EP2079623A2 - Procede de gestion du fonctionnement d'un vehicule hybride - Google Patents

Procede de gestion du fonctionnement d'un vehicule hybride

Info

Publication number
EP2079623A2
EP2079623A2 EP07858565A EP07858565A EP2079623A2 EP 2079623 A2 EP2079623 A2 EP 2079623A2 EP 07858565 A EP07858565 A EP 07858565A EP 07858565 A EP07858565 A EP 07858565A EP 2079623 A2 EP2079623 A2 EP 2079623A2
Authority
EP
European Patent Office
Prior art keywords
vehicle
storage means
traction chain
electric
heat engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07858565A
Other languages
German (de)
English (en)
Inventor
David Calmels
Xavier Delisle
Vincent Basso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP2079623A2 publication Critical patent/EP2079623A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/119Conjoint control of vehicle sub-units of different type or different function including control of all-wheel-driveline means, e.g. transfer gears or clutches for dividing torque between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to vehicles of the type comprising a drivetrain power train (or GMP) comprising a heat engine, an electric machine coupled to the engine, and a gearbox, coupled to the front axle of the vehicle.
  • a drivetrain power train or GMP
  • GMP drivetrain power train
  • It relates more particularly to a method for managing the operation of a hybrid vehicle.
  • FIG. 1 shows a conventional traction chain of a vehicle comprising two front driving wheels 14, 16 driven in rotation by the torque supplied by a heat engine 18 by means of a coupling means 20, typically a clutch, and of a gearbox 22.
  • a front electric machine 24, coupled to the heat engine 18, is powered by a battery (not shown in the figure).
  • This electric machine 24 performs the so-called "Stop and Start” function. In this mode of operation, the electrical machine 24 ensures the restart of the heat engine 18, the charging of the means for storing the electrical energy generated by the heat engine as well as the supply of the vehicle's electrical network when the engine is running; the battery supplying the vehicle's electrical network when the engine is shut down.
  • Hybrid vehicles incorporate, in addition to the powertrain (GMP) of the conventional power train, hereinafter referred to as a thermal traction chain, an electric power train comprising one or more electric machines of size and power to ensure traction of the vehicle.
  • GMP powertrain
  • thermal traction chain an electric power train comprising one or more electric machines of size and power to ensure traction of the vehicle.
  • the invention proposes to associate with the conventional powertrain, which drives the vehicle by the front axle, an electric power train on the rear axle of the vehicle as shown in Figure 2.
  • the invention proposes a method of managing the operation of a hybrid vehicle comprising: a thermal traction chain comprising a front axle, a heat engine coupled by a coupling means to a gearbox intended to transmit to the train before the torque provided by the engine for different transmission gear ratios, a means of storing electrical energy coupled to the vehicle electrical network, a front electric machine coupled to the engine and sized to ensure its restart, the recharging of the electrical energy storage means as well as the supply of the vehicle electrical network when the engine is running, the storage means supplying the electrical network when the engine is off, - an electric traction train comprising a train rear, at least one rear electric machine mechanically coupled to the rear axle re, the thermal traction chain and the electric traction chain sharing the resources of the same means of storing electrical energy; and a control means for controlling the thermal traction chain, the electric traction chain and the electrical energy storage means to take account of all the vehicle life situations, the method of controlling the thermal traction chain , the electric traction chain and the electrical energy storage means
  • the invention proposes a method of managing the operation of a hybrid vehicle according to the invention, characterized in that when the driver acts on the controls of the vehicle to decelerate or braking, which results in the appearance of a resistive torque at the wheels, said method comprises at least the following phases:
  • the level of deceleration of the vehicle is related to the action on the acceleration control and the braking intensity of the vehicle, exerted by the driver.
  • the rear electric machine is configured as an electrical current generator transforming the resistive torque taken from the wheels of the rear axle produced by the kinetic energy of the vehicle into electrical energy transmitted to the electrical network in order to recharge the storage means. electric energy.
  • the method comprises at least the following phases:
  • the torque delivered by the rear electric machine is related to the depression of the accelerator pedal by the driver.
  • the acceleration potential of the front axle is supplemented by an acceleration potential of the rear axle.
  • the method comprises at least the following phases:
  • the electric traction system of the vehicle when the driver requests an acceleration greater than that which the heat engine is capable of providing on the front axle of the vehicle, the electric traction system of the vehicle is controlled so as to provide the maximum power available on the rear axle.
  • the rear electric machine being configured as an electric motor powered by the electrical energy storage means.
  • the method comprises least the following phases:
  • the method comprises at least the following phases to reduce the polluting emissions of the engine:
  • FIG. 3 represents a simplified architecture of a hybrid vehicle driven by the method according to the invention
  • FIG. 4 represents a first driving strategy of the hybrid vehicle of FIG. 3 making it possible to recover energy during deceleration and braking
  • FIG. 5 represents a second hybrid vehicle control strategy for driving the vehicle exclusively by traction in pure electric mode
