WO2016059356A2 - Véhicule hybride et procédé d'hybridation d'un véhicule - Google Patents

Véhicule hybride et procédé d'hybridation d'un véhicule Download PDF

Info

Publication number
WO2016059356A2
WO2016059356A2 PCT/FR2015/052787 FR2015052787W WO2016059356A2 WO 2016059356 A2 WO2016059356 A2 WO 2016059356A2 FR 2015052787 W FR2015052787 W FR 2015052787W WO 2016059356 A2 WO2016059356 A2 WO 2016059356A2
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheel motors
energy accumulator
acceleration
electric energy
Prior art date
Application number
PCT/FR2015/052787
Other languages
English (en)
Other versions
WO2016059356A3 (fr
Inventor
Laurent Verdier
Pierre Dumas
Original Assignee
Lohr Electromecanique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lohr Electromecanique filed Critical Lohr Electromecanique
Priority to US15/517,889 priority Critical patent/US20170305259A1/en
Priority to AU2015332266A priority patent/AU2015332266A1/en
Priority to CA2963701A priority patent/CA2963701A1/fr
Priority to EP15805567.3A priority patent/EP3206926A2/fr
Publication of WO2016059356A2 publication Critical patent/WO2016059356A2/fr
Publication of WO2016059356A3 publication Critical patent/WO2016059356A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/196Conjoint control of vehicle sub-units of different type or different function including control of braking systems acting within the driveline, e.g. retarders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/266Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators with two coaxial motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/18Buses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/10Buses
    • B60W2300/147
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/143Busses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/89Repartition of braking force, e.g. friction braking versus regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2304/00Optimising design; Manufacturing; Testing
    • B60Y2304/07Facilitating assembling or mounting
    • B60Y2304/076Facilitating assembling or mounting by add-on parts, e.g. retrofit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a method for hybridizing a vehicle, for example an articulated bus or a guided public transport vehicle, comprising a tractor axle with thermal motorization, a directional axle and a complementary axle by integrating a motorization thereof. electric powered by an accumulator of electrical energy.
  • the invention also relates to the hybrid vehicle thus obtained.
  • the invention more particularly relates to a hybrid vehicle in which the electric motor and the electric energy accumulators occupy a minimum space in the vehicle and can be integrated into an existing vehicle.
  • hybrid vehicles intended to use both a conventional thermal engine and an electric motor powered by an energy accumulator. electric, which is in particular recharged during the deceleration phases of the vehicle.
  • the technical solution envisaged must be able to be easily and cheaply adapted to a conventional vehicle with thermal engine.
  • the object of the present invention is therefore to overcome the disadvantages of the prior art by proposing a new hybridization method of a vehicle.
  • a hybridization method of a vehicle comprising: a hydraulic or pneumatic brake system actuated by a brake pedal via braking control means;
  • a tractor axle connected to a thermal engine through a gearbox incorporating a retarder, the thermal engine is controlled in acceleration by an accelerator pedal and the retarder is controlled by deceleration by the brake pedal;
  • each wheel-motor being associated with an inverter, each inverter being connected and dedicated to one of the wheel-motors in order to supply it with electrical energy. from the electrical energy accumulator;
  • the accelerator pedal to receive an acceleration instruction from the latter
  • the electrical energy accumulator for receiving information about the level of charge thereof;
  • the inverters for transmitting an acceleration or deceleration torque setpoint to the wheel motors
  • the retarder to transmit a deceleration instruction
  • the thermal engine to transmit an acceleration torque setpoint
  • the method further comprises installing an air or water heat exchanger for cooling the inverters, the wheel motors and the electric energy accumulator.
  • the method further comprises the following steps:
  • the method further comprises arranging the electric energy accumulator on the roof of the vehicle or housing it in a cabinet on board the vehicle.
  • the method further comprises integrating traction batteries or fast-charging super-capacity type batteries to the electric energy accumulator.
  • the method furthermore consists in providing electrical means to the inverters, these electrical means being controlled by the control box and designed to operate the wheel motors in a traction mode and a braking mode;
  • the wheel-motors reloading the accumulator of electrical energy and slowing the vehicle by an electromagnetic braking effect.
  • control box actuates the retarder when the electromagnetic braking of the wheel motors is insufficient to satisfy the deceleration setpoint received by the control box or when the accumulator of electrical energy is at full load.
  • the latter command in case of acceleration setpoint received by the control box, the latter command:
  • the overall acceleration obtained by the wheel motors and the thermal motor being in accordance with the acceleration setpoint received by the control box.
  • the method further comprises providing prioritization means to the control box, these prioritization means being provided to choose whether the torque setpoint transmitted to the thermal motorization must be greater than to that transmitted to wheel motors, and vice versa.
  • the acceleration torque setpoint transmitted by the control box to the thermal motorization depends on the charge of the electric energy accumulator, the torque setpoint of acceleration transmitted to the wheel motors and the actual acceleration torque delivered by said wheel motors and the selected operating strategy.
  • the wheel motors when the electric energy accumulator is discharged, the wheel motors are placed in braking mode and the thermal engine alone pushes the vehicle the time necessary to reload at least partially the 'accumulator of electrical energy.
  • the method furthermore consists in adding a so-called "stop-start” function to the vehicle, intended to start the latter using only the wheel-motors and then, starting from a certain speed, to launch the thermal engine through the gearbox.
  • the electric energy accumulator when the electric energy accumulator is not heavy enough to start the vehicle by means of the wheel motors, it is started by means of the thermal engine and in that the wheel motors are then put into braking mode to recharge the accumulator of electrical energy.
  • the objects assigned to the invention are also achieved by means of a hybridized vehicle by the hybridization method of a vehicle as described above, wherein said vehicle is an articulated bus of public transport, a multi-articulated vehicle , or a guided public transport vehicle.
  • the electric motor is integrated with the wheels in the form of an axle incorporating motor-wheels, this engine occupies no additional place compared to the conventional axle thus replaced.
  • the electric energy accumulator can be arranged on the roof of the vehicle and thus occupy no space provided for passengers.
  • the invention In addition to substantial fuel savings of approximately obtained conventionally by the addition of an electric motor to a vehicle, the invention also significantly increases the life of the thermal engine of it. Indeed, the thermal motorization less mergeée than in a conventional vehicle and when a large torque is necessary, the thermal motorization can be relieved in its efforts by additional power provided by the electric motor. It is considered that the hybridization process of the invention makes it possible to increase by 50% the duration of the thermal motorization of a vehicle.
  • the hybrid vehicle By adding an electric motor on a complementary axle, namely an axle that is neither steering nor motorized, the hybrid vehicle has better grip on the road and better handling, which in particular avoids the phenomenon. when the front part of an articulated bus begins to skid on the roadway.
  • the invention advantageously makes it possible to intelligently control the motorizations of the vehicle and its deceleration means, without the intervention of the driver and the vehicle. totally transparent way for this one.
  • This makes it possible in particular to optimize the electrical and fuel consumption, and to control, for example, the motor-wheels individually in order to be able to transmit, if necessary, a set of acceleration or deceleration torque, for example different to each of the wheel-motors, or to reduce torque control transmitted to both wheels.
  • the hybridization of a conventional vehicle is generally summarized to install an electric energy accumulator on the vehicle or on board and to replace the wheels of a complementary axle by wheel motors.
  • the invention can be adapted easily and inexpensively to any existing vehicle having a complementary non-directional axle or tractor and having converters for driving the wheel motors.
  • the invention can therefore be adapted to buses, but also to guided vehicles such as trams or railway vehicles.
  • guided vehicles such as trams or railway vehicles.
  • a guided vehicle can cross particular areas, independently, by cutting the engine.
  • FIG. 1 is a side view of an articulated public transport bus hybridized according to the method of the invention, in which the means of the invention are represented diagrammatically;
  • FIG. 2 is a view from above of an articulated public transport bus hybridized according to the method of the invention, in which the means of the invention are represented diagrammatically;
  • FIG. 3 is a partial schematic view of the electrical network of a hybridized vehicle according to the method of the invention.
  • control lines are shown in fine lines while the mechanical links and the electric energy transfer lines are shown in thick lines.
  • a vehicle (1) such as an articulated public transport bus or a guided public transport vehicle usually comprises a generally located front axle (2), a motorized driving axle (3) and generally located at the rear, and a complementary axle (4), neither director nor motorized and generally located centrally.
  • the driving axle (3) is mechanically connected to a thermal engine (5) via a transmission and a gearbox (6) usually incorporating a retarder.
  • the thermal engine (5) is accelerated by an accelerator pedal (7) via known acceleration control means, while the retarder is controlled by deceleration by a brake pedal (8) via known deceleration control means.
  • the steering axle (2) is actuated by a steering wheel (9) in a conventional manner.
  • the complementary axle (4) is an axle serving in particular additional support for the chassis of the vehicle (1). It is mechanically independent of the other axles (2, 3) and has no motorization.
  • a vehicle (1) such as an articulated bus or a guided public transport vehicle also comprises a hydraulic or pneumatic brake system (10) actuated by the brake pedal (8) via braking control means .
