EP2083407B1 - Vorrichtung und Verfahren zur kontaktlosen Energie- und Datenübertragung - Google Patents

Vorrichtung und Verfahren zur kontaktlosen Energie- und Datenübertragung Download PDF

Info

Publication number
EP2083407B1
EP2083407B1 EP08001422A EP08001422A EP2083407B1 EP 2083407 B1 EP2083407 B1 EP 2083407B1 EP 08001422 A EP08001422 A EP 08001422A EP 08001422 A EP08001422 A EP 08001422A EP 2083407 B1 EP2083407 B1 EP 2083407B1
Authority
EP
European Patent Office
Prior art keywords
unit
primary
energy
inductor
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08001422A
Other languages
English (en)
French (fr)
Other versions
EP2083407A1 (de
Inventor
Roland Seefried
Dennis Trebbels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pepperl and Fuchs SE
Original Assignee
Pepperl and Fuchs SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pepperl and Fuchs SE filed Critical Pepperl and Fuchs SE
Priority to EP08001422A priority Critical patent/EP2083407B1/de
Priority to US12/359,495 priority patent/US8198755B2/en
Publication of EP2083407A1 publication Critical patent/EP2083407A1/de
Application granted granted Critical
Publication of EP2083407B1 publication Critical patent/EP2083407B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • H01F2038/143Inductive couplings for signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers

Definitions

  • the present invention relates in a first aspect to a device for contactless energy and data transmission according to the preamble of claim 1.
  • the invention in a second aspect, relates to a method for contactless energy and data transmission between the primary and secondary units.
  • Generic devices have a primary unit with a primary inductance and a secondary unit with a secondary inductance.
  • the secondary unit is set up for connecting, for supplying and / or for controlling at least one terminal.
  • the primary unit and the secondary unit are at least temporarily positioned relative to one another such that a transformer coupling path is formed between the primary inductance and the secondary inductance.
  • the primary unit for contactless transmission of energy to the secondary unit is set up via the transformer coupling path and the secondary unit is provided for supplying the terminals by means of the energy received via the transformer coupling path.
  • Such devices are used when sensors are to be supplied and controlled, which are located on movable, such as rotatable objects and therefore can not be supplied and queried by means of a cable connection. Examples of this are sensors on pressure rollers or on moving elements in a high-bay warehouse.
  • sensors are supplied, for example via a radio link with information.
  • similar inductive couplings are used.
  • the primary unit and the secondary unit can be considered as parts of the sensor, but also as a separate device, which is responsible for the contactless transmission of energy and data.
  • two separate channels are provided for the transmission of energy and the transmission of data.
  • Such devices are made, for example DE 100 12 981 A1 or DE 102 00 488 B4 known.
  • the data is modulated onto the energy transfer and subsequently evaluated in the sensor or the secondary unit.
  • the problem here is to send information from the sensor back to the power supply or the primary unit, so that they can forward the data to a process control.
  • a sensor with such a frequency modulation of the energy transfer is, for example, in DE 10 2004 015 771 B4 described. Similar energy and data transmissions are also in other non-contact systems such as access control from the DE 44 21 526 C1 and in transmission systems from the US 5 345 231 A known.
  • Generic devices use a transformer coupling between the primary inductance and the secondary inductor instead of a radio link between the primary unit and the secondary unit.
  • many devices are already being used, which communicate with each other by radio communicate, whereby the radio bands are largely occupied and there are problems with the signal quality in the multiple use of these bands.
  • radio transmissions are relatively susceptible to interference, as compared to a transformatory transmission, for example by other electromagnetic fields generated by electrical devices.
  • Under transformer coupling is particularly the direct coupling of two inductors, such as coils to understand. In this case, an air gap of a few centimeters or less is bridged between the two coils.
  • the two coils are aligned coaxially with each other.
  • the aim of positioning the coils relative to one another is to achieve a particularly high coupling factor between the primary inductance and the secondary inductance.
  • a coupling factor is close to or equal to 1. This can be achieved for example by the frontal positioning of the two coils to each other.
  • as many field lines as possible of the magnetic field of the primary coil should pass through the secondary coil.
  • the magnetic field can be additionally amplified or influenced by ferromagnetic cores in the coils.
  • the primary unit has means for interrupting the transmission of energy via the transformer coupling path in energy-saving pauses and the secondary unit has means for detecting the energy end pauses.
  • a device for transferring energy and data between two devices is off US 5 515 399 A , which discloses the preamble of claims 1 and 8, known.
  • For contactless transmission here is a transformer.
  • US 5 548 282 A describes a transfer of energy and data to an electronic screen to display prices on a shelf.
  • An object of the invention is to provide a non-contact power and data transmission apparatus which enables efficient power transmission while still allowing easy execution of the secondary unit. Furthermore, the data transmission should be robust against external interference signals.
  • the object is achieved by a method for contactless energy and data transmission according to claim 8.
  • the transmission of data from the secondary unit to the primary unit is performed in power transmission pauses.
  • the data transmission that is, for example, the pulse shape or the coding of the data
  • the corresponding electronics for sending the signals in the secondary unit can be easily designed. This is of particular interest because the secondary unit should only be supplied with energy via the transformer coupling path and thus should be designed to save energy.
  • the secondary unit detects the energy-saving pauses and transmits data to the primary unit as a result of the detection of an energy-saving pause.
  • the detection of the energy-saving pause ensures that data is not transmitted by mistake even when energy is sent via the transformer coupling link, which, in principle, can take place, for example, in a transmission sequence or transmission rights determined only by timing. Moreover, this does not require synchronization of two timers on the primary unit and the secondary unit.
  • the primary inductance is excited by a resonant circuit or forms itself a part of this resonant circuit. In this case, it is preferable if it forms a part of the resonant circuit itself, since in this way no further components have to be provided on the primary unit.
  • a resonant circuit e.g. a parallel or a serial resonant circuit can be used.
  • the secondary unit In addition to the means provided in the secondary unit for transmitting data to the primary unit means for transmitting information to the secondary unit are provided in the primary unit. This transmission can take place, for example, by varying the length of the energy-pauses and / or the length of energy transmission phases.
  • Bidirectional communication can take place over the same channel over which power is transmitted.
  • Data transmitted from the primary unit to the secondary unit may be, for example, instructions for switching operations for actuators connected to the secondary unit, initialization instructions, or configuration data for the secondary unit or devices connected to it, such as sensors or actuators.
  • Data sent from the secondary unit to the primary unit may relate to switching states or other state variables of the connected terminals.
  • the resonant circuit is no longer supplied with energy, so that it decays slowly.
  • the transmitted energy slowly decreases continuously.
  • energy is no longer transmitted as soon as energy interruption via the transformer coupling path, that is, as soon as possible can be started with the actual energy-saving break to accordingly quickly start again with the retransmission of energy.
  • This is achieved by the accelerated degradation of the residual energy in the primary inductance. This degradation can be achieved for example by a transistor path, which is in series with the primary inductance.
  • the additional use of a resistor, which absorbs energy also has an accelerating effect.
  • a voltage is monitored via the primary inductance. If this voltage rises above a previously determined threshold in an energy-saving pause, this is interpreted as a data signal and corresponding information forwarded to downstream processing.
  • a current through the primary inductance is measured.
  • This can be done for example by a transformer, which can be designed as a printed circuit transformer.
  • the measurement signal supplied by the transformer is proportional to the current in the primary inductance.
  • the load can be determined, which is represented by the secondary unit and the connected terminals. By determining the load, it is possible to regulate the resonant circuit current so that it does not become unduly high at low loads. In this case, the excitation of the resonant circuit can be interrupted, for example, until the current flow is again in a desired range.
  • the energy-saving pauses at the secondary unit can be arbitrarily determined.
  • the secondary unit has means for measuring a voltage across the secondary inductance. If this voltage drops, it is concluded that there is a start of an energy-saving break, whereby the transmission of the data from the secondary unit in the direction of the primary unit is initiated via the transformer coupling path.
  • the secondary unit Since the energy transfer is interrupted in energy-saving pauses, it is advantageous if the secondary unit has a storage capacity for buffering the energy. As a result, the supply of the secondary unit as well as the connected terminals can be ensured during an energy-saving break. In this context, it is preferred if more energy is transmitted via the transformer coupling path during the time in which energy is transmitted than is consumed at the time of energy transfer from the secondary unit and the connected terminals.
  • the energy storage can be realized by a capacitor, which is preceded by a rectifier.
  • sensors or actuators can be connected.
  • other consumers such as incandescent lamps
  • actuators are electrical valves.
  • the sensors can be any type of sensor for detecting a measured variable or for detecting objects or objects.
  • the present invention for sensors in the industrial sector, for example, inductive, capacitive or optical sensors, temperature or pressure sensors, are used, each having a corresponding sensor element.
  • a sensor element may in principle be any element which is suitable for detecting a physical quantity.
  • the sensor element may be a coil or a resonant circuit of an inductive proximity switch, a photodetector of an optical sensor, a capacitive probe, or a thermocouple.
  • An inventive method for contactless energy and data transmission can be performed with a primary unit and a secondary unit, each having an inductance.
  • the primary unit and the secondary unit are at least temporarily positioned so that between the primary inductance and the secondary inductance, a transformer coupling path is formed.
  • at least temporarily energy for supplying the secondary unit and connectable terminals via the transformer coupling path from the primary unit to the secondary unit is transmitted contactless.
  • the energy transfer from the primary unit to the secondary unit is at least temporarily interrupted. This interruption of energy transfer is referred to as an energy-saving break.
  • the secondary unit in turn detects such an energy-saving pause and, in the energy-saving pause, transmits data via the transformer coupling path to the primary unit.
  • no signals are transmitted from the secondary unit to the primary unit in the energy-saving pauses.
  • data is transferred from the primary unit to the secondary unit.
  • the data can be mapped, for example, by varying the length of the energy-saving pause.
  • Another possibility is to use different data Expressing intervals of multiple energy silence intervals to each other or to use both types of data encoding.
  • both a transmission of signals in the energy-saving pauses from the secondary unit to the primary unit takes place, as well as a transmission of data from the primary unit to the secondary unit.
  • a single bidirectional channel is used for both the data and the energy transfer.
  • Data transmitted from the primary unit to the secondary unit may be, for example, instructions for switching actuators connected to the secondary unit, initialization instructions or configuration data for the secondary unit or for connected devices such as sensors or actuators.
  • Data sent from the secondary unit to the primary unit may be, for example, switching states or other state variables of the connected terminals.
  • An inventive method can be carried out for power and data transmission between a fixed primary unit and a movable secondary unit. This may be the case, for example, with pressure rollers in which the secondary unit is positioned in or near the axis.
  • Another example is a high-bay warehouse in which the goods in the warehouse are automatically moved out of the shelves and into the shelves by means of loading and unloading equipment.
  • the secondary unit can then be provided, for example, on a loading and unloading device and the primary unit fixed to a previously defined point to which the loading and unloading returns to the idle state.
  • the primary inductance for energy transfer is excited with an alternating current.
  • the primary inductance itself can represent a part of a resonant or resonant circuit or be excited by it.
  • the control of the resonant circuit is preferably by means of a current intensity measurement, a control and a transistor bridge regulated.
  • the current intensity measurement can be carried out, for example, via a transformer whose measuring signal is proportional to the current intensity.
  • the measuring signals from the transformer are amplified with a phase correction and passed on to the drive.
  • the control controls the transistor bridge or its driver circuit such that the transistor bridge always switches in the vicinity of the zero crossing of the resonant circuit current and thus the resonant circuit is additionally excited. As a result, switching losses are avoided, and it is, so to speak, a square wave voltage on the resonant circuit. In the control, a review of the current resonant circuit current can be made to suspend the excitation at possibly too high currents.
  • the residual energy is dissipated accelerated in the primary inductance. This can be done for example via the control, which then phase-inverted supplies the primary inductance or the resonant circuit with power, so that the vibration is damped. Alternatively, this can also be done by a series transistor path, e.g. made of FETs and / or resistors.
  • the secondary inductance is tuned to the primary inductance or its oscillation frequency.
  • this requires appropriate tuning between the two inductors.
  • drifts of the natural frequencies e.g. due to aging or temperature changes. Therefore, it is preferred that when using the transformer coupling path according to the invention, the secondary inductance is operated uncoordinated. This means that no effort is made to match them to the resonant frequency of the primary inductor or resonant circuit in the primary unit.
  • One way to detect the energy end pauses by the secondary unit is to monitor the voltage across the secondary inductance. If this voltage drops, then the beginning of an energy-saving break is concluded.
  • the data transmission from the secondary unit to the primary unit in an energy-saving break can basically be arbitrary. But it is especially easy when the secondary inductance is supplied with current for transmitting the data, and then this current flow through the secondary inductance is aborted, in particular abruptly. As a result, a pulse is triggered, which is transmitted to the primary inductance via the transformer coupling path and can be detected in the primary unit as a voltage pulse.
  • the data that is transmitted from the secondary unit to the primary unit can be, for example, information about measuring signals of the wound sensors. It is also possible to transmit information about the current switching states of connected actuators. In doing so, it has proven to be advantageous if these data are subjected to a source or channel coding before or during the transmission, in order to reduce the susceptibility to transmission errors. Similarly, the provision of a checksum is possible to detect transmission errors.
  • Fig. 1 the current over the time in the primary inductance 4 of the primary unit 2 is shown.
  • the primary inductance 4 or the resonant circuit is excited by the control of the primary unit 2 with current, so that it is set in oscillation. That is, from the time t 0 and before it to the time t 1 41 energy is transmitted to the secondary inductance 3 in a first energy transfer interval. The residual ripple of the current is due to the regulation in the primary inductance 4.
  • the excitation of the resonant circuit or the primary inductance 4 is terminated.
  • the energy accelerated from the primary inductance 4 or the resonant circuit degraded. This period is also referred to as cooldown 42.
  • the energy-end pauses 43 are inserted at periodic intervals.
  • the beginning of the energy-saving break 43 which extends from the time t 2 to t 4 , is detected by the secondary unit 3. Subsequently, the secondary unit 3 sends a pulse 50 by means of its secondary inductance 5 via the transformer coupling path to the primary inductance 4 and thus the primary unit 2.
  • the excitation of the oscillation in the primary inductance 4 is resumed by the primary unit 2 and reaches the optimum operating value again at the instant t 5 .
  • the interval between t 4 and t 5 is also referred to as turn-on delay 44.
  • the length of the energy break 43 can be used for data transmission or coding.
  • Another or additional possibility is to use the length of a power transmission interval 41, 45 for transmitting this data.
  • an energy transfer interval 41, 45 may be 4 ms and the decay time 20-30 ⁇ s. In order not to interrupt the energy transfer too long, then takes an energy-saving break 34, for example, about 100-150 microseconds.
  • Fig. 2 describes the basic functionality and operation of a device 1 according to the invention.
  • the device 1 according to the invention is divided into a primary unit 2 and a secondary unit 3. These can also be regarded as primary and secondary sides of the device 1.
  • the central elements for carrying out the method according to the invention are the primary inductance 4, which is formed by a first coil and the secondary inductance 5, which is formed by a second coil.
  • the two coils 4 and 5 are preferably coaxially positioned.
  • the distance 15 between the two coils 4, 5 is of the order of 2.5 mm and should not exceed 5 mm. This distance between the two coils 4, 5 is referred to as a transformer coupling path.
  • the following describes the control and operation of the coil 4 for transmitting the power to the secondary unit 3.
  • the primary unit 2 is powered by an energy source 6 with energy. This is connected both to the general supply for the devices of the primary unit 2 as well as to a transistor bridge 9.
  • This transistor bridge 9 is preferably constructed of FETs.
  • a parallel resonant circuit is formed by the coil 4 and a capacitor 34 connected in parallel thereto.
  • another resonant circuit for example a serial resonant circuit, for carrying out the method according to the invention.
  • a current and voltage sensor 16 measures the current flowing through the coil 4 and forwards a measurement signal to the control device 10. This signal can be amplified with a phase correction.
  • the current measurement in the current and voltage sensor 16 may be performed by a transformer whose measurement signal is proportional to the current.
  • the control device 10 which can also be referred to as control logic for the bridge driver 8, switches the transistor bridge 9 via its driver 8 in such a way that the resonant circuit is set in oscillation. This is done, for example, by switching at the time of zero passage of the resonant circuit current. Furthermore, the current measured by the current and voltage sensor 16 is used to control the current in the coil 4 to ensure that the resonant circuit current is not inadmissible gets high. The control is carried out by the control device 10 such that when the current through the coil 4 is too high, the resonant circuit is no longer excited.
  • an energy-saving break 43 is initiated by the controller 10. To do this, it signals the driver 8 not to continue or support the oscillation. In addition, it activates a decay accelerator 14. This can be carried out for example by transistors and resistors and ensures that the residual energy, which is located in the coil 4, is degraded as quickly as possible.
  • the coil 5 receives a data pulse 50 in the coil 4, as previously described with reference to FIG Fig. 1 shown, excited.
  • the results of a continuous voltage monitoring of the coil 4 are forwarded to a pulse conditioning 13.
  • a pulse conditioning 13 is decoded based on the received voltage levels, which data and information was transmitted from the secondary unit 3.
  • These data are forwarded to a central evaluation unit 12 for further processing.
  • the evaluation unit 12 can be realized for example by a microprocessor or by a programmable logic, such as an FPGA.
  • the evaluation 12 prepares the results and outputs them via corresponding outputs 11, for example to a programmable logic controller, a relay or a data bus.
  • the evaluation 12 can also control the control device 10 with instructions.
  • an alternating voltage is excited via the inductive coupling path through the coil 4 in the coil 5.
  • the coil 5 is connected to a general supply device 18.
  • This has, for example, a capacitor for energy storage of the transmitted energy, which is charged via a rectifier.
  • the rectified voltage is highly dependent on distance and can be at very low distance or direct contact of the coils 4, 5 over 100 volts. Therefore, a switching regulator is provided for loss of power reduction.
  • the energy stored and processed in the general supply device 18 becomes via a switching power supply 19 the connected terminals, such as actuators or sensors, provided.
  • the switched-mode power supply 19 supplies a voltage of approximately 12 V to the terminals, which consume approximately 160-170 mA.
  • a pause detection 17 is located directly on the coil 5. This pause detection measures the voltage which is transmitted to the coil 5 and signals a central processing device 21 as soon as the voltage falls below a threshold value.
  • the central processing device 21 can be embodied, for example, in the form of a microcontroller or a programmable logic, such as an FPGA. If the central processing device 21 receives the information from the pause detection 17 that the voltage is currently below a threshold, it interprets this as an energy-saving pause 43.
  • the central processing device 21 transmits instructions corresponding to a pulse generator 22, specific pulse shapes via the coil 5 by means of the inductive Coupling path to the coil 4 of the primary unit 2 to transmit. The energy for transmit pulse generation also comes from the general power supply 18.
  • the central processing device 21 also receives information about inputs 23. These are connected to sensors or actuators. Similarly, the central processing device 21 via outputs, which are not shown, send instructions to actuators or sensors.
  • an undervoltage detection 20 is provided, which monitors the voltage at the switching power supply 19. If this voltage falls below a certain value, for example below 12 V, the data which the sensors supply via the inputs 23 are no longer reliable. This signals the undervoltage detection 20 to the central processing device 21 so that these unreliable data are not sent to the primary unit 2.
  • the voltage at the primary coil 4 during the energy transfer can be about 100-200 V and a data pulse has about 100-200 mV, for example.
  • Fig. 3 a possibility of positioning the primary coil 4 and the secondary coil 5 is shown.
  • the primary coil 4 far a U-shaped core 56.
  • the secondary coil 5 is located on a rotatably mounted about its central axis 57 pulley 58 at its outer peripheral portion.
  • the disk 58 may be, for example, a turntable of a bottling plant. Rotates now the disc 58, it is always at least a portion of the secondary coil 5 in transformer coupling with the primary coil 4.
  • the two coils 4, 5 preferred when most field lines of the primary coil 4 through at least portions of the secondary coil. 5 pass.
  • the device according to the invention and the method according to the invention thus offer a contactless, effective and trouble-free energy and data transmission via only one interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Near-Field Transmission Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

