EP2083407B1 - Procédé et dispositif destinés à la transmission de données et d'énergie sans contact - Google Patents

Procédé et dispositif destinés à la transmission de données et d'énergie sans contact Download PDF

Info

Publication number
EP2083407B1
EP2083407B1 EP08001422A EP08001422A EP2083407B1 EP 2083407 B1 EP2083407 B1 EP 2083407B1 EP 08001422 A EP08001422 A EP 08001422A EP 08001422 A EP08001422 A EP 08001422A EP 2083407 B1 EP2083407 B1 EP 2083407B1
Authority
EP
European Patent Office
Prior art keywords
unit
primary
energy
inductor
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08001422A
Other languages
German (de)
English (en)
Other versions
EP2083407A1 (fr
Inventor
Roland Seefried
Dennis Trebbels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pepperl and Fuchs SE
Original Assignee
Pepperl and Fuchs SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pepperl and Fuchs SE filed Critical Pepperl and Fuchs SE
Priority to EP08001422A priority Critical patent/EP2083407B1/fr
Priority to US12/359,495 priority patent/US8198755B2/en
Publication of EP2083407A1 publication Critical patent/EP2083407A1/fr
Application granted granted Critical
Publication of EP2083407B1 publication Critical patent/EP2083407B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • H01F2038/143Inductive couplings for signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers

Definitions

  • the present invention relates in a first aspect to a device for contactless energy and data transmission according to the preamble of claim 1.
  • the invention in a second aspect, relates to a method for contactless energy and data transmission between the primary and secondary units.
  • Generic devices have a primary unit with a primary inductance and a secondary unit with a secondary inductance.
  • the secondary unit is set up for connecting, for supplying and / or for controlling at least one terminal.
  • the primary unit and the secondary unit are at least temporarily positioned relative to one another such that a transformer coupling path is formed between the primary inductance and the secondary inductance.
  • the primary unit for contactless transmission of energy to the secondary unit is set up via the transformer coupling path and the secondary unit is provided for supplying the terminals by means of the energy received via the transformer coupling path.
  • Such devices are used when sensors are to be supplied and controlled, which are located on movable, such as rotatable objects and therefore can not be supplied and queried by means of a cable connection. Examples of this are sensors on pressure rollers or on moving elements in a high-bay warehouse.
  • sensors are supplied, for example via a radio link with information.
  • similar inductive couplings are used.
  • the primary unit and the secondary unit can be considered as parts of the sensor, but also as a separate device, which is responsible for the contactless transmission of energy and data.
  • two separate channels are provided for the transmission of energy and the transmission of data.
  • Such devices are made, for example DE 100 12 981 A1 or DE 102 00 488 B4 known.
  • the data is modulated onto the energy transfer and subsequently evaluated in the sensor or the secondary unit.
  • the problem here is to send information from the sensor back to the power supply or the primary unit, so that they can forward the data to a process control.
  • a sensor with such a frequency modulation of the energy transfer is, for example, in DE 10 2004 015 771 B4 described. Similar energy and data transmissions are also in other non-contact systems such as access control from the DE 44 21 526 C1 and in transmission systems from the US 5 345 231 A known.
  • Generic devices use a transformer coupling between the primary inductance and the secondary inductor instead of a radio link between the primary unit and the secondary unit.
  • many devices are already being used, which communicate with each other by radio communicate, whereby the radio bands are largely occupied and there are problems with the signal quality in the multiple use of these bands.
  • radio transmissions are relatively susceptible to interference, as compared to a transformatory transmission, for example by other electromagnetic fields generated by electrical devices.
  • Under transformer coupling is particularly the direct coupling of two inductors, such as coils to understand. In this case, an air gap of a few centimeters or less is bridged between the two coils.
  • the two coils are aligned coaxially with each other.
  • the aim of positioning the coils relative to one another is to achieve a particularly high coupling factor between the primary inductance and the secondary inductance.
  • a coupling factor is close to or equal to 1. This can be achieved for example by the frontal positioning of the two coils to each other.
  • as many field lines as possible of the magnetic field of the primary coil should pass through the secondary coil.
  • the magnetic field can be additionally amplified or influenced by ferromagnetic cores in the coils.
  • the primary unit has means for interrupting the transmission of energy via the transformer coupling path in energy-saving pauses and the secondary unit has means for detecting the energy end pauses.
  • a device for transferring energy and data between two devices is off US 5 515 399 A , which discloses the preamble of claims 1 and 8, known.
  • For contactless transmission here is a transformer.
  • US 5 548 282 A describes a transfer of energy and data to an electronic screen to display prices on a shelf.
  • An object of the invention is to provide a non-contact power and data transmission apparatus which enables efficient power transmission while still allowing easy execution of the secondary unit. Furthermore, the data transmission should be robust against external interference signals.
  • the object is achieved by a method for contactless energy and data transmission according to claim 8.
  • the transmission of data from the secondary unit to the primary unit is performed in power transmission pauses.
  • the data transmission that is, for example, the pulse shape or the coding of the data
  • the corresponding electronics for sending the signals in the secondary unit can be easily designed. This is of particular interest because the secondary unit should only be supplied with energy via the transformer coupling path and thus should be designed to save energy.
  • the secondary unit detects the energy-saving pauses and transmits data to the primary unit as a result of the detection of an energy-saving pause.
  • the detection of the energy-saving pause ensures that data is not transmitted by mistake even when energy is sent via the transformer coupling link, which, in principle, can take place, for example, in a transmission sequence or transmission rights determined only by timing. Moreover, this does not require synchronization of two timers on the primary unit and the secondary unit.
  • the primary inductance is excited by a resonant circuit or forms itself a part of this resonant circuit. In this case, it is preferable if it forms a part of the resonant circuit itself, since in this way no further components have to be provided on the primary unit.
  • a resonant circuit e.g. a parallel or a serial resonant circuit can be used.