  • This braking system (10) controls the brakes (11a, 11b, 11c) so that they are actuated hydraulically or pneumatically by mechanical brake actuators located on the wheels of the vehicle (1).
  • the braking system (10) is for example an electronic braking system, controlling the braking of all the axles, known by the acronym EBS (Electronic Braking System) and integrating an anti-locking system of the wheels (ABS), a corrector electronic trajectory (ESP) and traction control system.
  • EBS Electronic Braking System
  • ABS anti-locking system of the wheels
  • ESP corrector electronic trajectory
  • the wheels of the complementary axle (4) comprise brakes controlled by the hydraulic or pneumatic braking system (10) of the vehicle (1).
  • the brake pedal (8) has two successive races.
  • the driving angle corresponding to the first race constitutes a deceleration setpoint
  • the driving angle corresponding to the second race constitutes a braking setpoint.
  • the purpose of the deceleration instruction is to slow down the vehicle (1), while the braking instruction is intended to stop or to slow down very strongly and very quickly in case of emergency.
  • the deceleration setpoint is usually transmitted to the retarder of the gearbox (6) via deceleration control means, while the braking setpoint is transmitted to the braking system (10). via braking control means.
  • the angle of depression of the accelerator pedal (7) constitutes an acceleration instruction which is transmitted to the thermal engine (5) to transmit a torque instruction to it. acceleration.
  • the driving angle corresponding to the first race constituting a normal acceleration setpoint, corresponding to a gentle and progressive acceleration
  • the angle of 'depression corresponding to the second race is a strong acceleration instruction, corresponding to a massive and brutal acceleration.
  • the normal acceleration instruction is intended to accelerate the vehicle (1) in a flexible manner
  • the high acceleration instruction is intended to accelerate the vehicle (1) very strongly and very quickly, especially in case of overtaking or in case of emergency.
  • the complementary axle (4) is an electrically powered traction axle integrating a pair of wheel motors (12a, 12b), each motor-wheel (12a, 12b). ) being connected to a dedicated inverter (13a, 13b) in order to be supplied with electrical energy by an electric energy accumulator (14).
  • a power distribution unit (15) is provided between the electric energy accumulator (14) and the inverters (13a, 13b). It allows in particular to cut the power supply of the inverters (13a, 13b) for the safety of the operators to perform maintenance on the inverters (13a, 13b) and the wheel motors (12a, 12b).
  • the electric energy accumulator (14) can also be connected to a braking chopper, itself connected to a braking resistor.
  • the electric energy accumulator (14) is preferably disposed on the roof of the vehicle (1) so as not to occupy a space reserved for passengers. It can also be housed in a cabinet on board the vehicle (1). It can also be in several parts distributed in various places of the vehicle (1) ⁇
  • the electric energy accumulator (14) preferably comprises traction batteries or super fast-charging type batteries.
  • the wheel motors (12a, 12b) each comprise an electric motor incorporated in a wheel. They are particularly advantageous because they have a small footprint and do not require transmission, which advantageously allows to deposit the complementary axle (3) of a vehicle (1) to replace it with an axle comprising wheel motors (12a , 12b).
  • the inverters (13a, 13b) comprise electrical means designed to operate the wheel motors (12a, 12b) in a traction mode or in a braking mode.
  • the wheel motors (12a, 12b) are supplied with electrical energy by the electric energy accumulator (14) and operate as motors to participate in the propulsion of the vehicle (1).
  • the wheel motors (12a, 12b) are rotated by the inertia of movement of the vehicle (1) and function as generators of electric current. They then recharge the electric energy accumulator (14) and slow down the vehicle (1) by an electromagnetic braking effect.
  • the wheel motors (12a, 12b) are placed in braking mode and the thermal motor (5) pushes the vehicle alone ( 1) the time required to at least partially recharge the electric energy accumulator (14).
  • the vehicle (1) of the invention comprises a control box (16) which comprises all the electronics and intelligence necessary in particular for the monitoring and control of the thermal engine (5), the retarder of the box of speed (6), inverters (13a, 13b) and the electric energy accumulator (14).
  • the control box (16) is connected:
  • the electrical energy accumulator (14) for receiving information concerning the level of charge thereof;
  • the inverters (13a, 13b) for transmitting an acceleration or deceleration torque setpoint to the wheel motors (12a, 12b);
  • the thermal motor (5) to transmit an acceleration torque setpoint.
  • the control box (16) is connected to the various means mentioned above, in particular to receive acceleration and deceleration instructions respectively from the accelerator pedal (7) and the brake pedal (8). . It defines the instructions and adapts them in real time to a operating strategy.
  • the control box (16) thus makes it possible to emulate the assembly in a completely transparent manner for the driver, that is to say without the driver being aware of it because the driver is requesting the accelerator pedal. (7) and the brake pedal (8) in a conventional manner to accelerate or decelerate the vehicle (1).
  • control unit (16) controls the thermal motor (5) to transmit an acceleration torque setpoint and the inverters (13a, 13b) to operate the wheel motors (12a, 12b) in traction mode.
  • the acceleration torque setpoint transmitted to the wheel motors (12a, 12b) is compatible with the state of charge of the electric energy accumulator (14), so that an acceleration torque setpoint is not not transmitted to the inverters (13a, 13b) if the state of charge of the electric energy accumulator (14) is insufficient.
  • the respective acceleration instructions transmitted to the inverters (13a, 13b) and to the thermal motor (5) are determined by the control box (16) in an intelligent manner so as to relieve the thermal motorization. (5) thanks to the electric motorization of the wheel motors (12a, 12b), while taking care to maintain a certain charge in the electric energy accumulator (14) in the case where the power of the thermal engine (5) is insufficient to meet the acceleration instruction received from the accelerator pedal.
  • control box (16) comprises prioritization means for choosing whether the torque setpoint transmitted to the thermal motor (5) must be greater than that transmitted to the wheel motors (12a, 12b), and vice versa.
  • the overall acceleration achieved by the wheel motors (12a, 12b) and the thermal motor (5) is in accordance with the acceleration setpoint received by the control box (16).
  • the acceleration setpoint transmitted to the inverters (13a, 13b) or the thermal motor (5) may be zero, for example in the event of failure of the thermal engine (5) or in the case where the accumulator of electrical energy (14) is completely discharged.
  • the control box (16) controls the retarder and the inverters (13a, 13b) to operate the wheel motors in braking mode, thereby slowing the vehicle (1).
  • the deceleration torque setpoint transmitted to the inverters (13a, 13b) is compatible with the state of charge of the electric energy accumulator (14), so that such a setpoint is not transmitted if the state of charging of the electric energy accumulator (14) does not allow to receive a quantity of additional electrical energy from the wheel motors (12a, 12b) operating as current generators.
  • the respective deceleration instructions transmitted to the retarder and to the inverters (13a, 13b) are determined by the control box.
  • the deceleration setpoint transmitted to the retarder or the inverters (13a, 13b) may be zero, for example in the case where the electric energy accumulator (14) is at maximum load.
  • the setpoint of acceleration or deceleration torque transmitted to each of the inverters (13a, 13b) also corresponds to a zero torque when at least one of the wheel motors (12a, 12b) transmits to the control box (16) information relating to a lack of adhesion of the motor-wheel (12a, 12b) concerned. This information is then transmitted via a link
  • the vehicle (1) of the invention comprises an electrical network (18) usually 24 volts.
  • This electrical network (18) is usually powered by the alternator (19) of the thermal engine (5).
  • the thermal motor (5) can be cut, so it is necessary to supply the electrical network (18) of the vehicle (1) with the electric energy accumulator (14), for example via a current converter (20).
  • the power network (18) usually supplies the various electrical means of the vehicle (1), including lighting, air conditioning and, in the case of the invention, the control housing (16).
  • the invention relates to a hybridization method of a vehicle (1), for example an articulated or multi-articulated public transport bus, as described above and comprising a non-motorized complementary axle.
  • This hybridization process consists in installing an electrical energy accumulator (14) on the vehicle (1) or onboard it, preferably so as not to occupy a space reserved for passengers.
  • the hybridization process also consists in depositing the wheels of the complementary axle (4) and replacing them with wheel motors (12a, 12b) each connected to a dedicated inverter (13a, 13b) so as to be powered by electric energy by the electric energy accumulator (14).
  • This control box (16) is connected to the accelerator pedal (7) and the brake pedal (8). Thus, the control box (16) receives the acceleration and deceleration instructions from the driver.
  • the control box (16) is also connected to the inverters (13a, 13b), to the thermal motor (5) and to the retarder in order to transmit to each of them an acceleration or deceleration torque setpoint which is a function of the setpoint values. acceleration and deceleration received from the driver via the pedals (7, 8).
  • control box (16) emulates the usual acceleration and deceleration control means for controlling the wheel motors (12a, 12b), the thermal motor (5) and the retarder according to the information transmitted to the pedals ( 7, 8) by the driver, without the driver experiencing a difference in driving with respect to driving a conventional vehicle.
  • the vehicle (1) hybridized according to the method of the invention may advantageously comprise a function called "stop-start".
  • the hybridized vehicle (1) starts using only the wheel motors (12a, 12b) and, from a certain speed, it starts the thermal engine (5) via the gearbox (6). ), which allows in particular to save fuel and not to solicit the starter of the vehicle (1).
  • the electric energy accumulator (14) is not charged enough to start the vehicle (1) by means of the wheel motors (12a, 12b)
  • the wheel motors (12a, 12b) are then put in braking mode in order to recharge the electric energy accumulator (14) so that at the next start, the thermal motor (5) is not requested.

