EP2076505A1 - Procédé de synthèse d'acétals cycliques par extraction réactive d'un polyol en solution concentrée - Google Patents

Procédé de synthèse d'acétals cycliques par extraction réactive d'un polyol en solution concentrée

Info

Publication number
EP2076505A1
EP2076505A1 EP07858522A EP07858522A EP2076505A1 EP 2076505 A1 EP2076505 A1 EP 2076505A1 EP 07858522 A EP07858522 A EP 07858522A EP 07858522 A EP07858522 A EP 07858522A EP 2076505 A1 EP2076505 A1 EP 2076505A1
Authority
EP
European Patent Office
Prior art keywords
acid
glycerol
polyol
cyclic
acetals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07858522A
Other languages
German (de)
English (en)
Inventor
Jean-Luc Dubois
Sara Iborra Chornet
Alexandra I. Lucienne Velty
Avelino Corma Canos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Universidad Politecnica de Valencia
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Universidad Politecnica de Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC, Universidad Politecnica de Valencia filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Publication of EP2076505A1 publication Critical patent/EP2076505A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/18Radicals substituted by singly bound oxygen or sulfur atoms
    • C07D317/20Free hydroxyl or mercaptan
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings

Definitions

  • the present invention relates to a process for synthesizing cyclic acetals by reactively extracting a polyol contained in an aqueous phase by reaction of an aldehyde and / or a ketone on the polyol leading to the formation of a cyclic acetal of polyol insoluble in the aqueous phase.
  • the process of the invention consists in reacting at least one aldehyde and / or a ketone, or more generally a carbonyl compound, with a polyol contained in a polyol-rich aqueous phase, in a reactor comprising an acid catalyst which makes it possible simultaneously to carry out the catalytic conversion of the reactants and the separation of the products of the reaction by extraction of the polyol from the aqueous phase in the form of a cyclic acetal insoluble in the aqueous phase.
  • the synthesis of acetals is largely described in the article by F. A. J.
  • the cyclic acetals produced in the process of the invention are formed by simultaneous reaction of the aldehyde and / or the ketone on two hydroxyl functions of the polyol.
  • the proximity of the two hydroxyl functions results in the formation of a ring comprising in general, but not exclusively, 5 to 6 atoms including 2 oxygen.
  • This reaction is a balanced and reversible reaction and is accompanied by water formation.
  • the reaction carried out in the process with glycerol as polyol and under acid catalysis is as follows: (1) in which the radicals R 1 and R 2 are especially alkyl radicals and can also be hydrogen.
  • Cyclic glycerol acetals can be synthesized according to many methods known from the literature. For example:
  • acetal glycerol and acetone (RN 100-79-8) is also known as Solketal. It is a solvent whose boiling point is 188-189 ° C (and 82 ° C to 10 mmHg), the melting point is -26.4 ° C, and flash point
  • Formal Glycerol is another glycerol acetal that is commercially available from Lambiotte. There exist in the form of 2 isomers, dioxane (ring with 6 atoms) and dioxolane (cycle with 5 atoms). The physico-chemical characteristics of this acetal, which is miscible with water, are available on the site www.Lambiotte.com.
  • Patent FR 2869232 relates to new pharmaceutical or cosmetic excipients based on cyclic acetals including glycerol acetals.
  • methods for synthesizing acetals obtained from propanaldehyde, butyraldehyde and pentanal are exemplified. It is recommended in this patent to use light aldehydes to maintain in the aqueous phase the aldehyde and acetal product.
  • US patent application 5917059 describes a method for synthesizing light glycerol acetals by continuously distilling an excess of aldehyde or ketone resulting in the water produced by the reaction and by continuous supply of the aldehyde or ketone containing less than 1% water.
  • an aqueous solution of glycerol containing from 30 to 80% by weight of glycerol, or of glycerol hydrate containing from 20 to 1% by weight of water (ie from 80 to 99% by weight of glycerol), is placed in contact with an aldehyde or ketone, in the presence of an acid catalyst, in a solvent having a boiling point generally below 150 ° C. and having a boiling point lower than that of the aldehyde or ketone, and the role is the elimination of the water present in the medium, originating from either the initial solution or the reaction, by azeotropic distillation.