  • the secondary unit In addition to the means provided in the secondary unit for transmitting data to the primary unit means for transmitting information to the secondary unit are provided in the primary unit. This transmission can take place, for example, by varying the length of the energy-pauses and / or the length of energy transmission phases.
  • Bidirectional communication can take place over the same channel over which power is transmitted.
  • Data transmitted from the primary unit to the secondary unit may be, for example, instructions for switching operations for actuators connected to the secondary unit, initialization instructions, or configuration data for the secondary unit or devices connected to it, such as sensors or actuators.
  • Data sent from the secondary unit to the primary unit may relate to switching states or other state variables of the connected terminals.
  • the resonant circuit is no longer supplied with energy, so that it decays slowly.
  • the transmitted energy slowly decreases continuously.
  • energy is no longer transmitted as soon as energy interruption via the transformer coupling path, that is, as soon as possible can be started with the actual energy-saving break to accordingly quickly start again with the retransmission of energy.
  • This is achieved by the accelerated degradation of the residual energy in the primary inductance. This degradation can be achieved for example by a transistor path, which is in series with the primary inductance.
  • the additional use of a resistor, which absorbs energy also has an accelerating effect.
  • a voltage is monitored via the primary inductance. If this voltage rises above a previously determined threshold in an energy-saving pause, this is interpreted as a data signal and corresponding information forwarded to downstream processing.
  • a current through the primary inductance is measured.
  • This can be done for example by a transformer, which can be designed as a printed circuit transformer.
  • the measurement signal supplied by the transformer is proportional to the current in the primary inductance.
  • the load can be determined, which is represented by the secondary unit and the connected terminals. By determining the load, it is possible to regulate the resonant circuit current so that it does not become unduly high at low loads. In this case, the excitation of the resonant circuit can be interrupted, for example, until the current flow is again in a desired range.
  • the energy-saving pauses at the secondary unit can be arbitrarily determined.
  • the secondary unit has means for measuring a voltage across the secondary inductance. If this voltage drops, it is concluded that there is a start of an energy-saving break, whereby the transmission of the data from the secondary unit in the direction of the primary unit is initiated via the transformer coupling path.
  • the secondary unit Since the energy transfer is interrupted in energy-saving pauses, it is advantageous if the secondary unit has a storage capacity for buffering the energy. As a result, the supply of the secondary unit as well as the connected terminals can be ensured during an energy-saving break. In this context, it is preferred if more energy is transmitted via the transformer coupling path during the time in which energy is transmitted than is consumed at the time of energy transfer from the secondary unit and the connected terminals.
  • the energy storage can be realized by a capacitor, which is preceded by a rectifier.
  • sensors or actuators can be connected.
  • other consumers such as incandescent lamps
  • actuators are electrical valves.
  • the sensors can be any type of sensor for detecting a measured variable or for detecting objects or objects.
  • the present invention for sensors in the industrial sector, for example, inductive, capacitive or optical sensors, temperature or pressure sensors, are used, each having a corresponding sensor element.
  • a sensor element may in principle be any element which is suitable for detecting a physical quantity.
  • the sensor element may be a coil or a resonant circuit of an inductive proximity switch, a photodetector of an optical sensor, a capacitive probe, or a thermocouple.
  • An inventive method for contactless energy and data transmission can be performed with a primary unit and a secondary unit, each having an inductance.
  • the primary unit and the secondary unit are at least temporarily positioned so that between the primary inductance and the secondary inductance, a transformer coupling path is formed.
  • at least temporarily energy for supplying the secondary unit and connectable terminals via the transformer coupling path from the primary unit to the secondary unit is transmitted contactless.
  • the energy transfer from the primary unit to the secondary unit is at least temporarily interrupted. This interruption of energy transfer is referred to as an energy-saving break.
  • the secondary unit in turn detects such an energy-saving pause and, in the energy-saving pause, transmits data via the transformer coupling path to the primary unit.
  • no signals are transmitted from the secondary unit to the primary unit in the energy-saving pauses.
  • data is transferred from the primary unit to the secondary unit.
  • the data can be mapped, for example, by varying the length of the energy-saving pause.
  • Another possibility is to use different data Expressing intervals of multiple energy silence intervals to each other or to use both types of data encoding.
  • both a transmission of signals in the energy-saving pauses from the secondary unit to the primary unit takes place, as well as a transmission of data from the primary unit to the secondary unit.
  • a single bidirectional channel is used for both the data and the energy transfer.
  • Data transmitted from the primary unit to the secondary unit may be, for example, instructions for switching actuators connected to the secondary unit, initialization instructions or configuration data for the secondary unit or for connected devices such as sensors or actuators.
  • Data sent from the secondary unit to the primary unit may be, for example, switching states or other state variables of the connected terminals.