  • Die vorliegend Erfindung betrifft gemäß einem ersten Aspekt eine Vorrichtung zur kontaktlosen Energie- und Datenübertragung nach dem Oberbegriff des Anspruchs 1.
  • In einem zweiten Gesichtspunkt bezieht sich die Erfindung auf ein Verfahren zur kontaktlosen Energie- und Datenübertragung zwischen der Primär- und Sekundäreinheit..
  • Gattungsgemäße Vorrichtungen weisen eine Primäreinheit mit einer Primärinduktivität und einer Sekundäreinheit mit einer Sekundärinduktivität auf. Die Sekundäreinheit ist zum Anschließen, zum Versorgen und/oder zum Steuern von mindestens einem Endgerät eingerichtet. Des Weiteren sind die Primäreinheit und die Sekundäreinheit zumindest zeitweilig relativ zueinander so positioniert, dass zwischen der Primärinduktivität und der Sekundärinduktivität eine transformatorische Kopplungsstrecke ausgebildet wird. Hierbei ist die Primäreinheit zur kontaktlosen Übertragung von Energie an die Sekundäreinheit über die transformatorische Kopplungsstrecke eingerichtet und die Sekundäreinheit zum Versorgen der Endgeräte mittels der über die transformatorische Kopplungsstrecke empfangenen Energie vorgesehen.
  • Solche Vorrichtungen werden angewendet, wenn Sensoren versorgt und gesteuert werden sollen, die sich auf beweglichen, beispielsweise drehbaren Objekten befinden und daher nicht mittels eines Kabelanschlusses versorgt und abgefragt werden können. Beispiele sind hierfür Sensoren auf Druckwalzen oder auf beweglichen Elementen in einem Hochregallager.
  • Herkömmlicherweise werden derartige Sensoren beispielsweise über eine Funkverbindung mit Informationen versorgt. Auch zum Übertragen der Energie werden ähnliche induktive Kopplungen verwendet. Hierbei können die Primäreinheit und die Sekundäreinheit als Teile des Sensors angesehen werden, aber auch als ein separates Gerät, welches für die kontaktlose Übertragung der Energie und Daten zuständig ist. Im einfachsten Fall sind für die Übertragung von Energie und die Übertragung von Daten zwei separate Kanäle vorgesehen. Derartige Vorrichtungen sind beispielsweise aus DE 100 12 981 A1 oder DE 102 00 488 B4 bekannt.
  • Aus anderen Ausführungen ist bekannt, lediglich eine Schnittstelle vorzusehen, welche sowohl zur Energie- wie auch zur Datenübertragung verwendet wird.
  • Hierbei werden beispielsweise die Daten auf die Energieübertragung aufmoduliert und anschließend im Sensor oder der Sekundäreinheit ausgewertet. Problematisch ist hierbei aber, Informationen vom Sensor zurück an die Energieversorgung oder die Primäreinheit zu senden, damit diese die Daten an eine Prozesssteuerung weiterleiten kann. Ein Sensor mit einer derartigen Frequenzmodulation der Energieübertragung wird beispielsweise in DE 10 2004 015 771 B4 beschrieben. Ähnliche Energie- und Datenübertragungen sind auch bei anderen berührungslosen Systemen wie beispielsweise bei Zugangskontrolle aus der DE 44 21 526 C1 und bei Transmissionssystemen aus der US 5 345 231 A bekannt.
  • Um auch Informationen vom Sensor zurück an die Energieversorgung zu senden, ist beispielsweise in der DE 41 30 903 A1 eine Vorrichtung mit Lastmodulation beschrieben. Hierbei wird die Last in dem Sensor verändert. Dies wird von der Energieversorgung erkannt. Durch das Variieren der Last können Informationen von dem Sensor an die Primäreinheit zurück übertragen werden. Nachteilig an derartigen Vorrichtungen ist aber, dass mehr Energie an die Sekundäreinheit übertragen werden muss, als dort wirklich benötigt wird, um eine Lastmodulation auszuführen. Des Weiteren ist es oft notwendig eine Kühlung vorzusehen, um Wärme abzuführen, welche durch das zusätzliche Verbrauchen von Energie erzeugt wird.
  • Gattungsgemäße Vorrichtungen verwenden eine transformatorische Kopplung zwischen der Primärinduktivität und der Sekundärinduktivität anstelle einer Funkverbindung zwischen der Primäreinheit und der Sekundäreinheit. In großen Fertigungshallen oder Fertigungsstraßen werden bereits viele Geräte eingesetzt, die mittels Funk miteinander kommunizieren, wodurch die Funkbänder größtenteils belegt sind und es bei der Mehrfachverwendung dieser Bänder zu Problemen bezüglich der Signalqualität kommt. Des Weiteren sind Funkübertragungen im Vergleich zu einer transformatorischen Übertragung relativ störanfällig, beispielsweise durch andere elektromagnetische Felder, die durch elektrische Einrichtungen erzeugt werden. Unter transformatorischer Kopplung ist insbesondere die direkte Kopplung zweier Induktivitäten, beispielsweise Spulen, zu verstehen. Hierbei wird eine Luftstrecke von wenigen Zentimetern oder weniger zwischen den beiden Spulen überbrückt. Bevorzugt sind die beiden Spulen zueinander koaxial ausgerichtet. Ziel bei der Positionierung der Spulen zueinander ist es, einen besonders hohen Kopplungsfaktor zwischen der Primärinduktivität und der Sekundärinduktivität zu erreichen. Ideal ist hierbei ein Kopplungsfaktor nahe oder gleich 1. Dies kann beispielsweise durch das stirnseitige Positionieren der beiden Spulen zueinander erreicht werden. Um eine gute Kopplung zu ermöglichen, sollten möglichst viele Feldlinien des magnetischen Feldes der Primärspule durch die Sekundärspule verlaufen. Das magnetische Feld kann zusätzlich durch ferromagnetische Kerne in den Spulen verstärkt oder beeinflusst werden.
  • In gattungsgemäßen Vorrichtungen weist die Primäreinheit Mittel zum Unterbrechen der Energieübertragung über die transformatorische Kopplungsstrecke in Energiesendepausen auf und die Sekundäreinheit besitzt Mittel zum Detektieren der Energiesendepausen.
  • Eine Vorrichtung zum Transfer von Energie und Daten zwischen zwei Einrichtungen ist aus US 5 515 399 A , die den Oberbegriff der Ansprüche 1 und 8 offenbart, bekannt. Zur kontaktlosen Übertragung dient hierbei ein Transformator.
  • Aus WO 2007/034421 A2 ist ein RFID-System bekannt, durch welches aber Daten nur in eine Richtung transferiert werden können.
  • US 5 548 282 A beschreibt eine Übertragung von Energie und Daten an einen elektronischen Bildschirm, um Preise an einem Regal anzuzeigen.
  • Eine Aufgabe der Erfindung ist es, eine Vorrichtung zur kontaktlosen Energie- und Datenübertragung zu schaffen, welche eine effiziente Energieübertragung ermöglicht, und dennoch eine einfache Ausführung der Sekundäreinheit gestattet. Weiterhin soll die Datenübertragung robust gegenüber äußeren Störsignalen sein.
  • Außerdem soll ein Verfahren bereitgestellt werden, mit dem Energie und Daten kontaktlos übertragen werden können.
  • Diese Aufgabe wird in einem ersten Gesichtspunkt der Erfindung durch eine Vorrichtung zur kontaktlosen Energie- und Datenübertragung mit den Merkmalen des Anspruchs 1 gelöst.
  • In einem weiteren Aspekt der Erfindung wird die Aufgabe durch ein Verfahren zur kontaktlosen Energie- und Datenübertragung gemäß dem Anspruch 8 gelöst.
  • Weitere vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen, der Beschreibung sowie den Figuren und deren Erläuterungen angegeben.
  • Als ein erster Aspekt der Erfindung kann betrachtet werden, dass die Übertragung von Daten von der Sekundäreinheit an die Primäreinheit in Energieübertragungspausen durchgeführt wird. Durch dieses Vorgehen werden zu dem Zeitpunkt, an dem die Daten von der Sekundäreinheit an die Primäreinheit übertragen werden, keine anderen Informationen oder Energie über die transformatorische Kopplungsstrecke gesendet. Hierdurch kann die Datenübertragung, das heißt beispielsweise die Impulsform oder die Kodierung der Daten, einfacher ausgelegt werden, da keine weiteren störenden Signale zum selben Zeitpunkt übertragen werden. Daraus folgt auch, dass die entsprechende Elektronik zum Versenden der Signale in der Sekundäreinheit einfach ausgelegt werden kann. Dies ist vor allem daher von Interesse, da die Sekundäreinheit lediglich über die transformatorische Kopplungsstrecke mit Energie versorgt werden und somit Energie sparend ausgelegt sein sollte.
  • Ein weiterer Grundgedanke ist dadurch realisiert, dass die Sekundäreinheit die Energiesendepausen detektiert und als Folge der Detektion einer Energiesendepause erst Daten an die Primäreinheit überträgt. Dies bedeutet, dass lediglich dann Daten an die Primäreinheit übertragen werden, wenn von dieser keine Energie an die Sekundäreinheit gesendet wird, also keine weiteren Signale auf der transformatorischen Kopplungsstrecke übertragen werden. Durch die Detektion der Energiesendepause wird erreicht, dass nicht irrtümlicherweise Daten dennoch übertragen werden, wenn Energie über die transformatorische Kopplungsstrecke gesendet wird, was prinzipiell beispielweise bei einer lediglich durch Timing bestimmten Sendereihenfolge oder Senderechten erfolgen kann. Außerdem ist hierdurch keine Synchronisation zweier Zeitgeber auf der Primäreinheit und der Sekundäreinheit notwendig.
