WO2011092392A1 - Procede de motricite curative pour vehicule hybride - Google Patents

Procede de motricite curative pour vehicule hybride Download PDF

Info

Publication number
WO2011092392A1
WO2011092392A1 PCT/FR2010/052902 FR2010052902W WO2011092392A1 WO 2011092392 A1 WO2011092392 A1 WO 2011092392A1 FR 2010052902 W FR2010052902 W FR 2010052902W WO 2011092392 A1 WO2011092392 A1 WO 2011092392A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
vehicle
train
ccns
ccomp
Prior art date
Application number
PCT/FR2010/052902
Other languages
English (en)
Inventor
Ridouane Habbani
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Publication of WO2011092392A1 publication Critical patent/WO2011092392A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a curative motricity process for a hybrid vehicle.
  • the invention is implemented in critical life phases of the vehicle in which the taking into account of a driving stress independent of the driver's will, relative for example to the activation of the brake control system, prevents the vehicle to provide the driver with the requested torque.
  • Hybrid vehicles comprising a heat engine ensuring the traction of the front axle, this engine being mechanically associated with a front electric machine.
  • This electric machine of the alternator / starter type makes it possible in particular to recharge the batteries of the vehicle and start the engine. In certain life situations, this machine can even participate in the traction of the vehicle.
  • These vehicles also comprise an electric machine ensuring the traction of the rear axle via a gearbox and a coupling device for example of dog type.
  • front-wheel drive and rear-wheel drive are mechanically independent of each other.
  • the front electric machine and the rear electric machine are connected to a high voltage battery via an electrical network. This high voltage battery is in connection with a low voltage onboard network via a DC / DC converter.
  • a global target torque is calculated based in particular on the depression of the accelerator pedal and the speed of the vehicle. This set torque global is then converted into a setpoint torque before and a setback torque.
  • the engine ECU also returns maximum torque applicable to the front and rear axle of the vehicle. These maximum torques are in particular related to the state of the braking control system of the vehicle. In the case of normal driving, on dry ground in particular, these maximum torques are higher than the target torque related to the will of the driver, so that it is possible to respect these torque settings. [08] However, when a driving stress independent of the driver's will imposes a torque on one of the trains, the maximum torque applicable on this train decreases drastically to reach the imposed torque.
  • the constraint torque is for example linked to the activation of the braking control system or to consumption requirements.
  • the invention makes it possible to respect the global setpoint torque even in the event of the compression of one of the setpoint pairs of the front or rear axle by a constraint torque imposed.
  • the invention provides for compensating the difference in torque between the imposed torque and the set torque to be achieved by applying a compensation torque on the other train of the vehicle (the unstressed train).
  • This compensation torque has a value equal to the difference between the value of the reference torque and the constraint torque.
  • the compensation torque applied to the rear axle is filtered by a torque gradient so as to be applied progressively.
  • the invention therefore relates to a curative motricity process for a hybrid vehicle equipped with a front axle and a rear axle comprising:
  • a torque corresponding to the driver's will initially being distributed in a setpoint torque on the front axle and a setpoint torque on the rear axle, it comprises the following steps:
  • a compensation torque is applied to the other train to compensate for the loss of torque on the constrained train in order to satisfy the driver's will.
  • the compensation torque is equal to the difference between the constraint torque and the set torque of the constrained train.
  • the constraint torque is imposed by the braking control system during its activation.
  • the constraint torque is applied by a vehicle energy management system.
  • the compensation torque is filtered by a gradient so as to be applied progressively on the vehicle train.
  • the torque gradient is of the order of 1000Nm / s at the axle.
  • the heat engine is intended to ensure the traction of the front axle of the vehicle
  • the electric machine is intended to ensure traction of the rear axle of the vehicle.
  • the stress torque is applied to the front axle while the compensation torque is applied to the rear axle by the electric machine.
  • the compensation torque is applied if the maximum torque applicable on the unstressed train is greater than the sum of the initial torque initially applied to the unstressed train and the compensation torque.
  • Figure 1 a schematic representation of a hybrid vehicle implementing the method according to the invention
  • Figure 2 a schematic representation of the evolution of the torques applied to the trains of the vehicle during the implementation of the method according to the invention.