  • FIG. 6 represents a third strategy of driving the hybrid vehicle that makes it possible to offer traction on the rear axle of the vehicle in addition to the GMP on the front axle;
  • FIG. 7 represents a fourth hybrid vehicle control strategy that makes it possible to offer additional acceleration with respect to the acceleration capacity available with the front axle;
  • FIG. 8 represents a fifth vehicle control strategy for recharging the storage means with the heat engine via the front electric machine.
  • FIG. 9 shows a sixth strategy of driving the vehicle to unload the GMP.
  • electric machine By electric machine is meant the machine itself associated with its power electronics (inverter).
  • FIG. 3 represents a simplified architecture of a hybrid vehicle driven by the method according to the invention.
  • the vehicle of FIG. 3 comprises, at the front of the vehicle, a thermal traction chain 50 as represented in FIG. 1, comprising the front axle 10 and the two front drive wheels 14, 16 of the vehicle.
  • the wheels motors are rotated by the torque supplied by the heat engine 18 via the coupling means 20 and the gearbox 22.
  • the front of the vehicle comprises, in the compartment of the GMP, a front electric machine 56 mechanically coupled to a shaft of the engine 18 by a belt to provide the Stop and Start function defined above.
  • the vehicle comprises, at the rear of the vehicle, an electric traction chain 60 comprising a rear axle 62 and two rear drive wheels 64, 66 mechanically coupled to a rear electric machine 68.
  • the hybrid vehicle further comprises an electrical network 70 connecting electrical accesses 72 of the front electric machine 56 and electrical accesses 74 of the rear electric machine 68 to electrical accesses 76 of an electrical energy storage means 80.
  • the storage means is typically a battery, or a battery pack consisting of a plurality of accumulators. This means can also be achieved by a super capacity.
  • the electrical network 70 ensures the transfer of electrical energy between the front electric machine 56, the rear electric machine 68 and the storage means 80.
  • the rear electric machine 68 may be configured either as an electric motor powered by the electrical network 70 producing a driving torque on the rear axle of the vehicle, or as an electric generator producing an electric current on the said electrical network 70 from a pair withdrawn on the rear train 62.
  • the hybrid vehicle comprises usual acceleration and brake control elements (not shown) controlled by the driver, such as an accelerator pedal controlling the torque delivered by the engine 18 and a brake pedal controlling the braking of the engine. vehicle.
  • the vehicle body is mechanically connected to the front and rear trains of the vehicle by suspension devices not shown in the figures.
  • the architecture of the hybrid vehicle shown in FIG. 3, furthermore includes a control means 40, for example a traction chain management unit (PTMU) which makes it possible to drive the thermal traction chain. of the electric traction chain 60 to respond to different vehicle control strategies related to the life situations of said vehicle.
  • a control means 40 for example a traction chain management unit (PTMU) which makes it possible to drive the thermal traction chain. of the electric traction chain 60 to respond to different vehicle control strategies related to the life situations of said vehicle.
  • PTMU traction chain management unit
  • these different steering strategies of the control method according to the invention are described, according to the life situations of the vehicle.
  • the driver acts on the vehicle controls to decelerate or brake, which results in the appearance of a resistive torque at the wheels. for example, by releasing the accelerator, possibly followed by a pressure on the brake pedal.
  • the steering strategy then consists in converting the kinetic energy of the vehicle into electrical energy which is then stored in the storage means 80.
  • FIG. 4 represents this first hybrid vehicle control strategy of FIG. 3 making it possible to recover energy during deceleration and braking.
  • the method of managing the operation of the vehicle in this first life situation comprises at least the following phases:
  • the front axle 10 is decoupled from the heat engine 18 so as to minimize the mechanical losses due to the driving of the engine by the vehicle.
  • the deceleration level of the vehicle is related to the action on the acceleration control and the braking intensity of the vehicle, exerted by the driver.
  • the rear electric machine 68 is configured as an electrical current generator to transform the resistive torque taken from the wheels of the rear axle 62, produced by the energy kinetics of the vehicle, electrical energy transmitted to the electrical network 70 to recharge the electrical energy storage means 80.
  • the arrow f1 in FIG. 4 shows the direction of transfer of the kinetic energy of the vehicle, after transformation into electrical energy, charging the storage means 80 by the electrical network 70.
  • FIG. 5 represents this second hybrid vehicle control strategy for driving the vehicle exclusively by traction in pure electric mode.
  • the method according to the invention in this second life situation, comprises at least the following phases:
  • the front axle 10 is decoupled from the heat engine 18 so as to minimize the mechanical losses due to the driving of the engine by the vehicle.
  • the rear electric machine 68 configured as an electric motor, produces a traction torque transmitted to the rear axle 62 of the vehicle.
  • the traction torque on the rear axle 62, delivered by the rear electric machine 68, is related to the depression of the acceleration pedal by the driver.
  • the arrow f2 in FIG. 5 shows the transfer direction of the energy stored in the storage means 80 for supplying the rear electric machine 68.
  • the vehicle rolls on a low-friction ground, for example a ground or a road having on its surface snow, water (for example, in rainy weather) sand etc.
  • the steering strategy consists in completing the potential the thrust of the front axle 10 by an acceleration potential of the rear axle 62. The acceleration capacity of the vehicle is thus increased.