  • Zur Übertragung der Energie von der Primäreinheit über die Primärinduktivität an die Sekundärinduktivität über die transformatorische Kopplungsstrecke wird die Primärinduktivität durch einen Schwingkreis angeregt oder bildet selbst einen Teil dieses Schwingkreises. Bevorzugt ist hierbei, wenn sie selbst einen Teil des Schwingkreises bildet, da hierdurch keine weiteren Bauelemente auf der Primäreinheit vorgesehen werden müssen. Als Schwingkreis kann z.B. ein paralleler oder ein serieller Schwingkreis verwendet werden.
  • Ergänzend zu den in der Sekundäreinheit vorgesehenen Mitteln zum Übertragen von Daten an die Primäreinheit sind in der Primäreinheit Mittel zum Übertragen von Informationen an die Sekundäreinheit vorgesehen. Diese Übertragung kann beispielsweise mittels Variation der Länge der Energiesendepausen und/oder der Länge von Energieübertragungsphasen erfolgen.
  • Die bidirektionale Kommunikation kann über denselben Kanal, über den Energie übertragen wird, stattfinden. Daten, die von der Primäreinheit an die Sekundäreinheit übertragen werden, können beispielsweise Anweisungen zu Schaltvorgängen für an die Sekundäreinheit angeschlossene Aktoren, Initialisierungsanweisungen oder Konfigurationsdaten für die Sekundäreinheit oder an sie angeschlossene Geräte wie Sensoren oder Aktoren sein. Von der Sekundäreinheit an die Primäreinheit gesendete Daten können sich auf Schaltzustände oder andere Zustandsvariablen der angeschlossenen Endgeräte beziehen.
  • Grundsätzlich ist es aber ebenso möglich in den Energiesendepausen Daten von der Primäreinheit an die Sekundäreinheit zu übertragen. Hierzu kann eine entsprechende Senderegelung vorhanden sein, damit die Daten von der Primäreinheit nicht mit den Daten der Sekundäreinheit überlagert werden oder umgekehrt.
  • Zum Einleiten der Energiesendepause ist es grundsätzlich ausreichend, wenn der Schwingkreis nicht mehr mit Energie versorgt wird, so dass er langsam abklingt. Um dieses Abklingen zu beschleunigen, hat es sich als vorteilhaft herausgestellt, entsprechende Einrichtungen vorzusehen. Normalerweise nimmt während des Abklingens die übertragene Energie langsam kontinuierlich ab. Um im Durchschnitt möglichst viel Energie über die transformatorische Kopplungsstrecke übertragen zu können, ist es daher bevorzugt, wenn beim Einleiten einer Energiesendepause möglichst schnell keine Energie mehr über die transformatorische Kopplungsstrecke übertragen wird, das heißt möglichst schnell mit der eigentlichen Energiesendepause begonnen werden kann, um entsprechend schnell wieder mit der erneuten Übertragung von Energie zu beginnen. Dies wird durch den beschleunigten Abbau der Restenergie in der Primärinduktivität erreicht. Dieser Abbau kann beispielsweise durch eine Transistorstrecke, welche in Serie zur Primärinduktivität liegt, erreicht werden. Beschleunigend wirkt auch die zusätzliche Verwendung eines Widerstandes, der die Energie aufnimmt.
  • Zum Erkennen der übertragenen Daten in der Primäreinheit ist es vorteilhaft, wenn eine Spannung über die Primärinduktivität überwacht wird. Steigt diese Spannung in einer Energiesendepause über einen zuvor bestimmten Schwellwert an, so wird dies als ein Datensignal interpretiert und entsprechende Informationen an eine nachgeschaltete Verarbeitung weitergeleitet.
  • In einer bevorzugten Ausführungsform wird ein Strom durch die Primärinduktivität gemessen. Dies kann beispielsweise durch einen Transformator, welcher als Leiterplattentransformator ausgeführt sein kann, erfolgen. Das Messsignal, welches vom Transformator geliefert wird, ist proportional zur Stromstärke in der Primärinduktivität. Mittels des Stromflusses durch die Primärinduktivität kann beispielsweise die Last bestimmt werden, welche durch die Sekundäreinheit und die angeschlossenen Endgeräte dargestellt wird. Durch eine Ermittlung der Last ist ein Regeln des Schwingkreisstromes möglich, damit er bei geringen Lasten nicht unzulässig hoch wird. In diesem Fall kann die Anregung des Schwingkreises beispielsweise unterbrochen werden, bis der Stromfluss wieder in einem gewünschten Bereich ist.
  • Grundsätzlich können die Energiesendepausen an der Sekundäreinheit beliebig ermittelt werden. Vorteilhaft ist jedoch, wenn die Sekundäreinheit Mittel zum Messen einer Spannung über die Sekundärinduktivität aufweist. Fällt diese Spannung ab, so wird auf einen Beginn einer Energiesendepause geschlossen, wodurch das Aussenden der Daten von der Sekundäreinheit in Richtung der Primäreinheit über die transformatorische Kopplungsstrecke eingeleitet wird.
  • Da die Energieübertragung in Energiesendepausen unterbrochen ist, ist es vorteilhaft, wenn die Sekundäreinheit eine Speicherkapazität zum Puffern der Energie aufweist. Hierdurch kann die Versorgung der Sekundäreinheit wie auch der angeschlossenen Endgeräte während einer Energiesendepause sichergestellt werden. In diesem Zusammenhang ist es bevorzugt, wenn über die transformatorische Kopplungsstrecke während der Zeit, in der Energie übertragen wird, mehr Energie übertragen wird als zum Zeitpunkt der Energieübertragung von der Sekundäreinheit und den angeschlossenen Endgeräten verbraucht wird. Die Energiespeicherung kann durch einen Kondensator realisiert werden, dem ein Gleichrichter vorgeschaltet ist.
  • Als Endgeräte können beispielsweise Sensoren oder Aktoren angeschlossen werden. Ebenso ist der Anschluss von anderen Verbrauchern, wie Glühlampen, möglich. Beispiele für Aktoren sind elektrische Ventile.
  • Bei den Sensoren kann es sich grundsätzlich um jede Art von Sensoren zum Nachweis einer Messgröße oder zum Nachweis von Gegenständen oder Objekten handeln. Besonders vorteilhaft kann die vorliegende Erfindung für Sensoren im industriellen Bereich, beispielsweise induktive, kapazitive oder optische Sensoren, Temperatur- oder Drucksensoren, eingesetzt werden, welche jeweils ein entsprechendes Sensorelement aufweisen.
  • Ein Sensorelement kann grundsätzlich jedes Element sein, welches zum Nachweis einer physikalischen Größe geeignet ist. Beispielsweise kann das Sensorelement eine Spule oder ein Schwingkreis eines induktiven Näherungsschalters, ein Fotodetektor eines optischen Sensors, eine kapazitive Sonde, oder ein Thermoelement sein.
  • Ein erfindungsgemäßes Verfahren zur kontaktlosen Energie- und Datenübertragung kann mit einer Primäreinheit und einer Sekundäreinheit ausgeführt werden, welche jeweils eine Induktivität aufweisen. Hierbei werden die Primäreinheit und die Sekundäreinheit wenigstens zeitweilig so positioniert, dass zwischen der Primärinduktivität und der Sekundärinduktivität eine transformatorische Kopplungsstrecke gebildet wird. Des Weiteren wird zumindest zeitweilig Energie zum Versorgen der Sekundäreinheit und von daran anschließbaren Endgeräten über die transformatorische Kopplungsstrecke von der Primäreinheit an die Sekundäreinheit kontaktlos übertragen. Hierbei ist vorgesehen, dass die Energieübertragung von der Primäreinheit auf die Sekundäreinheit wenigstens zeitweilig unterbrochen wird. Diese Unterbrechung der Energieübertragung wird als Energiesendepause bezeichnet. Die Sekundäreinheit wiederum detektiert eine derartige Energiesendepause und sendet in der Energiesendepause Daten über die transformatorische Kopplungsstrecke an die Primäreinheit.
  • In einer abgewandelten Version des erfindungsgemäßen Verfahrens werden in den Energiesendepausen keine Signale von der Sekundäreinheit an die Primäreinheit übertragen. Es werden jedoch Daten von der Primäreinheit an die Sekundäreinheit übertragen. Hierbei können die Daten beispielsweise durch ein Variieren der Länge der Energiesendepause abgebildet werden. Eine andere Möglichkeit ist es, die Daten durch unterschiedliche Abstände mehrerer Energiesendepausen zueinander auszudrücken oder beide Arten der Datencodierung zu verwenden.
  • In einer bevorzugten Ausführungsform der beiden erfindungsgemäßen Verfahren findet sowohl eine Übertragung von Signalen in den Energiesendepausen von der Sekundäreinheit an die Primäreinheit statt, wie auch eine Übertragung von Daten von der Primäreinheit an die Sekundäreinheit. Bei dieser Variante wird also ein einziger bidirektionaler Kanal sowohl für die Daten- als auch für die Energieübertragung verwendet.
