EP2087553A2 - Multi-sector antenna - Google Patents

Multi-sector antenna

Info

Publication number
EP2087553A2
EP2087553A2 EP07858754A EP07858754A EP2087553A2 EP 2087553 A2 EP2087553 A2 EP 2087553A2 EP 07858754 A EP07858754 A EP 07858754A EP 07858754 A EP07858754 A EP 07858754A EP 2087553 A2 EP2087553 A2 EP 2087553A2
Authority
EP
European Patent Office
Prior art keywords
substrate
substrates
antenna according
antenna
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07858754A
Other languages
German (de)
French (fr)
Inventor
Julian Thevenard
Dominique Lo Hine Tong
Ali Louzir
Corinne Nicolas
Christian Person
Jean-Philippe Coupez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP2087553A2 publication Critical patent/EP2087553A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage

Definitions

  • the present invention relates to multi-sector antennas, more particularly to a multi-sector antenna formed of N planar antennas.
  • antennas represent an exception to this miniaturization. Indeed, they are subject to the laws of physics which impose a minimum size for operation at a given frequency. Thus, in the case of printed planar antennas, the dimensions are of the order of the wavelength at the central operating frequency. It is undeniable that the printed planar structures are perfectly adapted for mass production of devices integrating passive and active functions. However, with regard to the radiating elements, a planar structure does not allow a complete control of the radiation of the antenna, especially in elevation.
  • the directivity and the angular aperture of the main lobe of the radiation pattern of the antenna are directly related to the dimensions of the antenna which must be increased to obtain a high directivity and / or a large opening of the main lobe.
  • multi-sector antennas using a planar structure currently on the market are cumbersome and expensive.
  • the present invention provides a multi-sector antenna in three dimensions (3D) that reduces the projected size of the antenna while retaining good radio performance including performance, frequency bandwidth and radiation pattern.
  • the present invention also provides a multi-sector antenna in three dimensions (3D) simple to achieve and inexpensive.
  • the present invention therefore relates to a multi-sector antenna comprising N (N> 1) planar antennas each consisting of a slot to longitudinal radiation etched on a first substrate provided with a ground plane and powered by an excitation line, the first N substrates being interconnected along a same axis.
  • N first substrates are provided on at least one side of the substrate parallel to the radiation axis of each antenna connection means being fixed on a second substrate perpendicular to the first N substrates.
  • the first N substrates are made of plastic, in particular materials of the class of PBT (polybutylene terephthalate).
  • each N first substrate is constituted by a plastic plate, one of whose faces is metallized.
  • the first N substrates are connected to a mast perpendicular to the second substrate.
  • two first substrates are made on a single plastic plate, one part, preferably one half of the first face and another part, preferably the other half of the second face of the plate, being metallized.
  • said plate is provided in the middle with means allowing its interconnection with at least one other plate
  • the N first substrates have on the side fixed on the second substrate an enlarged part forming said connecting means.
  • the connection means consist of pins made on at least one side of said first substrate.
  • the second substrate has a ground plane connecting to the ground plane of the N first substrates, said plane being provided with openings for the passage of the excitation lines.
  • the connection means are constituted by pins
  • the second substrate has holes for snapping the first substrates.
  • the antennas of the longitudinal radiation slot type are "traveling wave" type antennas, in particular progressive opening type or Vivaldi type antennas.
  • Plastic technology allows the design of 3D multi-sector antennas that can be directly transferred to an electronic board as a surface mount component.
  • FIG. 1 is a plan representation of a Vivaldi type antenna used in the present invention
  • FIG. 2 is a section along AA of FIG. 1
  • FIG. 3 is a perspective view of a first embodiment of a multi sector antenna according to the present invention.
  • FIG. 4 is a top view of the antenna of FIG. 3
  • FIG. 5 is a partial sectional view along B-B of FIG. 4
  • FIG. 6 is a partial sectional view along C-C of FIG. 4
  • FIG. 7 is a bottom view of the antenna of FIG. 3
  • FIG. 8 represents a curve giving the losses by reflection on one of the accesses of the antenna of FIG. 3
  • FIG. 9 shows the 5.5 GHz radiation pattern of a sector of the antenna of FIG. 3
  • FIG. 10 is a perspective view of a second embodiment of a multi-sector antenna according to the present invention
  • FIG. 11 is a perspective view of a third embodiment of a multi-sector antenna according to the present invention
  • FIG. 12 is a perspective view of a fourth embodiment of a multi-sector antenna according to the present invention
  • FIG. 13 is a diagonal elevational view of the embodiment of FIG. 12.
  • the present invention will be described by taking a planar antenna consisting of a longitudinal radiation slot, a Vivaldi type antenna.
  • the flare of the Vivaldi antenna can have a circular, rectilinear, exponential shape, etc.
  • Other types of planar antennas with darting slots can also be envisaged without departing from the scope of the invention.
  • Figures 1 and 2 there is shown an antenna type Vivaldi.
  • the substrate 1 is covered on one side with a conductive material such as a metal forming a ground plane 2, in particular copper.
  • a slot line 3 which gradually widens to the end of the substrate.
  • a micro-ribbon line 4 for excitation by electromagnetic coupling of the slot.
  • the excitation line 4 extends to one edge of the substrate 1, in order to obtain an access point 5.