  • FIG. 6 represents this third strategy of driving the hybrid vehicle that makes it possible to offer traction on the rear axle 62 of the vehicle in addition to the motor skills offered by the GMP on the front axle 10.
  • the method according to the invention in this third life situation, comprises at least the following phases:
  • the arrows f3, f4 in FIG. 6 respectively show the direction of transfer of the engine torque of the GMP towards the wheels of the front axle 10 of the vehicle and of the electrical energy supplied by the front electric machine 56 to power the rear electric machine. configured as an electric motor and providing the rear electric traction torque.
  • the driver requests an acceleration greater than that which the heat engine 18 is able to provide on the front axle 10 of the vehicle. For example, either because of a deficiency related to a motricity problem, or a maximum power reached by the engine 18, or for a maximum power available on the front axle (power of thermal origin).
  • the electric drivetrain 60 of the vehicle is driven to provide the maximum power available on the rear train 62 (power of electrical origin).
  • FIG. 7 represents this fourth hybrid vehicle control strategy making it possible to offer additional acceleration with respect to the acceleration capacity available with the front axle 10.
  • the rear electric machine 68 is configured as an electric motor powered by the electrical energy storage means 80, the machine rear electrical 68 providing a torque adapted on the rear axle 68 of the vehicle according to the driver's request and adhesion.
  • the arrows f5, f6 in FIG. 7 respectively show the transfer direction of the maximum driving torque of the GMP towards the wheels of the front axle 5 of the vehicle and the energy stored in the storage means 80 for feeding the rear electric machine. 68.
  • the driver requires a pulling power that requires the use of the engine 18, from a fuel consumption point of view, or because the level o available electric power is insufficient.
  • FIG. 8 represents this fifth hybrid vehicle control strategy.
  • the method according to the invention in this fifth life situation, comprises at least the following phases: 5 - supply by the heat engine 18 of all the power demanded by the driver to the vehicle.
  • the front electric machine 56 operates as a current generator reloading the electrical energy storage means 80 through the electrical network 70;
  • the arrows f7, f8 in FIG. 8 respectively indicate the direction of transfer of the engine torque of the GMP towards the wheels of the front axle 10 of the vehicle and of the electrical energy supplied by the front electric machine 565 to recharge the storage means 80. .
  • the power demanded by the driver is provided by the engine 18 and the rear electric machine 68.
  • the contribution of the rear electric machine 68 reduces fuel consumption and pollutant emissions 0 of the engine 18.
  • Figure 9 shows this sixth vehicle steering strategy for off-loading the GMP before.
  • the method according to the invention in this sixth life situation, comprises at least the following phases: - Supply by the engine 18, on the front axle 10, the power demanded by the driver less the power available on the rear axle 62 to optimize the operating point engine 18 - providing a power of origin on the rear axle 62 in addition to the power provided by the engine 18 on the front axle 10 to provide the vehicle the power demanded by the driver.
  • the arrows f9, f10 in FIG. 9 respectively show the transfer direction of the engine torque of the GMP towards the wheels 14, 16 of the front axle 10 of the vehicle and the energy stored in the storage means 80 for feeding the electric machine. back 68.
  • the vehicle has an optimized consumption (all the hybrid functions are realized) and increased motor skills (by derivation of the power of the GMP before or with additional power on the rear axle).
  • the interest of the hybrid vehicle driven by the method according to the invention resides in particular in: the ease of integration of the electric traction system at the rear axle of the vehicle: electric machine distance / reduced energy storage;
  • the electric traction system is not dependent on the GMP.
  • the front electric machine remains dimensioned like that of a vehicle equipped with the Stop and Start function;
  • the electrical equipment (electric machine, battery, 7) serve not only to provide the benefits of the hybrid vehicle, including the gain in fuel consumption, comfort in urban use, but in addition, to provide motor benefits 4x4 type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Procédé de gestion du fonctionnement d'un véhicule hybride comportant : une chaîne de traction thermique comportant un train avant, un moteur thermique couplé par un moyen de couplage à une boîte de vitesses destinée à transmettre au train avant le couple fourni par le moteur thermique pour différents rapports de démultiplication de la boîte de vitesses, un moyen de stockage d'énergie électrique couplé au réseau électrique du véhicule, une machine électrique avant couplée au moteur thermique et dimensionnée pour assurer son redémarrage, la recharge du moyen de stockage d'énergie électrique ainsi que l'alimentation du réseau électrique du véhicule lorsque le moteur thermique tourne, le moyen de stockage alimentant le réseau électrique lorsque le moteur thermique est coupé; une chaîne de traction électrique comportant un train arrière, au moins une machine électrique arrière couplée mécaniquement au train arrière, la chaîne de traction thermique et la chaîne de traction électrique partageant les ressources du même moyen de stockage d'énergie électrique; et un moyen de commande pour commander la chaîne de traction thermique, la chaîne de traction électrique et le moyen de stockage d'énergie électrique pour tenir compte de toutes les situations de vie du véhicule, le procédé consistant à commander la chaîne de traction thermique, la chaîne de traction électrique et le moyen de stockage d'énergie électrique pour tenir compte de toutes les situations de vie du véhicule.