  • the object of the invention is to provide a process for the continuous industrial production of cyclic acetals by extraction of polyols and in particular glycerol contained in aqueous solutions which does not have the disadvantages of the aforementioned methods.
  • the invention relates to a process for synthesizing cyclic acetals by reacting at least one carbonyl-functional compound chosen from aldehydes, ketones and / or linear acetals on a polyol in concentrated aqueous solution, characterized in that is carried out in a reactor containing an acid catalyst and that the carbonyl compound is selected such that the cyclic acetal produced has a solubility in water of less than 20,000 mg / kg at room temperature and that simultaneously in the catalytic synthesis reaction of the cyclic acetal, at least a portion of the organic phase containing the cyclic acetal is removed by extraction within the reactor from the aqueous continuous phase.
  • the invention relates to a process for synthesizing cyclic acetals from concentrated solutions of polyols, that is to say solutions initially containing at least 20% by weight of polyol in water, and preferably more than 40%. weight.
  • the high content of polyols which constitutes an excess of polyol reagent will allow a total conversion of the other reagent, the carbonyl compound and in particular the aldehyde and / or the ketone within the reactor.
  • polyols that can be used in the process of the invention, mention may be made of: glycerol, ethylene glycol, propane diol 1, 2 and / or propane diol 1, 3, butanediol 2,3.
  • aldehydes that can be used in the process of the invention mention may be made of: butyraldehyde, n-heptanaldehyde, 2-ethylhexanaldehyde, valeraldehyde, glyoxal, glutaraldehyde, furfuraldehyde, isovaleraldehyde, acrolein, crotonaldehyde, decanaldehyde, 2-ethylbutaraldehyde, hexanaldehyde, isobutyraldehyde, isodecanaldehyde, laurinaldehyde, 2-methylbutyraldehyde, nonanaldehyde, octanaldehyde, pivalaldehyde, tolualdehyde, benzaldehyde, tridecanaldehyde, undecanaldehyde.
  • ketones that can be used in the process of the invention, mention may notably be made of: acetone, methyl ethyl ketone, diethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, diisobutyl ketone, diisopropyl ketone, mesityl oxide, butanedione, cyclohexanone.
  • the data relating to the solubilities in water of chemical compounds are provided in particular in: Yaws' Handbook of Thermodynamics and Physical Properties of Chemical Compounds ⁇ 2003 Knovel.
  • the aldehydes or ketones selected are generally taken from aldehydes and ketones comprising from 4 to 12 carbon atoms, and even more preferably from 5 to 9.
  • aldehydes and ketones that are particularly suitable for the process of the invention, mention may be made of aldehydes, benzaldehyde (6570 mg / kg), heptanals and in particular n-heptanal (1516 mg / kg), hexanal (5644 mg / kg), pentanal (11,700 mg / kg), n-heptanal, octanol (370 mg / kg); for ketones mention may be made of acetophenone (6842 mg / kg), benzophenone (136.7 mg / kg), diisobutyl ketone (2640 mg / kg) and diisopropyl ketone (5700 mg / kg).
  • heptanaldehyde (n-heptanal), since this aldehyde can be obtained from biomass.
  • Heptanaldehyde is obtained, for example, by thermal cracking of the methyl ester of castor oil.
  • acetals may be selected from light alcohols and heavy aldehydes to produce poorly soluble acetals in water.
  • the light alcohols can be selected from methanol, ethanol, propanol
  • heavy aldehydes can be the same as those mentioned above.
  • linear acetals that may be used in the process according to the invention, mention may be made in particular of: malonaldehyde bis (diethyl acetal) (CAS RN 122-31-6), 1,1-diethoxycyclohexane (CAS RN 1670-47-9 ), 1,4-cyclohexadione bis (ethylene acetal) (CAS RN 183-97-1), phenylacetaldehyde dimethyl acetal (CAS RN 101-48-4), benzaldehyde dimethyl acetal (CAS RN 1125-88-8), 1,1-dimethoxyheptanalacetal (CAS RN 10032-55-0), 1,1-dimethylhexanalacetal (CAS RN 1599-47-9).