  • Figure 1 shows a hybrid vehicle 1 implementing the method according to the invention comprising a front train 2 and a rear train 3 mechanically independent of one another.
  • a conventional powertrain 5 ensures the traction of the front train 2 of the vehicle. More specifically, this group 5 comprises a thermal engine 7 in connection with a manual gearbox 8 controlled (BVMP) via a conventional clutch 10 for example a clutch dry or wet trim. This gearbox 8 is connected to the front train 2 via a lower deck (not shown). Alternatively, the powertrain 5 group could include an automatic gearbox 8. [027] Furthermore, an electric machine 1 1 is mechanically associated with the thermal motor 7. This machine 1 1 ensures the recharging of the vehicle batteries, the starting of the engine 7 and if it is necessary the traction of the front train 2 by providing torque (boost mode). [028] A starter 13 is used to start the engine 7 in case of very low temperatures in the case where the machine before 1 1 is not able to provide this function. If necessary, a system 14 of air conditioning is mechanically connected to the engine 7 and the machine before 1 1.
  • an electric machine 15 ensures traction of the rear train 3 of the vehicle.
  • the machine 15 is connected to the rear gear 3 via a clutch 16 and a set 17 gearing.
  • This clutch 16 takes for example the form of a clutch, while the set 17 of gear ratio is single report, even if it could alternatively have several reports.
  • the two machines 1 1 and 15 are interconnected via an electrical network. More specifically, the machines 1 1 and 15 are connected to a high voltage battery 19 via an inverter 21 capable of chopping the DC voltage of the battery 19 to power the machines 1 1 and 15 electrical when they operate in motor mode. When these electrical machines 1 1 and 15 operate in generator mode to recharge the battery 19, the inverter 21 is able to transform the AC voltage produced by the machines 1 1 and 15 DC voltage applied to the terminals of the battery 19.
  • the battery 19 is connected to a DC / DC converter which converts the high voltage DC voltage of the battery 19 into a voltage acceptable by the choke 13 and by a low voltage battery 22 connected to the vehicle edge network 24.
  • the vehicle 1 is equipped with a conventional braking control system 25 type ESP or ABS to manage the braking force in case of emergency braking, to ensure the control of the trajectory of the vehicle and / or to avoid wheel lock.
  • a computer 28 controls the various components of the vehicle to perform in particular the distribution of the requested torque between the front axle 2 and the rear axle 3.
  • FIG. 2 shows an evolution diagram of the torques applied to the wheels during activation of the braking control system.
  • the curves Cmax_av and Cmax_ar respectively correspond to the maximum torques applicable on the front axle 2 and the rear axle 3 returned by the brake control system 25 to the computer 28.
  • the curves Ccns_av and Ccns_ar respectively correspond to the set pairs to be applied to the trains. before 2 and rear 3 sent by the computer 28 to the members 7, 1 1, 15 of traction.
  • the curves Creel_av and Creel_ar respectively correspond to the pairs actually applied on the front axle 2 and on the rear axle 3.
  • the computer 28 distributes the global setpoint torque Cv requested by the driver between the torque Cns_av of front setpoint and the torque Ccns_ar of rear setpoint.
  • the rear setpoint torque Ccns_ar is almost zero, so that all the setpoint torque is applied on the front axle 2.
  • the maximum torque Cmax_av applicable on the train before 2 is greater than the set torque Ccns_av, the vehicle has no harm in satisfying the driver's request: the actual torque Creel_av then corresponds substantially exactly to the set torque Ccns_av.
  • a compensation torque Ccomp is applied at the same time as the stress torque Ce on the rear axle 3 to compensate for the loss of torque on the front axle 2.
  • the compensation torque Ccomp is applied if the maximum torque Cmax_ar applicable on the rear axle 3 is greater than the sum of the initial target torque Ccns_ar and the compensation torque Ccomp, which is the case here.
  • the constraint torque Ce and the compensation torque Ccomp are filtered by a torque gradient expressed in N.m / s so as to be applied gradually on the different trains.
  • this gradient is of the order of 1000 Nm / s at the axle.
  • the constraint torque Ce and the compensation torque Ccomp are filtered by different gradients.
  • the maximum torque Cmax_av is filtered by a torque gradient expressed in Nm / s, so that the Creel_av couple actually applied to the front axle 2 gradually changes from the torque Ce to the setpoint torque Ccns_av .
  • the compensation torque Ccomp preferably filtered by the same gradient decreases progressively from the torque Ccomp to the zero torque.
  • a stress torque Ce is applied to the rear axle 3 and the compensation torque Ccomp to the front axle 2.
  • the constraint torque Ce is applied by the engine management system. energy of the vehicle which imposes for example a couple of stress Ce on the rear axle 3 to limit the power consumed by the rear machine 15 and thus save the battery energy 19.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

