EP2089229B1 - Tintenstrahldüsenanordnung mit thermisch biegendem betätigungselement mit einem einen wesentlichen teil des düsenkammerdachs definierenden aktiven träger - Google Patents
Tintenstrahldüsenanordnung mit thermisch biegendem betätigungselement mit einem einen wesentlichen teil des düsenkammerdachs definierenden aktiven träger Download PDFInfo
- Publication number
- EP2089229B1 EP2089229B1 EP06827989A EP06827989A EP2089229B1 EP 2089229 B1 EP2089229 B1 EP 2089229B1 EP 06827989 A EP06827989 A EP 06827989A EP 06827989 A EP06827989 A EP 06827989A EP 2089229 B1 EP2089229 B1 EP 2089229B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzle assembly
- roof
- actuator
- inkjet
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- 235000012239 silicon dioxide Nutrition 0.000 claims description 10
- 229910000838 Al alloy Inorganic materials 0.000 claims description 9
- 230000000712 assembly Effects 0.000 claims description 9
- 238000000429 assembly Methods 0.000 claims description 9
- 239000011148 porous material Substances 0.000 claims description 9
- 238000005452 bending Methods 0.000 claims description 7
- 229910021426 porous silicon Inorganic materials 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 3
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 description 17
- 230000008901 benefit Effects 0.000 description 11
- 238000013461 design Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 6
- 239000004411 aluminium Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910000756 V alloy Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- 230000006872 improvement Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000005499 meniscus Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 235000021251 pulses Nutrition 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- PTXMVOUNAHFTFC-UHFFFAOYSA-N alumane;vanadium Chemical compound [AlH3].[V] PTXMVOUNAHFTFC-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003534 oscillatory effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910016006 MoSi Inorganic materials 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HIMLGVIQSDVUJQ-UHFFFAOYSA-N aluminum vanadium Chemical compound [Al].[V] HIMLGVIQSDVUJQ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical group [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/14—Structure thereof only for on-demand ink jet heads
- B41J2/14427—Structure of ink jet print heads with thermal bend detached actuators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/05—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers produced by the application of heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/14—Structure thereof only for on-demand ink jet heads
- B41J2/14427—Structure of ink jet print heads with thermal bend detached actuators
- B41J2002/14435—Moving nozzle made of thermal bend detached actuator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2202/00—Embodiments of or processes related to ink-jet or thermal heads
- B41J2202/01—Embodiments of or processes related to ink-jet heads
- B41J2202/15—Moving nozzle or nozzle plate
Definitions
- This invention relates to thermal bend actuators. It has been developed primarily to provide improved inkjet nozzles which eject ink via thermal bend actuation.
- Thermal bend actuation generally means bend movement generated by thermal expansion of one material, having a current passing therethough, relative to another material. The resulting bend movement may be used to eject ink from a nozzle opening, optionally via movement of a paddle or vane, which creates a pressure wave in a nozzle chamber.
- the Applicant's US Patent No. 6,416,167 describes an inkjet nozzle having a paddle positioned in a nozzle chamber and a thermal bend actuator positioned externally of the nozzle chamber.
- the actuator takes the form of a lower active beam of conductive material (e.g . titanium nitride) fused to an upper passive beam of non-conductive material (e.g . silicon dioxide).
- the actuator is connected to the paddle via an arm received through a slot in the wall of the nozzle chamber.
- the actuator bends upwards and, consequently, the paddle moves towards a nozzle opening defined in a roof of the nozzle chamber, thereby ejecting a droplet of ink.
- An advantage of this design is its simplicity of construction.
- a drawback of this design is that both faces of the paddle work against the relatively viscous ink inside the nozzle chamber.
- the Applicant's US Patent No. 6,260,953 (assigned to the present Applicant) describes an inkjet nozzle in which the actuator forms a moving roof portion of the nozzle chamber.
- the actuator is takes the form of a serpentine core of conductive material encased by a polymeric material.
- Upon actuation the actuator bends towards a floor of the nozzle chamber, increasing the pressure within the chamber and forcing a droplet of ink from a nozzle opening defined in the roof of the chamber.
- the nozzle opening is defined in a non-moving portion of the roof.
- An advantage of this design is that only one face of the moving roof portion has to work against the relatively viscous ink inside the nozzle chamber.
- a drawback of this design is that construction of the actuator from a serpentine conductive element encased by polymeric material is difficult to achieve in a MEMS process.
- the Applicant's US Patent No. 6,623,101 describes an inkjet nozzle comprising a nozzle chamber with a moveable roof portion having a nozzle opening defined therein.
- the moveable roof portion is connected via an arm to a thermal bend actuator positioned externally of the nozzle chamber.
- the actuator takes the form of an upper active beam spaced apart from a lower passive beam. By spacing the active and passive beans apart, thermal bend efficiency is maximized since the passive beam cannot act as heat sink for the active beam.
- the moveable roof portion, having the nozzle opening defined therein is caused to rotate towards a floor of the nozzle chamber, thereby ejecting through the nozzle opening.
- drop flight direction may be controlled by suitable modification of the shape of the nozzle rim.
- An advantage of this design is that only one face of the moving roof portion has to work against the relatively viscous ink inside the nozzle chamber.