  • An inventive method can be carried out for power and data transmission between a fixed primary unit and a movable secondary unit. This may be the case, for example, with pressure rollers in which the secondary unit is positioned in or near the axis.
  • Another example is a high-bay warehouse in which the goods in the warehouse are automatically moved out of the shelves and into the shelves by means of loading and unloading equipment.
  • the secondary unit can then be provided, for example, on a loading and unloading device and the primary unit fixed to a previously defined point to which the loading and unloading returns to the idle state.
  • the primary inductance for energy transfer is excited with an alternating current.
  • the primary inductance itself can represent a part of a resonant or resonant circuit or be excited by it.
  • the control of the resonant circuit is preferably by means of a current intensity measurement, a control and a transistor bridge regulated.
  • the current intensity measurement can be carried out, for example, via a transformer whose measuring signal is proportional to the current intensity.
  • the measuring signals from the transformer are amplified with a phase correction and passed on to the drive.
  • the control controls the transistor bridge or its driver circuit such that the transistor bridge always switches in the vicinity of the zero crossing of the resonant circuit current and thus the resonant circuit is additionally excited. As a result, switching losses are avoided, and it is, so to speak, a square wave voltage on the resonant circuit. In the control, a review of the current resonant circuit current can be made to suspend the excitation at possibly too high currents.
  • the residual energy is dissipated accelerated in the primary inductance. This can be done for example via the control, which then phase-inverted supplies the primary inductance or the resonant circuit with power, so that the vibration is damped. Alternatively, this can also be done by a series transistor path, e.g. made of FETs and / or resistors.
  • the secondary inductance is tuned to the primary inductance or its oscillation frequency.
  • this requires appropriate tuning between the two inductors.
  • drifts of the natural frequencies e.g. due to aging or temperature changes. Therefore, it is preferred that when using the transformer coupling path according to the invention, the secondary inductance is operated uncoordinated. This means that no effort is made to match them to the resonant frequency of the primary inductor or resonant circuit in the primary unit.
  • One way to detect the energy end pauses by the secondary unit is to monitor the voltage across the secondary inductance. If this voltage drops, then the beginning of an energy-saving break is concluded.
  • the data transmission from the secondary unit to the primary unit in an energy-saving break can basically be arbitrary. But it is especially easy when the secondary inductance is supplied with current for transmitting the data, and then this current flow through the secondary inductance is aborted, in particular abruptly. As a result, a pulse is triggered, which is transmitted to the primary inductance via the transformer coupling path and can be detected in the primary unit as a voltage pulse.
  • the data that is transmitted from the secondary unit to the primary unit can be, for example, information about measuring signals of the wound sensors. It is also possible to transmit information about the current switching states of connected actuators. In doing so, it has proven to be advantageous if these data are subjected to a source or channel coding before or during the transmission, in order to reduce the susceptibility to transmission errors. Similarly, the provision of a checksum is possible to detect transmission errors.
  • Fig. 1 the current over the time in the primary inductance 4 of the primary unit 2 is shown.
  • the primary inductance 4 or the resonant circuit is excited by the control of the primary unit 2 with current, so that it is set in oscillation. That is, from the time t 0 and before it to the time t 1 41 energy is transmitted to the secondary inductance 3 in a first energy transfer interval. The residual ripple of the current is due to the regulation in the primary inductance 4.
  • the excitation of the resonant circuit or the primary inductance 4 is terminated.
  • the energy accelerated from the primary inductance 4 or the resonant circuit degraded. This period is also referred to as cooldown 42.
  • the energy-end pauses 43 are inserted at periodic intervals.
  • the beginning of the energy-saving break 43 which extends from the time t 2 to t 4 , is detected by the secondary unit 3. Subsequently, the secondary unit 3 sends a pulse 50 by means of its secondary inductance 5 via the transformer coupling path to the primary inductance 4 and thus the primary unit 2.
  • the excitation of the oscillation in the primary inductance 4 is resumed by the primary unit 2 and reaches the optimum operating value again at the instant t 5 .
  • the interval between t 4 and t 5 is also referred to as turn-on delay 44.
  • the length of the energy break 43 can be used for data transmission or coding.
  • Another or additional possibility is to use the length of a power transmission interval 41, 45 for transmitting this data.
  • an energy transfer interval 41, 45 may be 4 ms and the decay time 20-30 ⁇ s. In order not to interrupt the energy transfer too long, then takes an energy-saving break 34, for example, about 100-150 microseconds.
  • Fig. 2 describes the basic functionality and operation of a device 1 according to the invention.
  • the device 1 according to the invention is divided into a primary unit 2 and a secondary unit 3. These can also be regarded as primary and secondary sides of the device 1.
  • the central elements for carrying out the method according to the invention are the primary inductance 4, which is formed by a first coil and the secondary inductance 5, which is formed by a second coil.
  • the two coils 4 and 5 are preferably coaxially positioned.