  • Daten, die von der Primäreinheit an die Sekundäreinheit übertragen werden, können beispielsweise Anweisungen zum Schalten an an die Sekundäreinheit angeschlossenen Aktoren, Initialisierungsanweisungen oder Konfigurationsdaten für die Sekundäreinheit oder für angeschlossene Geräte wie Sensoren oder Aktoren sein. Daten, die von der Sekundäreinheit an die Primäreinheit gesendet werden, können beispielsweise Schaltzustände oder andere Zustandsvariablen der angeschlossenen Endgeräte sein.
  • Es ist aber ebenso möglich, in den Energiesendepausen Daten von der Primäreinheit an die Sekundäreinheit zu senden. Hierzu kann allerdings eine entsprechende Regelung vorhanden sein, damit sich die Daten von der Primäreinheit nicht mit den Daten von der Sekundäreinheit überlagern.
  • Ein erfindungsgemäßes Verfahren kann zur Energie- und Datenübertragung zwischen einer feststehenden Primäreinheit und einer beweglichen Sekundäreinheit erfolgen. Dies kann beispielsweise bei Druckwalzen der Fall sein, bei der die Sekundäreinheit in oder in der Nähe der Achse positioniert wird. Ein anderes Beispiel ist ein Hochregallager, in dem die Waren des Lagers automatisch durch Be- und Entladereinrichtungen aus den Regalen und in die Regale gelegt werden. Die Sekundäreinheit kann dann beispielsweise an einer Be- und Entladeeinrichtung vorgesehen sein und die Primäreinheit fest an einer zuvor definierten Stelle, an welche die Be- und Entladeeinrichtung in den Ruhezustand zurückkehrt.
  • Um Energie von der Primäreinheit auf die Sekundäreinheit zu übertragen, ist es bevorzugt, wenn die Primärinduktivität zur Energieübertragung mit einem Wechselstrom angeregt wird. Hierbei kann die Primärinduktivität selbst einen Teil eines Schwing- oder Resonanzkreises darstellen oder durch diesen angeregt werden. Die Steuerung des Schwingkreises ist bevorzugt mittels einer Stromstärkenmessung, einer Ansteuerung und einer Transistorbrücke geregelt. Die Stromstärkenmessung kann beispielsweise über einen Transformator erfolgen, dessen Messsignal proportional zur Stromstärke ist. Um die Schwingungen in der Spule aufrecht zu erhalten, wird das Messsignale aus dem Transformator mit einer Phasenkorrektur verstärkt und an die Ansteuerung weitergegeben. Die Ansteuerung steuert die Transistorbrücke beziehungsweise deren Treiberschaltung derart, dass die Transistorbrücke immer im Nahbereich des Nullgangs des Schwingkreisstromes schaltet und somit der Schwingkreis zusätzlich angeregt wird. Hierdurch werden Umschaltverluste vermieden, und es liegt sozusagen eine Rechteckspannung am Schwingkreis an. In der Ansteuerung kann auch eine Überprüfung des momentanen Schwingkreisstromes erfolgen, um bei eventuell zu hohen Strömen die Anregung auszusetzen.
  • Um bei der Unterbrechung der Energieübertragung möglichst schnell keine Energie mehr über die transformatorische Kopplungsstrecke zu senden, ist es bevorzugt, wenn die Restenergie in der Primärinduktivität beschleunigt abgebaut wird. Dies kann beispielsweise über die Ansteuerung erfolgen, die dann phaseninvertiert die Primärinduktivität oder den Schwingkreis mit Strom versorgt, so dass die Schwingung abgedämpft wird. Alternativ kann dies auch durch eine in Serie geschaltete Transistorstrecke z.B. aus FETs und/oder Widerstände erfolgen.
  • Bei herkömmlichen induktiven Kopplungsstrecken wird die Sekundärinduktivität abgestimmt zur Primärinduktivität bzw. deren Schwingungsfrequenz betrieben. Dies erfordert aber entsprechende Abstimmungen zwischen den beiden Induktivitäten. Problematisch sind hierbei auch Drifts der Eigenfrequenzen z.B. aufgrund von Alterung oder Temperaturänderungen. Daher ist es bevorzugt, wenn bei der Verwendung der erfindungsgemäßen transformatorischen Kopplungsstrecke die Sekundärinduktivität unabgestimmt betrieben wird. Dies heißt, dass keinerlei Anstrengungen unternommen werden, sie auf die Resonanzfrequenz der Primärinduktivität bzw. des Schwingkreises in der Primäreinheit abzustimmen.
  • Eine Möglichkeit zum Erkennen der Energiesendepausen durch die Sekundäreinheit, ist die Überwachung der Spannung über die Sekundärinduktivität. Fällt diese Spannung ab, so wird auf den Beginn einer Energiesendepause geschlossen.
  • Die Datenübertragung von der Sekundäreinheit an die Primäreinheit in einer Energiesendepause kann grundsätzlich beliebig erfolgen. Besonders einfach ist es jedoch, wenn zum Senden der Daten die Sekundärinduktivität mit Strom beaufschlagt wird, und dieser Stromfluss durch die Sekundärinduktivität anschließend, insbesondere abrupt, abgebrochen wird. Hierdurch wird ein Impuls ausgelöst, der an die Primärinduktivität über die transformatorische Kopplungsstrecke übertragen wird und in der Primäreinheit als Spannungsimpuls detektiert werden kann.
  • So ist es beispielsweise möglich, zum Übertragen eines Datums mit dem Wert "1" in der Energiesendepause einen Spannungs- oder Stromimpuls an die Primäreinheit zu übertragen beziehungsweise dort anzuregen und zum Übertragen eines Datums mit dem Wert "0" in der Energiesendepause keinen Spannungs- oder Stromimpuls zu erzeugen. Ebenso sind aber auch andere Kodierungsmöglichkeiten denkbar. So können auch mit einem Impuls informationstechnische Symbole übertragen werden, wodurch die Übertragung von mehreren Bit mit einem Impuls möglich ist. Dies erfordert entsprechende Modulations- und Demodulations- sowie Auswertungseinrichtungen sowohl auf der Primär- wie als auch auf der Sekundäreinheit.
  • Die Daten, die von der Sekundäreinheit an die Primäreinheit übertragen werden, können beispielsweise Informationen über Messsignale der angeschossene Sensoren sein. Ebenso ist es möglich, Informationen über die aktuellen Schaltzustände von angeschlossenen Aktoren zu übertragen. Hierbei hat es sich als vorteilhaft herausgestellt, wenn diese Daten vor oder während der Übertragung einer Quellen- oder Kanalkodierung unterzogen werden, um die Anfälligkeit auf Übertragungsfehler zu verringern. Ebenso ist das Vorsehen einer Prüfsumme möglich, um Übertragungsfehler zu erkennen.
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und schematischen Zeichnungen näher erläutert. In diesen Zeichnungen zeigen:
  • Fig. 1
    ein schematisches Diagramm des Stromflusses durch die Primärinduktivi- tät;
    Fig. 2
    ein schematisches Diagramm einer Ausführungsform der erfindungsge- mäßen Vorrichtung; und
    Fig. 3
    eine schematische Darstellung einer möglichen Anordnung der Primär- und Sekundärinduktivitäten.
  • In Fig. 1 ist der Strom über die Zeit in der Primärinduktivität 4 der Primäreinheit 2 dargestellt.
  • Bis zum Zeitpunkt t1 wird die Primärinduktivität 4 beziehungsweise der Schwingkreis durch die Steuerung der Primäreinheit 2 mit Strom angeregt, so dass sie in Schwingung versetzt wird. Das heißt, vom Zeitpunkt t0 und auch davor bis zum Zeitpunkt t1 wird in einem ersten Energieübertragungsintervall 41 Energie an die Sekundärinduktivität 3 übertragen. Die Restwelligkeit des Stroms ist durch die Regelung in der Primärinduktivität 4 bedingt. Zum Zeitpunkt t1 wird die Anregung des Schwingkreises bzw. der Primärinduktivität 4 beendet. Anschließend wird zwischen dem Zeitpunkt t1 bis t2 die Energie beschleunigt aus der Primärinduktivität 4 beziehungsweise dem Schwingkreis abgebaut. Dieser Zeitraum wird auch als Abklingzeit 42 bezeichnet. Grundsätzlich werden, wenn keine Möglichkeit der Datenübertragung von der Primäreinheit 2 an die Sekundäreinheit 3 notwendig ist, die Energiesendepausen 43 in periodischen Abständen eingefügt.
  • Der Beginn der Energiesendepause 43, welche sich vom Zeitpunkt t2 bis t4 erstreckt, wird von der Sekundäreinheit 3 erkannt. Daraufhin sendet die Sekundäreinheit 3 einen Impuls 50 mittels ihrer Sekundärinduktivität 5 über die transformatorische Kopplungsstrecke an die Primärinduktivität 4 und damit die Primäreinheit 2 aus.
  • Zum Zeitpunkt t4 wird von der Primäreinheit 2 die Anregung der Schwingung in der Primärinduktivität 4 wieder aufgenommen und erreicht zum Zeitpunkt t5 wieder den optimalen Betriebswert. Das Intervall zwischen t4 und t5 wird auch als Anschaltverzögerung 44 bezeichnet. Anschließend an die Anschaltverzögerung 44 befindet sich ein neues, zweites Energieübertragungsintervall 45. Um auch Daten von der Primäreinheit 2 an die Sekundäreinheit 3 zu übertragen, kann die Länge der Energiesendepause 43 zur Datenübertragung beziehungsweise Kodierung verwendet werden. Eine andere oder zusätzliche Möglichkeit ist die Länge eines Energieübertragungsintervalls 41, 45 zur Übertragung dieser Daten zu verwenden. Ein Energieübertragungsintervall 41, 45 kann beispielsweise 4 ms und die Abklingzeit 20-30 µs betragen. Um die Energieübertragung nicht zu lange zu unterbrechen, dauert dann eine Energiesendepause 34 beispielsweise etwa 100-150 µs.