- a further advantage is the minimal thermal losses achieved by spacing apart the active and passive beam members.
- a drawback of this design is the loss of structural rigidity in spacing apart the active and passive beam members.
- the present invention provides an inkjet nozzle assembly as detailed in claim 1.
- the invention also relates to an inkjet printhead or an inkjet printhead integrated circuit as detailed in claim 15.
- Advantageous embodiments are described in the dependent claims.
- a MEMS thermal bend actuator (or thermoelastic actuator) comprises a pair of elements in the form of an active element and a passive element, which constrains linear expansion of the active element.
- the active element is required to undergo greater thermoelastic expansion relative to the passive element, thereby providing a bending motion.
- the elements may be fused or bonded together for maximum structural integrity or spaced apart for minimizing thermal losses to the passive element.
- titanium nitride as being a suitable candidate for an active thermoelastic element in a thermal bend actuator (see, for example, US 6,416,167 ).
- Other suitable materials described in, for example, Applicant's US Patent No. 6,428,133 are TiB 2 , MoSi, and TiAlN.
- aluminium In terms of its high thermal expansion and low density, aluminium is strong candidate for use as an active thermoelastic element.
- aluminum suffers from a relatively low Young's modulus, which detracts from its overall thermoelastic efficiency. Accordingly, aluminium had previously been disregarded as a suitable material for use an active thermoelastic element.
- aluminium alloys are excellent materials for use as thermoelastic active elements, since they combine the advantageous properties of high thermal expansion, low density and high Young's modulus.
- aluminium is alloyed with at least one metal having a Young's modulus of >100 GPa.
- aluminium is alloyed with at least one metal selected from the group comprising: vanadium, manganese, chromium, cobalt and nickel.
- the alloy comprises at least 60%, optionally at least 70%, optionally at least 80% or optionally at least 90% aluminium.
- Figure 1 shows a bimorph thermal bend actuator 200 in the form of a cantilever beam 201 fixed to a post 202.
- the cantilever beam 201 comprises a lower active beam 210 bonded to an upper passive beam 220 of silicon dioxide.
- the thermoelastic efficiencies of the actuator 200 were compared for active beams comprised of: (i) 100% Al; (ii) 95% Al/5% V; and (iii) 90% Al/10% V.
- Thermoelastic efficiencies were compared by stimulating the active beam 210 with a short electrical pulse and measuring the energy required to establish a peak oscillatory velocity of 3 m/s, as determined by a laser interferometer. The results are shown in the Table below: Active Beam Material Energy Required to Reach Peak Oscillatory Velocity 100% Al 466 nJ 95% Al/5% V 224 nJ 90% Al/10% V 219 nJ
- the 95% Al/5% V alloy required 2.08 times less energy than the comparable 100% Al device.
- the 90% Al/10% V alloy required 2.12 times less energy than the comparable 100% Al device. It was therefore concluded that aluminium alloys are excellent candidates for use as active thermoelastic elements in a range of MEMS applications, including thermal bend actuators for inkjet nozzles.
- thermal bend actuator having an active element comprised of aluminium alloy.
- FIGS. 2(A) and 3 there are shown schematic illustrations of a nozzle assembly 100 according to a first embodiment.
- the nozzle assembly 100 is formed by MEMS processes on a passivation layer 2 of a silicon substrate 3, as described in US 6,416,167 .
- the nozzle assembly 100 comprises a nozzle chamber 1 having a roof 4 and sidewall 5.
- the nozzle chamber 1 is filled with ink 6 by means of an ink inlet channel 7 etched through the substrate 3.
- the nozzle chamber 1 further includes a nozzle opening 8 for ejection of ink from the nozzle chamber.
- An ink meniscus 20 is pinned across a rim 21 of the nozzle opening 8, as shown in Figure 2(A) .
- the nozzle assembly 100 further comprises a paddle 9, positioned inside the nozzle chamber 1, which is interconnected via an arm 11 to an actuator 10 positioned externally of the nozzle chamber. As shown more clearly in Figure 2 , the arm extends through a slot 12 in nozzle chamber 1. Surface tension of ink within the slot 12 is sufficient to provide a fluidic seal for ink contained in the nozzle chamber 1.
- the actuator 10 comprises a plurality of elongate actuator units 13, which are spaced apart transversely. Each actuator unit extends between a fixed post 14, which is mounted on the passivation layer 2, and the arm 11. Hence, the post 14 provides a pivot for the bending motion of the actuator 10.
- Each actuator unit 13 comprises a first active beam 15 and a second passive beam 16 fused to an upper face of the active beam.
- the active beam 15 is conductive and connected to drive circuitry in a CMOS layer of the substrate 3.
- the passive beam 16 is typically non-conductive.
- a droplet of ink 17 is ejected from the nozzle opening 8 and at the same time ink 6 reflows into the nozzle chamber 1 via the ink inlet 7.
- the forward momentum of the ink outside the nozzle rim 21 and the corresponding backflow results in a general necking and breaking off of the droplet 17 which proceeds towards a print medium, as shown in Figure 2(C) .
- the collapsed meniscus 20 causes ink 6 to be sucked into the nozzle chamber 1 via the ink inlet 7.