Description

PROCEDE DE GESTION DU FONCTIONNEMENT D'UN VEHICULE
HYBRIDE
L'invention concerne les véhicules du type comportant une chaîne de traction à groupe motopropulseur (ou GMP) comportant un moteur thermique, une machine électrique couplée au moteur thermique, et une boîte de vitesses, couplés au train avant du véhicule.
Elle concerne plus particulièrement un procédé de gestion du fonctionnement d'un véhicule hybride.
La figure 1 montre une chaîne de traction conventionnelle d'un véhicule comportant deux roues motrices avant 14, 16 entraînées en rotation par le couple fournit par un moteur thermique 18 par l'intermédiaire d'un moyen de couplage 20, typiquement un embrayage, et d'une boîte de vitesses 22. Une machine électrique avant 24, couplée au moteur thermique 18, est alimentée par une batterie (non représentée sur la figure). Cette machine électrique 24 assure la fonction dite « Stop and Start ». Dans ce mode de fonctionnement, la machine électrique 24 assure le redémarrage du moteur thermique 18, la recharge du moyen de stockage de l'énergie électrique générée par le moteur thermique ainsi que l'alimentation du réseau électrique du véhicule lorsque le moteur tourne ; la batterie alimentant le réseau électrique du véhicule lorsque le moteur est coupé.
Des véhicules dits hybrides, intègrent, en plus du groupe motopropulseur (GMP) de la chaîne de traction conventionnelle, appelée par la suite chaîne de traction thermique, une chaîne de traction électrique comportant une ou des machines électriques de taille et puissance plus ou moins importantes pour assurer la traction du véhicule.
Cette intégration nécessite des ressources et des investissements importants car le développement est spécifique à chaque GMP.
Elle présente en outre des difficultés croissantes du fait de l'augmentation des contraintes dimensionnelles dans le compartiment moteur, notamment lorsque le GMP est positionné en transversal.
Pour pallier les inconvénients des véhicules hybrides de l'état de l'art, l'invention propose d'associer au groupe motopropulseur classique, qui entraîne le véhicule par le train avant, une chaîne de traction électrique sur le train arrière du véhicule telle que représentée à la figure 2.
A cet effet, l'invention propose un procédé de gestion du fonctionnement d'un véhicule hybride comportant : - une chaîne de traction thermique comportant un train avant, un moteur thermique couplé par un moyen de couplage à une boîte de vitesses destinée à transmettre au train avant le couple fourni par le moteur thermique pour différents rapports de démultiplication de la boîte de vitesses, un moyen de stockage d'énergie électrique couplé au réseau électrique du véhicule, une machine électrique avant couplée au moteur thermique et dimensionnée pour assurer son redémarrage, la recharge du moyen de stockage d'énergie électrique ainsi que l'alimentation du réseau électrique du véhicule lorsque le moteur thermique tourne, le moyen de stockage alimentant le réseau électrique lorsque le moteur thermique est coupé, - une chaîne de traction électrique comportant un train arrière, au moins une machine électrique arrière couplée mécaniquement au train arrière, la chaîne de traction thermique et la chaîne de traction électrique partageant les ressources du même moyen de stockage d'énergie électrique ; et - un moyen de commande pour commander la chaîne de traction thermique, la chaîne de traction électrique et le moyen de stockage d'énergie électrique pour tenir compte de toutes les situations de vie du véhicule, le procédé consistant à commander la chaîne de traction thermique, la chaîne de traction électrique et le moyen de stockage d'énergie électrique pour tenir compte de toutes les situations de vie du véhicule. On trouve, parmi les situations de vie du véhicule :
- les actions par le conducteur sur les éléments de commande du véhicule, telles que l'action sur la pédale d'accélération ou de frein ;
- le roulement du véhicule sur sol à faible adhérence, - un fonctionnement du véhicule de type 4X4,
- etc.
A cet effet, l'invention propose un procédé de gestion du fonctionnement d'un véhicule hybride selon l'invention, caractérisé en ce que lorsque le conducteur agit sur les commandes du véhicule pour décélérer ou freiner, ce qui se traduit par l'apparition d'un couple résistif au niveau des roues, ledit procédé comporte au moins les phases suivantes :
- découplage du moteur thermique du train avant ;
- imposition par la machine électrique arrière d'un couple résistif au niveau du train arrière dans la limite du niveau de décélération du véhicule demandé par le conducteur et de la stabilité du véhicule.
Dans cette réalisation du procédé, le niveau de décélération du véhicule est lié à l'action sur la commande d'accélération et à l'intensité de freinage du véhicule, exercée par le conducteur. Dans cette réalisation, la machine électrique arrière est configurée en générateur de courant électrique transformant le couple résistif prélevé au niveau des roues du train arrière produit par l'énergie cinétique du véhicule en énergie électrique transmise au réseau électrique pour recharger le moyen de stockage d'énergie électrique.
Dans une autre réalisation, lorsque le conducteur demande une faible puissance de traction sur les roues, le procédé comporte au moins les phases suivantes :
- découplage du moteur thermique du train avant, - alimentation de la machine électrique arrière, configurée en moteur électrique, par le moyen de stockage d'énergie électrique produisant un couple de traction transmis au train arrière du véhicule.
Dans cette autre réalisation, le couple délivré par la machine électrique arrière est lié à l'enfoncement de la pédale d'accélération par le conducteur.
Dans une autre réalisation, lorsque le véhicule roule sur un sol à faible adhérence, le potentiel d'accélération du train avant est complété par un potentiel d'accélération du train arrière. Dans cette autre réalisation, le procédé comporte au moins les phases suivantes :
- contrôle du niveau de la puissance délivrée par le train avant en fonction de l'enfoncement de la pédale d'accélération par le conducteur ;
- contrôle de la puissance délivrée par le train arrière proportionnellement à l'enfoncement de la pédale d'accélérateur. Dans cette autre réalisation, la puissance délivrée par le train avant est limitée par le niveau d'adhérence des roues sur le sol.
Dans une autre réalisation, lorsque le conducteur demande une accélération supérieure à celle que le moteur thermique est capable de fournir sur le train avant du véhicule, la chaîne de traction électrique du véhicule est piloté de façon à fournir la puissance maximum disponible sur le train arrière, la machine électrique arrière étant configurée en moteur électrique alimenté par le moyen de stockage d'énergie électrique.
Dans une autre réalisation, lorsque le conducteur demande une puissance de traction qui impose d'utiliser le moteur thermique, d'un point de vue de la consommation de carburant, ou parce que le niveau de puissance électrique disponible est insuffisant, le procédé comporte au moins les phases suivantes :
- fourniture par le moteur thermique de l'intégralité de la puissance demandée par le conducteur au véhicule, la machine électrique avant fonctionnant en générateur de courant rechargeant le moyen de stockage d'énergie électrique ; - train arrière est en attente : aucun couple résistif n'est appliqué au train arrière par la machine électrique arrière.