Abstract

Le véhicule (1) comprend un essieu tracteur (3) relié à une motorisation thermique (5), un essieu directionnel (2) et essieu complémentaire (4) ni directeur, ni motorisé. Lorsque ledit véhicule est hybridé selon le procédé de l'invention, les roues de l'essieu complémentaire (4) sont déposées et remplacées par des moteurs-roues (12a, 12b) associés chacun à un onduleur (13a, 13b) qui lui est spécifiquement dédié afin de l'alimenter en énergie électrique provenant d'un accumulateur d'énergie électrique (14). Un boîtier de contrôle (16) est également installé, intégrant des moyens de commande d'accélération reliés à la pédale d'accélérateur (7) et des moyens de commande de décélération reliés à la pédale de frein (8) afin de commander et de surveiller l'ensemble des moyens nécessaires à l'accélération et à la décélération du véhicule de manière transparente pour le conducteur.

Description

VEHICULE HYBRIDE ET PROCEDE D'HYBRIDATION D'UN
VEHICULE
Domaine technique
La présente invention se rapporte à un procédé d'hybridation d'un véhicule, par exemple un bus articulé ou un véhicule guidé de transport en commun, comprenant un essieu tracteur à motorisation thermique, un essieu directionnel et un essieu complémentaire en lui intégrant une motorisation électrique alimentée par un accumulateur d'énergie électrique. L'invention concerne également le véhicule hybride ainsi obtenu.
L'invention concerne plus particulièrement un véhicule ainsi hybridé dans lequel la motorisation électrique et les accumulateurs d'énergie électrique occupent un espace minimal dans le véhicule et peuvent être intégrés à un véhicule existant.
Etat de la technique
Pour des raisons d'économie d'énergie et de diminution des émanations de C02 et de gaz polluants, il est avantageux de fournir des véhicules hybrides prévus pour utiliser à la fois une motorisation thermique classique et une motorisation électrique alimentée par un accumulateur d'énergie électrique, lequel est notamment rechargé lors des phases de décélération du véhicule.
L'ajout d'une motorisation électrique et d'un accumulateur d'énergie électrique à un bus de transport en commun se traduit cependant par des modifications structurelles importantes.
Il existe donc un besoin pour un véhicule hybride dans lequel la motorisation électrique et l'accumulateur d'énergie électrique occupent un espace minimal à l'intérieur du véhicule.
Avantageusement, la solution technique envisagée doit pouvoir être adaptée facilement et à moindre coût à un véhicule classique à motorisation thermique.
Divulgation de l'invention
L'objet de la présente invention vise par conséquent à pallier les inconvénients de l'art antérieur en proposant un nouveau procédé d'hybridation d'un véhicule.
Les objets assignés à l'invention sont atteints à l'aide d'un procédé d'hybridation d'un véhicule comprenant : - un système de freinage hydraulique ou pneumatique actionné par une pédale de frein par l'intermédiaire de moyens de commande de freinage ;
- un essieu tracteur relié à une motorisation thermique à travers une boîte de vitesse intégrant un ralentisseur, la motorisation thermique étant commandée en accélération par une pédale d'accélérateur et le ralentisseur étant commandé en décélération par la pédale de frein ;
- un essieu directionnel actionné par un volant ; et
- un essieu complémentaire ;
caractérisé en ce qu'il consiste :
- à installer un accumulateur d'énergie électrique sur le véhicule ou à bord de celui-ci ;
- à déposer les roues de l'essieu complémentaire et à les remplacer par des moteurs-roues, chaque moteur-roue étant associé à un onduleur, chaque onduleur étant relié et dédié à un des moteurs-roues afin de l'alimenter en énergie électrique provenant de l'accumulateur d'énergie électrique ;
- à installer un boîtier de contrôle intégrant des moyens de commande d'accélération reliés à la pédale d'accélérateur et des moyens de commande de décélération reliés à la pédale de frein ;
- à relier ledit boîtier de contrôle :
. à la pédale de frein pour recevoir une consigne de décélération de la part de celle-ci ;
. à la pédale d'accélérateur pour recevoir une consigne d'accélération de la part de celle-ci ;
. à l'accumulateur d'énergie électrique pour recevoir une information concernant le niveau de charge de celui-ci ;
. aux onduleurs pour transmettre une consigne de couple d'accélération ou de décélération aux moteurs-roues ;
. au ralentisseur pour lui transmettre une consigne de décélération ;
. à la motorisation thermique pour lui transmettre une consigne de couple d'accélération ; et
. au système de freinage pour recevoir une consigne d'arrêt de traction lors du freinage.
Selon un exemple de mise en œuvre de l'invention, le procédé consiste en outre à installer un échangeur à air ou à eau pour refroidir les onduleurs, les moteurs-roues et l'accumulateur d'énergie électrique.
Selon un autre exemple de mise en œuvre de l'invention dans lequel le véhicule comprend un réseau électrique alimenté en électricité par un alternateur de la motorisation thermique et un convertisseur de courant relié à l'accumulateur d'énergie électrique, le procédé comprend en outre les étapes suivantes :
- relier le convertisseur de courant au réseau électrique pour alimenter le véhicule en électricité en cas d'arrêt de la motorisation thermique ; et
- relier le boîtier de commande au réseau électrique.
Selon un exemple de mise en œuvre de l'invention, le procédé consiste en outre à disposer l'accumulateur d'énergie électrique sur le toit du véhicule ou à la loger dans une armoire à bord du véhicule.
Selon un exemple supplémentaire de mise en œuvre de l'invention, le procédé consiste en outre à intégrer des batteries de traction ou des batteries de type super-capacité à recharge rapide à l'accumulateur d'énergie électrique.
Selon un exemple de mise en œuvre de l'invention, le procédé consiste en outre à fournir des moyens électriques aux onduleurs, ces moyens électriques étant commandés par le boîtier de contrôle et prévus pour faire fonctionner les moteurs-roues selon un mode de traction et un mode de freinage ;
- en mode de traction, les moteurs-roues participant à la propulsion du véhicule ;
- en mode de freinage, les moteurs-roues rechargeant l'accumulateur d'énergie électrique et ralentissant le véhicule par un effet de freinage électromagnétique.
Selon un autre exemple de mise en œuvre de l'invention, en cas de consigne de décélération reçue par le boîtier de contrôle, ce dernier commande :
- les onduleurs pour faire fonctionner les moteurs-roues en mode de freinage et ralentir le véhicule ;
- le ralentisseur pour ralentir le véhicule ;
le ralentissement global obtenu par les moteurs-roues et le ralentisseur étant conforme à la consigne de décélération reçue par le boîtier de contrôle.
Selon un exemple supplémentaire de mise en œuvre de l'invention, le boîtier de contrôle actionne le ralentisseur lorsque le freinage électromagnétique des moteurs-roues est insuffisant pour satisfaire à la consigne de décélération reçue par le boîtier de contrôle ou lorsque l'accumulateur d'énergie électrique est à pleine charge.
Selon un exemple de mise en œuvre de l'invention, en cas de consigne d'accélération reçue par le boîtier de contrôle, ce dernier commande :
- les onduleurs pour faire fonctionner les moteurs-roues en mode de traction ;
- la motorisation thermique pour lui transmettre une consigne de couple d'accélération ;
l'accélération globale obtenue par les moteurs-roues et la motorisation thermique étant conforme à la consigne d'accélération reçue par le boîtier de contrôle.