L'invention concerne essentiellement un procédé de motricité curative pour un véhicule hybride comportant un moteur thermique (7) destiné à assurer la traction d'un des trains (2) du véhicule, et une machine (15) électrique destinée à assurer la traction de l'autre train (3) du véhicule. Conformément à l'invention, lorsqu'une contrainte de conduite (liée au système de régulation de freinage ou au système de gestion d'énergie par exemple) impose un couple (Cc) de contrainte inférieur au couple (Ccns_av; Ccns_ar) de consigne sur un des trains (2, 3) du véhicule, on applique sur l'autre train un couple (Ccomp) de compensation pour compenser la perte de couple sur le train contraint afin de satisfaire la volonté du conducteur.

Description

PROCEDE DE MOTRICITE CURATIVE POUR VEHICULE HYBRIDE
[01 ] L'invention concerne un procédé de motricité curative pour véhicule hybride. L'invention est mise en œuvre dans des phases de vie critiques du véhicule dans lesquelles la prise en compte d'une contrainte de conduite indépendante de la volonté du conducteur, relative par exemple à l'activation du système de régulation de freinage, empêche le véhicule de fournir au conducteur le couple demandé.
[02] On parle de motricité « curative » car l'invention a pour but principal de s'assurer qu'il est quand même possible de respecter la volonté du conducteur en termes de couple dans ces phases de vie critiques. L'invention trouve une application particulièrement avantageuse dans le domaine des véhicules hybrides comportant des trains mécaniquement indépendants l'un par rapport à l'autre.
[03] On connaît des véhicules hybrides comportant un moteur thermique assurant la traction du train avant, ce moteur étant associé mécaniquement à une machine électrique avant. Cette machine électrique de type alterno/démarreur permet notamment de recharger les batteries du véhicule et démarrer le moteur thermique. Dans certaines situations de vie, cette machine peut même participer à la traction du véhicule. [04] Ces véhicules comportent également une machine électrique assurant la traction du train arrière via un réducteur et un dispositif d'accouplement par exemple de type crabot. Par opposition aux véhicules 4x4 traditionnels, la traction du train avant et la traction du train arrière sont indépendantes mécaniquement l'une de l'autre. [05] La machine électrique avant et la machine électrique arrière sont reliées à une batterie haute tension par l'intermédiaire d'un réseau électrique. Cette batterie haute tension est en relation avec un réseau de bord basse tension par l'intermédiaire d'un convertisseur continu/continu.
[06] Lors d'une phase de vie normale du véhicule, un couple de consigne global est calculé en fonction notamment de l'enfoncement de la pédale d'accélérateur et de la vitesse du véhicule. Ce couple de consigne global est ensuite transformé en un couple de consigne avant et un couple de consigne arrière.
[07] Le calculateur moteur renvoie par ailleurs des couples maximums applicables sur le train avant et le train arrière du véhicule. Ces couples maximums sont en particulier liés à l'état du système de régulation de freinage du véhicule. Dans le cas d'une conduite normale, sur sol sec notamment, ces couples maximums sont plus élevés que les couples de consigne liés à la volonté du conducteur, de sorte qu'il est possible de respecter ces couples de consigne. [08] Toutefois, lorsqu'une contrainte de conduite indépendante de la volonté du conducteur impose un couple de contrainte sur un des trains, le couple maximum applicable sur ce train diminue de manière drastique pour atteindre le couple de contrainte imposé. Le couple de contrainte est par exemple lié à l'activation du système de régulation de freinage ou à des impératifs de consommation. Si le couple de contrainte est inférieur au couple de consigne à appliquer sur le train, il n'est plus possible de respecter le couple de consigne sur le train, car le couple réel doit nécessairement respecter le couple de contrainte (on dit que le couple de contrainte qui a priorité sur le couple de consigne « écrase » ce couple de consigne). [09] L'invention permet de respecter le couple de consigne global même en cas d'écrasement d'un des couples de consignes du train avant ou arrière par un couple de contrainte imposé.
[010] A cet effet, l'invention prévoit de compenser la différence de couple entre le couple de contrainte imposé et le couple de consigne à réaliser en appliquant un couple de compensation sur l'autre train du véhicule (le train non contraint). Ce couple de compensation a une valeur égale à la différence entre la valeur du couple de consigne et le couple de contrainte.