  • malonaldehyde bis diethyl acetal
  • 1,1-diethoxycyclohexane CAS RN 1670-47-9
  • 1,4-cyclohexadione bis ethylene acetal
  • the catalyst of the reaction is an acid catalyst which is either in solid form, heterogeneous catalysis or in liquid form, homogeneous catalysis.
  • the reactor is a stirred reactor in the case of homogeneous catalysis.
  • the liquid catalyst is selected from those catalysing the reaction between an alcohol and an aldehyde or a ketone.
  • acidic liquids that may be used as catalysts, mention may be made of: hydrochloric acid, nitric acid, sulfuric acid, methanesulfonic acid, para-toluenesulfonic acid, triflic acid, acid oxalic, etc.
  • the soluble acids are preferably selected in the aqueous phase.
  • the acidic solids that may be used as catalysts, mention may be made of acidic ion exchange resins, acid resins, natural or synthetic zeolites such as mordenite, Y zeolites, ZSM5, H-beta, Montmorillonite or silica-based silicones. aluminas, Nafion ® composites and Nafion ® or finally supported heteropolyacids, chlorides of lanthanides, iron, zinc or titanium or the catalysts contained in the list given in the article by FAJ Meskens cited above.
  • the acidic catalyst consists of an acidic phase having a Hammett acidity H 0 of less than +2, preferably less than 0.
  • the typical acidic acid Hammett acidities are grouped together. in the table below
  • Hammett acidity for a solid is defined in the article by K. Tanabe et al in "Studies in Surface Science and Catalysis", Vol 51, 1989, Chapters 1 and 2.
  • Hammett's acidity is determined by amino titration using indicators or adsorbing a base in the gas phase.
  • Hammett's acidity is one of many scales of acidity in solids. There are correlations in the literature between different scales of acidity.
  • Acidic solids which may be suitable are natural or synthetic siliceous materials or acidic zeolites; inorganic carriers, such as oxides, coated with inorganic acids, mono, di, tri or polyacids; oxides or mixed oxides or heteropolyacids.
  • the catalyst may consist of an acid phase selected from acidic resins such as Amberlyst resins (in particular Amberlyst 15 and 36), zeolites, Nafion ⁇ composites (based on fluorinated polymers of sulphonic acid), and chlorinated aluminas. , acids and salts of phosphotungstic and / or silicotungstic acids, and various solids of the metal oxide type such as tantalum oxide Ta 2 O 5 , niobium oxide Nb 2 O 5 , alumina
  • R 1 and R 2 which are identical or different, are either the hydrogen atom H, a linear or branched alkyl radical, saturated or unsaturated, optionally containing a second ketonic or ether type function, or a cyclic or aromatic radical; , from 1 to 22 carbon atoms.
  • R3 is either the hydrogen atom H, or a linear or branched alkyl radical, saturated or unsaturated, cyclic or aromatic, of 1 to 22 carbon atoms, Ri and R 2 as defined above.
  • R 4 and R 5 represent either the hydrogen atom H, or linear or branched alkyl radicals, saturated or unsaturated, or cyclic or aromatic radicals, of 1 to 22 carbon atoms.
  • R ⁇ is a linear or branched alkylene group, saturated or unsaturated, cyclic or aromatic, of from 0 to 22 carbon atoms, Ri and R 2 as defined above.
  • R 1 and / or R 2 are alkyl or alkenyl radicals
  • the total number of carbon atoms in R 1 + R 2 is greater than or equal to 4 and preferably greater than 6.
  • R 1 and / or R 2 includes a second function of the carbonyl (aldehyde or ketone) type, cyclic di and / or triacetals can be obtained.
  • R 1, R 2, R 3 and R 4 are linear or branched alkyl groups, saturated or unsaturated, cyclic or aromatic, of 1 to 22 carbon atoms and R 5 is either CH 2 , CHOH, or a linear or branched alkylene group saturated or unsaturated, cyclic or aromatic, from 0 to 22 carbon atoms.
  • the acetalization reaction may be carried out at a temperature in the region of room temperature, which will generally be between 5 and 200 ° C., and at a pressure generally of between 100 kPa and 8000 kPa.