- the nozzle chamber 1 is refilled such that the position in Figure 2(A) is again reached and the nozzle assembly 100 is ready for the ejection of another droplet of ink.
- actuator units 13 are tapered with respect to their transverse axes, having a narrower end connected to the post 14 and a wider end connected to the arm 11. This tapering ensures that maximum resistive heating takes place near the post 14, thereby maximizing the thermoelastic bending motion.
- the passive beam 16 is comprised of silicon dioxide or TEOS deposited by CVD. As shown in the Figures 2 to 4 , the arm 11 is formed from the same material.
- the active beam 15 is comprised of an aluminum alloy, preferably an aluminum-vanadium alloy as described above.
- Nozzle Assembly Comprising Spaced Apart Thermal Bend Actuator
- the nozzle assembly 300 is constructed (by way of MEMS technology) on a substrate 301 defining an ink supply aperture 302 opening through a hexagonal inlet 303 (which could be of any other suitable configuration) into a chamber 304.
- the chamber is defined by a floor portion 305, roof portion 306 and peripheral sidewalls 307 and 308 which overlap in a telescopic manner.
- the sidewalls 307, depending downwardly from roof portion 306, are sized to be able to move upwardly and downwardly within sidewalls 308 which depend upwardly from floor portion 305.
- the ejection nozzle is formed by rim 309 located in the roof portion 306 so as to define an opening for the ejection of ink from the nozzle chamber as will be described further below.
- the roof portion 306 and downwardly depending sidewalls 307 are supported by a bend actuator 310 typically made up of layers forming a Joule heated cantilever which is constrained by a non-heated cantilever, so that heating of the Joule heated cantilever causes a differential expansion between the Joule heated cantilever and the non-heated cantilever causing the bend actuator 310 to bend.
- a bend actuator 310 typically made up of layers forming a Joule heated cantilever which is constrained by a non-heated cantilever, so that heating of the Joule heated cantilever causes a differential expansion between the Joule heated cantilever and the non-heated cantilever causing the bend actuator 310 to bend.
- the proximal end 311 of the bend actuator is fastened to the substrate 301, and prevented from moving backwards by an anchor member 312 which will be described further below, and the distal end 313 is secured to, and supports, the roof portion 306 and sidewalls 307 of the ink jet nozzle.
- ink is supplied into the nozzle chamber through passage 302 and opening 303 in any suitable manner.
- an electric current is supplied to the bend actuator 310 causing the actuator to bend to the position shown in Figure 6 and move the roof portion 306 downwardly toward the floor portion 305.
- This relative movement decreases the volume of the nozzle chamber, causing ink to bulge upwardly through the nozzle rim 309 as shown at 314 ( Fig. 6 ) where it is formed to a droplet by the surface tension in the ink.
- the actuator reverts to the straight configuration as shown in Figure 7 moving the roof portion 306 of the nozzle chamber upwardly to the original location.
- the momentum of the partially formed ink droplet 314 causes the droplet to continue to move upwardly forming an ink drop 315 as shown in Fig. 7 which is projected on to the adjacent paper surface or other article to be printed.
- the opening 303 in floor portion 305 is relatively large compared with the cross-section of the nozzle chamber and the ink droplet is caused to be ejected through the nozzle rim 309 upon downward movement of the roof portion 306 by viscous drag in the sidewalls of the aperture 302, and in the supply conduits leading from the ink reservoir (not shown) to the opening 302.
- a fluidic seal is formed between sidewalls 307 and 308 as will now be further described with specific reference to Figures 7 and 8 .
- the ink is retained in the nozzle chamber during relative movement of the roof portion 306 and floor portion 305 by the geometric features of the sidewalls 307 and 308 which ensure that ink is retained within the nozzle chamber by surface tension.
- the ink (shown as a dark shaded area) is restrained within the small aperture between the downwardly depending sidewall 307 and inward faces 316 of the upwardly extending sidewall by the proximity of the two sidewalls which ensures that the ink "self seals" across free opening 317 by surface tension, due to the close proximity of the sidewalls.
- the upwardly depending sidewall 308 is provided in the form of an upwardly facing channel having not only the inner surface 316 but a spaced apart parallel outer surface 18 forming a U-shaped channel 319 between the two surfaces. Any ink drops escaping from the surface tension between the surfaces 307 and 316, overflows into the U-shaped channel where it is retained rather than "wicking" across the surface of the nozzle strata. In this manner, a dual wall fluidic seal is formed which is effective in retaining the ink within the moving nozzle mechanism.
- the actuator 310 is comprised of a first, active beam 358 arranged above and spaced apart from a second, passive beam 360. By spacing apart the two beams, thermal transfer from the active beam 358 to the passive beam 360 is minimized. Accordingly, this spaced apart arrangement has the advantage of maximizing thermoelastic efficiency.
- the active beam 358 may be comprised of an aluminium alloy, as described above, such as aluminium-vanadium alloy.
- FIG. 5 The embodiments exemplified by Figures 5 to 8 showed a nozzle assembly 300 comprising a nozzle chamber 304 having a roof portion 306 which moves relative to a floor portion 305 of the chamber.