Selon un autre exemple de mise en œuvre de l'invention, le procédé consiste en outre à fournir des moyens de priorisation au boîtier de contrôle, ces moyens de priorisation étant prévus pour choisir si la consigne de couple transmise à la motorisation thermique doit être supérieure à celle transmise aux moteurs-roues, et inversement.
Selon un exemple supplémentaire de mise en œuvre de l'invention, la consigne de couple d'accélération transmise par le boîtier de contrôle à la motorisation thermique dépend de la charge de l'accumulateur d'énergie électrique, de la consigne de couple d'accélération transmise aux moteurs-roues et du couple d'accélération effectif délivré par lesdits moteurs-roues et de la stratégie de fonctionnement retenue.
Selon un exemple de mise en œuvre de l'invention, lorsque l'accumulateur d'énergie électrique est déchargé, les moteurs-roues sont placés en mode de freinage et la motorisation thermique pousse seule le véhicule le temps nécessaire à recharger au moins partiellement l'accumulateur d'énergie électrique.
Selon un autre exemple de mise en œuvre de l'invention, le procédé consiste en outre à ajouter une fonction dite « stop-start » au véhicule, prévue pour faire démarrer ce dernier en utilisant uniquement les moteurs-roues puis, à partir d'une certaines vitesse, à lancer la motorisation thermique par l'intermédiaire de la boîte de vitesse.
Selon un exemple supplémentaire de mise en œuvre de l'invention, lorsque l'accumulateur d'énergie électrique n'est pas assez chargé pour démarrer le véhicule au moyen des moteurs-roues, on démarre celui-ci au moyen de la motorisation thermique et en ce que les moteurs-roues sont alors mis en mode de freinage pour recharger l'accumulateur d'énergie électrique.
Les objets assignés à l'invention sont également atteints à l'aide d'un véhicule hybridé par le procédé d'hybridation d'un véhicule tel que décrit précédemment, dans lequel ledit véhicule est un bus articulé de transport en commun, un véhicule multiarticulé, ou un véhicule guidé de transport en commun.
Les avantages de la présente invention sont particulièrement nombreux.
La motorisation électrique étant intégrée aux roues sous la forme d'un essieu intégrant des moteur-roues, cette motorisation n'occupe aucune place supplémentaire par rapport à l'essieu classique ainsi remplacé. De même, l'accumulateur d'énergie électrique peut être disposé sur le toit du véhicule et n'occupe ainsi aucun espace prévu pour les passagers.
Outre des économies en carburant d'environ substantielles obtenues de manière classique par l'ajout d'une motorisation électrique à un véhicule, l'invention permet également d'augmenter signifïcativement la durée de vie de la motorisation thermique de celui-ci. En effet, la motorisation thermique moins sollicitée que dans un véhicule classique et lorsqu'un couple important est nécessaire, la motorisation thermique peut être soulagée dans ses efforts par puissance supplémentaire fournie par la motorisation électrique. On considère que le procédé d'hybridation de l'invention permet d'augmenter de 50% la durée de la motorisation thermique d'un véhicule.
En ajoutant une motorisation électrique sur un essieu complémentaire, à savoir un essieu n'étant ni directeur, ni motorisé, le véhicule ainsi hybridé présente une meilleure adhérence à la route et une meilleure tenue de route, ce qui permet notamment d'éviter le phénomène de mise en portefeuille lorsque la partie avant d'un bus articulé commence à déraper sur la chaussée.
Comportant un boîtier de contrôle intégrant notamment les moyens de commande d'accélération et les moyens de commande de décélération du véhicule, l'invention permet avantageusement de commander de manière intelligente les motorisations du véhicule et ses moyens de décélération, sans intervention du conducteur et de manière totalement transparente pour celui-ci. Ceci permet notamment d'optimiser les consommations électrique et en carburant, et de piloter par exemple les moteur-roues individuellement afin de pouvoir transmettre si nécessaire une consigne de couple d'accélération ou de décélération par exemple différente à chacun des moteurs-roues, ou pour réduire la commande en couple transmise aux deux roues.
L'hybridation d'un véhicule classique se résumant globalement à installer un accumulateur d'énergie électrique sur le véhicule ou à bord de celui-ci et à remplacer les roues d'un essieu complémentaire par des moteurs-roues. L'invention peut être adaptée facilement et à moindre coût à tout véhicule existant comportant un essieu complémentaire non directionnel ou tracteur et comportant des convertisseurs pour piloter les moteurs-roues.
L'invention peut donc s'adapter à des bus, mais également à des véhicules guidés du genre tramway ou des véhicules ferroviaires. Ainsi, grâce à son hybridation, un véhicule guidé peut traverser des zones particulières, en toute autonomie, en coupant le moteur thermique. Brève description des dessins
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description qui va suivre, faite en référence aux dessins annexés, donnés à titre d'exemples non limitatifs, dans lesquels :
- la figure 1 est une vue de profil d'un bus articulé de transport en commun hybridé selon le procédé de l'invention, dans lequel les moyens de l'invention sont représentés de manière schématique ;
- la figure 2 est une vue de dessus d'un bus articulé de transport en commun hybridé selon le procédé de l'invention, dans lequel les moyens de l'invention sont représentés de manière schématique ; et
- la figure 3 est une vue schématique partielle du réseau électrique d'un véhicule hybridé selon le procédé de l'invention.
Mode(s) de réalisation de l'invention
Les éléments structurellement et fonctionnellement identiques présents sur plusieurs figures distinctes, sont affectés d'une même référence numérique ou alphanumérique.
Sur les figures, les lignes de commande sont représentées en traits fins tandis que les liaisons mécaniques et les lignes de transfert d'énergie électrique sont représentées en traits plus épais.
Dans la suite de ce descriptif, à titre d'exemple uniquement, nous allons nous intéresser à un bus articulé de transport en commun. Il est évident pour l'homme du métier que l'invention peut être adaptée à tout type de véhicule comportant au moins trois essieux dont un essieu non motorisé et non directeur, lequel peut être remplacé par un essieu comportant des moteurs-roues.
Un véhicule (1) tel qu'un bus articulé de transport en commun ou un véhicule guidé de transport en commun comprend habituellement un essieu directionnel (2) généralement situé à l'avant, un essieu tracteur (3) motorisé et généralement situé à l'arrière, ainsi qu'un essieu complémentaire (4), ni directeur, ni motorisé et généralement situé en position centrale.
Dans un tel véhicule, l'essieu tracteur (3) est relié mécaniquement à une motorisation thermique (5) par l'intermédiaire d'une transmission et d'une boîte de vitesse (6) intégrant habituellement un ralentisseur.
La motorisation thermique (5) est commandée en accélération par une pédale d'accélérateur (7) par l'intermédiaire de moyens de commande d'accélération connus, tandis que le ralentisseur est commandé en décélération par une pédale de frein (8) par l'intermédiaire de moyens de commande de décélération connus.
L'essieu directionnel (2) est actionné par un volant (9) de manière classique.
L'essieu complémentaire (4) est un essieu servant notamment de soutien supplémentaire pour le châssis du véhicule (1). Il est mécaniquement indépendant des autres essieux (2, 3) et ne présente aucune motorisation.
Un véhicule (1) tel qu'un bus articulé ou un véhicule guidé de transport en commun comprend également un système de freinage (10) hydraulique ou pneumatique actionné par la pédale de frein (8) par l'intermédiaire de moyens de commande de freinage. Ce système de freinage (10) commande les freins (l ia, 11b, 11c) de sorte qu'ils soient actionnés de manière hydraulique ou pneumatique par des actionneurs de frein mécaniques localisés sur les roues du véhicule (1).