  • the reaction medium must be strongly stirred to promote contacting of the organic fraction containing the aldehyde / ketone not soluble in water with the aqueous fraction containing glycerol.
  • the synthesis of the cyclic acetals by extraction of the polyol in solution is carried out in several consecutive reaction stages (extractions with respect to the polyol).
  • the first stage a portion of the polyol of the concentrated solution is extracted using a low concentration of aldehyde / ketone.
  • the polyol solution is thus further diluted and the polyol is reacted with a higher concentration of aldehyde / ketone, this operation being repeated as much as necessary with progressive increase of the relative concentration of aldehyde / ketone.
  • the reaction time in each extractive stage depends on the kinetics of reaction and therefore the concentration in each of the reagents.
  • the temperature and pressure can be adjusted independently in each reaction stage. A higher temperature makes it possible to accelerate the reactions, but also shifts the equilibrium. Therefore, it is preferable to use higher concentrations of aldehyde / ketone in successive stages.
  • the first reaction stage operates at a higher temperature, and / or with a shorter reaction time than the later stages.
  • a reaction stage comprises a reagent mixing zone, a reaction zone and a separation zone of the aqueous phase and the organic phase. In certain reactor configurations, some of these zones can be confused.
  • the process of the invention is particularly suitable for the treatment of aqueous solutions comprising impurities in solution.
  • the quality of glycerol called Glycerin Brute contains glycerol in aqueous solution, but also sodium or potassium salts, in the form of sodium or potassium chloride, or sodium or potassium sulfate, salts that have origin the transesterification catalyst of vegetable oils or animal fats having for example allowed the formation of biodiesel.
  • the process of the present invention allows the direct treatment of the Glycerin Brute at glycerol concentrations greater than 20% by weight.
  • the aqueous effluents of the reaction can be returned to the neutralization stage of the effluents of the unit of biodiesel or transesterification.
  • the products resulting from the reaction are in a mixture.
  • the cyclic acetal is then separated from the organic phase by any separation technique well known to those skilled in the art.
  • the aqueous phase can be easily recycled.
  • the reactive separation process solves many of the difficulties of the prior art. It allows in particular to have a continuous process, while often the synthesis of acetals is carried out batch processes.
  • Another advantage of the process consists in that the reagent mixture is not necessarily necessarily water-free since it is continuously separated during the process. In discontinuous reactors, water being a product of the reaction, an additional presence of water displaces the equilibria towards the formation of reagents, which leads to a fall in yields.
  • anhydrous reagents In the process of the invention, a reagent mixture containing from 0 to 80% by weight water, preferably from 0 to 60% water and more preferably from 1 to 50% may be used.
  • the cyclic acetals may undergo subsequent transformations depending on the purpose of their use. They may for example be converted by transacetalization into another cyclic acetal adapted to the application. They may be subjected to hydrolysis if the desired product is pure glycerol, the aldehyde or ketone resulting can be reused in the process.
  • cyclic glycerol acetals such as the preparation of crosslinking agents, solvents, synthetic intermediates and fuel additives, and can be found in many fields such as pharmaceuticals and cosmetics, bioregulators in agrochemistry, biodegradable polymers (especially in the formulation of chewing gum), the preparation of glycerides.
  • the by-products of the reaction may be ethers obtained by dehydration of the alcohol
  • polyacetals obtained by subsequent reaction of the aldehyde / ketone on the acetal.
  • the formation of ethers occurs in general when increasing the reaction temperature in order to shift the equilibrium.
  • the displacement of equilibria being ensured by the elimination of one of the products of the reaction, and not by an increase in temperature, the appearance of such by-products is thus reduced.
  • the process according to the invention thus makes it possible to obtain not only high conversions, but also high selectivities.
  • Example 1 This example illustrates the reactive extraction of glycerol by acetalization with heptanaldehyde, using hydrochloric acid as a catalyst, and with a heptanaldehyde / glycerol molar ratio of 1.
  • An aqueous solution of glycerol (60% by weight of glycerol, 40% by weight of water) containing 10 mmol of glycerol (ie 0.920 g) is mixed with 10 mmol of heptanaldehyde (ie 1.14 g) to have a molar ratio.