  • the distance 15 between the two coils 4, 5 is of the order of 2.5 mm and should not exceed 5 mm. This distance between the two coils 4, 5 is referred to as a transformer coupling path.
  • the following describes the control and operation of the coil 4 for transmitting the power to the secondary unit 3.
  • the primary unit 2 is powered by an energy source 6 with energy. This is connected both to the general supply for the devices of the primary unit 2 as well as to a transistor bridge 9.
  • This transistor bridge 9 is preferably constructed of FETs.
  • a parallel resonant circuit is formed by the coil 4 and a capacitor 34 connected in parallel thereto.
  • another resonant circuit for example a serial resonant circuit, for carrying out the method according to the invention.
  • a current and voltage sensor 16 measures the current flowing through the coil 4 and forwards a measurement signal to the control device 10. This signal can be amplified with a phase correction.
  • the current measurement in the current and voltage sensor 16 may be performed by a transformer whose measurement signal is proportional to the current.
  • the control device 10 which can also be referred to as control logic for the bridge driver 8, switches the transistor bridge 9 via its driver 8 in such a way that the resonant circuit is set in oscillation. This is done, for example, by switching at the time of zero passage of the resonant circuit current. Furthermore, the current measured by the current and voltage sensor 16 is used to control the current in the coil 4 to ensure that the resonant circuit current is not inadmissible gets high. The control is carried out by the control device 10 such that when the current through the coil 4 is too high, the resonant circuit is no longer excited.
  • an energy-saving break 43 is initiated by the controller 10. To do this, it signals the driver 8 not to continue or support the oscillation. In addition, it activates a decay accelerator 14. This can be carried out for example by transistors and resistors and ensures that the residual energy, which is located in the coil 4, is degraded as quickly as possible.
  • the coil 5 receives a data pulse 50 in the coil 4, as previously described with reference to FIG Fig. 1 shown, excited.
  • the results of a continuous voltage monitoring of the coil 4 are forwarded to a pulse conditioning 13.
  • a pulse conditioning 13 is decoded based on the received voltage levels, which data and information was transmitted from the secondary unit 3.
  • These data are forwarded to a central evaluation unit 12 for further processing.
  • the evaluation unit 12 can be realized for example by a microprocessor or by a programmable logic, such as an FPGA.
  • the evaluation 12 prepares the results and outputs them via corresponding outputs 11, for example to a programmable logic controller, a relay or a data bus.
  • the evaluation 12 can also control the control device 10 with instructions.
  • an alternating voltage is excited via the inductive coupling path through the coil 4 in the coil 5.
  • the coil 5 is connected to a general supply device 18.
  • This has, for example, a capacitor for energy storage of the transmitted energy, which is charged via a rectifier.
  • the rectified voltage is highly dependent on distance and can be at very low distance or direct contact of the coils 4, 5 over 100 volts. Therefore, a switching regulator is provided for loss of power reduction.
  • the energy stored and processed in the general supply device 18 becomes via a switching power supply 19 the connected terminals, such as actuators or sensors, provided.
  • the switched-mode power supply 19 supplies a voltage of approximately 12 V to the terminals, which consume approximately 160-170 mA.
  • a pause detection 17 is located directly on the coil 5. This pause detection measures the voltage which is transmitted to the coil 5 and signals a central processing device 21 as soon as the voltage falls below a threshold value.
  • the central processing device 21 can be embodied, for example, in the form of a microcontroller or a programmable logic, such as an FPGA. If the central processing device 21 receives the information from the pause detection 17 that the voltage is currently below a threshold, it interprets this as an energy-saving pause 43.
  • the central processing device 21 transmits instructions corresponding to a pulse generator 22, specific pulse shapes via the coil 5 by means of the inductive Coupling path to the coil 4 of the primary unit 2 to transmit. The energy for transmit pulse generation also comes from the general power supply 18.
  • the central processing device 21 also receives information about inputs 23. These are connected to sensors or actuators. Similarly, the central processing device 21 via outputs, which are not shown, send instructions to actuators or sensors.
  • an undervoltage detection 20 is provided, which monitors the voltage at the switching power supply 19. If this voltage falls below a certain value, for example below 12 V, the data which the sensors supply via the inputs 23 are no longer reliable. This signals the undervoltage detection 20 to the central processing device 21 so that these unreliable data are not sent to the primary unit 2.
  • the voltage at the primary coil 4 during the energy transfer can be about 100-200 V and a data pulse has about 100-200 mV, for example.
  • Fig. 3 a possibility of positioning the primary coil 4 and the secondary coil 5 is shown.
  • the primary coil 4 far a U-shaped core 56.
  • the secondary coil 5 is located on a rotatably mounted about its central axis 57 pulley 58 at its outer peripheral portion.
  • the disk 58 may be, for example, a turntable of a bottling plant. Rotates now the disc 58, it is always at least a portion of the secondary coil 5 in transformer coupling with the primary coil 4.
  • the two coils 4, 5 preferred when most field lines of the primary coil 4 through at least portions of the secondary coil. 5 pass.
  • the device according to the invention and the method according to the invention thus offer a contactless, effective and trouble-free energy and data transmission via only one interface.

