flammschutzmittel entstehen, vermeidet.Flame protection of natural fiber composites and composite materials with increased flame retardant requirements, as well as for the flame retardancy of conventional Faserverbundwerksoffen specify, which avoids the disadvantages of the known methods, which result from the increase in viscosity of the polymer by flame retardants. In addition, a flame-retardant composite material is to be specified, which avoids the disadvantages of the known fiber composites, which result from the increase in viscosity of the polymer by the flame retardant.
[0012] Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren nachThe object is achieved by a method according to
Anspruch 1 beziehungsweise einen Verbundwerkstoff nach Anspruch 10. Die abhängigen Ansprüche 2 - 9 sowie 11 und 12 geben vorteilhafte Weiterbildungen an.Claim 1 or a composite material according to claim 10. The dependent claims 2-9 and 11 and 12 give advantageous Further education.
Die Aufgabe wird hinsichtlich des Verfahrens erfindungsgemäß gelöst, indem bei der Herstellung flammgeschützter Faserverbundwerkstoffe beinhaltend in Polymer eingebettetes Fasermaterial in dem Bereich wenigstens einer Oberfläche des Faserverbundwerkstoffs eine Flammschutzmittel enthaltende Deckschicht ausgebildet wird.With regard to the method, the object is achieved according to the invention by forming a flameproofing agent-containing cover layer in the region of at least one surface of the fiber composite material in the production of flame-retardant fiber composites containing polymer material embedded in the polymer.
[0013] Überraschend und entgegen der in Fachkreisen durchgängig vertretenen Ansicht, ein ausreichender Flammschutz könne nur bei weitestgehend vollständiger Durchsetzung des Faserverbundwerkstoffes mit Flammschutzmittel erzielt werden, ist es durch das erfindungsgemäße Verfahren möglich, einen auch erhöhten Flammschutzanforderungen entsprechenden Flammschutz durch Aufbringen einer den wesentlichen Flammschutz darstellenden Deckschicht zu erzielen. Eine solche Decksicht kann auch nachträglich aufgebracht werden.Surprisingly and contrary to the prevailing view in professional circles, sufficient flame retardancy can be achieved only with largely complete enforcement of the fiber composite material with flame retardants, it is possible by the inventive method, a flame retardant requirements also appropriate flame protection by applying a significant flame retardant To achieve cover layer. Such a cover can also be applied later.
[0014] Dabei kann das zum Einbetten des Fasermaterials verwendete Polymer beziehungsweise zur Polymerisation vorgesehene Monomer und/oder das aufgeschmolzene Thermoplast auch eigenschaftsverändernde Zusatzstoffe enthalten. Solche Zusatzstoffe können auch eine Flammschutzwirkung entfalten. Dabei ist allerdings zu beachten, dass die wesentliche Konzentration der Flammschutzmittel in der Deckschicht liegt.In this case, the polymer used for embedding the fiber material or provided for the polymerization of monomer and / or the molten thermoplastic may also contain property-modifying additives. Such additives can also develop a flame retardant effect. However, it should be noted that the essential concentration of the flame retardant is in the topcoat.
[0015] Der Unterschied von Naturfaserverbundwerksoffen (NFK) und beispielsweise Glasfaserverbundwerkstoffen (GFK) besteht in den grundsätzlich anderen Anhaftbedingungen des Polymers an die Fasern. Bei GFK findet eine Oberflächenhaftung, die beispielsweise durch die Verwendung von PVA als Polymer erreicht wird, statt, während bei NFK eine Haftung durch freie OH-Gruppen an und in der Zellstruktur die Anbindung an das Polymer ermöglicht. Deshalb ist eine „Tränkung" des Fasermaterials mit dem zur Einbettung verwendeten Polymer notwendig.The difference between natural fiber composite materials (NFK) and, for example, glass fiber composite materials (GRP) consists in the fundamentally different adhesion conditions of the polymer to the fibers. In the case of GRP, surface adhesion, which is achieved, for example, by the use of PVA as a polymer, takes place, whereas in NFK, adhesion by free OH groups to and in the cell structure makes it possible to attach to the polymer. Therefore, a "soaking" of the fiber material with the polymer used for embedding is necessary.
[0016] Daher wird insbesondere bei NFK vorteilhafterweise Polymer ohne oder mit nur geringerem Anteil der gesamt benötigten Flammschutzmittel und sonstigen Zusatzstoffen verwendet, um die Viskosität so einstellen zu können, dass die „Tränkung" der Fasern gewährleistet ist, das heißt eine gleichmäßige Benetzung der Fasern mit dem Polymer erfolgen kann.Therefore, especially in NFK advantageously polymer without or with only a smaller proportion of the total required flame retardants and other additives used to adjust the viscosity so that the "impregnation" of the fibers is guaranteed, that is one uniform wetting of the fibers can be done with the polymer.