Le système de freinage (10) est par exemple un système de freinage électronique, pilotant le freinage de tous les essieux, connu sous l'acronyme EBS {Electronic Braking System) et intégrant un système anti-blocage des roues (ABS), un correcteur électronique de trajectoire (ESP) et un système antipatinage.
Bien que cela ne soit pas représenté sur les dessins dans un but de simplification, les roues de l'essieu complémentaire (4) comportent des freins commandés par le système de freinage (10) hydraulique ou pneumatique du véhicule (1).
La pédale de frein (8) dispose de deux courses successives. L'angle d'enfoncement correspondant à la première course constitue une consigne de décélération, tandis que l'angle d'enfoncement correspondant à la seconde course constitue une consigne de freinage. La consigne de décélération a pour but de faire ralentir le véhicule (1), tandis que la consigne de freinage a pour but de l'arrêter ou de le faire ralentir très fortement et très rapidement en cas d'urgence.
Dans un véhicule (1), la consigne de décélération est habituellement transmise au ralentisseur de la boîte de vitesse (6) par l'intermédiaire de moyens de commande de décélération, tandis que la consigne de freinage est transmise au système de freinage (10) par l'intermédiaire de moyens de commande de freinage.
De manière classique, l'angle d'enfoncement de la pédale d'accélérateur (7) constitue une consigne d'accélération qui est transmise à la motorisation thermique (5) pour lui transmettre une consigne de couple d'accélération.
On peut envisager une pédale d'accélérateur (7) disposant de deux courses successives, l'angle d'enfoncement correspondant à la première course constituant une consigne d'accélération normale, correspondant à une accélération douce et progressive, tandis que l'angle d'enfoncement correspondant à la seconde course constitue une consigne d'accélération forte, correspondant à une accélération massive et brutale. Dans ce cas, la consigne d'accélération normale a pour but de faire accélérer le véhicule (1) de manière souple, tandis que la consigne d'accélération forte a pour but de faire accélérer le véhicule (1) très fortement et très rapidement, notamment en cas de dépassement ou en cas d'urgence.
Dans le véhicule (1) hybridé selon le procédé de l'invention, l'essieu complémentaire (4) est un essieu tracteur à motorisation électrique intégrant une paire de moteurs-roues (12a, 12b), chaque moteur-roue (12a, 12b) étant relié à un onduleur (13a, 13b) dédié afin d'être alimenté en énergie électrique par un accumulateur d'énergie électrique (14).
Une unité de distribution de puissance (15) est prévue entre l'accumulateur d'énergie électrique (14) et les onduleurs (13a, 13b). Elle permet notamment de couper l'alimentation électrique des onduleurs (13a, 13b) pour la sécurité des opérateurs devant effectuer une maintenance sur les onduleurs (13a, 13b) et les moteurs-roues (12a, 12b).
De manière optionnelle et non représentée sur les figures, l'accumulateur d'énergie électrique (14) peut également être relié à un hacheur de freinage, lui-même relié à une résistance de freinage.
L'accumulateur d'énergie électrique (14) est préférentiellement disposé sur le toit du véhicule (1) afin de ne pas occuper d'espace réservé aux passagers. Il peut également être logé dans une armoire à bord du véhicule (1). Il peut également être en plusieurs parties réparties en divers endroits du véhicule (1)·
L'accumulateur d'énergie électrique (14) comprend préférentiellement des batteries de traction ou des batteries de type super-capacité à recharge rapide.
Les moteurs-roues (12a, 12b) comprennent chacun un moteur électrique incorporé dans une roue. Ils sont particulièrement avantageux car ils présentent un encombrement réduit et ne nécessitent pas de transmission, ce qui permet avantageusement de déposer l'essieu complémentaire (3) d'un véhicule (1) pour le remplacer par un essieu comportant des moteurs-roues (12a, 12b). Les onduleurs (13a, 13b) comportent des moyens électriques prévus pour faire fonctionner les moteurs-roues (12a, 12b) selon un mode de traction ou selon un mode de freinage.
En mode de traction, les moteurs-roues (12a, 12b) sont alimentés en énergie électrique par l'accumulateur d'énergie électrique (14) et fonctionnent en tant que moteurs pour participer à la propulsion du véhicule (1).
En mode de freinage, les moteurs-roues (12a, 12b) sont entraînés à rotation par l'inertie de déplacement du véhicule (1) et fonctionnent en tant que générateurs de courant électrique. Ils rechargent alors l'accumulateur d'énergie électrique (14) et ralentissent le véhicule (1) par un effet de freinage électromagnétique.
Selon un exemple de stratégie de fonctionnement, si l'accumulateur d'énergie électrique (14) est totalement déchargé, les moteurs-roues (12a, 12b) sont placés en mode de freinage et la motorisation thermique (5) pousse seule le véhicule (1) le temps nécessaire à recharger au moins partiellement l'accumulateur d'énergie électrique (14).
Le véhicule (1) de l'invention comprend un boîtier de contrôle (16) qui comprend toute l'électronique et l'intelligence nécessaire notamment à la surveillance et à la commande de la motorisation thermique (5), du ralentisseur de la boîte de vitesse (6), des onduleurs (13a, 13b) et de l'accumulateur d'énergie électrique (14).
Le boîtier de contrôle (16) est relié :
- à la pédale de frein (8) pour recevoir une consigne de décélération de la part de celle-ci ;
- à la pédale d'accélérateur (7) pour recevoir une consigne d'accélération de la part de celle-ci ;
- à l'accumulateur d'énergie électrique (14) pour recevoir une information concernant le niveau de charge de celui-ci ;
- aux onduleurs (13a, 13b) pour transmettre une consigne de couple d'accélération ou de décélération aux moteurs-roues (12a, 12b) ;
- au ralentisseur pour lui transmettre une consigne de décélération ; et
- à la motorisation thermique (5) pour lui transmettre une consigne de couple d'accélération.
Le boîtier de contrôle (16) est relié aux différents moyens cités plus haut de manière à notamment recevoir des consignes d'accélération et de décélération respectivement de la part de la pédale d'accélérateur (7) et de la pédale de frein (8). Il définit les consignes et les adapte en temps réel à une stratégie de fonctionnement.
Le boîtier de contrôle (16) permet ainsi d'émuler l'ensemble de manière totalement transparente pour le chauffeur, c'est-à-dire sans que le conducteur ne s'en rende compte car celui-ci sollicite la pédale d'accélérateur (7) et la pédale de frein (8) de manière classique pour faire accélérer ou décélérer le véhicule (1).
Lorsqu'il reçoit une consigne d'accélération, le boîtier de contrôle (16) commande la motorisation thermique (5) pour lui transmettre une consigne de couple d'accélération ainsi que les onduleurs (13a, 13b) pour faire fonctionner les moteurs-roues (12a, 12b) en mode de traction.
La consigne de couple d'accélération transmise aux moteurs-roues (12a, 12b) est compatible avec l'état de charge de l'accumulateur d'énergie électrique (14), de sorte qu'une consigne de couple d'accélération ne soit pas transmise aux onduleurs (13a, 13b) si l'état de charge de l'accumulateur d'énergie électrique (14) est insuffisant.
Selon un exemple de stratégie de fonctionnement, les consignes d'accélération respectives transmises aux onduleurs (13a, 13b) et à la motorisation thermique (5) sont déterminées par le boîtier de contrôle (16) de manière intelligente de manière à soulager la motorisation thermique (5) grâce à la motorisation électrique des moteurs-roues (12a, 12b), tout en veillant à conserver une certaine charge dans l'accumulateur d'énergie électrique (14) dans le cas où la puissance de la motorisation thermique (5) s'avère insuffisante pour répondre à la consigne d'accélération reçue de la part de la pédale d'accélérateur.