Claims (15)

  1. Dispositif (1) pour la transmission d'énergie et de données sans contact,
    avec une unité primaire (2) qui comprend une inductance primaire (4),
    avec une unité secondaire (3) qui comprend une inductance secondaire (5) et qui est agencée pour raccorder, alimenter et/ou piloter au moins un appareil terminal,
    dans lequel l'unité primaire (2) et l'unité secondaire (3) sont positionnées au moins temporairement de telle façon l'une par rapport à l'autre qu'entre l'inductance primaire (4) et l'inductance secondaire (5) se forme une ligne de couplage de transformation,
    dans lequel l'unité primaire (2) est agencée pour transmettre sans contact de l'énergie à l'unité secondaire (3) par la ligne de couplage de transformation, dans lequel l'unité secondaire (3) est agencée pour alimenter les appareils terminaux au moyen de l'énergie reçue par la ligne de couplage de transformation,
    l'unité primaire (2) comprend des moyens (10, 14) pour interrompre le transfert d'énergie par la ligne de couplage de transformation pendant des pauses (43) d'envoi d'énergie, et
    dans lequel l'unité secondaire (3) comprend des moyens (17) pour détecter les pauses (43) d'envoi d'énergie,
    caractérisé en ce que
    l'unité primaire (2) comprend des moyens pour transmettre des données par variation de la longueur des pauses (43) d'envoi d'énergie et/ou de la longueur des phases de transfert d'énergie vers l'unité secondaire (3), et
    en ce que l'unité secondaire (3) comprend des moyens (21) pour transmettre des données à l'unité primaire (2) par la ligne de couplage de transformation pendant les pauses (43) d'envoi d'énergie.
  2. Dispositif selon la revendication 1,
    caractérisé en ce que
    l'unité primaire (2) comprend une ligne transistorisée pour détruire de manière accélérée l'énergie résiduelle dans l'inductance primaire (4) lors d'une interruption du transfert d'énergie.
  3. Dispositif selon l'une quelconque des revendications 1 ou 2,
    caractérisé en ce que
    l'unité primaire (2) comprend des moyens (16) pour surveiller une tension sur l'inductance primaire (4).
  4. Dispositif selon l'une quelconque des revendications 1 à 3,
    caractérisé en ce que
    l'unité primaire (2) comprend des moyens (16) pour mesurer un courant dans l'inductance primaire (4).
  5. Dispositif selon l'une quelconque des revendications 1 à 4,
    caractérisé en ce que
    l'unité secondaire (3) comprend des moyens (17) pour mesurer une tension sur l'inductance secondaire (5).
  6. Dispositif selon l'une quelconque des revendications 1 à 5,
    caractérisé en ce que
    l'unité secondaire (3) comprend une capacité tampon pour tamponner une alimentation des appareils finaux.
  7. Dispositif selon l'une quelconque des revendications 1 à 6,
    caractérisé en ce que
    l'inductance primaire (4) est réalisée en tant que partie d'un circuit résonant.
  8. Procédé de transfert d'énergie et de données sans contact entre une unité primaire (2) et une unité secondaire (3), qui est agencée pour raccorder, alimenter et/ou piloter au moins un appareil terminal,
    dans lequel l'unité primaire (2) comprend une inductance primaire (4), et
    dans lequel l'unité secondaire (3) comprend une inductance secondaire (5), dans lequel l'unité primaire (2) est positionnée par rapport à l'unité secondaire (3) au moins temporairement de telle façon qu'entre l'inductance primaire (4) et l'inductance secondaire (5) se forme une ligne de couplage de transformation, dans lequel au moins temporairement, de l'énergie est transmise sans contact de l'unité primaire (2) à l'unité secondaire (3) par la ligne de couplage de transformation pour alimenter l'unité secondaire (3) et les appareils terminaux raccordés,
    dans lequel le transfert d'énergie de l'unité primaire (2) à l'unité secondaire (3) est interrompu pendant des pauses (43) d'envoi d'énergie,
    les pauses (43) d'envoi d'énergie étant détectées par l'unité secondaire (3), caractérisé en ce que
    l'unité secondaire (3) transmet, pendant les pauses (43) de transfert d'énergie, des données à l'unité primaire (2) par la ligne de couplage de transformation, et au moyen de la durée des pauses (43) d'envoi d'énergie et/ou de l'écart entre deux pauses (43) d'envoi d'énergie, des données sont transmises par l'unité primaire (2) à l'unité secondaire (3).
  9. Procédé selon la revendication 8,
    caractérisé en ce que
    la ligne de couplage de transformation est exploitée en dehors de résonances de l'inductance secondaire (5).
  10. Procédé selon l'une quelconque des revendications 8 ou 9,
    caractérisé en ce que
    lors d'une interruption du transfert d'énergie, une énergie résiduelle dans l'inductance primaire (4) est détruite de manière accélérée.
  11. Procédé selon l'une quelconque des revendications 8 à 10,
    caractérisé en ce que
    l'inductance primaire (4) est excitée avec un courant alternatif pour le transfert d'énergie, et
    en ce que le courant alternatif est régulé au moyen d'une mesure d'intensité (16), d'une commande (10) et d'un pont de transistors (9).
  12. Procédé selon l'une quelconque des revendications 8 à 11,
    caractérisé en ce qu'
    une tension sur l'inductance secondaire (5) est analysée pour détecter les pauses (43) d'envoi d'énergie par l'unité secondaire (3).
  13. Procédé selon l'une quelconque des revendications 8 à 12,
    caractérisé en ce que,
    pour envoyer des données, l'inductance secondaire (5) est exposée à un courant et le passage du courant dans l'inductance secondaire (5) est alors interrompu, en particulier de manière abrupte.
  14. Procédé selon l'une quelconque des revendications 8 à 13,
    caractérisé en ce que
    pour transmettre une donnée de valeur « 1 » pendant une pause (43) d'envoi d'énergie, une impulsion de tension et/ou de courant est transmise, et
    en ce que, pour transmettre une donnée de valeur « 0 » pendant une pause (43) d'envoi d'énergie, aucune impulsion de tension et/ou de courant n'est transmise.
  15. Procédé selon l'une quelconque des revendications 8 à 14,
    caractérisé en ce qu'
    au moyen des données, en particulier codées, des informations sont transmises sur des appareils terminaux.
EP08001422A 2008-01-25 2008-01-25 Procédé et dispositif destinés à la transmission de données et d'énergie sans contact Active EP2083407B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08001422A EP2083407B1 (fr) 2008-01-25 2008-01-25 Procédé et dispositif destinés à la transmission de données et d'énergie sans contact
US12/359,495 US8198755B2 (en) 2008-01-25 2009-01-26 Contactless energy and data transmission device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08001422A EP2083407B1 (fr) 2008-01-25 2008-01-25 Procédé et dispositif destinés à la transmission de données et d'énergie sans contact