Dans une autre réalisation, lorsque la puissance demandée par le conducteur est fournie par le moteur thermique et par la machine électrique arrière, le procédé comporte au moins les phases suivantes pour réduire les émissions polluantes du moteur thermique :
- fourniture par le moteur thermique, sur le train avant, de la puissance demandée par le conducteur diminuée de la puissance disponible sur le train arrière pour optimiser le point de fonctionnement du moteur thermique.
- fourniture d'une puissance d'origine électrique sur le train arrière en complément de la puissance fournie par le moteur thermique sur le train avant pour fournir au véhicule la puissance demandée par le conducteur. L'invention sera mieux comprise par une description détaillée d'un exemple d'architecture de véhicule hybride selon l'invention et aussi par des exemples de stratégies mises en œuvre par le procédé de gestion de ladite architecture en fonction des situations de vie du véhicule hybride en référence aux figures indexées dans lesquelles :
- la figure 1 , déjà décrite, représente une chaîne de traction thermique conventionnelle d'un véhicule ;
- la figure 2, déjà décrite, représente une chaîne de traction électrique sur un train arrière d'un véhicule ; - la figure 3, représente une architecture simplifiée d'un véhicule hybride piloté par le procédé selon l'invention ;
- la figure 4 représente une première stratégie de pilotage du véhicule hybride de la figure 3 permettant de récupérer de l'énergie en décélération et au freinage ; - la figure 5 représente une deuxième stratégie de pilotage du véhicule hybride permettant d'entraîner le véhicule exclusivement par traction en mode électrique pure ;
- la figure 6 représente une troisième stratégie de pilotage du véhicule hybride permettant d'offrir de la motricité sur le train arrière du véhicule en complément du GMP sur le train avant ;
- la figure 7 représente une quatrième stratégie de pilotage du véhicule hybride permettant d'offrir un complément d'accélération par rapport à la capacité d'accélération disponible avec le train avant ;
- la figure 8 représente une cinquième stratégie de pilotage du véhicule permettant de recharger le moyen de stockage avec le moteur thermique via la machine électrique avant ; et
- la figure 9 représente une sixième stratégie de pilotage du véhicule permettant de délester le GMP.
Par machine électrique, on entend la machine proprement dite associée à son électronique de puissance (onduleur).
La figure 3 représente une architecture simplifiée d'un véhicule hybride piloté par le procédé selon l'invention.
Le véhicule de la figure 3 comporte, à l'avant du véhicule, une chaîne de traction thermique 50 telle que représentée à la figure 1 , comportant le train avant 10 et les deux roues motrices avant 14, 16 du véhicule. Les roues motrices sont entraînées en rotation par le couple fourni par le moteur thermique 18 par l'intermédiaire du moyen de couplage 20 et de la boîte de vitesses 22.
L'avant du véhicule comporte, dans le compartiment du GMP, une machine électrique avant 56 couplée mécaniquement à un arbre du moteur thermique 18 par une courroie pour assurer la fonction Stop and Start définie plus haut.
Le véhicule comporte, à l'arrière du véhicule, une chaîne de traction électrique 60 comportant un train arrière 62 et deux roues motrices arrière 64, 66 couplées mécaniquement à une machine électrique arrière 68.
Le véhicule hybride comporte en outre, un réseau électrique 70 reliant des accès électriques 72 de la machine électrique avant 56 et des accès électriques 74 de la machine électrique arrière 68 à des accès électriques 76 d'un moyen de stockage d'énergie électrique 80. Le moyen de stockage est typiquement une batterie, ou un pack de batteries constitué d'une pluralité d'accumulateurs. Ce moyen peut être également réalisé par une super capacité.
Le réseau électrique 70 assure les transferts d'énergie électrique entre la machine électrique avant 56, la machine électrique arrière 68 et le moyen de stockage 80.
La machine électrique arrière 68 peut être configurée, soit en moteur électrique alimenté par le réseau électrique 70 produisant un couple moteur sur le train arrière du véhicule, soit en générateur électrique produisant un courant électrique sur ledit réseau électrique 70 à partir d'un couple prélevé sur le train arrière 62.
Le véhicule hybride comporte des éléments habituels de commande d'accélération et de freinage (non représenté) contrôlés par le conducteur, tels qu'une pédale d'accélération commandant le couple délivré par le moteur thermique 18 et une pédale de frein commandant le freinage du véhicule.
La caisse du véhicule est reliée mécaniquement aux trains avant et arrière du véhicule par des dispositifs de suspension non représentés sur les figures. L'architecture du véhicule hybride représenté à la figure 3, .comporte en outre un moyen de commande 40, par exemple une unité de gestion de la chaîne de traction (PTMU) qui permet d'assurer un pilotage de la chaîne de traction thermique 50, de la chaîne de traction électrique 60 pour répondre aux différentes stratégies de pilotage du véhicule liées aux situations de vie dudit véhicule.
Par la suite sont décrites ces différentes stratégies de pilotage du procédé de pilotage selon l'invention, en fonction des situations de vie du véhicule. Dans une première situation de vie du véhicule, le conducteur agit sur les commandes du véhicule pour décélérer ou freiner, ce qui se traduit par l'apparition d'un couple résistif au niveau des roues. : par exemple, par le relâchement de l'accélérateur, action éventuellement suivie d'une pression sur la pédale de frein. La stratégie de pilotage consiste alors dans la transformation de l'énergie cinétique du véhicule, en énergie électrique qui est ensuite stockée dans le moyen de stockage 80.
La figure 4 représente cette première stratégie de pilotage du véhicule hybride de la figure 3 permettant de récupérer de l'énergie en décélération et au freinage. Le procédé de gestion du fonctionnement du véhicule dans cette première situation de vie comporte au moins les phases suivantes :
- découplage du moteur thermique 18 du train avant 10. Le train avant 10 est découplé du moteur thermique 18 de manière à minimiser les pertes mécaniques dues à l'entraînement du moteur thermique par le véhicule.
- imposition par la machine électrique arrière 68 d'un couple résistif au niveau du train arrière 62 dans la limite du niveau de décélération du véhicule demandé par le conducteur et de la stabilité véhicule.
Le niveau de décélération du véhicule est lié à l'action sur la commande d'accélération et à l'intensité de freinage du véhicule, exercée par le conducteur.
Dans cette stratégie, la machine électrique arrière 68 est configurée en générateur de courant électrique pour transformer le couple résistif prélevé au niveau des roues du train arrière 62, produit par l'énergie cinétique du véhicule, en énergie électrique transmise au réseau électrique 70 pour recharger le moyen de stockage d'énergie électrique 80.
La flèche f1 sur la figure 4 montre le sens de transfert de l'énergie cinétique du véhicule, après transformation en énergie électrique, chargeant le moyen de stockage 80 par le réseau électrique 70.
Dans une deuxième situation de vie, le conducteur demande une faible puissance de traction sur les roues. Dans cette configuration, il est plus rentable d'un point de vue consommation de carburant de rouler en mode électrique pur en utilisant l'énergie électrique stockée dans le moyen de stockage 80 et de recharger le moyen de stockage par la suite via le moteur thermique 18.