  • the antenna consists of four antennas Vivaldi 1OA, 1OB, 1OC, 1OD. These four antennas are each made on a first substrate, as described above, mounted on a second common substrate 14, provided on its upper face with a conductive layer forming a ground plane 14A.
  • the four substrates bearing the Vivaldi antennas are fixed on the substrate 14 so that the radiation axis of the Vivaldi slot 11A, 11B, 11C, 11D is parallel to the plane 14A of the second substrate 14.
  • four first substrates are positioned parallel to the edges of the substrate 14.
  • the first four substrates can also be positioned along the diagonals of the second substrate 14, which reduces the bulk.
  • the substrate of each Vivaldi antenna has on the fixing side on the common substrate 14, an enlarged portion such as 17D in Figures 3, 5 and 6.
  • the enlarged portions of the first substrates comprise fixing pins which are inserted into openings provided in the second substrate.
  • the pin positioned in the extension of the excitation line is conductive and is inserted into a metallized opening so as to obtain electrical continuity.
  • this enlarged portion may include positioning zones or rods 16 for better mechanical accuracy of the report.
  • the four Vivaldi antennas are interconnected along an axis 13 perpendicular to the plane of the second substrate 14.
  • the four substrates are perpendicular to each other so as to form a four-sector antenna.
  • Each substrate is entirely metallized and then etched to produce on one face, the radiating slot, such as 11 A, 11 B, 11 This 11 D and on the other side the excitation line, such as 12D.
  • unmetallized areas 15A, 15B, 15C and 15D are provided in the ground plane 41A of the second substrate for passage of the excitation lines.
  • the excitation lines follow the contour of the widened part of the first substrates receiving the Vivaldi antennas and are connected to a switching circuit referenced 18 in FIG. 7.
  • the lower plane of the second substrate dielectric 14 comprises a switching circuit 18 which may be constituted by components such as PIN diodes, MEMs or other switching components connected to the excitation lines 12A, 12B, 12C, 12D of the Vivaldi antennas and to the line common supply 19.
  • a switching circuit 18 which may be constituted by components such as PIN diodes, MEMs or other switching components connected to the excitation lines 12A, 12B, 12C, 12D of the Vivaldi antennas and to the line common supply 19.
  • a multi-sector antenna of this type was simulated with the HFSS electromagnetic simulation software based on the finite element method of ANSOFT corporation using the following values: Operating frequency 5.5GHz.
  • First substrate plastic material with a permittivity of 3.5 and a loss tangent of 0.01.
  • the substrate has a thickness of 0.77mm.
  • Second substrate Rogers 4003 type having a permittivity of 3.38 and a loss tangent of 0.0027 and having a thickness of 0.81 mm.
  • FIG. 8 gives the losses by reflection on one of the 4 accesses of a Vivaldi antenna.
  • the adaptation remains broadband around the operating frequency of 5.5GHZ.
  • the value of the directivity for a single illuminated sector, the other three being deactivated, is 6.9dBi.
  • the radiation pattern shown in Figure 9 remains in line with the radiation pattern of a Vivaldi antenna placed in an environment without constraint.
  • the multi-sector antenna comprises eight Vivaldi type antennas 101, 102, 103, 104, 105, 106, 107, 108 interconnected at a common axis 100 perpendicular to a common substrate 14.
  • Each Vivaldi type antenna is identical to the Vivaldi type antennas described above.
  • the maximum number N of Vivaldi type antennas that can be interconnected to determine the sectors is determined by the laws of physics.
  • the four antennas Vivaldi type 2OA, 2OB, 2OC, 2OD are connected to a mast 24 provided with a groove 25 in which is inserted one of the edges of the substrate of the antenna Vivaldi.
  • the mast 24 is fixed perpendicularly to the second substrate 14.
  • the Vivaldi type antennas are independently produced by conventional circuit metallization techniques.
  • the mast may have additional positioning pins or be recessed in its lower part to be able to integrate components on the common substrate.
  • FIGS. 12 and 13 A fourth embodiment of the present invention will be described with reference to FIGS. 12 and 13.
  • two first substrates 30A, 30B have been made.
  • a first half face of the rectangular plate is metallized and in this metallized face is etched a flared slot 31, the half non-metallized face receiving a microstrip line 32.
  • the metallization is reversed .
  • This structure gives two Vivaldi antennas.
  • the rectangular plate 30 has in its middle a slot allowing it to be interwoven with another rectangular plate 30 'of the same type as represented in FIG. 12.
  • the rectangular plate has on at least one of its lengths of the pins 33 with one of the pins 33 'extending the microstrip line 32.
  • the pins 33 can fix the different plates rectangular 30, 30 'on the second substrate 34 provided with corresponding openings.
  • the hole corresponding to the pin 33 'receiving the microstrip excitation line 32 is metallized.
  • the other pins 33 being metallized, they provide a continuity of mass with the second substrate 34 whose upper face is metallized.
  • the lower face of the substrate receives microstrip lines connecting the excitation lines of the Vivaldi antennas to a common power supply line via any suitable circuit.
  • This embodiment is simple and inexpensive to produce. It requires no soldering and the elements constituting the multi-sector antenna are standardizable.
  • the multi-sector antenna according to the present invention causes an increase in directivity and a decrease in the beamwidth to cover a given sector using a three-dimensional device.
  • This antenna has the following advantages: a. Preservation of good performance in terms of gain and beam width while maintaining a small footprint. b. Possibility of obtaining a larger number of sectors than in planar technology. vs. Diversification of form factors through the contribution of the third dimension. d. Flexibility in design, construction and integration thanks to "metallized plastic" technology that allows complex and varied shapes.