- the moveable roof portion 306 is actuated to move towards the floor portion 305 by means of a bi-layered thermal bend actuator 310 positioned externally of the nozzle chamber 305.
- a moving roof lowers the drop ejection energy, since only one face of the moving structure has to do work against the viscous ink.
- a shorter pulse width can be used to provide the same amount of energy. With shorter pulse widths, improved drop ejection characteristics can be achieved.
- actuator power is to increase the size of the actuator.
- nozzle design shown in Figures 5 to 8 it is apparent that an increase in actuator size would adversely affect nozzle spacing, which is undesirable in the manufacture of high-resolution pagewidth printheads.
- the nozzle assembly 400 comprises a nozzle chamber 401 formed on a passivated CMOS layer 402 of a silicon substrate 403.
- the nozzle chamber is defined by a roof 404 and sidewalls 405 extending from the roof to the passivated CMOS layer 402.
- Ink is supplied to the nozzle chamber 401 by means of an ink inlet 406 in fluid communication with an ink supply channel 407 receiving ink from backside of the silicon substrate.
- Ink is ejected from the nozzle chamber 401 by means of a nozzle opening 408 defined in the roof 404.
- the nozzle opening 408 is offset from the ink inlet 406.
- the roof 404 has a moving portion 409, which defines a substantial part of the total area of the roof.
- the moving portion 409 defines at least 20%, at least 30%, at least 40% or at least 50% of the total area of the roof 404.
- the nozzle opening 408 and nozzle rim 415 are defined in the moving portion 409, such that the nozzle opening and nozzle rim move with the moving portion.
- the nozzle assembly 400 is characterized in that the moving portion 409 is defined by a thermal bend actuator 410 having a planar upper active beam 411 and a planar lower passive beam 412.
- the actuator 410 typically defines at least 20%, at least 30%, at least 40% or at least 50% of the total area of the roof 404.
- the upper active beam 411 typically defines at least 20%, at least 30%, at least 40% or at least 50% of the total area of the roof 404.
- the upper active beam 411 is spaced apart from the lower passive beam 412 for maximizing thermal insulation of the two beams. More specifically, a layer of Ti is used as a bridging layer 413 between the upper active beam 411 comprised of TiN and the lower passive beam 412 comprised of SiO 2 .
- the bridging layer 413 allows a gap 414 to be defined in the actuator 410 between the active and passive beams. This gap 414 improves the overall efficiency of the actuator 410 by minimizing thermal transfer from the active beam 411 to the passive beam 412.
- the active beam 411 may, alternatively, be fused or bonded directly to the passive beam 412 for improved structural rigidity.
- Such design modifications would be well within the ambit of the skilled person and are encompassed within the scope of the present invention.
- the active beam 411 is connected to a pair of contacts 416 (positive and ground) via the Ti bridging layer.
- the contacts 416 connect with drive circuitry in the CMOS layers.
- a current flows through the active beam 411 between the two contacts 416.
- the active beam 411 is rapidly heated by the current and expand relative to the passive beam 412, thereby causing the actuator 410 (which defines the moving portion 409 of the roof 404) to bend downwards towards the substrate 403.
- This movement of the actuator 410 causes ejection of ink from the nozzle opening 408 by a rapid increase of pressure inside the nozzle chamber 401.
- the moving portion 409 of the roof 404 is allowed to return to its quiescent position, which sucks ink from the inlet 406 into the nozzle chamber 401, in readiness for the next ejection.
- ink droplet ejection is analogous to that described above in connection with nozzle assembly 300.
- thermal bend actuator 410 defining the moving portion 409 of the roof 404, a much greater amount of power is made available for droplet ejection, because the active beam 411 has a large area compared with the overall size of the nozzle assembly 400.
- nozzle assembly 400 may be replicated into an array of nozzle assemblies to define a printhead or printhead integrated circuit.
- a printhead integrated circuit comprises a silicon substrate, an array of nozzle assemblies (typically arranged in rows) fouled on the substrate, and drive circuitry for the nozzle assemblies.
- a plurality of printhead integrated circuits may be abutted or linked to form a pagewidth inkjet printhead, as described in, for example, Applicant's earlier US Application Nos. 10/854,491 filed on May 27, 2004 and 11/014,732 filed on December 20, 2004 .
- the nozzle assembly 500 shown in Figures 13 to 15 is similar to the nozzle assembly 400 insofar as a thermal bend actuator 510, having an upper active beam 511 and a lower passive beam 512, defines a moving portion of a roof 504 of the nozzle chamber 501.
- the nozzle assembly 500 achieves the same advantages, in terms of increased power, as the nozzle assembly 400.
- the nozzle opening 508 and rim 515 are not defined by the moving portion of the roof 504. Rather, the nozzle opening 508 and rim 515 are defined in a fixed portion of the roof 504 such that the actuator 510 moves independently of the nozzle opening and rim during droplet ejection.
- An advantage of this arrangement is that it provides more facile control of drop flight direction.
- the aluminium alloys may be used as the active beam in either of the thermal bend actuators 410 and 510 described above in connection with the embodiments shown in Figures 9 to 15 .
- the nozzle assemblies 400 and 500 may be constructed using suitable MEMS technologies in an analogous manner to inkjet nozzle manufacturing processes exemplified in the Applicant's earlier US Patent Nos. 6,416,167 and 6,755,509 .