[01 1 ] De préférence, pour éviter les à-coups, le couple de compensation appliqué sur le train arrière est filtré par un gradient de couple de manière à être appliqué de manière progressive. [012] L'invention concerne donc un procédé de motricité curative pour un véhicule hybride muni d'un train avant et d'un train arrière comprenant :
- un moteur thermique destiné à assurer la traction d'un des trains du véhicule,
- une machine électrique destinée à assurer la traction de l'autre train (3) du véhicule,
caractérisé en ce que
- un couple correspondant à la volonté du conducteur étant initialement réparti en un couple de consigne sur le train avant et un couple de consigne sur le train arrière, il comporte les étapes suivantes :
- lorsqu'une contrainte de conduite impose un couple de contrainte inférieur au couple de consigne sur un des trains du véhicule,
- on applique sur l'autre train un couple de compensation pour compenser la perte de couple sur le train contraint afin de satisfaire la volonté du conducteur.
[013] Selon une mise en œuvre, le couple de compensation est égal à la différence entre le couple de contrainte et le couple de consigne du train contraint.
[014] Selon une mise en œuvre, le couple de contrainte est imposé par le système de contrôle de freinage lors de son activation.
[015] Selon une mise en œuvre, le couple de contrainte est appliqué par un système de gestion d'énergie du véhicule.
[016] Selon une mise en œuvre, le couple de compensation est filtré par un gradient de manière à être appliqué progressivement sur le train du véhicule.
[017] Selon une mise en œuvre, le gradient de couple est de l'ordre de 1000Nm/s à l'essieu.
[018] Selon une mise en œuvre, le moteur thermique est destiné à assurer la traction du train avant du véhicule, et la machine électrique est destinée à assurer la traction du train arrière du véhicule. [019] Selon une mise en œuvre, le couple de contrainte est appliqué sur le train avant tandis que le couple de compensation est appliqué sur le train arrière par la machine électrique.
[020] Selon une mise en œuvre, le couple de compensation est appliqué si le couple maximal applicable sur le train non contraint est supérieur à la somme du couple de consigne appliqué initialement sur le train non contraint et du couple de compensation.
[021 ] L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention. Elles montrent :
[022] Figure 1 : une représentation schématique d'un véhicule hybride mettant en œuvre le procédé selon l'invention ;
[023] Figure 2 : une représentation schématique de l'évolution des couples appliqués sur les trains du véhicule lors de la mise en œuvre du procédé selon l'invention.
[024] Les éléments identiques conservent la même référence d'une figure à l'autre.
[025] La Figure 1 montre un véhicule 1 hybride mettant en œuvre le procédé selon l'invention comportant un train 2 avant et un train 3 arrière indépendants mécaniquement l'un de l'autre.
[026] Un groupe moto-propulseur 5 classique assure la traction du train 2 avant du véhicule. Plus précisément, ce groupe 5 comporte un moteur 7 thermique en relation avec une boîte 8 de vitesses manuelle pilotée (BVMP) par l'intermédiaire d'un embrayage 10 classique par exemple un embrayage à garniture sec ou humide. Cette boîte 8 de vitesses est reliée au train 2 avant par l'intermédiaire d'une descente de pont (non représentée). En variante, le groupe 5 moto-propulseur pourrait comporter une boîte 8 de vitesses automatique. [027] Par ailleurs, une machine 1 1 électrique est associée mécaniquement au moteur 7 thermique. Cette machine 1 1 assure la recharge des batteries du véhicule, le démarrage du moteur 7 et s'il y a lieu la traction du train 2 avant en fournissant du couple (mode boost). [028] Un starter 13 est utilisé pour démarrer le moteur 7 en cas de températures très basses dans le cas où la machine avant 1 1 n'est pas capable d'assurer cette fonction. Si besoin, un système 14 de climatisation est relié mécaniquement au moteur 7 et à la machine avant 1 1 .
[029] En outre, une machine 15 électrique assure la traction du train 3 arrière du véhicule. A cet effet, la machine 15 est reliée au train 3 arrière par l'intermédiaire d'un embrayage 16 et d'un ensemble 17 de démultiplication. Cet embrayage 16 prend par exemple la forme d'un crabot, tandis que l'ensemble 17 de démultiplication est à rapport unique, même s'il pourrait en variante présenter plusieurs rapports. [030] Les deux machines 1 1 et 15 sont reliées entre elles par l'intermédiaire d'un réseau électrique. Plus précisément, les machines 1 1 et 15 sont reliées à une batterie 19 haute tension par l'intermédiaire d'un onduleur 21 capable de hacher la tension continue de la batterie 19 pour alimenter les machines 1 1 et 15 électriques lorsque ces dernières fonctionnent en mode moteur. Lorsque ces machines électriques 1 1 et 15 fonctionnent en mode générateur pour recharger la batterie 19, l'onduleur 21 est capable de transformer la tension alternative produite par les machines 1 1 et 15 en tension continue appliquée sur les bornes de la batterie 19.