Abstract

A multi-sector antenna comprising N (N>1) plane antennas (10A, 10B, 10C, 10D) each containing a horizontally radiant slit carved on a first substrate comprising a ground plane and fed by an energized line. Le first N substrates are fixed on a second common substrate (14) so that the radiant axis of each antenna is parallel to the said second substrate, the N first substrate being interconnected according to an axis (13) perpendicular to the second substrate. The invention can be applied to wireless high definition cameras.

Description

ANTENNE MULTI SECTEURS MULTI-SECTOR ANTENNA
La présente invention concerne les antennes multi secteurs, plus particulièrement une antenne multi secteurs formée de N antennes planaires.The present invention relates to multi-sector antennas, more particularly to a multi-sector antenna formed of N planar antennas.
Le développement croissant des systèmes de communication, notamment sans fil, nécessite des systèmes de plus en plus complexes et performants tout en gardant des coûts de fabrication les plus bas possible et un encombrement minimal. Or dans ce domaine, les antennes représentent une exception à cette miniaturisation. En effet, elles sont soumises aux lois de la physique qui imposent un encombrement minimal pour un fonctionnement à une fréquence donnée. Ainsi, dans le cas des antennes planaires imprimées, les dimensions sont de l'ordre de la longueur d'onde à la fréquence centrale de fonctionnement. Il est indéniable que les structures planaires imprimées sont parfaitement adaptées pour une production de masse de dispositifs intégrant des fonctions passives et actives. Cependant en ce qui concerne les éléments rayonnants, une structure planaire n'autorise pas un contrôle complet du rayonnement de l'antenne, notamment en élévation. D'autre part, la directivité et l'ouverture angulaire du lobe principal du diagramme de rayonnement de l'antenne sont directement liées aux dimensions de l'antenne qu'il est nécessaire d'augmenter pour obtenir une directivité importante et/ou une grande ouverture du lobe principal. De ce fait, les antennes multi secteurs utilisant une structure planaire actuellement sur le marché sont encombrantes et coûteuses. La présente invention propose une antenne multi secteurs en trois dimensions (3D) qui réduit la taille projetée de l'antenne tout en conservant de bonnes performances radio électriques notamment en rendement, largeur de bande de fréquence et diagramme de rayonnement.The growing development of communication systems, especially wireless, requires increasingly complex and efficient systems while keeping manufacturing costs as low as possible and minimal bulk. In this field, antennas represent an exception to this miniaturization. Indeed, they are subject to the laws of physics which impose a minimum size for operation at a given frequency. Thus, in the case of printed planar antennas, the dimensions are of the order of the wavelength at the central operating frequency. It is undeniable that the printed planar structures are perfectly adapted for mass production of devices integrating passive and active functions. However, with regard to the radiating elements, a planar structure does not allow a complete control of the radiation of the antenna, especially in elevation. On the other hand, the directivity and the angular aperture of the main lobe of the radiation pattern of the antenna are directly related to the dimensions of the antenna which must be increased to obtain a high directivity and / or a large opening of the main lobe. As a result, multi-sector antennas using a planar structure currently on the market are cumbersome and expensive. The present invention provides a multi-sector antenna in three dimensions (3D) that reduces the projected size of the antenna while retaining good radio performance including performance, frequency bandwidth and radiation pattern.
La présente invention propose aussi une antenne multi-secteurs en trois dimensions (3D) simple à réaliser et peu coûteuse.The present invention also provides a multi-sector antenna in three dimensions (3D) simple to achieve and inexpensive.
La présente invention concerne donc une antenne multi secteurs comprenant N (N>1 ) antennes planaires constituées chacune d'une fente à rayonnement longitudinal gravée sur un premier substrat muni d'un plan de masse et alimentée par une ligne d'excitation, les N premiers substrats étant interconnectés selon un même axe. Conformément à l'invention, les N premiers substrats sont munis sur au moins un des côtés du substrat parallèle à l'axe de rayonnement de chaque antenne de moyens de connexion venant se fixer sur un second substrat perpendiculaire aux N premiers substrats.The present invention therefore relates to a multi-sector antenna comprising N (N> 1) planar antennas each consisting of a slot to longitudinal radiation etched on a first substrate provided with a ground plane and powered by an excitation line, the first N substrates being interconnected along a same axis. According to the invention, the N first substrates are provided on at least one side of the substrate parallel to the radiation axis of each antenna connection means being fixed on a second substrate perpendicular to the first N substrates.
Selon une caractéristique de l'invention, les N premiers substrats sont en matière plastique, notamment en des matériaux de la classe des PBT (Terephtalate de poly-butylène).According to one characteristic of the invention, the first N substrates are made of plastic, in particular materials of the class of PBT (polybutylene terephthalate).
En conséquence, selon un premier mode de réalisation de l'invention, chaque N premier substrat est constitué par une plaque en matière plastique dont une des faces est métallisée.Accordingly, according to a first embodiment of the invention, each N first substrate is constituted by a plastic plate, one of whose faces is metallized.
Dans un mode de réalisation de l'invention, les N premiers substrats sont connectés sur un mât perpendiculaire au second substrat.In one embodiment of the invention, the first N substrates are connected to a mast perpendicular to the second substrate.
Selon un autre mode de réalisation, deux premiers substrats sont réalisés sur une seule plaque en matière plastique, une partie, de préférence une moitié de la première face et une autre partie, de préférence l'autre moitié de la seconde face de la plaque, étant métallisée. D'autre part, ladite plaque est munie en son milieu de moyens permettant son interconnexion avec au moins une autre plaqueAccording to another embodiment, two first substrates are made on a single plastic plate, one part, preferably one half of the first face and another part, preferably the other half of the second face of the plate, being metallized. On the other hand, said plate is provided in the middle with means allowing its interconnection with at least one other plate