- the upper active beams 411 and 511 of the actuators 410 and 510 are each comprised of a tortuous beam element having either a bent (in the case of beam 411) or serpentine (in the case of beam 511) configuration.
- the tortuous beam element is elongate and has a relatively small cross-sectional area suitable for resistive heating.
- the tortuous configuration enables respective ends of the beam element to be connected to respective contacts positioned at one end of the actuator, simplifying the overall design and construction of the nozzle assembly.
- an elongate beam element 520 has a serpentine configuration defining the elongate active cantilever beam 511 of the actuator 510.
- the serpentine beam element 520 has a planar, tortuous path connecting a first electrical contact 516 with a second electrical contact 516.
- the electrical contacts 516 (positive and ground) are positioned at one end of the actuator 510 and provide electrical connection between drive circuitry in the CMOS layers 502 and the active beam 511.
- the serpentine beam element 520 is fabricated by standard lithographic etching techniques and defined by a plurality of contiguous beam members.
- beam members may be defined as solid portions of beam material, which extend substantially linearly in, for example, a longitudinal or transverse direction.
- the beam members of beam element 520 are comprised of longer beam members 521, which extend along a longitudinal axis of the elongate cantilever beam 511, and shorter beam members 522, which extend across a transverse axis of the elongate cantilever beam 511.
- An advantage of this configuration for the serpentine beam element 520 is that it provides maximum stiffness in a bend direction of the cantilever beam 511. Stiffness in the bend direction is advantageous because it facilitates bending of the actuator 510 back to its quiescent position after each actuation.
- bent active beam configuration for the nozzle assembly 400 shown in Figure 11 achieves the same or similar advantages to those described above in connection with nozzle assembly 500.
- the longer beam members, extending longitudinally, are indicated as 421, whilst the interconnecting shorter beam member, extending transversely, is indicated as 422.
- the active beam is either bonded to the passive beam for structural robustness (see Figures 1 and 2 ), or the active beam is spaced apart from the passive beam for maximum thermal efficiency (see Figure 8 ).
- the thermal efficiency provided by an air gap between the beams is, of course, desirable. However, this improvement in thermal efficiency is usually at the expense of structural robustness and a propensity for buckling of the thermal bend actuator.
- porous silicon dioxide insulator having a dielectric constant of about 2.0 or less.
- the material is formed by deposition of silicon carbide and oxidation of the carbon component to form porous silicon dioxide.
- the porosity of the resultant porous silicon dioxide can be increased.
- Porous silicon dioxide are known to be useful as a passivation layer in integrated circuits for reducing parasitic resistance.
- porous materials of this type are useful for improving the efficiency of thermal bend actuators.
- a porous material may be used either as an insulating layer between an active beam and a passive beam, or it may be used as the passive beam itself.
- Figure 16 shows a thermal bend actuator 600 comprising an upper active beam 601, a lower passive beam 602 and an insulating layer 603 sandwiched between the upper and lower beams.
- the insulating beam is comprised of porous silicon dioxide, while the active and passive beams 601 and 602 may be comprised of any suitable materials, such as TiN and SiO 2 , respectively.
- the porosity of the insulating layer 603 provides excellent thermal insulation between the active and passive beams 601 and 602.
- the insulating layer 603 also provides the actuator 600 with structural robustness. Hence, the actuator 600 combines the advantages of both types of thermal bend actuator described above in connection with Figures 1 , 2 and 8 .
- the porous material may simply form the passive layer of a bi-layered thermal bend actuator.
- the thermal bend actuator 650 comprises an upper active beam 651 comprised of TiN, and a lower passive beam 652 comprised of porous silicon dioxide.
- thermal bend actuators of the types shown in Figures 16 and 17 may be incorporated into any suitable inkjet nozzle or other MEMS device.
- the improvements in thermal efficiency and structural rigidity make such actuators attractive in any MEMS application requiring a mechanical actuator or transducer.
- thermal bend actuators of the types shown in Figures 16 and 17 are particularly suitable for use in the inkjet nozzle assemblies 400 and 500 described above.
- the skilled person would readily appreciate that appropriate modifications of the thermal bend actuators 410 and 10 would realize the above-mentioned improvements in thermal efficiency and structural robustness.
- active beam members 601 and 651 in the thermal bend actuators 600 and 650 described above may be comprised of an aluminum alloy, as described herein, for further improvements in thermal bend efficiency.