La figure 5 représente cette deuxième stratégie de pilotage du véhicule hybride permettant d'entraîner le véhicule exclusivement par traction en mode électrique pur. Le procédé selon l'invention, dans cette deuxième situation de vie, comporte au moins les phases suivantes :
- découplage du moteur thermique 18 du train avant 10. Le train avant 10 est découplé du moteur thermique 18 de manière à minimiser les pertes mécaniques dues à l'entraînement du moteur thermique par le véhicule.
- alimentation de la machine électrique arrière 68, configurée en moteur électrique, par le moyen de stockage d'énergie électrique 80.
La machine électrique arrière 68, configurée en moteur électrique, produit un couple de traction transmis au train arrière 62 du véhicule. Le couple de traction sur le train arrière 62, délivré par la machine électrique arrière 68, est lié à l'enfoncement de la pédale d'accélération par le conducteur.
La flèche f2 sur la figure 5 montre le sens de transfert de l'énergie stockée dans le moyen de stockage 80 pour alimenter la machine électrique arrière 68.
Dans une troisième situation de vie, le véhicule roule sur un sol à faible adhérence, par exemple un sol ou une route présentant sur sa surface de la neige, de l'eau (par exemple, par temps de pluie) du sable etc.. La stratégie de pilotage consiste, dans cette situation, à compléter le potentiel d'accélération du train avant 10 par un potentiel d'accélération du train arrière 62. La capacité d'accélération du véhicule est ainsi augmentée.
La figure 6 représente cette troisième stratégie de pilotage du véhicule hybride permettant d'offrir de la motricité sur le train arrière 62 du véhicule en complément de la motricité offerte par le GMP sur le train avant 10.
Le procédé selon l'invention, dans cette troisième situation de vie, comporte au moins les phases suivantes :
- contrôle du niveau de la puissance délivrée par le train avant 10 en fonction de l'enfoncement de la pédale d'accélération par le conducteur. La puissance délivrée par le train avant 10, est, par ailleurs, limitée par le niveau d'adhérence des roues sur le sol. Si un patinage des roues du véhicule sur le sol est détecté, la puissance motrice est limitée de manière à éviter le patinage et à assurer la stabilité du véhicule. - contrôle de la puissance délivrée par le train arrière 62 proportionnellement à l'enfoncement de la pédale d'accélération.
Les flèches f3, f4 sur la figure 6 montrent respectivement le sens de transfert du couple moteur du GMP vers les roues du train avant 10 du véhicule et, de l'énergie électrique fournie par la machine électrique avant 56 pour alimenter la machine électrique arrière 68 configurée en moteur électrique et fournissant le couple de traction électrique arrière.
Dans une quatrième situation de vie, le conducteur demande une accélération supérieure à celle que le moteur thermique 18 est capable de fournir sur le train avant 10 du véhicule. Par exemple, soit du fait d'une insuffisance liée à un problème de motricité, ou d'une puissance maximum atteinte par le moteur thermique 18, soit pour une puissance maximum disponible sur le train avant (puissance d'origine thermique). La chaîne de traction électrique 60 du véhicule est piloté de façon à fournir la puissance maximum disponible sur le train arrière 62 (puissance d'origine électrique). La figure 7 représente cette quatrième stratégie de pilotage du véhicule hybride permettant d'offrir un complément d'accélération par rapport à la capacité d'accélération disponible avec le train avant 10.
Dans cette quatrième configuration du fonctionnement du véhicule hybride, la machine électrique arrière 68 est configurée en moteur électrique alimenté par le moyen de stockage d'énergie électrique 80, la machine électrique arrière 68 fournissant un couple adapté sur le train arrière 68 du véhicule en fonction de la demande du conducteur et de l'adhérence.
Les flèches f5, f6 sur la figure 7 montrent respectivement le sens de transfert du couple moteur maximum du GMP vers les roues du train avant 5 10 du véhicule et, de l'énergie stockée dans le moyen de stockage 80 pour alimenter la machine électrique arrière 68.
Dans une cinquième situation de vie, le conducteur demande une puissance de traction qui impose d'utiliser le moteur thermique 18, d'un point de vue de la consommation de carburant, ou parce que le niveau de o puissance électrique disponible est insuffisant.
La figure 8 représente cette cinquième stratégie de pilotage du véhicule hybride.
Le procédé selon l'invention, dans cette cinquième situation de vie, comporte au moins les phases suivantes : 5 - fourniture par le moteur thermique 18 de l'intégralité de la puissance demandée par le conducteur au véhicule. La machine électrique avant 56 fonctionne en générateur de courant rechargeant le moyen de stockage d'énergie électrique 80 par le réseau électrique 70 ;
- train arrière en attente de sollicitation : aucun couple, ni résistif ni0 moteur, n'est appliqué au train arrière 62 par la machine électrique arrière 68.
Les flèches f7, f8 sur la figure 8 indiquent respectivement le sens de transfert du couple moteur du GMP vers les roues du train avant 10 du véhicule et, de l'énergie électrique fournie par la machine électrique avant 565 pour recharger le moyen de stockage 80.
Dans une sixième situation de vie, la puissance demandée par le conducteur est fournie par le moteur thermique 18 et par la machine électrique arrière 68. La contribution de la machine électrique arrière 68 permet de réduire la consommation de carburant et les émissions polluantes0 du moteur thermique 18.
La figure 9 représente cette sixième stratégie de pilotage du véhicule pour délester le GMP avant.
Le procédé selon l'invention, dans cette sixième situation de vie, comporte au moins les phases suivantes : - fourniture par le moteur thermique 18, sur le train avant 10, de la puissance demandée par le conducteur diminuée de la puissance disponible sur le train arrière 62 pour optimiser le point de fonctionnement moteur thermique 18. - fourniture d'une puissance d'origine électrique sur le train arrière 62 en complément de la puissance fournie par le moteur thermique 18 sur le train avant 10 pour fournir au véhicule la puissance demandée par le conducteur.
Les flèches f9, f10 sur la figure 9 montrent respectivement le sens de transfert du couple moteur du GMP vers les roues 14, 16 du train avant 10 du véhicule et, de l'énergie stockée dans le moyen de stockage 80 pour alimenter la machine électrique arrière 68.
Grâce aux stratégies de pilotage du procédé selon l'invention, associées aux différentes situations de vie décrites ci-dessus, le véhicule a une consommation optimisée (toutes les fonctions hybrides sont réalisées) et une motricité accrue (par dérivation de la puissance du GMP avant ou avec une puissance additionnelle sur le train arrière).
L'intérêt du véhicule hybride piloté par le procédé selon l'invention, réside notamment dans : - la facilité d'intégration de la chaîne de traction électrique au niveau du train arrière du véhicule : distance machine électrique/stockage d'énergie réduite ;
- la généralisation à tous les GMP associés à un véhicule : la chaîne de traction électrique n'étant pas dépendante du GMP. La machine électrique avant reste dimensionnée comme celle d'un véhicule équipé de la fonction Stop and Start ;
- les équipements électriques (machine électrique, batterie, ...) servent non seulement à apporter les prestations du véhicule hybride, notamment sur le gain en consommation de carburant, en confort en usage urbain, mais en plus, à apporter des prestations de motricité de type 4x4.