Selon une autre caractéristique de l'invention et selon un premier mode de réalisation, les N premiers substrats présentent sur le côté fixé sur le second substrat une partie élargie formant lesdits moyens de connexion. Selon un autre mode de réalisation, les moyens de connexion sont constitués par des picots réalisés sur au moins un côté dudit premier substrat. D'autre part, le second substrat présente un plan de masse se raccordant au plan de masse des N premiers substrats, le dit plan étant muni d'ouvertures pour le passage des lignes d'excitation. Lorsque les moyens de connexion sont constitués par des picots, le second substrat comporte des trous permettant l'encliquetage des premiers substrats. Selon un mode de réalisation de l'invention, les antennes de type fente à rayonnement longitudinal sont des antennes de type «à ondes progressives, notamment des antennes de type à ouverture progressive ou Vivaldi. Une antenne multi secteurs en trois dimensions utilisant la technologie plastique et ayant pour antenne de référence une antenne planaire de type fente à rayonnement longitudinal, notamment une antenne de type Vivaldi, autorise une grande flexibilité de réalisation. La technologie plastique permet la conception d'antennes multi secteurs en 3D qui peuvent être directement reportées sur une carte électronique comme un composant CMS (pour composant monté en surface).According to another characteristic of the invention and according to a first embodiment, the N first substrates have on the side fixed on the second substrate an enlarged part forming said connecting means. According to another embodiment, the connection means consist of pins made on at least one side of said first substrate. On the other hand, the second substrate has a ground plane connecting to the ground plane of the N first substrates, said plane being provided with openings for the passage of the excitation lines. When the connection means are constituted by pins, the second substrate has holes for snapping the first substrates. According to one embodiment of the invention, the antennas of the longitudinal radiation slot type are "traveling wave" type antennas, in particular progressive opening type or Vivaldi type antennas. A multi-sector antenna in three dimensions using plastic technology and having as reference antenna a planar antenna slot-type longitudinal radiation, including a Vivaldi type antenna, allows great flexibility of realization. Plastic technology allows the design of 3D multi-sector antennas that can be directly transferred to an electronic board as a surface mount component.
Ce type d'antennes trouve des applications dans le domaine du sans fil, par exemple pour les caméras sans fil haute définition travaillant dans des bandes de fréquence de 4.8 à 6 GHz. D'autres caractéristiques et avantages de la présente invention apparaîtront dans la description faite ci-après de différents modes de réalisation, cette description étant faite avec référence aux dessins ci- annexés dans lesquels :This type of antenna has applications in the wireless field, for example for high-definition wireless cameras operating in frequency bands of 4.8 to 6 GHz. Other features and advantages of the present invention will appear in the following description of various embodiments, this description being made with reference to the accompanying drawings in which:
FIG. 1 est une représentation en plan d'une antenne de type Vivaldi utilisée dans la présente invention,FIG. 1 is a plan representation of a Vivaldi type antenna used in the present invention,
FIG. 2 est une coupe selon AA de fig. 1FIG. 2 is a section along AA of FIG. 1
FIG. 3 est une vue en perspective d'un premier mode de réalisation d'une antenne multi secteurs conforme à la présente invention,FIG. 3 is a perspective view of a first embodiment of a multi sector antenna according to the present invention,
FIG. 4 est une vue de dessus de l'antenne de Fig. 3, FIG. 5 est une vue en coupe partielle selon B-B de la Fig. 4,FIG. 4 is a top view of the antenna of FIG. 3, FIG. 5 is a partial sectional view along B-B of FIG. 4
FIG. 6 est une vue en coupe partielle selon C-C de la Fig. 4,FIG. 6 is a partial sectional view along C-C of FIG. 4
FIG. 7 est une vue de dessous de l'antenne de Fig. 3,FIG. 7 is a bottom view of the antenna of FIG. 3
FIG. 8 représente une courbe donnant les pertes par réflexion sur un des accès de l'antenne de Fig. 3, FIG. 9 représente le diagramme de rayonnement à 5.5 GHz d'un secteur de l'antenne de Fig. 3, FIG. 10 est une vue en perspective d'un second mode de réalisation d'une antenne multi secteurs conforme à la présente invention,FIG. 8 represents a curve giving the losses by reflection on one of the accesses of the antenna of FIG. 3, FIG. 9 shows the 5.5 GHz radiation pattern of a sector of the antenna of FIG. 3 FIG. 10 is a perspective view of a second embodiment of a multi-sector antenna according to the present invention,
FIG. 11 est une vue en perspective d'un troisième mode de réalisation d'une antenne multi secteurs conforme à la présente invention, FIG. 12 est une vue en perspective d'un quatrième mode de réalisation d'une antenne multi-secteurs conforme à la présente invention et, FIG. 13 est une vue en élévation selon une diagonale du mode de réalisation de FIG. 12.FIG. 11 is a perspective view of a third embodiment of a multi-sector antenna according to the present invention, FIG. 12 is a perspective view of a fourth embodiment of a multi-sector antenna according to the present invention and FIG. 13 is a diagonal elevational view of the embodiment of FIG. 12.
Pour simplifier la description qui va suivre, dans les figures les mêmes éléments portent les mêmes références.To simplify the description which follows, in the figures the same elements bear the same references.
La présente invention sera décrite en prenant pour antenne planaire constituée d'une fente à rayonnement longitudinale, une antenne de type Vivaldi. L'évasement de l'antenne Vivaldi peut présenter une forme circulaire, rectiligne, exponentielle, etc. D'autres types d'antennes planaires à fentes .rayonnantes peuvent aussi être envisagés sans sortir du cadre de l'invention. Sur les figures 1 et 2, on a représenté une antenne de type Vivaldi. Cette antenne est réalisée sur un substrat diélectrique 1 qui, dans le cadre de l'invention est constitué d'un matériau plastique tel que des matériaux plastiques de la classe des PBT (Terephtalate de poly-butylène), par exemple le matériau connu sous la dénomination commerciale Vestodur (εr=4, tanδ=0.02) ou le matériau connu sous le dénomination commerciale POCAN (εr=3.4, , tanδ=0.01 , h=1.5 mm). Le substrat 1 est recouvert sur une face d'un matériau conducteur tel qu'un métal formant plan de masse 2, notamment le cuivre. Dans le plan de masse 2 est gravée une ligne fente 3 qui s'élargit progressivement jusqu'à l'extrémité du substrat. Sur l'autre face du substrat est gravée une ligne micro ruban 4 pour l'excitation par couplage électromagnétique de la fente. D'autres types de ligne d'alimentation peuvent être envisagés sans sortir du cadre de la présente invention, notamment une alimentation par ligne coplanaire. Comme représenté sur la figure 1 , la ligne d'excitation 4 se prolonge jusqu'à un des bords du substrat 1 , pour obtenir un point d'accès 5. On décrira maintenant avec référence aux figures 3 à 9, un premier mode de réalisation d'une antenne multi secteurs conforme à l'invention. Comme représenté sur la figure 3, l'antenne est constituée de quatre antennes Vivaldi 1OA, 1OB, 1OC, 1OD. Ces quatre antennes sont réalisées chacune sur un premier substrat, comme décrit ci-dessus, montées sur un second substrat commun 14 , muni sur sa face supérieure d'une couche conductrice formant plan de masse 14A. De manière plus spécifique, les quatre substrats portant les antennes Vivaldi sont fixées sur le substrat 14 de sorte que l'axe de rayonnement de la fente Vivaldi 11A, 11 B, 11C, 11 D soit parallèle au plan 14A du second substrat 14. Les quatre premiers substrats sont positionnés parallèlement aux bords du substrat 14. Toutefois les quatre premiers substrats peuvent aussi être positionnés selon les diagonales du second substrat 14, ce qui diminue l'encombrement. Pour faciliter la fixation des antennes Vivaldi, dans un premier mode de réalisation, le substrat de chaque antenne Vivaldi présente du côté de la fixation sur le substrat commun 14, une partie élargie telle que 17D sur les figures 3 ,5 et 6. Cette partie élargie permet un