Ainsi, le boîtier de contrôle (16) comprend des moyens de priorisation pour choisir si la consigne de couple transmise à la motorisation thermique (5) doit être supérieure à celle transmise aux moteurs-roues (12a, 12b), et inversement.
De manière générale, l'accélération globale obtenue par les moteurs-roues (12a, 12b) et la motorisation thermique (5) est conforme à la consigne d'accélération reçue par le boîtier de contrôle (16).
Dans certains cas, la consigne d'accélération transmise aux onduleurs (13a, 13b) ou à la motorisation thermique (5) peut être nulle, par exemple en cas de défaillance de la motorisation thermique (5) ou dans le cas où l'accumulateur d'énergie électrique (14) est totalement déchargé.
Lorsqu'il reçoit une consigne de décélération, le boîtier de contrôle (16) commande le ralentisseur et les onduleurs (13a, 13b) pour faire fonctionner les moteurs-roues en mode de freinage, ce qui permet de ralentir le véhicule (1). La consigne de couple de décélération transmise aux onduleurs (13a, 13b) est compatible avec l'état de charge de l'accumulateur d'énergie électrique (14), de sorte qu'une telle consigne ne soit pas transmise si l'état de charge de l'accumulateur d'énergie électrique (14) ne permet pas de recevoir une quantité d'énergie électrique supplémentaire de la part des moteurs-roues (12a, 12b) fonctionnant en générateurs de courant.
Les consignes de décélération respectives transmises au ralentisseur et aux onduleurs (13a, 13b) sont déterminées par le boîtier de contrôle
(16) de manière intelligente de manière à favoriser autant que possible le fonctionnement des moteurs-roues en mode de freinage, ce qui permet de recharger l'accumulateur d'énergie électrique (14), tout en veillant à ne pas dépasser la capacité de charge de celui-ci et à actionner le ralentisseur lorsque le freinage électromagnétique des moteurs-roues (12a, 12b) est insuffisant pour satisfaire à la consigne de décélération reçue par le boîtier de contrôle (16).
Dans certains cas, la consigne de décélération transmise au ralentisseur ou aux onduleurs (13a, 13b) peut être nulle, par exemple dans le cas où l'accumulateur d'énergie électrique (14) est à charge maximale.
La consigne de couple d'accélération ou de décélération transmise à chacun des onduleurs (13a, 13b) correspond également à un couple nulle lorsque l'un au moins des moteurs-roues (12a, 12b) transmet au boîtier de contrôle (16) des informations relatives à un défaut d'adhérence du moteur-roue (12a, 12b) concerné. Cette information est alors transmise par l'intermédiaire d'une liaison
(17) entre le système de freinage (10) et le boîtier de contrôle (16).
On notera bien que le freinage, utilisé notamment en cas d'urgence, n'est pas piloté par le boîtier de contrôle (16) pour des raisons évidentes de sécurité. Ainsi, en cas de défaillance du boîtier de contrôle (16), le freinage est toujours opérationnel.
Comme cela est représenté sur la figure 3, le véhicule (1) de l'invention comprend un réseau électrique (18) habituellement de 24 Volts. Ce réseau électrique (18) est habituellement alimenté par l'alternateur (19) de la motorisation thermique (5). Or, dans le cas d'un véhicule (1) hydride selon l'invention, la motorisation thermique (5) peut être coupée, aussi est-il nécessaire d'alimenter le réseau électrique (18) du véhicule (1) grâce à l'accumulateur d'énergie électrique (14), par exemple par l'intermédiaire d'un convertisseur de courant (20). On notera que le réseau électrique (18) alimente habituellement les différents moyens électrique du véhicule (1), notamment l'éclairage, la climatisation et, dans le cas de l'invention, le boîtier de contrôle (16). L'invention concerne un procédé d'hybridation d'un véhicule (1), par exemple un bus de transport en commun articulé ou multiarticulé, tel que décrit précédemment et comprenant un essieu complémentaire non motorisé.
Ce procédé d'hybridation consiste à installer un accumulateur d'énergie électrique (14) sur le véhicule (1) ou à bord de celui-ci, de préférence de manière à ne pas occuper d'espace réservé aux passagers.
Le procédé d'hybridation consiste également à déposer les roues de l'essieu complémentaire (4) et à les remplacer par des moteurs-roues (12a, 12b) reliés chacun à un onduleur (13a, 13b) dédié afin d'être alimentés en énergie électrique par l'accumulateur d'énergie électrique (14).
Un boîtier de contrôle (16) intégrant des moyens de commande d'accélération reliés à la pédale d'accélérateur (7) et des moyens de commande de décélération reliés à la pédale de frein (8) est également installé à bord du véhicule (1).
On raccorde ce boîtier de contrôle (16) à la pédale d'accélérateur (7) et à la pédale de frein (8). Ainsi, le boîtier de contrôle (16) reçoit les consignes de d'accélération et de décélération de la part du conducteur.
On le relie aussi à l'accumulateur d'énergie électrique (14) pour recevoir une information concernant le niveau de charge de celui-ci.
On raccorde également le boîtier de contrôle (16) aux onduleurs (13a, 13b), à la motorisation thermique (5) et au ralentisseur pour leur transmettre à chacun une consigne de couple d'accélération ou de décélération qui est fonction des consignes de d'accélération et de décélération reçues de la part du conducteur par l'intermédiaire des pédales (7, 8).
Ainsi le boîtier de contrôle (16) émule les moyens habituels de de commande d'accélération et de décélération pour piloter les moteurs-roues (12a, 12b), la motorisation thermique (5) et le ralentisseur en fonction des informations transmises aux pédales (7, 8) par le conducteur, sans que celui-ci ne ressente une différence au niveau de la conduite par rapport à la conduite d'un véhicule classique.
Selon un mode de réalisation préféré de l'invention, le véhicule (1) hybridé selon le procédé de l'invention peut avantageusement comporter une fonction dite « stop-start ». Ainsi, le véhicule (1) hydridé démarre en utilisant uniquement les moteurs-roues (12a, 12b) puis, à partir d'une certaines vitesse, il lance la motorisation thermique (5) par l'intermédiaire de la boîte de vitesse (6), ce qui permet notamment de faire des économies de carburant et de ne pas solliciter le démarreur du véhicule (1). Dans le cas où l'accumulateur d'énergie électrique (14) n'est plus assez chargé pour démarrer le véhicule (1) au moyen des moteurs-roues (12a, 12b), on démarre celui-ci au moyen de la motorisation thermique (5). Les moteurs-roues (12a, 12b) sont alors mis en mode de freinage afin de recharger l'accumulateur d'énergie électrique (14) de sorte que lors du prochain démarrage, la motorisation thermique (5) ne soit pas sollicitée.
Il est évident que la présente description ne se limite pas aux exemples explicitement décrits, mais comprend également d'autres modes de réalisation et/ou de mise en œuvre. Ainsi, une caractéristique technique décrite peut être remplacée par une caractéristique technique équivalente sans sortir du cadre de la présente invention et une étape décrite de mise en œuvre du procédé peut être remplacée par une étape équivalente sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
1. Procédé d'hybridation d'un véhicule (1) comprenant :
- un système de freinage (10) hydraulique ou pneumatique actionné par une pédale de frein (8) par l'intermédiaire de moyens de commande de freinage ;
- un essieu tracteur (3) relié à une motorisation thermique (5) à travers une boîte de vitesse (6) intégrant un ralentisseur, la motorisation thermique (5) étant commandée en accélération par une pédale d'accélérateur (7) et le ralentisseur étant commandé en décélération par la pédale de frein (8) ;