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
- Ink Jet (AREA)
- Micromachines (AREA)
Claims (15)
- Düsenanordnung (400) für einen Inkjet-Tintenstrahldrucker, aufweisend:eine Düsenkammer (401) zum Enthalten von Tinte, wobei die Düsenkammer einen Boden (402) und ein Dach (404) aufweist, wobei das Dach eine darin definierte Düsenöffnung (408) hat, und wobei das Dach einen beweglichen Teil (409) hat, der in Richtung des Bodens bewegbar ist; undeinen thermischen Biegeaktor (410) mit einer Mehrzahl von Freiträgern zum Ausstoßen von Tinte durch die Düsenöffnung,wobei der thermische Biegeaktor (410) Folgendes aufweist:einen ersten aktiven Träger (411) zum Anschluss am Antriebskreis; undeine zweiten passiven Träger (412), der mechanisch mit dem ersten Träger zusammenwirkt, sodass sich beim Leiten eines Stroms durch den ersten Träger der erste Träger relativ zum zweiten Träger ausdehnt, wodurch es zu einem Biegen des Aktors kommt,dadurch gekennzeichnet, dassder bewegliche Teil (409) des Dachs (404) den thermischen Biegeaktor beinhaltet.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 1, wobei der erste aktive Träger (411) mindestens 30% der Gesamtfläche des Dachs (404) definiert.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 1, wobei der erste aktive Träger (411) zumindest einen Teil einer Außenfläche des Dachs (404) definiert.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 1, wobei die Düsenöffnung (408) im beweglichen Teil (409) definiert ist, sodass die Düsenöffnung gegenüber dem Boden (402) beweglich ist.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 1, wobei der Aktor (510) gegenüber der Düsenöffnung (508) bewegbar ist.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 1, wobei der erste Träger (511) durch ein gewundenes Trägerelement (520) definiert ist, wobei das gewundene Trägerelement eine Mehrzahl von zusammenhängenden Trägerteilen hat.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 6, wobei die Mehrzahl der zusammenhängenden Trägerteile eine Mehrzahl von längeren Trägerteilen (521) aufweist, die sich entlang einer Längsachse des ersten Trägers erstrecken, und mindestens einen kürzeren Trägerteil (522), der sich entlang einer Querachse des ersten Trägers erstreckt und die längeren Trägerteile kreuzt.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 1, wobei einer der Mehrzahl von Trägern aus einem porösen Material besteht.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 8, wobei das poröse Material poröses Siliciumdioxid mit einer Dielektrizitätskonstante von 2 oder weniger ist.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 1, wobei der thermische Biegeaktor (410) des Weiteren einen dritten Isolierträger aufweist, der zwischen dem ersten Träger (411) und dem zweiten Träger (412) positioniert ist.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 10, wobei der dritte Isolierträger aus einem porösen Material besteht.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 1, wobei der erste Träger (411) an den zweiten Träger (412) geschweißt oder gebunden ist.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 1, wobei zumindest ein Teil des ersten Trägers (411) vom zweiten Träger (412) beabstandet ist.
- Düsenanordnung für einen Inkjet-Tintenstrahldrucker nach Anspruch 1, wobei der erste Träger (411) aus einem Material besteht, das aus der Gruppe ausgewählt ist, die sich zusammensetzt aus Titannitrid, Titanaluminiumnitrid und einer Aluminiumlegierung.
- Druckkopf für einen Injekt-Drucker oder integrierter Schaltkreis eines Druckkopfs für einen Inkjet-Drucker, der eine Reihe von Düsenanordnungen nach einem der vorhergehenden Ansprüche aufweist.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200631460T SI2089229T1 (sl) | 2006-12-04 | 2006-12-04 | Sestav brizgalne šobe s toplotno upogljivim aktuatorjem z aktivnim nosilcem, ki definira bistveni del strehe komore šobe |
PL06827989T PL2089229T3 (pl) | 2006-12-04 | 2006-12-04 | Zespół dyszy atramentowej z termicznie zaginanym aktuatorem, którego aktywny człon stanowi indywidualną część sklepienia komory dyszy |
CY20121101049T CY1113795T1 (el) | 2006-12-04 | 2012-11-01 | Διαταξη ακροφυσιου εκτοξευσης μελανης που εχει ενα ενεργοποιητη θερμικης καμψης με μια ενεργο ραβδο καθοριζουσα ενα ουσιαστικο τμημα της οροφης του θαλαμου του ακροφυσιου |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/AU2006/001831 WO2008067581A1 (en) | 2006-12-04 | 2006-12-04 | Inkjet nozzle assembly having thermal bend actuator with an active beam defining substantial part of nozzle chamber roof |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2089229A1 EP2089229A1 (de) | 2009-08-19 |
EP2089229A4 EP2089229A4 (de) | 2011-03-16 |
EP2089229B1 true EP2089229B1 (de) | 2012-08-15 |
Family
ID=39491550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06827989A Active EP2089229B1 (de) | 2006-12-04 | 2006-12-04 | Tintenstrahldüsenanordnung mit thermisch biegendem betätigungselement mit einem einen wesentlichen teil des düsenkammerdachs definierenden aktiven träger |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP2089229B1 (de) |
JP (1) | JP4933629B2 (de) |
KR (1) | KR101030152B1 (de) |
CY (1) | CY1113795T1 (de) |
DK (1) | DK2089229T3 (de) |
ES (1) | ES2393305T3 (de) |
PL (1) | PL2089229T3 (de) |
PT (1) | PT2089229E (de) |
SI (1) | SI2089229T1 (de) |
TW (1) | TWI468301B (de) |