report, par exemple par soudure, sur le second substrat 14 et assure ainsi une excellente continuité de la masse comme représenté sur la figure 5, par les références 10'D et 14A. Toutefois, en fonction du matériau plastique choisi, le report par soudure n'est pas conseillé. Dans ce cas, les parties élargies des premiers substrats comportent des pions de fixation qui viennent s'insérer dans des ouvertures prévues dans le second substrat. Le pion positionné dans le prolongement de la ligne d'excitation est conducteur et vient s'insérer dans une ouverture métallisée de manière à obtenir une continuité électrique. De plus, cette partie élargie peut comporter des zones de positionnement ou piges 16 permettant une meilleure précision mécanique du report. Les quatre antennes Vivaldi sont interconnectées selon un axe 13 perpendiculaire au plan du second substrat 14 . Dans le mode de réalisation représenté, les quatre substrats sont perpendiculaires entre eux de manière à former une antenne à quatre secteurs. Chaque substrat est entièrement métallisé puis gravé pour réaliser sur une face, la fente rayonnante, telle que 11 A, 11 B, 11 Cet 11 D et sur l'autre face la ligne d'excitation, telle que 12D. Comme représenté sur la figure 4, des zones non métallisées 15A, 15B, 15C et 15D sont prévues dans le plan de masse !4A du second substrat pour le passage des lignes d'excitation. Comme représenté sur la figure 6 par 12D, les lignes d'excitation épousent le contour de la partie élargie des premiers substrats recevant les antennes Vivaldi et sont reliées à un circuit de commutation référencé 18 sur la figure 7. Ainsi le plan inférieur du second substrat diélectrique 14 comporte un circuit de commutation 18 qui peut être constitué par des composants tels que des diodes PIN, des MEMs ou d'autres composants de commutation connectés aux lignes d'excitation 12A, 12B, 12C, 12D des antennes Vivaldi et à la ligne d'alimentation commune 19.The present invention will be described by taking a planar antenna consisting of a longitudinal radiation slot, a Vivaldi type antenna. The flare of the Vivaldi antenna can have a circular, rectilinear, exponential shape, etc. Other types of planar antennas with darting slots can also be envisaged without departing from the scope of the invention. In Figures 1 and 2, there is shown an antenna type Vivaldi. This antenna is made on a dielectric substrate 1 which, in the context of the invention consists of a plastic material such as plastic materials of the class of PBT (polybutylene terephthalate), for example the material known as trade name Vestodur (εr = 4, tanδ = 0.02) or the material known under the trade name POCAN (εr = 3.4, tanδ = 0.01, h = 1.5 mm). The substrate 1 is covered on one side with a conductive material such as a metal forming a ground plane 2, in particular copper. In the ground plane 2 is etched a slot line 3 which gradually widens to the end of the substrate. On the other side of the substrate is etched a micro-ribbon line 4 for excitation by electromagnetic coupling of the slot. Other types of supply line can be envisaged without departing from the scope of the present invention, especially a power supply coplanar line. As shown in FIG. 1, the excitation line 4 extends to one edge of the substrate 1, in order to obtain an access point 5. We will now describe with reference to Figures 3 to 9, a first embodiment of a multi sector antenna according to the invention. As shown in Figure 3, the antenna consists of four antennas Vivaldi 1OA, 1OB, 1OC, 1OD. These four antennas are each made on a first substrate, as described above, mounted on a second common substrate 14, provided on its upper face with a conductive layer forming a ground plane 14A. More specifically, the four substrates bearing the Vivaldi antennas are fixed on the substrate 14 so that the radiation axis of the Vivaldi slot 11A, 11B, 11C, 11D is parallel to the plane 14A of the second substrate 14. four first substrates are positioned parallel to the edges of the substrate 14. However, the first four substrates can also be positioned along the diagonals of the second substrate 14, which reduces the bulk. To facilitate the attachment of Vivaldi antennas, in a first embodiment, the substrate of each Vivaldi antenna has on the fixing side on the common substrate 14, an enlarged portion such as 17D in Figures 3, 5 and 6. This part widened allows a transfer, for example by welding, on the second substrate 14 and thus provides excellent continuity of the mass as shown in Figure 5, by references 10'D and 14A. However, depending on the plastic material chosen, the transfer by welding is not advisable. In this case, the enlarged portions of the first substrates comprise fixing pins which are inserted into openings provided in the second substrate. The pin positioned in the extension of the excitation line is conductive and is inserted into a metallized opening so as to obtain electrical continuity. In addition, this enlarged portion may include positioning zones or rods 16 for better mechanical accuracy of the report. The four Vivaldi antennas are interconnected along an axis 13 perpendicular to the plane of the second substrate 14. In the embodiment shown, the four substrates are perpendicular to each other so as to form a four-sector antenna. Each substrate is entirely metallized and then etched to produce on one face, the radiating slot, such as 11 A, 11 B, 11 This 11 D and on the other side the excitation line, such as 12D. As shown in FIG. 4, unmetallized areas 15A, 15B, 15C and 15D are provided in the ground plane 41A of the second substrate for passage of the excitation lines. As represented in FIG. 6 by 12D, the excitation lines follow the contour of the widened part of the first substrates receiving the Vivaldi antennas and are connected to a switching circuit referenced 18 in FIG. 7. Thus, the lower plane of the second substrate dielectric 14 comprises a switching circuit 18 which may be constituted by components such as PIN diodes, MEMs or other switching components connected to the excitation lines 12A, 12B, 12C, 12D of the Vivaldi antennas and to the line common supply 19.
Une antenne multi-secteur de ce type a été simulée avec le logiciel de simulation électromagnétique HFSS basé sur la méthode des éléments finis de la société ANSOFT corporation en utilisant les valeurs suivantes: Fréquence de fonctionnement 5.5GHz.A multi-sector antenna of this type was simulated with the HFSS electromagnetic simulation software based on the finite element method of ANSOFT corporation using the following values: Operating frequency 5.5GHz.
Premier substrat: matériau plastique présentant une permittivité de 3.5 et une tangente de pertes de 0.01. Le substrat a une épaisseur de 0.77mm.First substrate: plastic material with a permittivity of 3.5 and a loss tangent of 0.01. The substrate has a thickness of 0.77mm.
Second substrat: de type Rogers 4003 présentant une permittivité de 3.38 et une tangente de perte de 0.0027 et ayant une épaisseur de 0.81 mm.Second substrate: Rogers 4003 type having a permittivity of 3.38 and a loss tangent of 0.0027 and having a thickness of 0.81 mm.