[031 ] La batterie 19 est connectée à un convertisseur 20 continu/continu qui transforme la tension continue haute tension de la batterie 19 en une tension acceptable par le starter 13 et par une batterie 22 basse tension connectée au réseau 24 de bord du véhicule.
[032] De préférence, le véhicule 1 est équipé d'un système 25 de régulation de freinage classique de type ESP ou ABS permettant de gérer les efforts de freinage en cas de freinage d'urgence, afin d'assurer le contrôle de la trajectoire du véhicule et/ou d'éviter le blocage des roues. [033] Un calculateur 28 commande les différents organes du véhicule pour effectuer notamment la répartition du couple demandé entre le train avant 2 et le train arrière 3.
[034] La Figure 2 montre un diagramme d'évolution des couples appliqués aux roues lors de l'activation du système 25 de régulation de freinage. Les courbes Cmax_av et Cmax_ar correspondent respectivement aux couples maximums applicables sur le train avant 2 et le train arrière 3 renvoyés par le système 25 de régulation de freinage au calculateur 28. Les courbes Ccns_av et Ccns_ar correspondent respectivement aux couples de consigne à appliquer sur les trains avant 2 et arrière 3 envoyés par le calculateur 28 vers les organes 7, 1 1 , 15 de traction. Les courbes Creel_av et Creel_ar correspondent respectivement aux couples appliqués réellement sur le train avant 2 et sur le train arrière 3.
[035] Lors d'une situation de vie normale, sur sol sec, entre tO et t1 , le calculateur 28 répartit le couple de consigne global Cv demandé par le conducteur entre le couple Cns_av de consigne avant et le couple Ccns_ar de consigne arrière. Dans l'exemple, afin d'optimiser la consommation énergétique, le couple de consigne arrière Ccns_ar est quasi-nul, de sorte que tout le couple de consigne est appliqué sur le train avant 2. Etant donné le couple maximum Cmax_av applicable sur le train avant 2 est supérieur au couple de consigne Ccns_av, le véhicule n'a aucun mal pour satisfaire la demande du conducteur : le couple réel Creel_av correspond alors sensiblement exactement au couple de consigne Ccns_av.
[036] A l'instant t1 , le système de régulation 25 de freinage étant activé, le couple maximum Cmax_av diminue pour atteindre le couple de contrainte Ce imposé par le système 25 de régulation. Lorsque le couple maximum Cmax_av devient inférieur au couple de consigne Ccns_av, il n'est plus possible de satisfaire la demande du conducteur.
[037] Pour éviter ce problème, un couple de compensation Ccomp est appliqué en même temps que le couple de contrainte Ce sur le train arrière 3 pour compenser la perte de couple sur le train avant 2. Ce couple de compensation Ccomp est égal à la différence entre le couple de consigne Ccns_av du train avant moins le couple réellement appliqué Creel_av c'est- à-dire le couple de contrainte Ce (Ccomp=Ccns_av-Cc). De préférence, le couple de compensation Ccomp est appliqué si le couple maximum Cmax_ar applicable sur le train arrière 3 est supérieur à la somme du couple de consigne initial Ccns_ar et du couple de compensation Ccomp, ce qui est bien le cas ici.
[038] De préférence, pour éviter les à-coups, le couple de contrainte Ce et le couple de compensation Ccomp sont filtrés par un gradient de couple exprimé en N.m/s de manière à être appliqués progressivement sur les différents trains. Dans un exemple, ce gradient est de l'ordre de 1000Nm/s à l'essieu. En variante, le couple de contrainte Ce et le couple de compensation Ccomp sont filtrés par des gradients différents.
[039] A l'instant t2, on sort de la régulation imposée par le système 25 de freinage. Le couple maximal Cmax_av qui n'est plus contraint pas le couple de contrainte Ce redevient alors supérieur au couple de consigne Ccns_av, de sorte que le couple réel Creel_av peut satisfaire de nouveau le couple de consigne avant Ccns_av demandé par le calculateur 28.
[040] Pour éviter les à-coups, le couple maximal Cmax_av est filtré par un gradient de couple exprimé en N.m/s, de sorte que le couple Creel_av réellement appliqué sur le train avant 2 passe progressivement du couple Ce au couple de consigne Ccns_av. Le couple de compensation Ccomp filtré de préférence par le même gradient diminue progressivement pour passer du couple Ccomp au couple nul.
[041 ] En variante, on applique un couple de contrainte Ce sur le train arrière 3 et le couple de compensation Ccomp sur le train avant 2. [042] En variante, le couple de contrainte Ce est appliqué par le système de gestion de l'énergie du véhicule qui impose par exemple un couple de contrainte Ce sur le train arrière 3 pour limiter la puissance consommée par la machine arrière 15 et sauvegarder ainsi l'énergie de la batterie 19.