[0017] Das erfindungsgemäße Verfahren ist somit besonders vorteilhaft bei der Anwendung auf Naturfaserverbundwerkstoffe, kann aber auch auf alle anderen Faserverbundwerkstoffe, beispielsweise für Glasfaserverbundwerkstoffe angewendet werden. Auf diese Weise lassen sich konventionelle Faserverbundwerkstoffe auch so ausrüsten, dass sie erhöhten Flammschutzbedingungen entsprechen, ohne dass mit einem Festigkeitsverlust des Faserverbundwerkstoffs zu rechnen ist. Das heißt, Faserverbundwerkstoffe, die momentan nur auf Kosten ihrer Stabilität oder gar nicht erhöhten Flammschutzanforderungen gerecht werden können, können nun mit einem zusätzlichen, oberflächlichen Flammschutz ausgerüstet und somit auch bei erhöhten Flammschutzanforderungen eingesetzt werden.The inventive method is thus particularly advantageous in the application to natural fiber composites, but can also be applied to all other fiber composites, such as glass fiber composites. In this way, conventional fiber composites can also be equipped so that they correspond to increased flame protection conditions without a loss of strength of the fiber composite material is expected. That is, fiber composites, which currently can only meet the cost of their stability or not increased flame retardance requirements, can now be equipped with an additional, superficial flame retardant and thus be used even with increased flame retardance requirements.
[0018] Durch die Verwendung eines erfindungsgemäßen Verfahrens, kann je nach Einsatzbedingungen die in dem zur Einbettung verwendeten Polymer vorzusehende Flammschutzmaterialkonzentration deutlich reduziert beziehungsweise auf einen Einsatz von Flammschutzmaterial im zur Einbettung verwendeten Polymer gänzlich verzichtet werden (vergleiche Anspruch 5). Dadurch kann eine geringere Viskosität des Polymers erzielt werden, als dies bei üblichen Verfahren bei gleich starker Flammschutzausrüstung möglich ist. So kann insbesondere bei Naturfasern eine bessere Durchtränkung der Fasern und/oder eine bessere Verbindung zwischen Polymer und Faser erreicht werden. Dies ermöglicht es, Faserverbundwerkstoff mit stärkerer Flammschutzausrüstung bei gleicher Stabilität beziehungsweise höherer Stabilität bei gleicher Feuerschutzausrüstung herzustellen.By using a method according to the invention, depending on the operating conditions, the flame retardant concentration to be provided in the polymer used for embedding can be significantly reduced or a use of flame retardant material in the polymer used for embedding can be completely dispensed with (compare claim 5). As a result, a lower viscosity of the polymer can be achieved than is possible with conventional methods with equally strong flameproofing equipment. Thus, in particular with natural fibers, a better impregnation of the fibers and / or a better connection between polymer and fiber can be achieved. This makes it possible to produce fiber composite material with stronger flame retardant for the same stability or higher stability with the same fire protection equipment.
[0019] Erfindungsgemäß befindet sich das Flammschutzmittel weitgehend an der Oberfläche des Faserverbundwerkstoffes und hat damit im Brandfall eine wesentlich aktivere Wirkung, im Gegensatz zu der Methode des kompletten Eintrags des Flammschutzmittels in das Polymer, bei dem nur eine punktuelle Freisetzung des flammhemmenden Mittels, zum Beispiel Wasser beziehungsweise Wasserdampf bei Einsatz von Aluminiumhydroxid, erfolgt, je nach Masseanteil des Flammschutzmittels am Polymer.According to the invention, the flame retardant is largely on the surface of the fiber composite material and thus has a much more active in case of fire, in contrast to the method of complete entry of the flame retardant in the polymer, in which only a selective release of the flame retardant, for example Water or water vapor when using aluminum hydroxide, takes place, depending on the mass fraction of the flame retardant on the polymer.
[0020] Es ist erfindungsgemäß auch möglich über der einen Feuerschutz bildenden Deckschicht, zum Beispiel aus Polymer umschlossenen Aluminiumhydroxid (vergleiche Anspruch 4) weitere Schichten, wie zum Beispiel Lackierungen und/oder Folierungen, aufzubringen. Mit Deckschicht soll hier eine den darunter liegenden Faserverbundwerkstoff gegen Feuer schützende Schicht, also eine diesen abdeckende Schicht verstanden werden.It is also possible according to the invention on the covering layer forming a fire protection layer, for example of aluminum hydroxide enclosed in polymer (compare claim 4), to apply further layers, such as, for example, coatings and / or foliations. Cover layer is to be understood here as an underlying fiber composite material against fire protective layer, so a covering this layer.