Les résultats de la simulation sont donnés sur les figures 8 et 9. La figure 8 donne les pertes par réflexion sur un des 4 accès d'une antenne Vivaldi. Dans ce cas, l'adaptation reste large bande autour de la fréquence de fonctionnement de 5.5GHZ. La valeur de la directivité pour un unique secteur éclairé, les trois autres étant désactivés, est de 6.9dBi. Le diagramme de rayonnement représenté sur la figure 9 reste en adéquation avec le diagramme de rayonnement d'une antenne Vivaldi placée dans un environnement sans contrainte. On décrira maintenant, avec référence à la figure 10, un autre mode de réalisation de la présente invention. Dans ce cas, l'antenne multi secteurs comporte huit antennes de type Vivaldi 101 , 102, 103, 104, 105, 106, 107, 108 interconnectées au niveau d'un axe commun 100 perpendiculaire à un substrat commun 14. Chaque antenne de type Vivaldi est identique aux antennes de type Vivaldi décrites ci -dessus. Le nombre N maximal d'antennes de type Vivaldi pouvant être interconnectées pour déterminer les secteurs est déterminé par les lois de la physique.The results of the simulation are given in FIGS. 8 and 9. FIG. 8 gives the losses by reflection on one of the 4 accesses of a Vivaldi antenna. In this case, the adaptation remains broadband around the operating frequency of 5.5GHZ. The value of the directivity for a single illuminated sector, the other three being deactivated, is 6.9dBi. The radiation pattern shown in Figure 9 remains in line with the radiation pattern of a Vivaldi antenna placed in an environment without constraint. A further embodiment of the present invention will now be described with reference to FIG. In this case, the multi-sector antenna comprises eight Vivaldi type antennas 101, 102, 103, 104, 105, 106, 107, 108 interconnected at a common axis 100 perpendicular to a common substrate 14. Each Vivaldi type antenna is identical to the Vivaldi type antennas described above. The maximum number N of Vivaldi type antennas that can be interconnected to determine the sectors is determined by the laws of physics.
On décrira maintenant, avec référence à la figure 11 , un troisième mode de réalisation de la présente invention . Dans ce mode de réalisation, les quatre antennes de type Vivaldi 2OA, 2OB, 2OC, 2OD sont connectées sur un mât 24 muni d'une rainure 25 dans laquelle vient s'insérer un des bords du substrat de l'antenne Vivaldi. Le mât 24 est fixé perpendiculairement au second substrat 14. Dans ce mode de réalisation les antennes de type Vivaldi sont réalisées de manière indépendante par des techniques usuelles de métallisation de circuits.A third embodiment of the present invention will now be described with reference to FIG. In this embodiment, the four antennas Vivaldi type 2OA, 2OB, 2OC, 2OD are connected to a mast 24 provided with a groove 25 in which is inserted one of the edges of the substrate of the antenna Vivaldi. The mast 24 is fixed perpendicularly to the second substrate 14. In this embodiment, the Vivaldi type antennas are independently produced by conventional circuit metallization techniques.
Certains perfectionnements peuvent être apportés aux modes de réalisation décrits ci-dessus. Par exemple, le mât peut comporter des piges de positionnement supplémentaires ou être évidé dans sa partie inférieure pour pouvoir intégrer des composants sur le substrat commun.Some improvements can be made to the embodiments described above. For example, the mast may have additional positioning pins or be recessed in its lower part to be able to integrate components on the common substrate.
On décrira, avec référence aux figures 12 et 13, un quatrième mode de réalisation de la présente invention. Dans ce mode de réalisation, sur une plaque rectangulaire 30 en matière plastique telle que mentionnée ci- dessus deux premiers substrats 3OA, 3OB ont été réalisés. Pour ce faire, une première demie face de la plaque rectangulaire est métallisée et dans cette face métallisée est gravée une fente évasée 31 , la demie face non métallisée recevant une ligne microruban 32. Sur l'autre face de la plaque, la métallisation est inversée. Cette structure donne deux antennes Vivaldi. La plaque rectangulaire 30 présente en son milieu une fente permettant son imbrication avec une autre plaque rectangulaire 30' de même type comme représenté sur la figure 12.A fourth embodiment of the present invention will be described with reference to FIGS. 12 and 13. In this embodiment, on a rectangular plastic plate 30 as mentioned above two first substrates 30A, 30B have been made. To do this, a first half face of the rectangular plate is metallized and in this metallized face is etched a flared slot 31, the half non-metallized face receiving a microstrip line 32. On the other side of the plate, the metallization is reversed . This structure gives two Vivaldi antennas. The rectangular plate 30 has in its middle a slot allowing it to be interwoven with another rectangular plate 30 'of the same type as represented in FIG. 12.
Conformément à la présente invention et comme représenté sur les figures 12 et 13, la plaque rectangulaire présente sur au moins une de ses longueurs des picots 33 avec un des picots 33' prolongeant la ligne microruban 32. Les picots 33 permettent de fixer les différentes plaques rectangulaires 30, 30' sur le second substrat 34 muni d'ouvertures correspondantes.According to the present invention and as shown in Figures 12 and 13, the rectangular plate has on at least one of its lengths of the pins 33 with one of the pins 33 'extending the microstrip line 32. The pins 33 can fix the different plates rectangular 30, 30 'on the second substrate 34 provided with corresponding openings.
De préférence, le trou correspondant au picot 33' recevant la ligne d'excitation microruban 32 est métallisé. Les autres picots 33 étant métallisés, ils assurent une continuité de masse avec le second substrat 34 dont la face supérieure est métallisée. Comme pour les modes de réalisation précédents, la face inférieure du substrat reçoit des lignes microrubans connectant les lignes d'excitation des antennes Vivaldi à une ligne d'alimentation commune par l'intermédiaire de tout circuit adéquat. Ce mode de réalisation est simple et peu coûteux à réaliser. Il ne nécessite aucune soudure et les éléments constituant l'antenne multi-secteur sont standardisables.Preferably, the hole corresponding to the pin 33 'receiving the microstrip excitation line 32 is metallized. The other pins 33 being metallized, they provide a continuity of mass with the second substrate 34 whose upper face is metallized. As for the previous embodiments, the lower face of the substrate receives microstrip lines connecting the excitation lines of the Vivaldi antennas to a common power supply line via any suitable circuit. This embodiment is simple and inexpensive to produce. It requires no soldering and the elements constituting the multi-sector antenna are standardizable.
L'antenne multi-secteur conforme à la présente invention entraîne une augmentation de la directivité et une diminution de la largeur de faisceau pour couvrir un secteur donné à l'aide d'un dispositif en trois dimensions.The multi-sector antenna according to the present invention causes an increase in directivity and a decrease in the beamwidth to cover a given sector using a three-dimensional device.
Cette antenne présente les avantages suivants: a. Conservation de bonnes performances en terme de gain et de largeur de faisceau tout en conservant un encombrement réduit. b. Possibilité d'obtenir un nombre de secteurs plus important qu'en technologie planaire. c. Diversification des facteurs de forme grâce à l'apport de la troisième dimension. d. Flexibilité de conception, de construction et d'intégration grâce à la technologie « plastique métallisé » qui autorise des formes complexes et variées. This antenna has the following advantages: a. Preservation of good performance in terms of gain and beam width while maintaining a small footprint. b. Possibility of obtaining a larger number of sectors than in planar technology. vs. Diversification of form factors through the contribution of the third dimension. d. Flexibility in design, construction and integration thanks to "metallized plastic" technology that allows complex and varied shapes.