Claims

REVENDICATIONS
1. Procédé de gestion du fonctionnement d'un véhicule hybride comportant : - une chaîne de traction thermique (50) comportant un train avant
(10), un moteur thermique (18) couplé par un moyen de couplage (20) à une boîte de vitesses (22) destinée à transmettre au train avant (10) le couple fourni par le moteur thermique (18) pour différents rapports de démultiplication de la boîte de vitesses (22) , un moyen de stockage d'énergie électrique (80) couplé au réseau électrique (70) du véhicule, une machine électrique avant (24, 56) couplée au moteur thermique (18) et dimensionnée pour assurer son redémarrage, la recharge du moyen de stockage d'énergie électrique (80) ainsi que l'alimentation du réseau électrique (70) du véhicule lorsque le moteur thermique (18) tourne, le moyen de stockage (80) alimentant le réseau électrique (70) lorsque le moteur thermique (18) est coupé,
- une chaîne de traction électrique (60) comportant un train arrière (62), au moins une machine électrique arrière (68) couplée mécaniquement au train arrière (62), la chaîne de traction thermique (50) et la chaîne de traction électrique (60) partageant les ressources du même moyen de stockage d'énergie électrique (80) ; et
- un moyen de commande (40) pour commander la chaîne de traction thermique (50), la chaîne de traction électrique (60) et le moyen de stockage d'énergie électrique (80) pour tenir compte de toutes les situations de vie du véhicule, le procédé consistant à commander la chaîne de traction thermique (50), la chaîne de traction électrique (60) et le moyen de stockage d'énergie électrique (80) pour tenir compte de toutes les situations de vie du véhicule, caractérisé en ce que, lorsque le conducteur agit sur les commandes du véhicule pour décélérer ou freiner, ce qui se traduit par l'apparition d'un couple résistif au niveau des roues, ledit procédé comporte au moins les phases suivantes :
- découplage du moteur thermique (18) du train avant (10) ; - imposition par la machine électrique arrière (68) d'un couple résistif au niveau du train arrière (62) dans la limite du niveau de décélération du véhicule demandé par le conducteur et de la stabilité du véhicule.
2. Procédé de gestion selon la revendication 1 , caractérisé en ce que le niveau de décélération du véhicule est lié à l'action sur la commande d'accélération et à l'intensité de freinage du véhicule, exercée par le conducteur.
3. Procédé de gestion selon l'une des revendications 1 ou 2, caractérisé en ce que la machine électrique arrière (68) est configurée en générateur de courant électrique transformant le couple résistif prélevé au niveau des roues du train arrière (62) produit par l'énergie cinétique du véhicule en énergie électrique transmise au réseau électrique (70) pour recharger le moyen de stockage d'énergie électrique (80).
4. Procédé de gestion du fonctionnement d'un véhicule hybride comportant :
- une chaîne de traction thermique (50) comportant un train avant (10), un moteur thermique (18) couplé par un moyen de couplage (20) à une boîte de vitesses (22) destinée à transmettre au train avant (10) le couple fourni par le moteur thermique (18) pour différents rapports de démultiplication de la boîte de vitesses (22) , un moyen de stockage d'énergie électrique (80) couplé au réseau électrique (70) du véhicule, une machine électrique avant (24, 56) couplée au moteur thermique (18) et dimensionnée pour assurer son redémarrage, la recharge du moyen de stockage d'énergie électrique (80) ainsi que l'alimentation du réseau électrique (70) du véhicule lorsque le moteur thermique (18) tourne, le moyen de stockage (80) alimentant le réseau électrique (70) lorsque le moteur thermique (18) est coupé,
- une chaîne de traction électrique (60) comportant un train arrière (62), au moins une machine électrique arrière (68) couplée mécaniquement au train arrière (62), la chaîne de traction thermique (50) et la chaîne de traction électrique (60) partageant les ressources du même moyen de stockage d'énergie électrique (80) ; et - un moyen de commande (40) pour commander la chaîne de traction thermique (50), la chaîne de traction électrique (60) et le moyen de stockage d'énergie électrique (80) pour tenir compte de toutes les situations de vie du véhicule, le procédé consistant à commander la chaîne de traction thermique (50), la chaîne de traction électrique (60) et le moyen de stockage d'énergie électrique (80) pour tenir compte de toutes les situations de vie du véhicule, caractérisé en ce que, lorsque la puissance demandée par le conducteur est fournie par le moteur thermique (18) et par la machine électrique arrière (68), le procédé comporte au moins les phases suivantes pour réduire les émissions polluantes du moteur thermique (18) :
- fourniture par le moteur thermique (18), sur le train avant (10), de la puissance demandée par le conducteur diminuée de la puissance disponible sur le train arrière (62) pour optimiser le point de fonctionnement du moteur thermique (18).
- fourniture d'une puissance d'origine électrique sur le train arrière (62) en complément de la puissance fournie par le moteur thermique (18) sur le train avant (10) pour fournir au véhicule la puissance demandée par le conducteur.
5. Procédé de gestion du fonctionnement d'un véhicule hybride comportant :
- une chaîne de traction thermique (50) comportant un train avant (10), un moteur thermique (18) couplé par un moyen de couplage (20) à une boîte de vitesses (22) destinée à transmettre au train avant (10) le couple fourni par le moteur thermique (18) pour différents rapports de démultiplication de la boîte de vitesses (22) , un moyen de stockage d'énergie électrique (80) couplé au réseau électrique (70) du véhicule, une machine électrique avant (24, 56) couplée au moteur thermique (18) et dimensionnée pour assurer son redémarrage, la recharge du moyen de stockage d'énergie électrique (80) ainsi que l'alimentation du réseau électrique (70) du véhicule lorsque le moteur thermique (18) tourne, le moyen de stockage (80) alimentant le réseau électrique (70) lorsque le moteur thermique (18) est coupé, - une chaîne de traction électrique (60) comportant un train arrière (62), au moins une machine électrique arrière (68) couplée mécaniquement au train arrière (62), la chaîne de traction thermique (50) et la chaîne de traction électrique (60) partageant les ressources du même moyen de stockage d'énergie électrique (80) ; et
- un moyen de commande (40) pour commander la chaîne de traction thermique (50), la chaîne de traction électrique (60) et le moyen de stockage d'énergie électrique (80) pour tenir compte de toutes les situations de vie du véhicule, le procédé consistant à commander la chaîne de traction thermique
(50), la chaîne de traction électrique (60) et le moyen de stockage d'énergie électrique (80) pour tenir compte de toutes les situations de vie du véhicule, caractérisé en ce que, lorsque le conducteur demande une puissance de traction qui impose d'utiliser le moteur thermique (18), d'un point de vue de la consommation de carburant, ou parce que le niveau de puissance électrique disponible est insuffisant, le procédé comporte au moins les phases suivantes :
- fourniture par le moteur thermique (18) de l'intégralité de la puissance demandée par le conducteur au véhicule, la machine électrique avant (56) fonctionnant en générateur de courant rechargeant le moyen de stockage d'énergie électrique (80) ;
- train arrière est en attente : aucun couple résistif n'est appliqué au train arrière par la machine électrique arrière (68).
EP07858565A 2006-10-20 2007-10-12 Procede de gestion du fonctionnement d'un vehicule hybride Ceased EP2079623A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0654416A FR2907380B1 (fr) 2006-10-20 2006-10-20 Vehicule hybride et son procede de pilotage.
PCT/FR2007/052137 WO2008047029A2 (fr) 2006-10-20 2007-10-12 Procede de gestion du fonctionnement d'un vehicule hybride