[0021] Besonders vorteilhaft ist es, die die Deckschicht bildendenIt is particularly advantageous that the covering layer forming
Flammschutzmittel gemäß Anspruch 2 auf den Faserverbundwerkstoff aufzubringen, bevor das zur Einbettung verwendete Polymer beziehungsweise das aufgeschmolzene Thermoplast vollständig ausgehärtet ist. Dadurch kann das Flammschutzmittel an beziehungsweise in einem Bereich nahe der Oberfläche des Faserverbundwerkstoffes gebunden werden. Besonders vorteilhaft ist es, das Flammschutzmittel nach dem Aufbringen noch vor dem vollständigen Aushärten des zum Einbetten verwendeten Polymers beziehungsweise des aufgeschmolzenen Thermoplast einzuwalzen beziehungsweise bei Prepregs bei der Pressung und Polymerisierung im Werkzeug in den Verbund einzupressen und mit dem Polymer zu ummanteln.Flame retardant according to claim 2 applied to the fiber composite material before the polymer used for embedding or the molten thermoplastic is completely cured. As a result, the flame retardant can be bound to or in a region near the surface of the fiber composite material. It is particularly advantageous to roll in the flame retardant after application even before complete curing of the polymer used for embedding or of the molten thermoplastic or in prepregs in the pressing and polymerization in the tool in the composite and encase with the polymer.
[0022] Die technische Herstellung der Prepregs erfolgt vorzugsweise auf den bekannten Prepreg- oder SMC-Anlagen unter Zusatz einer Streu- oder Streicheinrichtung für Aluminiumhydroxyd, für eineThe technical preparation of the prepregs is preferably carried out on the known prepreg or SMC systems with the addition of a spreading or coating device for aluminum hydroxide, for a
Aluminiumhydroxyddispersion oder für ein Polymer, das hochprozentig mit Aluminiumhydroxyd versehen ist. Bei Verwendung von Vliesen, besonders bei Dünnvliesen, sollte eine vorherige Wasserstrahlverfestigung der Vliese zur Erhöhung der Reißlänge und zur Verbesserung der Drapierfähigkeit der Vliese und damit der Prepregs durchgeführt werden.Aluminum hydroxide dispersion or for a polymer which is highly concentrated with aluminum hydroxide. When nonwovens are used, especially in the case of thin nonwovens, a prior hydroentanglement of the nonwovens should be carried out in order to increase the breaking length and to improve the drapability of the nonwovens and thus of the prepregs.
[0023] Vorteilhaft kann das Flammschutzmittel gemäß Anspruch 3 als Härtungsmittel wirken.Advantageously, the flame retardant according to claim 3 act as a curing agent.
[0024] Gemäß Unteranspruch 6 kann das Fasermaterial vor dem Einbetten in Polymer beziehungsweise aufgeschmolzenes Thermoplast oder in zur Polymerisation gedachtem Monomer durch Tränken, Sprühen, Beschichten oder anderen Methoden mit Flammschutzmaterial versehen werden. Dieses Vorgehen kann wie im Rahmen dieser Erfindung vorgesehen mit einer Flammschutzausrüstung nach Anspruch 1 kombiniert werden, ist aber auf einen Flammschutz nach Anspruch 1 nicht angewiesen und kann für sich genommen eine eigenständige (separate) Erfindung darstellen. Demnach kann der Flammschutz auch alleine oder wenigstens zum überwiegenden Teil durch Ausrüsten des Fasermaterials mit Flammschutzmaterial beispielsweise durch Tränken, Sprühen, Beschichten oder dergleichen des Fasermaterials erzielt werden. Somit kann ein nach dieser separaten Erfindung flammgeschützter Faserverbundwerksstoff aus mit Flammschutzmittel ausgerüstetem Fasermaterial bestehen, das in Polymer, zur Polymerisation vorgesehenes Monomer und/oder aufgeschmolzenes Thermoplast eingebettet ist. Dabei können das Polymer, das zur Polymerisation vorgesehene Monomer und/oder das aufgeschmolzene Thermoplast mit zusätzlichem Flammschutzmittel ausgerüstet oder von solchem frei sein. Der Faserverbundwerkstoff kann des Weiteren mit einer Flammschutzmittelschicht an seiner Oberfläche versehen sein, ist auf eine solche je nach Flammschutzanforderung aber nicht unbedingt angewiesen.According to dependent claim 6, the fiber material prior to embedding in polymer or molten thermoplastic or intended for polymerization monomer by soaking, spraying, Coating or other methods with flame retardant material. This procedure can be combined with a flameproofing device according to claim 1, as intended in the context of this invention, but is not reliant on flame retardancy according to claim 1 and, taken in isolation, can constitute an independent (separate) invention. Accordingly, the flame retardant can also be obtained alone or at least for the most part by equipping the fiber material with flame retardant material, for example, by impregnating, spraying, coating or the like of the fiber material. Thus, a flame retardant fiber composite according to this separate invention may consist of flame retardant fiber material embedded in polymer, monomer intended for polymerization, and / or molten thermoplastic. In this case, the polymer, the monomer intended for the polymerization and / or the molten thermoplastic can be equipped with additional flame retardant or be free from such. The fiber composite material may further be provided with a flame retardant layer on its surface, but is not necessarily dependent on such depending on Flammschutzanforderung.