Claims

REVENDICATIONS
1 - Antenne multi secteurs comprenant N (N>1 ) antennes planaires (1OA, 1OB, 10C, 10D, 3OA, 30B) constituées chacune d'une fente à rayonnement longitudinal gravée sur un premier substrat muni d'un plan de masse et alimentée par une ligne d'excitation, les premiers substrats étant interconnectés selon un même axe (13) ; caractérisée en ce que les N premiers substrats sont munis sur au moins un des côtés du substrat parallèle à l'axe de moyens de connexion venant se fixer sur un second substrat (14, 34) perpendiculaire aux N premiers substrats.1 - Multi-sector antenna comprising N (N> 1) planar antennas (10A, 10B, 10C, 10D, 30A, 30B) each consisting of a longitudinal radiation slot etched on a first substrate provided with a ground plane and powered by an excitation line, the first substrates being interconnected along a same axis (13); characterized in that the N first substrates are provided on at least one side of the substrate parallel to the connection means axis being fixed on a second substrate (14, 34) perpendicular to the N first substrates.
2 - Antenne selon la revendication 1 , caractérisée en ce que la ligne d'excitation est constituée par une ligne imprimée sur la face du premier substrat opposée à la face recevant la fente.2 - Antenna according to claim 1, characterized in that the excitation line is constituted by a printed line on the face of the first substrate opposite to the face receiving the slot.
3 - Antenne selon l'une des revendications 1 ou 2, caractérisée en ce que les premiers substrats sont constitués par une plaque en matière plastique.3 - Antenna according to one of claims 1 or 2, characterized in that the first substrates are constituted by a plastic plate.
4 - Antenne selon la revendication 3, caractérisée en ce que chaque N premier substrat est constitué par une plaque en matière plastique dont l'une des faces est métallisée.4 - Antenna according to claim 3, characterized in that each N first substrate is constituted by a plastic plate of which one of the faces is metallized.
5 - Antenne selon la revendication 4, caractérisée en ce que les N premiers substrats sont connectés sur un mât perpendiculaire au second substrat.5 - Antenna according to claim 4, characterized in that the N first substrates are connected to a mast perpendicular to the second substrate.
6 - Antenne selon la revendication 3, caractérisée en ce que deux premiers substrats sont formés par une seule plaque en matière plastique, une partie de la première face et une autre partie de la seconde face de la plaque étant métallisée. 7 - Antenne selon l'une des revendications 1 à 6, caractérisée en ce que les premiers substrats présentent sur le côté fixé sur le second substrat une partie élargie.6 - Antenna according to claim 3, characterized in that two first substrates are formed by a single plastic plate, a part of the first face and another part of the second face of the plate being metallized. 7 - Antenna according to one of claims 1 to 6, characterized in that the first substrates have on the side fixed on the second substrate an enlarged portion.
8 - Antenne selon l'une des revendications 1 à 6, caractérisée en ce que les moyens de connexion sont constitués par des picots réalisés sur au moins un côté d'un premier substrat.8 - Antenna according to one of claims 1 to 6, characterized in that the connecting means are constituted by pins made on at least one side of a first substrate.
9 - Antenne selon l'une des revendications 1 à 8, caractérisée en ce que le second substrat présente un plan de masse se raccordant au plan de masse des premiers substrats, le dit plan étant muni d'ouvertures pour le passage des lignes d'excitation et/ou des picots.9 - Antenna according to one of claims 1 to 8, characterized in that the second substrate has a ground plane connecting to the ground plane of the first substrates, said plane being provided with openings for the passage of the lines of excitation and / or pimples.
10 - Antenne selon l'une des revendications 1 à 9, caractérisée en ce que les N lignes d'excitation des antennes planaires sont reliées par l'intermédiaire d'un circuit de commutation à une ligne d'alimentation commune.10 - Antenna according to one of claims 1 to 9, characterized in that the N excitation lines of the planar antennas are connected via a switching circuit to a common power supply line.
11 - Antenne selon la revendication 10, caractérisée en ce que la ligne d'alimentation est une ligne imprimée réalisée sur le second substrat. 11 - Antenna according to claim 10, characterized in that the supply line is a printed line made on the second substrate.
EP07858754A 2006-12-01 2007-11-29 Multi-sector antenna Withdrawn EP2087553A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0655246A FR2909486A1 (en) 2006-12-01 2006-12-01 MULTI-SECTOR ANTENNA
PCT/FR2007/052419 WO2008065311A2 (en) 2006-12-01 2007-11-29 Multi-sector antenna

Publications (1)

Publication Number Publication Date
EP2087553A2 true EP2087553A2 (en) 2009-08-12

Family

ID=38162266

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07858754A Withdrawn EP2087553A2 (en) 2006-12-01 2007-11-29 Multi-sector antenna

Country Status (5)