Publications (2)

Publication Number Publication Date
EP2083407A1 EP2083407A1 (fr) 2009-07-29
EP2083407B1 true EP2083407B1 (fr) 2012-05-16

Family

ID=39523402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08001422A Active EP2083407B1 (fr) 2008-01-25 2008-01-25 Procédé et dispositif destinés à la transmission de données et d'énergie sans contact

Country Status (2)

Country Link
US (1) US8198755B2 (fr)
EP (1) EP2083407B1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201806786T4 (tr) * 2011-12-22 2018-06-21 Koninklijke Philips Nv Bir diş fırçası gibi bir bırakılan hedef cihaz için şarj bobin sistemi.
KR102044360B1 (ko) 2014-02-21 2019-12-02 베가 그리이샤버 카게 에너지 송신 장치를 포함하는 수위 표시기
JP6612018B2 (ja) * 2014-07-01 2019-11-27 日本電産サンキョー株式会社 磁界発生装置、磁界発生装置の制御方法、および磁気記録媒体処理装置
DE102015100233B9 (de) * 2015-01-09 2016-03-24 Carl Mahr Holding Gmbh Induktiver Drehübertrager
DE102017108302A1 (de) * 2017-04-19 2018-10-25 Weidmüller Interface GmbH & Co. KG Vorrichtung zur kontaktlosen induktiven Energieübertragung und Verfahren zum Betreiben der Vorrichtung
DE102018000030B4 (de) * 2018-01-03 2023-03-30 Hottinger Brüel & Kjaer GmbH System für drahtloses Versorgen einer rotierenden Vorrichtung mit elektrischer Energie
DE102020112540A1 (de) 2020-05-08 2021-11-11 Endress + Hauser Wetzer Gmbh + Co. Kg Schnittstelle

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3616389A1 (de) * 1986-05-15 1987-11-19 Turck Werner Kg Beruehrungslos wirkender naeherungsschalter
FR2662320B1 (fr) * 1990-05-18 1994-05-13 Cemagref Dispositif de liaison sans contact pour relier des troncons de bus serie.
AT395224B (de) 1990-08-23 1992-10-27 Mikron Ges Fuer Integrierte Mi Kontaktloses, induktives datenuebertragungssystem
DE4130903A1 (de) 1991-09-17 1993-03-18 Bks Gmbh Einrichtung zur beruehrungslosen energie- und datenuebertragung
EP0616924B1 (fr) 1993-03-24 1996-12-04 Siemens Aktiengesellschaft Dispositif et procédé pour la transmission sous fil de données et d'énergie
GB9309246D0 (en) 1993-05-05 1993-06-16 Esselte Meto Int Gmbh Rechargeable shelf edge tag
DE4421526C1 (de) 1994-06-20 1995-08-10 Siemens Ag Elektronisches berührungsloses Datenübertragungssystem
US5706183A (en) * 1994-06-27 1998-01-06 Matsushita Electric Works, Ltd. Inverter power supply with single discharge path
DE19653522A1 (de) * 1996-12-20 1998-06-25 Bayerische Motoren Werke Ag Verfahren zum drahtlosen Übertragen von Energie und Daten
JP3363341B2 (ja) * 1997-03-26 2003-01-08 松下電工株式会社 非接触電力伝達装置
TW463399B (en) * 1999-03-19 2001-11-11 Seiko Epson Corp Electronic device
DE10012981A1 (de) 2000-03-16 2001-09-27 Hema Elektronik Fertigungs Und Einrichtung zur kontaktlosen Übertragung von elektrischer Energie und elektronischen Daten zwichen einer stationären und einer rotierenden Einheit
US6501361B1 (en) * 2001-06-14 2002-12-31 Eaton Corporation Rotary transformer with synchronized operation
DE10200488B4 (de) 2002-01-09 2004-02-05 Hema Elektronik-Fertigungs- Und Vertriebs Gmbh Intelligenter Werkzeugkopf für den Einsatz in Werkzeugmaschinen
US7405540B2 (en) * 2003-10-20 2008-07-29 Teleflex Megatech, Inc. Secondary power supply system and method of activating subsystems from a vehicle steering wheel
US7525449B1 (en) * 2003-10-20 2009-04-28 Teleflex Megatech, Inc. Status light for switch on boat steering wheel
US7672759B1 (en) * 2004-02-24 2010-03-02 Teleflex Megatech, Inc. Communication with a steering wheel switch
DE102004015771B4 (de) 2004-03-31 2006-04-13 Hottinger Baldwin Messtechnik Gmbh Anordnung zur Drehmomentmessung von rotierenden Maschinenteilen
GB2414120B (en) * 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
JP2006229583A (ja) * 2005-02-17 2006-08-31 Eastman Kodak Co 通信システム及びデジタルカメラ並びにドック装置
WO2007034421A2 (fr) 2005-09-23 2007-03-29 Ipico Innovation Inc. Systeme a dispositif d'identification de radiofrequence
JP4934337B2 (ja) * 2006-03-29 2012-05-16 パナソニック株式会社 通信システム
JP4761559B2 (ja) * 2006-09-27 2011-08-31 キヤノン株式会社 撮像装置及び制御方法
US8188619B2 (en) * 2008-07-02 2012-05-29 Powermat Technologies Ltd Non resonant inductive power transmission system and method
JP5554937B2 (ja) * 2009-04-22 2014-07-23 パナソニック株式会社 非接触給電システム