  • heptanal / glycerol 1.
  • a solution of 35% hydrochloric acid is added to the aqueous solution of glycerol + heptanaldehyde in a proportion of 15% relative to glycerol.
  • the mixture is then heated at 40 ° C. for 5 hours with stirring. Then the two phases are separated by decantation, and the organic phase is washed with water until a neutral pH.
  • the solution obtained is then dried over anhydrous MgSO 4 and then concentrated by evaporation in vacuo.
  • the product obtained was analyzed by NMR and mass spectrometry, and quantified by chromatographic analysis. The yield of glycerol acetal obtained is 43% by weight relative to heptanaldehyde.
  • Example 2 The cyclic acetal of glycerol and heptanaldehyde is obtained as in the preceding example, but using a heptanaldehyde / glycerol molar ratio of 0.6, and with a glycerol mass of 1.47 g (16 mmol) instead of 0.920 g. In this case, the yield of the synthesis is 73% by weight relative to heptanaldehyde.
  • the cyclic acetal of glycerol and heptanaldehyde is obtained as in Example 1, but using a heptanaldehyde / glycerol molar ratio of 0.33, and with a glycerol mass of 2.76 g (30 mmol) instead 0.920 g. In this case, the yield of the synthesis is 79% by weight.
  • the catalyst is then filtered. Then the two liquid phases are separated by decantation. The aqueous phase is extracted several times with dichloromethane. The dichloromethane solution is then added to the organic phase, which is then concentrated by evaporation under vacuum. The product obtained was analyzed by NMR and mass spectrometry, and quantified by chromatographic analysis. The yield of glycerol acetal obtained is 80% by weight relative to heptanaldehyde.
  • Example 5 is carried out as Example 4, but using a more dilute aqueous solution of glycerol (40% by weight of glycerol instead of 60% by weight). The yield of acetal is then 71% by weight relative to heptanaldehyde.
  • a Beta zeolite with a Si / Al atomic ratio of 13 is added to the aqueous solution of glycerol + heptanaldehyde in a proportion of 20% relative to glycerol. The mixture is then heated at 40 ° C. for 5 hours with stirring.
  • the catalyst is then filtered. Then, the two liquid phases are separated by decantation, and the aqueous phase is extracted several times with dichloromethane. The dichloromethane solution is then added to the organic phase, which is then concentrated by evaporation under vacuum. The product obtained was analyzed by NMR and mass spectrometry, and quantified by chromatographic analysis. The yield of glycerol acetal obtained is 42% by weight relative to heptanaldehyde.
  • composition of the organic phase is given in percentages determined from the chromatogram and is presented in Table 1, Figure 1 and 2.
  • Table 1 Composition of the organic phase
  • the glycerol content of the aqueous phase was determined from the ratio of glycerol / decanol areas obtained at time 0 and taken as a reference (100%). Thus, the same ratio calculated at 15, 30 min, 1, 2, 4, 6 and 24 h is expressed as a percentage with respect to the initial ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention a pour objet un procédé de synthèse d'acétals cycliques par réaction d'au moins un composé à fonction carbonyle choisi parmi les aldéhydes, les cétones et/ou les acétals linéaires sur un polyol en solution aqueuse concentrée supérieure à 20 % poids mis en oeuvre dans un réacteur contenant un catalyseur acide. Le composé à fonction carbonyle est choisi de telle sorte que l acétal cyclique produit présente une solubilité dans l'eau inférieure à 20 000 mg/kg;simultanément à la réaction catalytique de synthèse del acétal cyclique, on sépare par extraction au sein du réacteur au moins une partie de la phase organique contenant l'acétal cyclique de la phase continue aqueuse. La catalyse acide est soit homogène au moyen d' un acide fort soluble dans l'eau, soit hétérogène avec un solide acide tel qu' une résine, une zéolithe ou tout solide convenablement acidifié. Ce procédé d'extraction réactive permet d'obtenir des conversions et des sélectivités élevées.