Publications (1)

Publication Number Publication Date
EP2079623A2 true EP2079623A2 (fr) 2009-07-22

Family

ID=37998461

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07858565A Ceased EP2079623A2 (fr) 2006-10-20 2007-10-12 Procede de gestion du fonctionnement d'un vehicule hybride

Country Status (3)

Country Link
EP (1) EP2079623A2 (fr)
FR (1) FR2907380B1 (fr)
WO (1) WO2008047029A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944768B1 (fr) * 2009-04-28 2016-08-05 Peugeot Citroen Automobiles Sa Procede d'alimentation d'un groupe motopropulseur hybride.
DE102013001095B4 (de) * 2013-01-23 2021-04-01 Audi Ag Verfahren zum Betreiben einer Hybridantriebseinrichtung eines Kraftfahrzeugs sowie entsprechende Hybridantriebseinrichtung
FR3014805B1 (fr) * 2013-12-17 2017-04-28 Peugeot Citroen Automobiles Sa Vehicule automobile avec mode roue libre commande par la pedale d'acceleration
FR3017849B1 (fr) * 2014-02-26 2017-10-06 Peugeot Citroen Automobiles Sa Procede et dispositif de controle de la recuperation de l'energie acquise par une machine d'un vehicule hybride, apres un decouplage de la chaine de transmission
CN105305722B (zh) * 2015-12-01 2018-01-02 罗业富 磁悬浮储能发电车轮
FR3106797B1 (fr) * 2020-01-30 2022-02-11 Psa Automobiles Sa Vehicule a gmp hybride et controle du frein moteur, et procede de controle associe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225403A (ja) * 1993-01-25 1994-08-12 Toyota Motor Corp ハイブリッド型電気自動車の制御装置
FR2742100B1 (fr) * 1995-12-08 1998-01-09 Renault Vehicule automobile a motorisation hybride
FR2778873B1 (fr) * 1998-05-20 2000-07-28 Pierre Guimbretiere Vehicule automobile a generateurs mecanique et electrique
FR2793449B1 (fr) * 1999-05-11 2001-07-13 Renault Vehicule automobile hybride comportant des moyens de ralentissement
US6484833B1 (en) * 2000-03-17 2002-11-26 General Motors Corporation Apparatus and method for maintaining state of charge in vehicle operations
JP3593983B2 (ja) * 2001-01-16 2004-11-24 日産自動車株式会社 車両の駆動力制御装置
JP2004268901A (ja) * 2003-02-18 2004-09-30 Nissan Motor Co Ltd 制動制御装置
JP4005069B2 (ja) * 2004-09-03 2007-11-07 本田技研工業株式会社 ハイブリッド車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008047029A3 *

Also Published As

Publication number Publication date
WO2008047029A3 (fr) 2008-06-19
FR2907380B1 (fr) 2009-06-05
FR2907380A1 (fr) 2008-04-25
WO2008047029A2 (fr) 2008-04-24

Similar Documents

Publication Publication Date Title
EP2086806B1 (fr) Procede de pilotage d'un vehicule hybride pour la recharge de moyens de stockage d'energie electrique et vehicule hybride
EP2244900B1 (fr) Procede de couplage d'une machine electrique de traction sur un vehicule hybride et vehicule hybride pour la mise en oeuvre du procede
EP2885147B1 (fr) Procede de limitation de couple d'une machine electrique de vehicule hybride comportant un systeme de controle de vitesse
EP2885146B1 (fr) Procede de limitation de couple d'une machine electrique de vehicule hybride, dans le cas d'une forte demande en couple
FR2955715A1 (fr) Procede pour optimiser la recharge de la batterie d'un vehicule hybride
WO2008047029A2 (fr) Procede de gestion du fonctionnement d'un vehicule hybride
FR2953772A1 (fr) Procede de pilotage d'un dispositif de motorisation de vehicule hybride, et dispositif associe
EP2528764B1 (fr) Procede de repartition de couple entre le train avant et le train arriere d'un vehicule hybride
WO2011092392A1 (fr) Procede de motricite curative pour vehicule hybride
FR2994404A1 (fr) Procede de limitation de couple d'une machine electrique de vehicule hybride, comportant des limites de couple nominal et crete
WO2011092390A1 (fr) Procede de derivation de puissance electrique pour vehicule hybride
FR2954257A1 (fr) Groupe motopropulseur hybride.
WO2011036383A1 (fr) Procede de gestion de l'accouplement du moteur thermique sur un vehicule automobile hybride
FR2809058A1 (fr) Transmission evolutive pour vehicule automobile hybride
FR2745243A1 (fr) Vehicule hybride electrique avec coupleur electromagnetique
FR3078204A1 (fr) Gestion de l’energie electrique dans un vehicule automobile hybride
EP2991847B1 (fr) Stratégie pour un véhicule hybride, d'accouplement dans un virage d'une machine électrique aux roues arrière
WO2016059356A2 (fr) Véhicule hybride et procédé d'hybridation d'un véhicule
FR2793449A1 (fr) Vehicule automobile hybride comportant des moyens de ralentissement
FR3005918A1 (fr) Procede de controle de coherence du couple delivre par une machine electrique de traction d'un vehicule hybride, en fonction de la demande du conducteur
CH633751A5 (en) Self-propelled electric vehicle
EP3621862A1 (fr) Dispositif et procédé de contrôle de l'allocation de la puissance de moyens de stockage d'énergie d'un véhicule
FR3096638A1 (fr) Procede de limitation du recul en pente d'un vehicule automobile hybride, dote d’une loi de commande
FR3053300A1 (fr) Controle de l'etat de charge d'une batterie de machine motrice electrique d'une chaine de transmission hybride paralelle de vehicule
WO2012160286A1 (fr) Vehicule a boîte de vitesses manuelle muni d'une chaîne de traction hybride et procede d'hybridation associe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090311

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091021

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20121104