Also Published As

Publication number Publication date
US20090189459A1 (en) 2009-07-30
US8198755B2 (en) 2012-06-12
EP2083407A1 (fr) 2009-07-29

Similar Documents

Publication Publication Date Title
EP2083407B1 (fr) Procédé et dispositif destinés à la transmission de données et d'énergie sans contact
EP0968567B1 (fr) Interrupteur de securite
EP2745377B1 (fr) Transformateur tournant pour machines-outils
EP2641062B1 (fr) Appareil de mesure permettant de déterminer et/ou de surveiller au moins une grandeur de processus
EP2800233A1 (fr) Circuit doté d'un convertisseur de courant résonant et procédé de fonctionnement d'un convertisseur de courant résonant
DE102013001194A1 (de) LED-Modul. LED-Vorschaltvorrichtung und System aus einem LED-Modul und einer LED-Vorschaltvorrichtung
WO2018145987A1 (fr) Procédé de transfert d'énergie sans fil entre un dispositif émetteur d'énergie et un consommateur, et dispositif émetteur d'énergie sans fil pour la mise en oeuvre dudit procédé
DE102007004843A1 (de) Konzept zum Bereitstellen einer Versorgungsspannung und einer Lastmodulation in einem Transponder
EP2696362B1 (fr) Dispositif de commande pour un appareil de commutation doté d'une bobine d'attraction et de maintien séparée
EP2884233B1 (fr) Mesure de paramètres dans un entraînement électromagnétique d'un appareil de commutation
DE102010022143B4 (de) Anordnung und Verfahren zum Betreiben einer Anordnung zur induktiven Energieübertragung an einen elektrischen Verbraucher
EP1522377B1 (fr) Dispositif de positionnement d'une pièce avec des moyens de transmission d'énergie et d'information sans contact
EP2941676B1 (fr) Électronique de service destinée à un appareil de traitement et procédé permettant de faire fonctionner celle-ci
WO2012156163A1 (fr) Procédé et dispositif de communication au moyen d'un transformateur
DE10345536B4 (de) Anordnung und Verfahren zum Einstellen einer Sendeleistung
DE102014009934B4 (de) Energieübertrager, Gate-Treiber und Verfahren
WO2008058627A2 (fr) Machine ou dispositif et procédé
EP3673563B1 (fr) Procédé de transfert d'énergie sans fil entre un dispositif émetteur d'énergie et un consommateur, et dispositif émetteur d'énergie sans fil pour la mise en oeuvre dudit procédé
EP2713470A1 (fr) Circuit doté d'un convertisseur de courant résonant et procédé de fonctionnement d'un convertisseur de courant résonant
DE102011077387A1 (de) Schaltungsanordnung zum Schalten eines Stromes und Verfahren zum Betreiben derselben
EP2404357B1 (fr) Système et procédé de transmission d'énergie sans contact
DE102014005531B4 (de) Ladeanordnung zur induktiven Beladung des Energiespeichers eines Fahrzeugs und Verfahren zum Betreiben einer Ladeanordnung
DE102011103413A1 (de) Verfahren zum Schalten einer getakteten Sperrwandlerschaltung, Sperrwandlerschaltung sowie Heizschaltung für eine Wendel eines Leuchtmittels mit einer derartigen Sperrwandlerschaltung
DE10321842B3 (de) Verfahren und Vorrichtung zum Betrieb eines Sensors oder Aktors
WO2017108199A1 (fr) Système de transmission inductive de puissance électrique vers un véhicule et procédé pour faire fonctionner un système

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PEPPERL + FUCHS GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TREBBELS, DENNIS

Inventor name: SEEFRIED, ROLAND

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 558398

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008007168

Country of ref document: DE

Effective date: 20120712

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOGENSBERGER PATENT- & MARKENBUERO DR. BURKHARD BO

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120516

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120916

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120816

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120817

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120827

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: FALLSGASSE 7, 9492 ESCHEN (LI)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008007168

Country of ref document: DE

Effective date: 20130219

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E015932

Country of ref document: HU

BERE Be: lapsed

Owner name: PEPPERL + FUCHS G.M.B.H.

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 558398

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20150116

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151222

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170124

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008007168

Country of ref document: DE

Representative=s name: SCHIFFER, AXEL, DIPL.-PHYS.UNIV. DR.RER.NAT., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230130

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230119

Year of fee payment: 16