[0025] Die Menge des auf die Fasern aufgetragenen oder in diese eingetragenen Flammschutzmaterials kann so variiert werden, dass je nach Polymerart und Anwendungsfall nur eine geringe Menge oder kein Flammschutzmittel in das zur Einbettung verwendete Polymer eingemischt werden muss.The amount of applied to the fibers or registered in this flame retardant can be varied so that depending on the type of polymer and application, only a small amount or no flame retardant must be mixed into the polymer used for embedding.
[0026] Das auf die Faser (insbesondere Naturfaser) aufgetrageneThe applied to the fiber (especially natural fiber)
Flammschutzmaterial ist erfindungsgemäß insbesondere so gewählt, dass es dem nachfolgend eingetragenen Polymer ermöglicht, durch das Flammschutzmaterial hindurch bis auf beziehungsweise in die Faser durchzudringen, um eine gute Faser/Matrix-Haftung zu ermöglichen beziehungsweise um durch das auf die Faser aufgebrachte Flammschutzmaterial keinen oder keinen wesentlichen Abfall der Gesamtfestigkeit im Verbund zu verursachen.Flame retardant material according to the invention is particularly chosen so that it allows the subsequently registered polymer to penetrate through the flame retardant material up to or into the fiber to allow good fiber / matrix adhesion or by the applied to the fiber flame retardant no or no essential To cause waste of the total strength in the composite.
[0027] Beim Tränken werden die Fasern mit einem flüssig aufgetragenen Flammschutzmaterial, beispielsweise mit einer wässrigen Phosphordispersion gemäß Unteranspruch 8, ausgerüstet und vor dem Eintrag des Polymers getrocknet.When soaking the fibers are applied with a liquid Flame retardant, for example, with an aqueous phosphorus dispersion according to dependent claim 8, equipped and dried before the entry of the polymer.
[0028] Bei mehrlagigen, beispielsweise 10-lagigen Faserverbundwerkstoffen, werden erfindungsgemäß die äußeren Lagen mit einem hohen Anteil an Flammschutzmittel, beispielsweise AI(OH)3, versehen, um den gewünschten Flammschutzeffekt zu erreichen, ohne die Gesamtfestigkeit wesentlich negativ zu beeinflussen. Diese äußeren Lagen können dann sowohl mit oder ohne Fasern hergestellt werden.In multilayer, for example, 10-layer fiber composites, according to the invention, the outer layers with a high proportion of flame retardants, such as Al (OH) 3 , provided to achieve the desired flame retardancy, without affecting the overall strength significantly negative. These outer layers can then be made both with or without fibers.
[0029] Die Aufgabe wird nach Anspruch 10 ebenfalls gelöst durch einen flammgeschützten Faserverbundwerkstoff oder Prepreg, beinhaltend in Polymer eingebettetes Fasermaterial wobei die Konzentration mindestens eines Flammschutzmittels mindestes in dem Bereich wenigstens einer Oberfläche höher ist als durchschnittlich im Rest des Verbundwerkstoffes beziehungsweise zu wenigstens einer Oberfläche hin ansteigt. Insbesondere ist im Bereich einer Oberfläche, also auf der Oberfläche und/oder oberflächlich in den Faserverbundwerkstoff eingearbeitet eine Schicht mit gegenüber dem Rest des Faserverbundstoffs erhöhter Flammschutzmittelkonzentration angeordnet. Der Anstieg der Flammschutzmittelkonzentration kann fließend oder sprungartig ausgestaltet sein.The object is also achieved according to claim 10 by a flame-retardant fiber composite material or prepreg, including embedded in polymer fiber material wherein the concentration of at least one flame retardant at least in the region of at least one surface is higher than average in the rest of the composite material or at least one surface increases. In particular, in the region of a surface, that is to say on the surface and / or superficially incorporated into the fiber composite material, a layer is arranged with an increased flame retardant concentration, which is higher than the rest of the fiber composite. The increase in the flame retardant concentration can be designed to be fluid or sudden.
Weg(e) zur Ausführung der ErfindungWay (s) for carrying out the invention
[0030] Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung nicht beschränkender Ausführungsbeispiele.Further advantages and features of the invention will become apparent from the following description of non-limiting embodiments.