  • Im Folgenden wird unter Bezugnahme auf Fig. 2 die grundlegende Funktionalität und der Betrieb einer erfindungsgemäßen Vorrichtung 1 beschrieben.
  • Die erfindungsgemäße Vorrichtung 1 gliedert sich in eine Primäreinheit 2 und eine Sekundäreinheit 3. Diese können auch als Primär- und Sekundärseiten der Vorrichtung 1 angesehen werden. Die zentralen Elemente zum Ausführen des erfindungsgemäßen Verfahrens sind die Primärinduktivität 4, welche durch eine erste Spule ausgebildet ist und die Sekundärinduktivität 5, welche durch eine zweite Spule ausgebildet ist. Die beiden Spulen 4 und 5 sind bevorzugt koaxial positioniert. Der Abstand 15 zwischen den beiden Spulen 4, 5 ist in der Größenordnung von 2,5 mm und sollte maximal 5 mm betragen. Diese Strecke zwischen den beiden Spulen 4, 5 wird als transformatorische Kopplungsstrecke bezeichnet.
  • Im Folgenden wird die Steuerung und der Betrieb der Spule 4 zum Übertragen der Energie an die Sekundäreinheit 3 beschrieben. Die Primäreinheit 2 wird über eine Energiequelle 6 mit Energie versorgt. Diese ist sowohl mit der allgemeinen Versorgung für die Einrichtungen der Primäreinheit 2 wie auch mit einer Transistorbrücke 9 verbunden. Diese Transistorbrücke 9 ist bevorzugt aus FETs aufgebaut. In der hier dargestellten Ausführungsform wird durch die Spule 4 und einen parallel dazu geschalteten Kondensator 34 ein paralleler Schwingkreis ausgebildet. Es ist aber ebenso möglich, einen anderen Schwingkreis, beispielsweise einen seriellen Schwingkreis, zum Ausführen des erfindungsgemäßen Verfahrens zu verwenden.
  • Über die Transistorbrücke 9, den Schwingkreis mit der Spule 4 und dem Kondensator 34, einen Strom- und Spannungssensor 16, eine Steuereinrichtung 10 und einen Brückentreiber 9, ist eine Regelschleife zur Regelung der Oszillation des Schwingkreises aufgebaut. Der Strom- und Spannungssensor 16 misst den Strom, welcher durch die Spule 4 fließt, und leitet ein Messsignal an die Steuereinrichtung 10 weiter. Dieses Signal kann mit einer Phasenkorrektur verstärkt werden. Beispielsweise kann die Strommessung in dem Strom- und Spannungssensor 16 durch einen Transformator ausgeführt werden, dessen Messsignal proportional zur Stromstärke ist.
  • Die Steuereinrichtung 10, welche auch als Steuerlogik für den Brückentreiber 8 bezeichnet werden kann, schaltet die Transistorbrücke 9 über deren Treiber 8 derart, dass der Schwingkreis in Schwingung versetzt wird. Dies erfolgt beispielsweise durch ein Schalten zum Zeitpunkt des Null-Durchgangs des Schwingkreisstromes. Des Weiteren wird der vom Strom- und Spannungssensor 16 gemessene Strom zur Stromregelung in der Spule 4 verwendet, um sicherzustellen, dass der Schwingkreisstrom nicht unzulässig hoch wird. Die Regelung wird durch die Steuereinrichtung 10 derart ausgeführt, dass bei einem zu hohen Strom durch die Spule 4 der Schwingkreis nicht weiter angeregt wird.
  • Weiterhin wird von der Steuerung 10 auch eine Energiesendepause 43 eingeleitet. Hierzu signalisiert sie dem Treiber 8, die Schwingung nicht weiter aufrechtzuerhalten oder zu unterstützen. Zusätzlich aktiviert sie einen Abklingbeschleuniger 14. Dieser kann beispielsweise durch Transistoren und Widerstände ausgeführt sein und sorgt dafür, dass die Restenergie, welche sich in der Spule 4 befindet, möglichst schnell abgebaut wird.
  • In einer Energiesendepause 43 wird von der Spule 5 ein Datenimpuls 50 in der Spule 4, wie zuvor in Bezug auf Fig. 1 gezeigt, angeregt. Die Ergebnisse einer kontinuierlichen Spannungsüberwachung der Spule 4 werden an eine Impulsaufbereitung 13 weitergeleitet. Hier wird anhand der empfangenen Spannungsniveaus dekodiert, welche Daten und Informationen von der Sekundäreinheit 3 übertragen wurden. Diese Daten werden einer zentralen Auswerteeinheit 12 zur weiteren Verarbeitung weitergeleitet. Die Auswerteeinheit 12 kann beispielsweise durch einen Mikroprozessor oder durch eine programmierbare Logik, wie ein FPGA, realisiert werden. Die Auswertung 12 bereitet die Ergebnisse auf und gibt sie über entsprechende Ausgänge 11 beispielsweise auf eine speicherprogrammierbare Steuerung, ein Relais oder einen Daten-Bus aus. Die Auswertung 12 kann auch die Steuereinrichtung 10 mit Anweisungen steuern. So ist es beispielsweise möglich, explizit Daten von der Sekundäreinheit 3 anzufordern, in dem von der Auswertung 12 die Steuereinrichtung 10 angewiesen wird, eine Energiesendepause 43 einzulegen, um Daten von der Sekundäreinheit 3 zu übertragen.
  • In der Sekundäreinheit 3 wird über die induktive Kopplungsstrecke durch die Spule 4 in der Spule 5 eine Wechselspannung angeregt. Die Spule 5 ist mit einer allgemeinen Versorgungseinrichtung 18 verbunden. Diese weist zur Energiespeicherung der übertragenen Energie beispielsweise einen Kondensator auf, der über einen Gleichrichter aufgeladen wird. Die gleichgerichtete Spannung ist stark abstandsabhängig und kann bei sehr geringem Abstand bzw. direktem Kontakt der Spulen 4, 5 über 100 Volt betragen. Deswegen ist zur Verlustleistungsminderung ein Schaltregler vorgesehen. Die in der allgemeinen Versorgungseinrichtung 18 gespeicherte und aufbereitete Energie wird über ein Schaltnetzteil 19 den angeschlossenen Endgeräten, beispielsweise Aktoren oder Sensoren, zur Verfügung gestellt.
  • Über die transformatorische Kopplungsstrecke können typischerweise einige Watt übertragen werden. Das Schaltnetzteil 19 liefert beispielsweise eine Spannung von ca. 12 V an die Endgeräte, welche etwa 160-170 mA verbrauchen.
  • Zusätzlich befindet sich direkt an der Spule 5 eine Pausenerkennung 17. Diese Pausenerkennung misst die Spannung, welche in die Spule 5 übertragen wird, und signalisiert einer zentrale Verarbeitungseinrichtung 21, sobald die Spannung unter einen Schwellwert fällt. Die zentrale Verarbeitungseinrichtung 21 kann beispielsweise in Form eines Mikrocontrollers oder einer programmierbaren Logik, wie einem FPGA, ausgeführt sein. Empfängt die zentrale Verarbeitungseinrichtung 21 die Information von der Pausenerkennung 17, dass zurzeit die Spannung unter einem Schwellwert liegt, so interpretiert sie dies, als Energiesendepause 43. Die zentrale Verarbeitungseinrichtung 21 übermittelt einem Impulserzeuger 22 entsprechende Anweisungen, bestimmte Impulsformen über die Spule 5 mittels der induktiven Kopplungsstrecke an die Spule 4 der Primäreinheit 2 zu übertragen. Die Energie zur Sendeimpulserzeugung stammt ebenfalls aus der allgemeinen Energieversorgung 18.
  • Die zentrale Verarbeitungseinrichtung 21 empfängt außerdem Informationen über Eingänge 23. Diese sind mit Sensoren oder Aktoren verbunden. Ebenso kann die zentrale Verarbeitungseinrichtung 21 über Ausgänge, welche nicht dargestellt sind, Anweisungen an Aktoren oder Sensoren senden.
  • Schließlich ist eine Unterspannungserkennung 20 vorgesehen, die die Spannung an dem Schaltnetzteil 19 überwacht. Fällt diese Spannung unter einen bestimmten Wert, beispielsweise unter 12 V, so sind die Daten, welche die Sensoren über die Eingänge 23 liefern, nicht mehr zuverlässig. Dies signalisiert die Unterspannungserkennung 20 an die zentrale Verarbeitungseinrichtung 21, so dass diese unzuverlässigen Daten nicht an die Primäreinheit 2 gesendet werden.
  • Die Spannung an der Primärspule 4 während der Energieübertragung kann etwa 100-200 V betragen und ein Datenimpuls hat beispielsweise etwa 100-200 mV.
  • In Fig. 3 ist eine Möglichkeit der Positionierung der Primärspule 4 und der Sekundärspule 5 dargestellt. Die Primärspule 4 weit einen U-förmigen Kern 56 auf. Die Sekundärspule 5 befindet sich auf einer um ihre Mittelachse 57 drehbar gelagerten Scheibe 58 an deren äußeren Umfangsbereich. Bei der Scheibe 58 kann es sich beispielsweise um einen Drehteller einer Abfüllanlage handeln. Dreht sich nun die Scheibe 58, so ist immer zumindest ein Bereich der Sekundärspule 5 in transformatorischer Kopplung mit der Primärspule 4. Grundsätzlich ist bei der Positionierung der beiden Spulen 4, 5 bevorzugt, wenn die meisten Feldlinien der Primärspule 4 durch zumindest Teilbereiche der Sekundärspule 5 durchtreten.
  • Die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren bieten somit eine kontaktlose, effektive und störungsunanfällige Energie- und Datenübertragung über lediglich eine Schnittstelle an.