- un essieu directionnel (2) actionné par un volant (9) ; et
- un essieu complémentaire (4) ;
caractérisé en ce qu'il consiste :
- à installer un accumulateur d'énergie électrique (14) sur le véhicule (1) ou à bord de celui-ci ;
- à déposer les roues de l'essieu complémentaire (4) et à les remplacer par des moteurs-roues (12a, 12b), chaque moteur-roue (12a, 12b) étant associé à un onduleur (13a, 13b), chaque onduleur (13a, 13b) étant relié et dédié à un des moteurs-roues (12a, 12b) afin de l'alimenter en énergie électrique provenant de l'accumulateur d'énergie électrique (14) ;
- à installer un boîtier de contrôle (16) intégrant des moyens de commande d'accélération reliés à la pédale d'accélérateur (7) et des moyens de commande de décélération reliés à la pédale de frein (8) ;
- à relier ledit boîtier de contrôle (16) :
. à la pédale de frein (8) pour recevoir une consigne de décélération de la part de celle-ci ;
. à la pédale d'accélérateur (7) pour recevoir une consigne d'accélération de la part de celle-ci ;
. à l'accumulateur d'énergie électrique (14) pour recevoir une information concernant le niveau de charge de celui-ci ;
. aux onduleurs (13a, 13b) pour transmettre une consigne de couple d'accélération ou de décélération aux moteurs-roues (12a, 12b) ;
. au ralentisseur pour lui transmettre une consigne de décélération ;
. à la motorisation thermique (5) pour lui transmettre une consigne de couple d'accélération ; et
. au système de freinage (10) pour recevoir une consigne d'arrêt de traction lors du freinage.
2. Procédé d'hybridation d'un véhicule (1) selon la revendication 1, caractérisé en ce qu'il consiste en outre à installer un échangeur à air ou à eau pour refroidir les onduleurs (13a, 13b), les moteurs-roues (12a, 12b) et l'accumulateur d'énergie électrique (14).
3. Procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, ledit véhicule (1) comprenant un réseau électrique (18) alimenté en électricité par un alternateur (19) de la motorisation thermique (5) et un convertisseur de courant (20) relié à l'accumulateur d'énergie électrique (14), caractérisé en ce que le procédé comprend en outre les étapes suivantes :
. relier le convertisseur de courant (20) au réseau électrique (18) pour alimenter le véhicule (1) en électricité en cas d'arrêt de la motorisation thermique (5) ; et
. relier le boîtier de commande (16) au réseau électrique (18).
4. Procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste en outre à disposer l'accumulateur d'énergie électrique (14) sur le toit du véhicule (1) ou à la loger dans une armoire à bord du véhicule (1).
5. Procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste en outre à intégrer des batteries de traction ou des batteries de type super-capacité à recharge rapide à l'accumulateur d'énergie électrique (14).
6. Procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste en outre à fournir des moyens électriques aux onduleurs (13a, 13b), ces moyens électriques étant commandés par le boîtier de contrôle (16) et prévus pour faire fonctionner les moteurs-roues (12a, 12b) selon un mode de traction et un mode de freinage ;
- en mode de traction, les moteurs-roues (12a, 12b) participant à la propulsion du véhicule (1) ;
- en mode de freinage, les moteurs-roues (12a, 12b) rechargeant l'accumulateur d'énergie électrique (14) et ralentissant le véhicule (1) par un effet de freinage électromagnétique.
7. Procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que, en cas de consigne de décélération reçue par le boîtier de contrôle (16), ce dernier commande :
- les onduleurs (13a, 13b) pour faire fonctionner les moteurs-roues (12a, 12b) en mode de freinage et ralentir le véhicule (1) ;
- le ralentisseur pour ralentir le véhicule (1) ;
le ralentissement global obtenu par les moteurs-roues (12a, 12b) et le ralentisseur étant conforme à la consigne de décélération reçue par le boîtier de contrôle (16).
8. Procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que le boîtier de contrôle (16) actionne le ralentisseur lorsque le freinage électromagnétique des moteurs-roues (12a, 12b) est insuffisant pour satisfaire à la consigne de décélération reçue par le boîtier de contrôle (16) ou lorsque l'accumulateur d'énergie électrique (14) est à pleine charge.
9. Procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que, en cas de consigne d'accélération reçue par le boîtier de contrôle (16), ce dernier commande :
- les onduleurs (13a, 13b) pour faire fonctionner les moteurs-roues (12a, 12b) en mode de traction ;
- la motorisation thermique (5) pour lui transmettre une consigne de couple d'accélération ;
l'accélération globale obtenue par les moteurs-roues (12a, 12b) et la motorisation thermique (5) étant conforme à la consigne d'accélération reçue par le boîtier de contrôle (16).
10. Procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste en outre à fournir des moyens de priorisation au boîtier de contrôle (16), ces moyens de priorisation étant prévus pour choisir si la consigne de couple transmise à la motorisation thermique (5) doit être supérieure à celle transmise aux moteurs-roues (12a, 12b), et inversement.
11. Procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que la consigne de couple d'accélération transmise par le boîtier de contrôle (16) à la motorisation thermique (5) dépend de la charge de l'accumulateur d'énergie électrique (14), de la consigne de couple d'accélération transmise aux moteurs-roues (12a, 12b) et du couple d'accélération effectif délivré par lesdits moteurs-roues (12a, 12b) et de la stratégie de fonctionnement retenue.
12. Procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que, lorsque l'accumulateur d'énergie électrique (14) est déchargé, les moteurs-roues (12a, 12b) sont placés en mode de freinage et la motorisation thermique (5) pousse seule le véhicule (1) le temps nécessaire à recharger au moins partiellement l'accumulateur d'énergie électrique (14).
13. Procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste en outre à ajouter une fonction dite « stop-start » au véhicule (1), prévue pour faire démarrer ce dernier en utilisant uniquement les moteurs-roues (12a, 12b) puis, à partir d'une certaines vitesse, à lancer la motorisation thermique (5) par l'intermédiaire de la boîte de vitesse (6).
14. Procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que, lorsque l'accumulateur d'énergie électrique (14) n'est pas assez chargé pour démarrer le véhicule (1) au moyen des moteurs-roues (12a, 12b), on démarre celui-ci au moyen de la motorisation thermique (5) et en ce que les moteurs-roues (12a, 12b) sont alors mis en mode de freinage pour recharger l'accumulateur d'énergie électrique (14).
15. Véhicule (1) hybridé par le procédé d'hybridation d'un véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit véhicule (1) est un bus articulé de transport en commun, un véhicule multiarticulé, ou un véhicule guidé de transport en commun.
PCT/FR2015/052787 2014-10-17 2015-10-16 Véhicule hybride et procédé d'hybridation d'un véhicule WO2016059356A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/517,889 US20170305259A1 (en) 2014-10-17 2015-10-16 Hybrid Vehicle And Vehicle Hybridization Method
AU2015332266A AU2015332266A1 (en) 2014-10-17 2015-10-16 Hybrid vehicle and vehicle hybridization method
CA2963701A CA2963701A1 (fr) 2014-10-17 2015-10-16 Vehicule hybride et procede d'hybridation d'un vehicule
EP15805567.3A EP3206926A2 (fr) 2014-10-17 2015-10-16 Véhicule hybride et procédé d'hybridation d'un véhicule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1459987 2014-10-17
FR1459987 2014-10-17