Claims

REVENDICATIONS
1 . Procédé de motricité curative pour un véhicule hybride muni d'un train avant (2) et d'un train arrière (3) comprenant :
- un moteur thermique (7) destiné à assurer la traction d'un des trains
(2) du véhicule,
- une machine (15) électrique destinée à assurer la traction de l'autre train (3) du véhicule,
caractérisé en ce que
- un couple (Cv) correspondant à la volonté du conducteur étant initialement réparti en un couple (Ccns_av) de consigne sur le train avant (2) et un couple (Ccns_ar) de consigne sur le train arrière (3), il comporte les étapes suivantes :
- lorsqu'une contrainte de conduite impose un couple (Ce) de contrainte inférieur au couple (Ccns_av ; Ccns_ar) de consigne sur un des trains (2, 3) du véhicule,
- on applique sur l'autre train un couple (Ccomp) de compensation pour compenser la perte de couple sur le train contraint afin de satisfaire la volonté du conducteur.
2. Procédé selon la revendication 1 , caractérisé en ce que le couple (Ccomp) de compensation est égal à la différence entre le couple (Ce) de contrainte et le couple (Ccns_av ; Ccns_ar) de consigne du train contraint.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le couple (Ce) de contrainte est imposé par le système (25) de contrôle de freinage lors de son activation.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le couple (Ce) de contrainte est appliqué par un système de gestion d'énergie du véhicule.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le couple (Ce) de compensation est filtré par un gradient de manière à être appliqué progressivement sur le train du véhicule.
6. Procédé selon la revendication 5, caractérisé en ce que le gradient de couple est de l'ordre de 1000Nm/s à l'essieu.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que
- le moteur thermique (7) est destiné à assurer la traction du train avant (2) du véhicule, et
- la machine (15) électrique est destinée à assurer la traction du train arrière (3) du véhicule.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le couple (Ce) de contrainte est appliqué sur le train avant (2) tandis que le couple (Ccomp) de compensation est appliqué sur le train arrière (3) par la machine électrique (15).
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le couple (Ccomp) de compensation est appliqué si le couple maximal (Cmax_av ; Cmax_ar) applicable sur le train non contraint est supérieur à la somme du couple de consigne appliqué initialement sur le train non contraint et du couple (Ccomp) de compensation.
PCT/FR2010/052902 2010-01-28 2010-12-23 Procede de motricite curative pour vehicule hybride WO2011092392A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1050580 2010-01-28
FR1050580A FR2955548B1 (fr) 2010-01-28 2010-01-28 Procede de motricite curative pour vehicule hybride

Publications (1)

Publication Number Publication Date
WO2011092392A1 true WO2011092392A1 (fr) 2011-08-04

Family

ID=42575749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052902 WO2011092392A1 (fr) 2010-01-28 2010-12-23 Procede de motricite curative pour vehicule hybride

Country Status (2)