[0031] Als Vergleichsbasis wurde mit in wässriger Lösung vorliegendemAs a comparative basis was present in aqueous solution
Flammschutzmaterial (Flacavon GP mit einer Wirkstoffkonzentration von 15%, Schill + Seilacher AG) getränktes und anschließend getrocknetes Papiervlies aus 100% Baumwolllinters mit einem Flächengewicht von 180 g/m2 und einer Stärke von 0,5 mm in Phenolharz (Bakelite PHL 2485, Hexion Speciality Chemicals GmbH) eingebettet. Der Fasermasseanteil im erzeugten Prepreg (Waben-Sandwich 3,7 mm mit Nomex-Wabe 3,00 mm, EURO Composites) belief sich auf etwa 50 Gewichtsprozent. Der Brandtest ergab folgende Werte: [0032] Brandlänge 60 s vertikal 120 mmFlame retardant (Flacavon GP with an active ingredient concentration of 15%, Schill + Seilacher AG) impregnated and then dried paper fleece 100% cotton linters with a basis weight of 180 g / m 2 and a thickness of 0.5 mm in phenolic resin (Bakelite PHL 2485, Hexion Specialty Chemicals GmbH). The fiber mass fraction in the produced prepreg (honeycomb sandwich 3.7 mm with Nomex honeycomb 3.00 mm, EURO Composites) amounted to about 50 percent by weight. The fire test gave the following values: Fire length 60 s vertical 120 mm
[0033] Brandlänge 12 s vertikal 22 mmBrand length 12 s vertical 22 mm
[0034] heat release peak 5 min 78 kW/m2 Heat release peak 5 min 78 kW / m 2
[0035] heat release 2 min 77 kW min/m2 Heat release 2 min 77 kW min / m 2
[0036] Bei einer ansonsten identischen Prepreg Zubereitung wurde auf die Oberfläche des mit Polymer getränkten Papiervlieses durch Streuen Aluminiumhydroxid aufgetragen. Es haftete lose an der Oberfläche des unausgehärteten Polymers. Durch folgendes Einwalzen des Aluminiumhydroxyds in die Oberfläche erfolgte eine Ummantelung des Flammschutzmittels mit dem Polymer und dessen Verfestigung in der Oberfläche des Prepregs. Diese Vorgehensweise hatte keinen Festigkeitsverlust zur Folge. Je nach Auftragsmenge befanden sich 10 bis 80% Aluminiumhydroxyd eingebunden in das Polymer an der Oberfläche des Verbundes. Bezogen auf die Gesamtmasse entspricht das einem Anteil von Aluminiumhydroyd von etwa 1 bis 20 Gewichtsprozent. Der Brandtest ergab folgende Werte:In an otherwise identical prepreg preparation was applied to the surface of the polymer-impregnated paper web by scattering aluminum hydroxide. It loosely adhered to the surface of the uncured polymer. By subsequently rolling the aluminum hydroxide into the surface, the flame retardant was coated with the polymer and solidified in the surface of the prepreg. This procedure did not result in a loss of strength. Depending on the amount applied, 10 to 80% of aluminum hydroxide was incorporated into the polymer on the surface of the composite. Based on the total mass that corresponds to a proportion of aluminum hydroxide of about 1 to 20 weight percent. The fire test gave the following values:
[0037] Brandlänge 60 s vertikal 110 mmFire length 60 s vertically 110 mm
[0038] Brandlänge 12 s vertikal 13 mmFire length 12 s vertical 13 mm
[0039] heat release peak 5 min 46 kW/m2 Heat release peak 5 min 46 kW / m 2
[0040] heat release 2 min 61 kW min/m2 Heat release 2 min 61 kW min / m 2
[0041] Alternativ wurde beispielsweise mit Flammschutzmaterial (Flacavon GP mit einer Wirkstoffkonzentration von 15%, Schill + Seilacher AG) versehener Nassvlies aus 100% gebleichtem Flachs mit 15 mm Faserlänge und einem Flächengewicht von 180 g/m2 und einer Dicke von 0,5mm in Phenolharz (Bakelite PHL 2485, Hexion Speciality Chemicals GmbH) eingebettet. An den Oberflächen wurde Aluminiumhydroxyd in das Polymer eingebettet. Der Fasermasseanteil im erzeugten Prepreg (Waben-Sandwich 3,7 mm mit Nomex-Wabe 3,00 mm, EURO Composites) belief sich auf etwa 50 Gewichtsprozent. Der Brandtest ergab folgende Werte:Alternatively, for example, with flame retardant (Flacavon GP with an active ingredient concentration of 15%, Schill + Seilacher AG) provided wet fleece made of 100% bleached flax with 15 mm fiber length and a basis weight of 180 g / m 2 and a thickness of 0.5mm embedded in phenolic resin (Bakelite PHL 2485, Hexion Specialty Chemicals GmbH). Aluminum hydroxide was embedded in the polymer on the surfaces. The fiber mass fraction in the produced prepreg (honeycomb sandwich 3.7 mm with Nomex honeycomb 3.00 mm, EURO Composites) amounted to about 50 percent by weight. The fire test gave the following values:
[0042] Brandlänge 60 s vertikal 112 mmFire length 60 s vertical 112 mm
[0043] Brandlänge 12 s vertikal 14 mmFire length 12 s vertical 14 mm
[0044] heat release peak 5 min 47 kW/m2 [0045] heat release 2 min 60 kW min/m2 Heat release peak 5 min 47 kW / m 2 Heat release 2 min 60 kW min / m 2