Claims (15)

  1. Vorrichtung (1) zur kontaktlosen Energie- und Datenübertragung,
    mit einer Primäreinheit (2), welche eine Primärinduktivität (4) aufweist,
    mit einer Sekundäreinheit (3), welche eine Sekundärinduktivität (5) aufweist und welche zum Anschließen, zum Versorgen und/oder zum Steuern von mindestens einem Endgerät eingerichtet ist,
    wobei die Primäreinheit (2) und die Sekundäreinheit (3) mindestens zeitweilig relativ zueinander so positioniert sind, dass zwischen der Primärinduktivität (4) und der Sekundärinduktivität (5) eine transformatorische Kopplungsstrecke gebildet ist,
    wobei die Primäreinheit (2) zum kontaktlosen Übertragen von Energie an die Sekundäreinheit (3) über die transformatorische Kopplungsstrecke eingerichtet ist, wobei die Sekundäreinheit (3) zum Versorgen der Endgeräte mittels der über die transformatorische Kopplungsstrecke empfangenen Energie eingerichtet ist, dass die Primäreinheit (2) Mittel (10, 14) zum Unterbrechen der Energieübertragung über die transformatorische Kopplungsstrecke in Energiesendepausen (43) aufweist und
    wobei die Sekundäreinheit (3) Mittel (17) zum Detektieren der Energiesendepausen (43) aufweist,
    dadurch gekennzeichnet,
    dass die Primäreinheit (2) Mittel zum Übertragen von Daten mittels Variation der Länge der Energiesendepausen (43) und/oder der Länge von Energieübertragungsphasen an die Sekundäreinheit (3) aufweist und
    dass die Sekundäreinheit (3) Mittel (21) zum Übertragen von Daten an die Primäreinheit (2) über die transformatorische Kopplungsstrecke in den Energiesendepausen (43) aufweist.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Primäreinheit (2) eine Transistorstrecke zum beschleunigten Abbauen einer Restenergie in der Primärinduktivität (4) beim Unterbrechen der Energieübertragung aufweist.
  3. Vorrichtung nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass die Primäreinheit (2) Mittel (16) zum Überwachen einer Spannung über die Primärinduktivität (4) aufweist.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Primäreinheit (2) Mittel (16) zum Messen eines Stromes in der Primärinduktivität (4) aufweist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass die Sekundäreinheit (3) Mittel (17) zum Messen einer Spannung über die Sekundärinduktivität (5) aufweist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass die Sekundäreinheit (3) eine Speicherkapazität zum Puffern einer Versorgung der Endgeräte aufweist.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die Primärinduktivität (4) als Teil eines Resonanzkreises ausgeführt ist.
  8. Verfahren zur kontaktlosen Energie- und Datenübertragung
    zwischen einer Primäreinheit (2) und einer Sekundäreinheit (3), welche zum Anschließen, zum Versorgen und/oder zum Steuern von mindestens einem Endgerät eingerichtet ist,
    wobei die Primäreinheit (2) eine Primärinduktivität (4) aufweist, und
    wobei die Sekundäreinheit (3) eine Sekundärinduktivität (5) aufweist,
    bei dem die Primäreinheit (2) bezüglich der Sekundäreinheit (3) wenigstens zeitweilig so positioniert wird, dass zwischen der Primärinduktivität (4) und der Sekundärinduktivität (5) eine transformatorische Kopplungsstrecke gebildet wird, bei dem zumindest zeitweilig Energie zum Versorgen der Sekundäreinheit (3) und der angeschlossenen Endgeräte über die transformatorische Kopplungsstrecke von der Primäreinheit (2) an die Sekundäreinheit (3) kontaktlos übertragen wird,
    bei dem das Übertragen von Energie von der Primäreinheit (2) auf die Sekundäreinheit (3) in Energiesendepausen (43) unterbrochen wird,
    bei dem die Energiesendepausen (43) von der Sekundäreinheit (3) detektiert werden, dadurch gekennzeichnet, dass
    die Sekundäreinheit (3) während der Energiesendepausen (43) Daten
    über die transformatorische Kopplungsstrecke an die Primäreinheit (2) überträgt und
    mittels der Länge der Energiesendepausen (43) und/oder dem Abstand zwischen zwei Energiesendepausen (43) Daten von der Primäreinheit (2) an die Sekundäreinheit (3) übertragen werden.
  9. Verfahren nach Anspruch 8,
    dadurch gekennzeichnet,
    dass die transformatorische Kopplungsstrecke außerhalb von Resonanzen der Sekundärinduktivität (5) betrieben wird.
  10. Verfahren nach einem der Ansprüche 8 oder 9,
    dadurch gekennzeichnet,
    dass beim Unterbrechen der Energieübertragung eine Restenergie in der Primärinduktivität (4) beschleunigt abgebaut wird.
  11. Verfahren nach einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet,
    dass die Primärinduktivität (4) zur Energieübertragung mit einem Wechselstrom angeregt wird und
    dass der Wechselstrom mittels einer Stromstärkenmessung (16), einer Ansteuerung (10) und einer Transistor-Brücke (9) geregelt wird.
  12. Verfahren nach einem der Ansprüche 8 bis 11,
    dadurch gekennzeichnet,
    dass zum Detektieren der Energiesendepausen (43) durch die Sekundäreinheit (3) eine Spannung über die Sekundärinduktivität (5) ausgewertet wird.
  13. Verfahren nach einem der Ansprüche 8 bis 12,
    dadurch gekennzeichnet,
    dass zum Senden von Daten die Sekundärinduktivität (5) mit Strom beaufschlagt wird und der Stromfluss durch die Sekundärinduktivität (5) sodann, insbesondere abrupt, abgebrochen wird.
  14. Verfahren nach einem der Ansprüche 8 bis 13,
    dadurch gekennzeichnet,
    dass zum Übertragen eines Datums mit dem Wert "1" in einer Energiesendepause (43) ein Spannungs- und/ oder Strompuls übertragen wird und
    dass zum Übertragen eines Datums mit dem Wert "0" in einer Energiesendepause (43) kein Spannungs- und/oder Strompuls übertragen wird.
  15. Verfahren nach einem der Ansprüche 8 bis 14,
    dadurch gekennzeichnet,
    dass mittels der Daten, insbesondere codierte. Informationen über Endgeräte übertragen werden.
EP08001422A 2008-01-25 2008-01-25 Vorrichtung und Verfahren zur kontaktlosen Energie- und Datenübertragung Active EP2083407B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08001422A EP2083407B1 (de) 2008-01-25 2008-01-25 Vorrichtung und Verfahren zur kontaktlosen Energie- und Datenübertragung
US12/359,495 US8198755B2 (en) 2008-01-25 2009-01-26 Contactless energy and data transmission device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08001422A EP2083407B1 (de) 2008-01-25 2008-01-25 Vorrichtung und Verfahren zur kontaktlosen Energie- und Datenübertragung