Publications (2)

Publication Number Publication Date
WO2016059356A2 true WO2016059356A2 (fr) 2016-04-21
WO2016059356A3 WO2016059356A3 (fr) 2016-07-28

Family

ID=52130436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/052787 WO2016059356A2 (fr) 2014-10-17 2015-10-16 Véhicule hybride et procédé d'hybridation d'un véhicule

Country Status (6)

Country Link
US (1) US20170305259A1 (fr)
EP (1) EP3206926A2 (fr)
AU (1) AU2015332266A1 (fr)
CA (1) CA2963701A1 (fr)
MA (1) MA40604A (fr)
WO (1) WO2016059356A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265502A1 (fr) * 2022-04-20 2023-10-25 CAF Reichshoffen Véhicule ferroviaire automoteur comportant une motorisation hybride et procédé de commande dudit véhicule ferroviaire automoteur

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357444A (en) * 1990-02-28 1994-10-18 Aisin Seiki Kabushiki Kaisha Retarding control apparatus which operates on the basis of signals such as a shift lever position signal
JP2004328991A (ja) * 2003-04-09 2004-11-18 Nissan Motor Co Ltd 車両の左右輪駆動装置
EP2026988A2 (fr) * 2006-04-03 2009-02-25 BluWav Systems, LLC Propulsion de vehicule en forme d'un axe rattrapable avec un moteur, une batterie et une suspension
US8025117B2 (en) * 2009-03-05 2011-09-27 Bennett Sr Lawrence R Power axle for a commercial vehicle
US20120000721A1 (en) * 2010-06-30 2012-01-05 Fazer Technologies Corporation Aftermarket electrical propulsion system for vehicles
CN104470746B (zh) * 2012-05-10 2017-04-19 戈尔德霍弗股份公司 用于机动车的驱动装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265502A1 (fr) * 2022-04-20 2023-10-25 CAF Reichshoffen Véhicule ferroviaire automoteur comportant une motorisation hybride et procédé de commande dudit véhicule ferroviaire automoteur
FR3134780A1 (fr) * 2022-04-20 2023-10-27 Alstom Holdings Vehicule ferroviaire automoteur comportant une motorisation hybride et procede de commande dudit vehicule ferroviaire automoteur

Also Published As

Publication number Publication date
US20170305259A1 (en) 2017-10-26
WO2016059356A3 (fr) 2016-07-28
AU2015332266A1 (en) 2017-04-20
CA2963701A1 (fr) 2016-04-21
MA40604A (fr) 2016-04-21
EP3206926A2 (fr) 2017-08-23

Similar Documents

Publication Publication Date Title
EP2244900B1 (fr) Procede de couplage d'une machine electrique de traction sur un vehicule hybride et vehicule hybride pour la mise en oeuvre du procede
EP2222525B1 (fr) Procede de freinage pour vehicules hybrides permettant la compensation d'un couple de freinage electrique
EP2885147B1 (fr) Procede de limitation de couple d'une machine electrique de vehicule hybride comportant un systeme de controle de vitesse
FR2930743A1 (fr) Dispositif de propulsion ou de traction electrique d'un vehicule
EP2086806B1 (fr) Procede de pilotage d'un vehicule hybride pour la recharge de moyens de stockage d'energie electrique et vehicule hybride
CN101896390A (zh) 用于控制具有混合动力驱动装置的车辆的爬行运行的方法和装置
EP2138711B1 (fr) Procédé de commande du dispositif d'arrêt et de redemarrage automatique du moteur thermique d'un vehicule
EP2079623A2 (fr) Procede de gestion du fonctionnement d'un vehicule hybride
EP3658404B1 (fr) Procede pour vehicule hybride de controle d'un alternateur de recharge d'une batterie d'un reseau de bord
WO2011092392A1 (fr) Procede de motricite curative pour vehicule hybride
EP3206926A2 (fr) Véhicule hybride et procédé d'hybridation d'un véhicule
EP3887220A1 (fr) Procédé et dispositif de contrôle de décélération à phase mixte, pour un véhicule à conduite automatisée et machine motrice non-thermique
FR2910868A1 (fr) Procede de freinage pour vehicules hybrides permettant la compensation d'un couple de freinage electrique.
FR3070347B1 (fr) Controle d’instants de declenchement d’une marche rampante par des moteur thermique et machine motrice non-thermique d’un vehicule hybride
WO2011036383A1 (fr) Procede de gestion de l'accouplement du moteur thermique sur un vehicule automobile hybride
FR3064575B1 (fr) Dispositif de controle des couplages/decouplages d'une machine motrice non-thermique d'un vehicule en fonction d'un parametre d'etat de moyens de stockage associes
EP3268242B1 (fr) Système embarqué pour recharger des batteries embarquées dans un véhicule électrique
FR3077258A1 (fr) Systeme et procede de pilotage d’un stockeur d’energie de vehicule hybride, et vehicule automobile les incorporant
FR2793449A1 (fr) Vehicule automobile hybride comportant des moyens de ralentissement
EP3678910B1 (fr) Procédé de contrôle de fourniture d'un couple complémentaire par une machine motrice non-thermique d'un véhicule hybride en fonction du potentiel d'accélération
FR3078204A1 (fr) Gestion de l’energie electrique dans un vehicule automobile hybride
FR3122367A1 (fr) Gestion stratégique d’un groupe d’alimentation électrique d’un véhicule en fonction d’informations concernant la batterie de servitude
FR2794705A1 (fr) Procede de commande pour le ralentissement d'un vehicule automobile a motorisation principale thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15805567

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2015805567

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015805567

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2963701

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15517889

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015332266

Country of ref document: AU

Date of ref document: 20151016

Kind code of ref document: A