[0046] Weitere Tests wurden mit wie folgt abgewandeltenFurther tests were modified as follows
Faserverbundwerkstoffen durchgeführt: [0047] Glasgewebe 7781 , Flächengewicht 296 g/m2, Dicke 0,4 mm;Fiber composites were performed: glass fabric 7781, basis weight 296 g / m 2 , thickness 0.4 mm;
Fasermasseanteil im Prepreg etwa 65 Gewichtsprozent; keinFiber mass fraction in prepreg about 65% by weight; no
Aluminiumhydroxyd auf Prepregoberfläche: [0048] Brandlänge 60 s vertikal 101 mm [0049] Brandlänge 12 s vertikal 15 mm [0050] heat release peak 5 min 19 kW/m2 [0051] heat release 2 min 15 kW min/m2 [0052] Glasgewebe 7781 , Flächengewicht 296 g/m2, Dicke 0,4 mm;Aluminum hydroxide on prepreg surface: Fire length 60 s vertical 101 mm Fire length 12 s vertical 15 mm Heat release peak 5 min 19 kW / m 2 Heat release 2 min 15 kW min / m 2 [0052 ] Glass fabric 7781, basis weight 296 g / m 2 , thickness 0.4 mm;
Fasermasseanteil im Prepreg etwa 65 Gewichtsprozent; mitFiber mass fraction in prepreg about 65% by weight; With
Aluminiumhydroxyd auf Prepregoberfläche (s.o.): [0053] Brandlänge 60 s vertikal 90 mm [0054] Brandlänge 12 s vertikal 11 mm [0055] heat release peak 5 min 16 kW/m2 [0056] heat release 2 min 12 kW min/m2 Aluminum hydroxide on prepreg surface (see above): Fire length 60 s vertical 90 mm Fire length 12 s vertical 11 mm heat release peak 5 min 16 kW / m 2 heat release 2 min 12 kW min / m 2

Claims

Ansprüche claims
1. Verfahren zur Herstellung flammgeschützter Faserverbundwerkstoffe oder Prepregs, beinhaltend in Polymer beziehungsweise in nicht polymerisiertes Monomer eingebettetes Fasermaterial, dadurch gekennzeichnet, dass in dem Bereich wenigstens einer Oberfläche des Faserverbundwerkstoffs eine wenigstens ein Flammschutzmittel enthaltende Deckschicht ausgebildet wird.1. A process for the preparation of flame-retardant fiber composites or prepregs, comprising in polymer or in unpolymerized monomer embedded fiber material, characterized in that in the region of at least one surface of the fiber composite material at least one flame retardant-containing top layer is formed.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das in dem Bereich der wenigstens einen Oberfläche aufgetragene Flammschutzmittel aufgetragen wird, bevor das mindestens eine Polymer vollständig ausgehärtet ist beziehungsweise bevor das Monomer polymerisiert wird.2. The method according to claim 1, characterized in that the applied in the region of the at least one surface flame retardant is applied before the at least one polymer is completely cured or before the monomer is polymerized.
3. Verfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass das in dem Bereich der wenigstens einen Oberfläche aufgetragene Flammschutzmittel gleichzeitig als Härtungsmittel wirkt.3. The method according to any one of the above claims, characterized in that the applied in the region of at least one surface flame retardant acts simultaneously as a curing agent.
4. Verfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass als Flammschutzmittel Aluminiumhydroxyd verwendet wird.4. The method according to any one of the above claims, characterized in that is used as the flame retardant aluminum hydroxide.
5. Verfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass dem zu Polymerisation verwendeten Monomer beziehungsweise dem mindestens einen Polymer vor dem Zusammenbringen mit den Fasern keine Flammschutzmittel beigemischt werden.5. The method according to any one of the above claims, characterized in that the monomer used for the polymerization or the at least one polymer before being brought into contact with the fibers, no flame retardants are added.
6. Verfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass das Fasermaterial vor dem Einbringen in das zur Polymerisation verwendete Monomer beziehungsweise in das mindestens eine Polymer durch Tränken, Sprühen, Beschichten oder anderen Methoden mit Flammschutzmaterial versehen wird.6. The method according to any one of the above claims, characterized in that the fiber material is provided prior to introduction into the monomer used for the polymerization or in the at least one polymer by soaking, spraying, coating or other methods with flame retardant.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass eine wässrige oder alkoholische Lösung oder eine organische Lösungsmittellösung oder Dispersion eines Flammschutzmaterials verwendet wird.7. The method according to claim 6, characterized in that an aqueous or alcoholic solution or an organic solvent solution or dispersion of a flame retardant material is used.
8. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass ein Flammschutzmaterial auf der Basis von Phosphor verwendet wird.8. The method according to any one of claims 6 or 7, characterized in that a flame retardant material based on phosphorus is used.
9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass ein für Textilien geeignetes Flammschutzmaterial verwendet wird.9. The method according to claim 6, characterized in that a suitable for textiles flame retardant material is used.
10. Flammgeschützter Faserverbundwerkstoff oder Prepreg, beinhaltend in Polymer beziehungsweise in nicht polymerisiertes Monomer eingebettetes Fasermaterial, dadurch gekennzeichnet, dass die Konzentration mindestens eines Flammschutzmittels mindestes in dem Bereich wenigstens einer Oberfläche höher ist als durchschnittlich im Rest des Verbundwerkstoffes beziehungsweise zu wenigstens einer Oberfläche hin ansteigt.10. Flame-retardant fiber composite material or prepreg, embedded in polymer or embedded in unpolymerized monomer Fiber material, characterized in that the concentration of at least one flame retardant at least in the region of at least one surface is higher than average increases in the rest of the composite material or to at least one surface.
11. Flammgeschützter Faserverbundwerkstoff oder Prepreg, nach Anspruch 10, dadurch gekennzeichnet, dass der Faserverbundwerkstoff an wenigstens einer Oberfläche eine Deckschicht mit deutlich höherer Flammschutzmittelkonzentration, als die durchschnittliche Flammschutzmittelkonzentration des Restes des Verbundwerkstoffes aufweist.11. flame-retardant fiber composite material or prepreg, according to claim 10, characterized in that the fiber composite material on at least one surface having a cover layer with a significantly higher flame retardant than the average flame retardant concentration of the rest of the composite material.
12. Flammschutzgeschützter Faserverbundwerkstoff oder Prepreg, nach Anspruch 11 , dadurch gekennzeichnet, dass die wenigstens eine Deckschicht in Polymer eingebettetes Aluminiumhydroxid beinhaltet. 12. Flame-retardant fiber composite material or prepreg, according to claim 11, characterized in that the at least one cover layer includes embedded in polymer aluminum hydroxide.
EP07822488A 2006-11-15 2007-11-12 Method for the production of flameproofed fiber composite materials or prepregs Withdrawn EP2089456A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006054123 2006-11-15
DE102007016698A DE102007016698A1 (en) 2006-11-15 2007-04-04 Process for the production of flame-retardant fiber composites or prepregs, as well as flame-retardant fiber-reinforced materials and prepregs
PCT/EP2007/062200 WO2008058924A1 (en) 2006-11-15 2007-11-12 Method for the production of flameproofed fiber composite materials or prepregs

Publications (1)

Publication Number Publication Date
EP2089456A1 true EP2089456A1 (en) 2009-08-19

Family

ID=38983335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07822488A Withdrawn EP2089456A1 (en) 2006-11-15 2007-11-12 Method for the production of flameproofed fiber composite materials or prepregs

Country Status (6)

Country Link
US (1) US20100324192A1 (en)
EP (1) EP2089456A1 (en)
BR (1) BRPI0717377A2 (en)
CA (1) CA2667407A1 (en)
DE (1) DE102007016698A1 (en)
WO (1) WO2008058924A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084023A1 (en) 2011-12-05 2013-06-13 Csir A flame-proofed artefact and a method of manufacture thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008039866A1 (en) * 2008-08-27 2010-03-04 Saertex Gmbh & Co. Kg Textile reinforcement equipped with at least one flame retardant, e.g. expanded graphite, phosphorus-nitrogen compound or carbon donor, useful for manufacturing fiber-reinforced plastic component by resin-infusion or -injection
WO2015052114A1 (en) 2013-10-08 2015-04-16 Bayer Materialscience Ag Fiber composite material, use therefor, and method for the production thereof
DE102013114829A1 (en) * 2013-12-23 2015-06-25 KTM Technologies GmbH Fiber-reinforced thermoset component with functional layer for connection to a thermoplastic component
EP2894136B1 (en) 2014-01-08 2019-12-04 The Boeing Company Improved method of making fire resistant sustainable aircraft interior panels
BE1028055B1 (en) 2020-02-13 2021-09-13 Basaltex Nv PROCEDURE FOR PRODUCING A FIRE AND HEAT RESISTANT PRE-IMPREGNATED FIBER MATERIAL

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912392A (en) * 1956-06-27 1959-11-10 Dow Chemical Co Intumescent coating composition and articles coated therewith
US3816226A (en) * 1972-03-31 1974-06-11 Avco Corp Fire protection material
EP0312842A2 (en) * 1987-10-13 1989-04-26 BASF Aktiengesellschaft Filled moulding composition
US20060178064A1 (en) * 2001-11-07 2006-08-10 Balthes Garry E Fire retardant panel composition and methods of making the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3013903A (en) * 1959-04-13 1961-12-19 Du Pont Fibrous substrate with an alumina bonded organic polymer coating