WO (1) | WO2008067581A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101240001B1 (ko) * | 2008-09-29 | 2013-03-06 | 실버브룩 리서치 피티와이 리미티드 | 효율적인 잉크젯 노즐 조립체 |
KR101399304B1 (ko) | 2009-10-08 | 2014-05-28 | 엘지디스플레이 주식회사 | 액정표시장치 및 그 구동방법 |
KR102549376B1 (ko) | 2021-02-26 | 2023-06-30 | 한국과학기술원 | 가열식 캔틸레버 구조 유동 채널을 갖는 인쇄용 잉크 디스펜싱 장치 및 이의 제조 방법 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1473204A (en) | 1922-10-09 | 1923-11-06 | Blades Robert | Meat hanger and apparatus for applying the same |
JP3321488B2 (ja) * | 1994-03-31 | 2002-09-03 | シャープ株式会社 | インクジェット記録装置 |
US6255156B1 (en) | 1997-02-07 | 2001-07-03 | Micron Technology, Inc. | Method for forming porous silicon dioxide insulators and related structures |
US6540332B2 (en) * | 1997-07-15 | 2003-04-01 | Silverbrook Research Pty Ltd | Motion transmitting structure for a nozzle arrangement of a printhead chip for an inkjet printhead |
ATE386638T1 (de) * | 1997-07-15 | 2008-03-15 | Silverbrook Res Pty Ltd | Tintenstrahldüse mit geschlitzter seitenwand und beweglichem flügel |
US6260953B1 (en) | 1997-07-15 | 2001-07-17 | Silverbrook Research Pty Ltd | Surface bend actuator vented ink supply ink jet printing mechanism |
US6447099B2 (en) * | 1997-07-15 | 2002-09-10 | Silverbrook Research Pty Ltd | Ink jet mechanism with thermoelastic bend actuator having conductive and resistive beams |
US6682174B2 (en) * | 1998-03-25 | 2004-01-27 | Silverbrook Research Pty Ltd | Ink jet nozzle arrangement configuration |
US6416167B1 (en) | 1997-07-15 | 2002-07-09 | Silverbrook Research Pty Ltd | Thermally actuated ink jet printing mechanism having a series of thermal actuator units |
US6623108B2 (en) * | 1998-10-16 | 2003-09-23 | Silverbrook Research Pty Ltd | Ink jet printhead having thermal bend actuator heating element electrically isolated from nozzle chamber ink |
DE60031658D1 (de) * | 1999-02-15 | 2006-12-14 | Silverbrook Res Pty Ltd | Thermisch biegender aktor und schaufelstruktur für tintenstrahldüse |
AUPP993199A0 (en) * | 1999-04-22 | 1999-05-20 | Silverbrook Research Pty Ltd | A micromechanical device and method (ij46p2a) |
AUPP993099A0 (en) * | 1999-04-22 | 1999-05-20 | Silverbrook Research Pty Ltd | A micromechancial device and method(ij46p2b) |
AUPQ130999A0 (en) * | 1999-06-30 | 1999-07-22 | Silverbrook Research Pty Ltd | A method and apparatus (IJ47V11) |
US6412908B2 (en) * | 2000-05-23 | 2002-07-02 | Silverbrook Research Pty Ltd | Inkjet collimator |
US6428133B1 (en) | 2000-05-23 | 2002-08-06 | Silverbrook Research Pty Ltd. | Ink jet printhead having a moving nozzle with an externally arranged actuator |
AU2000247327C1 (en) * | 2000-05-24 | 2004-10-07 | Memjet Technology Limited | Ink jet printhead nozzle array |
US6417757B1 (en) * | 2000-06-30 | 2002-07-09 | Silverbrook Research Pty Ltd | Buckle resistant thermal bend actuators |
US6623101B1 (en) | 2000-10-20 | 2003-09-23 | Silverbrook Research Pty Ltd | Moving nozzle ink jet |
AUPR224000A0 (en) * | 2000-12-21 | 2001-01-25 | Silverbrook Research Pty. Ltd. | An apparatus (mj28) |
US6631979B2 (en) * | 2002-01-17 | 2003-10-14 | Eastman Kodak Company | Thermal actuator with optimized heater length |
US6536874B1 (en) | 2002-04-12 | 2003-03-25 | Silverbrook Research Pty Ltd | Symmetrically actuated ink ejection components for an ink jet printhead chip |
US6721020B1 (en) * | 2002-11-13 | 2004-04-13 | Eastman Kodak Company | Thermal actuator with spatial thermal pattern |
US6755509B2 (en) * | 2002-11-23 | 2004-06-29 | Silverbrook Research Pty Ltd | Thermal ink jet printhead with suspended beam heater |
US7025443B2 (en) * | 2003-06-27 | 2006-04-11 | Eastman Kodak Company | Liquid drop emitter with split thermo-mechanical actuator |
KR100580654B1 (ko) * | 2004-10-29 | 2006-05-16 | 삼성전자주식회사 | 노즐 플레이트와 이를 구비한 잉크젯 프린트헤드 및 노즐플레이트의 제조 방법 |
-
2006
- 2006-12-04 PL PL06827989T patent/PL2089229T3/pl unknown
- 2006-12-04 WO PCT/AU2006/001831 patent/WO2008067581A1/en active Application Filing
- 2006-12-04 EP EP06827989A patent/EP2089229B1/de active Active
- 2006-12-04 KR KR1020097009462A patent/KR101030152B1/ko active IP Right Grant
- 2006-12-04 SI SI200631460T patent/SI2089229T1/sl unknown
- 2006-12-04 DK DK06827989.2T patent/DK2089229T3/da active
- 2006-12-04 JP JP2009538549A patent/JP4933629B2/ja active Active
- 2006-12-04 PT PT06827989T patent/PT2089229E/pt unknown
- 2006-12-04 ES ES06827989T patent/ES2393305T3/es active Active
-
2007
- 2007-03-05 TW TW96107555A patent/TWI468301B/zh active
-
2012
- 2012-11-01 CY CY20121101049T patent/CY1113795T1/el unknown
Also Published As
Publication number | Publication date |
---|---|
WO2008067581A1 (en) | 2008-06-12 |
EP2089229A4 (de) | 2011-03-16 |
PL2089229T3 (pl) | 2013-06-28 |
PT2089229E (pt) | 2012-11-20 |
JP4933629B2 (ja) | 2012-05-16 |
KR20090095562A (ko) | 2009-09-09 |
ES2393305T3 (es) | 2012-12-20 |
KR101030152B1 (ko) | 2011-04-18 |
CY1113795T1 (el) | 2016-07-27 |
JP2010511527A (ja) | 2010-04-15 |
TW200824914A (en) | 2008-06-16 |
EP2089229A1 (de) | 2009-08-19 |
TWI468301B (zh) | 2015-01-11 |
SI2089229T1 (sl) | 2012-12-31 |
DK2089229T3 (da) | 2012-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7926915B2 (en) | Inkjet nozzle assembly with thermal bend actuator defining moving portion of nozzle chamber roof | |
US7654641B2 (en) | Inkjet nozzle assembly having moving roof portion defined by a thermal bend actuator having a plurality of cantilever beams | |