Description

PROCEDE DE SYNTHESE D'ACETALS CYCLIQUES PAR EXTRACTION REACTIVE D'UN POLYOL EN SOLUTION CONCENTREE
La présente invention concerne un procédé de synthèse d'acétals cycliques par extraction réactive d'un polyol contenu dans une phase aqueuse par réaction d'un aldéhyde et/ou d'une cétone sur le polyol conduisant à la formation d'un acétal cyclique du polyol insoluble dans la phase aqueuse.
Le procédé de l'invention consiste à faire réagir au moins un aldéhyde et/ou une cétone, ou plus généralement d'un composé à fonction carbonyle, sur un polyol contenu dans une phase aqueuse riche en polyol, au sein d'un réacteur comportant un catalyseur acide qui permet d'effectuer simultanément la conversion catalytique des réactifs et la séparation des produits de la réaction par extraction du polyol de la phase aqueuse sous forme d'un acétal cyclique insoluble dans la phase aqueuse. La synthèse des acétals est largement décrite dans l'article de F. A. J.
Meskens intitulé « Methods for the Préparation of Acetals from Alcools or Oxiranes and Carbonyl Compounds » pages 501 à 522 de la revue « Synthesis » de juillet 1981 (Georg Thieme Verlag - Stuttgart -New York).
Les acétals cycliques produits dans le procédé de l'invention sont formés par réaction simultanée de l'aldéhyde et/ou de la cétone sur deux fonctions hydroxyles du polyol. La proximité des deux fonctions hydroxyles entraîne la formation d'un cycle comportant en général, mais pas exclusivement, 5 à 6 atomes dont 2 d'oxygène. Cette réaction est une réaction équilibrée et réversible et s'accompagne d'une formation d'eau. Dans une présentation simplifiée la réaction mise en œuvre dans le procédé, avec du glycérol comme polyol, et sous catalyse acide, est la suivante : (1 ) dans laquelle les radicaux Ri et R2 sont des radicaux notamment alkyles et peuvent être aussi l'hydrogène. Les acétals cycliques de glycérol peuvent être synthétisés selon de nombreuses méthodes connues de la littérature. Ainsi par exemple :
Quelques acétals cycliques de glycérol sont déjà bien connus. Ainsi l'acétal du glycérol et de l'acétone (RN 100-79-8) est aussi connu sous le nom de Solketal. Il s'agit d'un solvant dont le point d'ébullition est de 188-189°C (et de 82°C à 10 mmHg), le point de fusion est de -26.4°C, et de point éclair
8O0C, et qui est miscible dans l'eau.
La synthèse de cet acétal de glycérol par une technique de séparation réactive a été décrite par ailleurs. Une technologie de distillation catalytique a été utilisée par Kvaerner Process Technology Ltd, J. S. Clarkson et al. Organic Process Research & Development, 2001 , 5, 630-635.
Le Glycérol formai est un autre acétal de glycérol qui est commercialement disponible auprès de la société Lambiotte. Il existe sous la forme de 2 isomères, le dioxane (cycle à 6 atomes) et le dioxolane (cycle à 5 atomes). Les caractéristiques physico-chimiques de cet acétal, qui est miscible à l'eau, sont disponibles sur le site www.Lambiotte.com.
Le brevet FR 2869232 concerne de nouveaux excipients pharmaceutiques ou cosmétiques à base d'acétals cycliques dont des acétals de glycérol. Ainsi, des méthodes de synthèse des acétals obtenus à partir de propanaldéhyde, butyraldéhyde et pentanal sont exemplifiées. Il est préconisé dans ce brevet d'utiliser des aldéhydes légers afin de maintenir dans la phase aqueuse l'aldéhyde et l'acétal produit. La demande de brevet US 5917059 décrit une méthode de synthèse des acétals de glycérol légers, par distillation continue d'un excès d'aldéhyde ou cétone entraînant l'eau produite par la réaction et par apport continu de l'aldéhyde ou cétone contenant moins de 1 % d'eau. Les travaux de R. R. Tink et A. C. Neish, décrivent une extraction réactive du glycérol sous la forme d'acétal de glycérol (Can. J. Technol. 29 (1951 ) 243- 249 ; ibid 29 (1951 ) 250-260 ; ibid 29 (1951 ) 269-275).