DE2005589A1 (en) * 1970-02-07 1971-08-12 Reichhold Albert Chemie Ag, 2000 Hamburg Process for the production of flame-retardant textiles
US4961971A (en) * 1988-12-19 1990-10-09 United Technologies Corporation Method of making oxidatively stable water soluble amorphous hydrated metal oxide sized fibers
EP0387468A3 (en) * 1988-12-19 1991-06-05 United Technologies Corporation Stable amorphous hydrated metal oxide sizing for fibres in composites
US4935265A (en) * 1988-12-19 1990-06-19 United Technologies Corporation Method for coating fibers with an amorphous hydrated metal oxide
US5955184A (en) * 1995-09-29 1999-09-21 Toshiba Chemical Corporation Halogen-free flame-retardant epoxy resin composition as well as prepreg and laminate containing the same
GB9709166D0 (en) * 1997-05-06 1997-06-25 Cytec Ind Inc Preforms for moulding process and resins therefor
FR2851566B1 (en) * 2003-02-26 2007-05-11 Hexcel Fabrics FIBROUS REINFORCEMENT AS A FLAME RETARDANT, METHOD OF MANUFACTURE AND USE THEREOF

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912392A (en) * 1956-06-27 1959-11-10 Dow Chemical Co Intumescent coating composition and articles coated therewith
US3816226A (en) * 1972-03-31 1974-06-11 Avco Corp Fire protection material
EP0312842A2 (en) * 1987-10-13 1989-04-26 BASF Aktiengesellschaft Filled moulding composition
US20060178064A1 (en) * 2001-11-07 2006-08-10 Balthes Garry E Fire retardant panel composition and methods of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008058924A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084023A1 (en) 2011-12-05 2013-06-13 Csir A flame-proofed artefact and a method of manufacture thereof
US9796167B2 (en) 2011-12-05 2017-10-24 Csir Flame-proofed artefact and a method of manufacture thereof

Also Published As

Publication number Publication date
WO2008058924A1 (en) 2008-05-22
BRPI0717377A2 (en) 2013-10-29
DE102007016698A1 (en) 2008-05-29
CA2667407A1 (en) 2008-05-22
US20100324192A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
EP1492666B1 (en) Composite material, method for the production and use thereof
EP2089456A1 (en) Method for the production of flameproofed fiber composite materials or prepregs
DE102011008909A1 (en) Laminated composite, useful in automotive and engineering applications, comprises stacked prepregs including matrix material and reinforcing fibers, and fibrous veil laminated to the interfaces, where the veil has graphite nano-platelets
EP2909256B1 (en) Composite comprising renewable raw material and a method to produce said composite
DE112018002295T5 (en) Composite body containing fiber-reinforced resin, fiber-reinforced composite resin material and process for their production
DE1645227A1 (en) Process for the production of rubber-elastic block copolymers, in particular those based on acrylic resin
DE19647671A1 (en) Fibre reinforced composite material useful for production of press moulded structural elements
DE10228649A1 (en) Process for the production of a fiber-reinforced product based on epoxy resin
WO2007071387A2 (en) Plant fibre, fibre-based moulded body, and method for producing plant fibres provided with novolak
DE10151411A1 (en) Laminate with improved properties
DE19842661A1 (en) Use of polymer powder for the production of bulletproof fiber materials
DE102011122560A1 (en) Textile reinforced molded body, a process for its preparation and its use
DE69611587T2 (en) Shaped ballistic object and manufacturing method therefor
DE102008057058B4 (en) A process for the production of a nonwoven fabric with low density and increased stability, nonwoven produced by this process and uses of the nonwoven fabric
DE102020104993A1 (en) Semi-finished product for an abrasive, abrasive and process for producing the same
Varma et al. Coir fibers. 3. Effect of resin treatment on properties of fibers and composites
DE2225611A1 (en) Fiberglass reinforcement, as well as processes for their manufacture
DE202005003045U1 (en) Processing aid for the resin injection process
EP1304348B1 (en) Molded article comprising fibres and method for manufacturing same
DE10237694A1 (en) To shape fiber mats, as cladding for automobile interiors, layers of mats together with a polymer film are shaped with heat in a press so that the film melts and impregnates the mat layers
DE202024104995U1 (en) Fiber-based support structure for the production of fiber composite materials
AT232718B (en) Process for the production of a cover layer for glass fiber reinforced plastic
DE102015003778A1 (en) Process for producing prepregs from fibers and thermoplastic
DE1494887C (en) Aqueous impregnation dispersion for glass fibers to be embedded in elastomeric materials and process for the impregnation of glass fiber bundles
DE102022004558A1 (en) Underlayment with at least one fleece layer made of bicomponent fibres

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090821

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FLASIN GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: COSTARD, HERBERT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130117