US7901051B2 (en) | Inkjet nozzle assembly having thermoelastic actuator beam disposed on nozzle chamber roof | |
US7794055B2 (en) | Thermal bend actuator comprising aluminium alloy | |
US7901052B2 (en) | Thermal bend actuator comprising bilayered passive beam | |
US7971971B2 (en) | Inkjet nozzle assembly having bilayered passive beam | |
US8491098B2 (en) | Thermal bend actuator with conduction pad at bend region | |
US7984973B2 (en) | Thermal bend actuator comprising aluminium alloy | |
EP2089229B1 (de) | Tintenstrahldüsenanordnung mit thermisch biegendem betätigungselement mit einem einen wesentlichen teil des düsenkammerdachs definierenden aktiven träger | |
EP4232291B1 (de) | Thermisch biegender aktuator mit verbesserter lebensdauer | |
TWI436898B (zh) | 噴墨印表機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090616 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20110211 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 570597 Country of ref document: AT Kind code of ref document: T Effective date: 20120815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ZAMTEC LIMITED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006031500 Country of ref document: DE Effective date: 20121018 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20121107 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KEMIA SA, CH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2393305 Country of ref document: ES Kind code of ref document: T3 Effective date: 20121220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121215 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20121220 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E015563 Country of ref document: HU Ref country code: PL Ref legal event code: T3 |
|
26N | No opposition filed |
Effective date: 20130516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006031500 Country of ref document: DE Effective date: 20130516 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LV Payment date: 20131120 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CY Payment date: 20131121 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: HC9C Owner name: MEMJET TECHNOLOGY LIMITED, IE Free format text: FORMER OWNER(S): ZAMTEC LIMITED, IE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: MEMJET TECHNOLOGY LIMITED Effective date: 20141008 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: SP73 Owner name: MEMJET TECHNOLOGY LIMITED; IE Effective date: 20140908 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: MEMJET TECHNOLOGY LIMITED, IE Free format text: FORMER OWNER: ZAMTEC LIMITED, IE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602006031500 Country of ref document: DE Owner name: MEMJET TECHNOLOGY LIMITED, IE Free format text: FORMER OWNER: SILVERBROOK RESEARCH PTY. LIMITED, BALMAIN, NSW, AU Effective date: 20141016 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: HC Ref document number: 570597 Country of ref document: AT Kind code of ref document: T Owner name: MEMJET TECHNOLOGY LIMITED, IE Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: MEMJET TECHNOLOGY LIMITED, IE Effective date: 20141118 Ref country code: FR Ref legal event code: CA Effective date: 20141118 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: TD Effective date: 20150128 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20141229 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141204 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151204 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20161227 Year of fee payment: 11 Ref country code: HU Payment date: 20161125 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20161122 Year of fee payment: 11 Ref country code: AT Payment date: 20161121 Year of fee payment: 11 Ref country code: SI Payment date: 20161122 Year of fee payment: 11 Ref country code: SE Payment date: 20161129 Year of fee payment: 11 Ref country code: PL Payment date: 20161118 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20161122 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20161227 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151204 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20170710 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20171128 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20171231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180604 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 570597 Country of ref document: AT Kind code of ref document: T Effective date: 20171204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171205 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171205 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20180709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171204 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20190103 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181204 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20211221 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20211226 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171204 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230102 Year of fee payment: 17 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230414 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231227 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20231227 Year of fee payment: 18 Ref country code: FR Payment date: 20231227 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 18 |