Publications (2)

Publication Number Publication Date
EP2083407A1 EP2083407A1 (de) 2009-07-29
EP2083407B1 true EP2083407B1 (de) 2012-05-16

Family

ID=39523402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08001422A Active EP2083407B1 (de) 2008-01-25 2008-01-25 Vorrichtung und Verfahren zur kontaktlosen Energie- und Datenübertragung

Country Status (2)

Country Link
US (1) US8198755B2 (de)
EP (1) EP2083407B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12021392B2 (en) 2018-01-03 2024-06-25 Hottinger Brüel & Kjaer GmbH System for wirelessly supplying a rotating device with electrical energy

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616966C2 (ru) * 2011-12-22 2017-04-19 Конинклейке Филипс Н.В. Катушечная система зарядки для вставляемого целевого устройства, например зубной щетки
KR102044360B1 (ko) 2014-02-21 2019-12-02 베가 그리이샤버 카게 에너지 송신 장치를 포함하는 수위 표시기
JP6612018B2 (ja) 2014-07-01 2019-11-27 日本電産サンキョー株式会社 磁界発生装置、磁界発生装置の制御方法、および磁気記録媒体処理装置
DE102015100233B9 (de) * 2015-01-09 2016-03-24 Carl Mahr Holding Gmbh Induktiver Drehübertrager
DE102017108302A1 (de) * 2017-04-19 2018-10-25 Weidmüller Interface GmbH & Co. KG Vorrichtung zur kontaktlosen induktiven Energieübertragung und Verfahren zum Betreiben der Vorrichtung
DE102020112540A1 (de) * 2020-05-08 2021-11-11 Endress + Hauser Wetzer Gmbh + Co. Kg Schnittstelle

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3616389A1 (de) * 1986-05-15 1987-11-19 Turck Werner Kg Beruehrungslos wirkender naeherungsschalter
FR2662320B1 (fr) * 1990-05-18 1994-05-13 Cemagref Dispositif de liaison sans contact pour relier des troncons de bus serie.
AT395224B (de) 1990-08-23 1992-10-27 Mikron Ges Fuer Integrierte Mi Kontaktloses, induktives datenuebertragungssystem
DE4130903A1 (de) 1991-09-17 1993-03-18 Bks Gmbh Einrichtung zur beruehrungslosen energie- und datenuebertragung
DE59304677D1 (de) 1993-03-24 1997-01-16 Siemens Ag Vorrichtung und Verfahren zur drahtlosen Daten- und Energieübertragung
GB9309246D0 (en) 1993-05-05 1993-06-16 Esselte Meto Int Gmbh Rechargeable shelf edge tag
DE4421526C1 (de) 1994-06-20 1995-08-10 Siemens Ag Elektronisches berührungsloses Datenübertragungssystem
US5706183A (en) * 1994-06-27 1998-01-06 Matsushita Electric Works, Ltd. Inverter power supply with single discharge path
DE19653522A1 (de) * 1996-12-20 1998-06-25 Bayerische Motoren Werke Ag Verfahren zum drahtlosen Übertragen von Energie und Daten
JP3363341B2 (ja) * 1997-03-26 2003-01-08 松下電工株式会社 非接触電力伝達装置
TW463399B (en) * 1999-03-19 2001-11-11 Seiko Epson Corp Electronic device
DE10012981A1 (de) 2000-03-16 2001-09-27 Hema Elektronik Fertigungs Und Einrichtung zur kontaktlosen Übertragung von elektrischer Energie und elektronischen Daten zwichen einer stationären und einer rotierenden Einheit
US6501361B1 (en) * 2001-06-14 2002-12-31 Eaton Corporation Rotary transformer with synchronized operation
DE10200488B4 (de) 2002-01-09 2004-02-05 Hema Elektronik-Fertigungs- Und Vertriebs Gmbh Intelligenter Werkzeugkopf für den Einsatz in Werkzeugmaschinen
US7405540B2 (en) * 2003-10-20 2008-07-29 Teleflex Megatech, Inc. Secondary power supply system and method of activating subsystems from a vehicle steering wheel
US7525449B1 (en) * 2003-10-20 2009-04-28 Teleflex Megatech, Inc. Status light for switch on boat steering wheel
US7672759B1 (en) * 2004-02-24 2010-03-02 Teleflex Megatech, Inc. Communication with a steering wheel switch
DE102004015771B4 (de) 2004-03-31 2006-04-13 Hottinger Baldwin Messtechnik Gmbh Anordnung zur Drehmomentmessung von rotierenden Maschinenteilen
GB2414120B (en) * 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
JP2006229583A (ja) * 2005-02-17 2006-08-31 Eastman Kodak Co 通信システム及びデジタルカメラ並びにドック装置
EP1927072B1 (de) 2005-09-23 2012-01-25 IPICO Innovation Inc Vorrichtungssysteme für funkfrequenzidentifikationen
JP4934337B2 (ja) * 2006-03-29 2012-05-16 パナソニック株式会社 通信システム
JP4761559B2 (ja) * 2006-09-27 2011-08-31 キヤノン株式会社 撮像装置及び制御方法
US8188619B2 (en) * 2008-07-02 2012-05-29 Powermat Technologies Ltd Non resonant inductive power transmission system and method
JP5554937B2 (ja) * 2009-04-22 2014-07-23 パナソニック株式会社 非接触給電システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12021392B2 (en) 2018-01-03 2024-06-25 Hottinger Brüel & Kjaer GmbH System for wirelessly supplying a rotating device with electrical energy

Also Published As

Publication number Publication date
EP2083407A1 (de) 2009-07-29
US8198755B2 (en) 2012-06-12
US20090189459A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
EP2083407B1 (de) Vorrichtung und Verfahren zur kontaktlosen Energie- und Datenübertragung
EP0968567B1 (de) Sicherheitsschalter
EP2745377B1 (de) Drehübertrager für werkzeugmaschinen
EP2641062B1 (de) MESSGERÄT ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG MINDESTENS EINER PROZESSGRÖßE
EP2800233A1 (de) Schaltungsanordnung mit einem Resonanzwandler und Verfahren zum Betreiben eines Resonanzwandlers
DE102013001194A1 (de) LED-Modul. LED-Vorschaltvorrichtung und System aus einem LED-Modul und einer LED-Vorschaltvorrichtung
DE102007004843A1 (de) Konzept zum Bereitstellen einer Versorgungsspannung und einer Lastmodulation in einem Transponder
WO2018145987A1 (de) Verfahren zur drahtlosen energieübertragung von einer energiesendevorrichtung zu einem verbraucher sowie drahtlose energiesendevorrichtung zur durchführung des verfahrens
EP2696362B1 (de) Steuervorrichtung für ein Schaltgerät mit getrennter Anzug- und Haltespule
EP2710745B1 (de) Verfahren und vorrichtung zur kommunikation und leistungsübertragung mittels eines transformators
EP2884233B1 (de) Messgrößenerfassung im elektromagnetischen Antrieb eines Schaltgeräts
DE102010022143B4 (de) Anordnung und Verfahren zum Betreiben einer Anordnung zur induktiven Energieübertragung an einen elektrischen Verbraucher
EP1522377B1 (de) Vorrichtung zum Positionieren eines Werkstückes mit kontaktlosen Energie- und Informationsübertragungsmitteln
EP2941676B1 (de) Betriebselektronik für ein prozessgerät sowie verfahren zum betreiben derselben
DE10345536B4 (de) Anordnung und Verfahren zum Einstellen einer Sendeleistung
DE102014009934B4 (de) Energieübertrager, Gate-Treiber und Verfahren
EP3673563B1 (de) Verfahren zur drahtlosen energieübertragung von einer energiesendevorrichtung zu einem verbraucher sowie drahtlose energiesendevorrichtung zur durchführung des verfahrens
EP2713470A1 (de) Schaltungsanordnung mit einem Resonanzwandler und Verfahren zum Betreiben eines Resonanzwandlers
DE102011077387A1 (de) Schaltungsanordnung zum Schalten eines Stromes und Verfahren zum Betreiben derselben
EP2404357B1 (de) System und verfahren zur berührungslosen energieübertragung
EP2023464A2 (de) Energieaufnahme kontaktloser Datenträger
DE102011103413A1 (de) Verfahren zum Schalten einer getakteten Sperrwandlerschaltung, Sperrwandlerschaltung sowie Heizschaltung für eine Wendel eines Leuchtmittels mit einer derartigen Sperrwandlerschaltung
EP3221180B1 (de) System zum induktiven übertragen von elektrischer leistung
EP2837260B1 (de) Wandler für ein leuchtmittel, led-konverter und verfahren zum betreiben eines llc-resonanzwandlers
DE10321842B3 (de) Verfahren und Vorrichtung zum Betrieb eines Sensors oder Aktors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PEPPERL + FUCHS GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TREBBELS, DENNIS

Inventor name: SEEFRIED, ROLAND

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 558398

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008007168

Country of ref document: DE

Effective date: 20120712

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOGENSBERGER PATENT- & MARKENBUERO DR. BURKHARD BO

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120516

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120916

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120816

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120817

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120827

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: FALLSGASSE 7, 9492 ESCHEN (LI)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008007168

Country of ref document: DE

Effective date: 20130219

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E015932

Country of ref document: HU

BERE Be: lapsed

Owner name: PEPPERL + FUCHS G.M.B.H.

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 558398

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20150116

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151222

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170124

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008007168

Country of ref document: DE

Representative=s name: SCHIFFER, AXEL, DIPL.-PHYS.UNIV. DR.RER.NAT., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 17

Ref country code: CH

Payment date: 20240202

Year of fee payment: 17