Country Link
FR (1) FR2955548B1 (fr)
WO (1) WO2011092392A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3078304B1 (fr) * 2018-02-28 2020-01-24 Psa Automobiles Sa Procede de gestion des couples appliques sur les trains roulants de vehicules comprenant chacun une motorisation
GB2594292B (en) * 2020-04-21 2022-10-26 Jaguar Land Rover Ltd Torque request modification strategies for vehicles
CN112644453B (zh) * 2020-12-28 2021-12-10 长城汽车股份有限公司 混动车辆扭矩控制方法、装置、存储介质及电子设备
FR3120593A1 (fr) * 2021-03-11 2022-09-16 Psa Automobiles Sa Procede de correction d’une erreur de couple d’un moteur thermique par une machine electrique de traction
CN115139815B (zh) * 2022-06-27 2024-04-09 重庆金康赛力斯新能源汽车设计院有限公司 扭矩分配方法、装置、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020105188A1 (en) * 2001-02-02 2002-08-08 Nissan Motor Co., Ltd. Hybrid vehicle control apparatus
US20040070270A1 (en) * 2002-10-15 2004-04-15 Nissan Motor Co., Ltd. Vehicle control apparatus
US20040238244A1 (en) * 2002-11-12 2004-12-02 Hirokatsu Amanuma Hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020105188A1 (en) * 2001-02-02 2002-08-08 Nissan Motor Co., Ltd. Hybrid vehicle control apparatus
US20040070270A1 (en) * 2002-10-15 2004-04-15 Nissan Motor Co., Ltd. Vehicle control apparatus
US20040238244A1 (en) * 2002-11-12 2004-12-02 Hirokatsu Amanuma Hybrid vehicle

Also Published As

Publication number Publication date
FR2955548A1 (fr) 2011-07-29
FR2955548B1 (fr) 2012-04-13

Similar Documents

Publication Publication Date Title
EP2529467A1 (fr) Procede pour optimiser la recharge de la batterie d'un vehicule hybride
JP5558630B2 (ja) 電気車両駆動システム
EP2528764B1 (fr) Procede de repartition de couple entre le train avant et le train arriere d'un vehicule hybride
EP2885147A1 (fr) Procede de limitation de couple d'une machine electrique de vehicule hybride comportant un systeme de controle de vitesse
WO2011092392A1 (fr) Procede de motricite curative pour vehicule hybride
WO2012104558A1 (fr) Procede de protection d'un embrayage de vehicule et vehicule associe
WO2008047029A2 (fr) Procede de gestion du fonctionnement d'un vehicule hybride
EP3658404B1 (fr) Procede pour vehicule hybride de controle d'un alternateur de recharge d'une batterie d'un reseau de bord
WO2011092390A1 (fr) Procede de derivation de puissance electrique pour vehicule hybride
WO2021111051A1 (fr) Véhicule à contrôle de répartition de couple en présence d'une instabilité, et procédé de contrôle associé
FR3070347B1 (fr) Controle d’instants de declenchement d’une marche rampante par des moteur thermique et machine motrice non-thermique d’un vehicule hybride
FR3010030A1 (fr) Procede de couplage d'une machine de traction d'un vehicule automobile
EP3746342B1 (fr) Système et procédé de pilotage de l'énergie fournie au circuit électrique d'un véhicule hybride, et véhicule automobile les incorporant
FR2997362A1 (fr) Procede de commande de couplage/decouplage d'une machine de traction d'un vehicule automobile
WO2011036383A1 (fr) Procede de gestion de l'accouplement du moteur thermique sur un vehicule automobile hybride
FR2972700A1 (fr) Procede de repartition de la puissance dans un vehicule hybride et vehicule associe
FR3078204A1 (fr) Gestion de l’energie electrique dans un vehicule automobile hybride
EP2528762B1 (fr) Procede de motricite preventive pour vehicule hybride
WO2015036670A1 (fr) Procede pour un vehicule hybride ou electrique de regulation de la distance avec un vehicule precedent
FR3077255A1 (fr) Systeme et procede de pilotage d’un stockeur d’energie de vehicule hybride, et vehicule automobile les incorporant
WO2013117844A1 (fr) Procede et systeme de gestion semi-automatisee d'une traction hybride
WO2020016491A1 (fr) Procede de pilotage d'un groupe moto-propulseur comprenant un alterno-demarreur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10810789

Country of ref document: EP

Kind code of ref document: A1