Country Link
US (1) US20100066622A1 (en)
EP (1) EP2087553A2 (en)
CN (1) CN101569059A (en)
FR (1) FR2909486A1 (en)
WO (1) WO2008065311A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679575B1 (en) * 2006-06-15 2010-03-16 The United States Of America As Represented By The Secretary Of The Navy Tapered slot antenna cylindrical array
FR2943465A1 (en) * 2009-03-17 2010-09-24 Groupe Ecoles Telecomm ANTENNA WITH DOUBLE FINS
FR2953652A1 (en) * 2009-12-07 2011-06-10 Thomson Licensing Orthogonal double polarization multisector antenna system for e.g. multiple input and multiple output system, has group of horizontal polarization vivaldi antennas formed in sector and excited by corresponding set of power supply lines
CN101976767A (en) * 2010-09-15 2011-02-16 吉林大学 Full-polarized ground penetrating radar array antenna
US8736504B1 (en) 2010-09-29 2014-05-27 Rockwell Collins, Inc. Phase center coincident, dual-polarization BAVA radiating elements for UWB ESA apertures
FR2970603A1 (en) * 2011-01-13 2012-07-20 Thomson Licensing SLOT TYPE PRINTED DIRECTIVE ANTENNA AND NETWORK SYSTEM MULTIPLE ANTENNAES SLOT-TYPE PRINTED DIRECTIVES
US9627777B2 (en) 2011-08-10 2017-04-18 Lawrence Livermore National Security, Llc Broad band antennas and feed methods
CN104377420B (en) * 2013-08-15 2017-10-17 启碁科技股份有限公司 Staggered form transport module
US9559430B2 (en) 2013-09-05 2017-01-31 John Howard Ultra-broadband antenna array with constant beamwidth throughout operating frequency band
US9905936B2 (en) 2013-09-05 2018-02-27 John Howard Ultra-broadband antenna array with constant beamwidth throughout operating frequency band
JP6810004B2 (en) * 2017-09-05 2021-01-06 Kddi株式会社 Antenna device
TWI677133B (en) 2018-03-22 2019-11-11 國立交通大學 Signal line conversion structure of the antenna array
CN110380193B (en) * 2019-06-04 2020-11-13 西安电子科技大学 Miniaturized multiband common-caliber circularly polarized antenna
FR3100829B1 (en) 2019-09-17 2021-08-20 Sateco Sa Folding cantilever work structure comprising a lateral floor comprising floorboards
CN115513641B (en) * 2022-11-22 2023-03-03 西安通飞电子科技有限公司 Multichannel, ultra wide band, miniaturized, anti-interference electronic countermeasure equipment
CN117594984B (en) * 2024-01-19 2024-03-26 微网优联科技(成都)有限公司 Planar pattern reconfigurable antenna

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001834A (en) * 1975-04-08 1977-01-04 Aeronutronic Ford Corporation Printed wiring antenna and arrays fabricated thereof
US5969689A (en) * 1997-01-13 1999-10-19 Metawave Communications Corporation Multi-sector pivotal antenna system and method
EP0877443B1 (en) * 1997-05-09 2008-01-02 Nippon Telegraph And Telephone Corporation Antenna and manufacturing method therefor
US6404394B1 (en) * 1999-12-23 2002-06-11 Tyco Electronics Logistics Ag Dual polarization slot antenna assembly
US6518931B1 (en) * 2000-03-15 2003-02-11 Hrl Laboratories, Llc Vivaldi cloverleaf antenna
JP2003188643A (en) * 2001-12-20 2003-07-04 Mitsubishi Electric Corp Antenna assembly and array antenna using the same
DE50307071D1 (en) * 2002-12-23 2007-05-31 Huber+Suhner Ag Broadband antenna with a 3-dimensional casting
DE20315394U1 (en) * 2003-09-23 2003-12-11 Wilhelm Sihn Jr. Gmbh & Co. Kg Slot-antenna for motor vehicle, includes conductive layer extending transversely to base-plate and to top-plate
US7683847B2 (en) * 2005-11-23 2010-03-23 Selex Sensors And Airborne Systems Limited Antennas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008065311A2 *

Also Published As

Publication number Publication date
US20100066622A1 (en) 2010-03-18
WO2008065311A3 (en) 2008-07-24
CN101569059A (en) 2009-10-28
WO2008065311A2 (en) 2008-06-05
FR2909486A1 (en) 2008-06-06

Similar Documents

Publication Publication Date Title
EP2087553A2 (en) Multi-sector antenna
US6972727B1 (en) One-dimensional and two-dimensional electronically scanned slotted waveguide antennas using tunable band gap surfaces
TWI237924B (en) Wideband antenna array
EP2664030B1 (en) Printed slot-type directional antenna, and system comprising an array of a plurality of printed slot-type directional antennas
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
FR3070224A1 (en) PLATED ANTENNA HAVING TWO DIFFERENT RADIATION MODES WITH TWO SEGREGATED WORK FREQUENCIES, DEVICE USING SUCH ANTENNA
EP2079131A1 (en) Improvement of planar antennas comprising at least one radiating element such as a slot with longitudinal radiation
FR2751471A1 (en) WIDE-BAND RADIATION DEVICE WHICH MAY BE MULTIPLE POLARIZATION
EP3179557B1 (en) Multi-band elementary radiating cell
FR3105884A1 (en) Circular polarization dual band Ka satellite antenna horn
EP3417507A1 (en) Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate
FR2953652A1 (en) Orthogonal double polarization multisector antenna system for e.g. multiple input and multiple output system, has group of horizontal polarization vivaldi antennas formed in sector and excited by corresponding set of power supply lines
EP1188202B1 (en) Device for transmitting and/or receiving signals
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
EP0520908B1 (en) Linear antenna array
FR2852150A1 (en) IMPROVEMENT TO RADIATION DIVERSITY ANTENNAS
EP2316149B1 (en) Low-loss compact radiating element
EP3900113B1 (en) Elementary microstrip antenna and array antenna
CA2808511A1 (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
FR2930844A1 (en) Active electronically scanned array aerial for airborne radar application, has supply line that is prolongation of printed circuit line of transmission and reception module and contained in plane perpendicular to plane of radiating element
EP3942649B1 (en) Compact directional antenna, device comprising such an antenna
EP0831550B1 (en) Versatile array antenna
FR2960347A1 (en) Electromagnetic wave radiating elements array for active electronically scanned antenna of radar, has filtering device i.e. band-pass filter, formed upstream from adaptation circuit in signal emitting direction
EP4092831A1 (en) Antenna with lacunary distribution network
EP4167378A1 (en) Insulated radio frequency antenna device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090529

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130601