Ces auteurs ont essayé plusieurs aldéhydes et cétones pour l'extraction du glycérol de solutions aqueuses diluées, et concluent que le butyraldéhyde est celui qui permet la plus forte concentration en acétal dans la phase organique aldéhyde ou cétone. Cependant, le butyraldéhyde, tout comme son acétal de glycérol sont aussi solubles dans l'eau, ce qui nécessite pour une mise en œuvre efficace du procédé, une séparation de l'acétal de la solution aqueuse. La demande de brevet JP 10-195067 décrit une méthode de synthèse des acétals de glycérol. Selon cette demande de brevet, une solution aqueuse de glycérol contenant de 30 à 80 % en poids de glycérol, ou du glycérol hydraté contenant de 20 à 1 % poids d'eau (soit de 80 à 99 % poids de glycérol), est mise en contact avec un aldéhyde ou cétone, en présence d'un catalyseur acide, dans un solvant ayant un point d'ébullition généralement inférieur à 1500C et de point d'ébullition plus bas que celui de l'aldéhyde ou cétone, et dont le rôle est l'élimination de l'eau présente dans le milieu, provenant soit de la solution initiale, soit de la réaction, par distillation azéotropique.
La synthèse des acétals étant réversible, pour obtenir des rendements élevés l'équilibre doit être déplacé en direction de la formation des produits de synthèse. Plusieurs méthodes, bien connues de l'homme du métier et illustrées par les références citées ci-dessus, peuvent être utilisées pour déplacer cet équilibre. On peut citer :
• l'utilisation d'un excès de réactif qui présente l'inconvénient de devoir le séparer au terme de la réaction et conduit à une conversion faible de ce réactif,
• l'utilisation d'un solvant susceptible d'entraîner l'eau formée qui présente l'inconvénient d'augmenter le coût en matières premières et de nécessiter une étape supplémentaire de séparation, • l'utilisation d'une séparation réactive ou catalytique telle que la distillation, mais qui ne peut pas être appliquée à toutes les réactions en raison de la présence d'azéotropes. Ce dernier type de procédé, plus récent que les précédents, est celui utilisé industriellement par la Société
Lambiotte pour la production de Méthylal qui est décrit dans le brevet suisse CH 688041.
Le but de l'invention est de proposer un procédé de fabrication industrielle en continu d'acétals cycliques par extraction de polyols et notamment de glycérol contenu dans des solutions aqueuses qui ne présente pas les inconvénients des procédés précités.
L'invention vise un procédé de synthèse d'acétals cycliques par réaction d'au moins un composé à fonction carbonyle choisi parmi les aldéhydes, les cétones et/ou les acétals linéaires sur un polyol en solution aqueuse concentrée, caractérisé en ce qu'il est mis en œuvre dans un réacteur contenant un catalyseur acide et que le composé à fonction carbonyle est choisi de telle sorte que l'acétal cyclique produit présente une solubilité dans l'eau inférieure à 20 000 mg/kg à la température ambiante et que simultanément à la réaction catalytique de synthèse de l'acétal cyclique, on sépare par extraction au sein du réacteur au moins une partie de la phase organique contenant l'acétal cyclique, de la phase continue aqueuse.
L'invention vise un procédé de synthèse d'acétals cycliques à partir de solutions concentrées de polyols, c'est-à-dire de solutions contenant initialement au moins 20 % poids de polyol dans l'eau, et de préférence plus de 40 % poids. La teneur élevée en polyols qui constitue un excès de réactif polyol permettra une conversion totale de l'autre réactif, le composé à fonction carbonyle et notamment l'aldéhyde et/ou la cétone au sein du réacteur.
A titre d'exemple de polyols utilisables dans le procédé de l'invention on peut citer : le glycérol, l'éthylène glycol, le propane diol 1 ,2 et/ou le propane diol 1 ,3, le butanediol 2,3.
A titre d'exemple d'aldéhydes utilisables dans le procédé de l'invention on peut citer : le butyraldéhyde, le n-heptanaldéhyde, le 2-éthylhexanaldéhyde, le valéraldéhyde, le glyoxal, le glutaraldéhyde, le furfuraldéhyde, l'isovaléraldéhyde, l'acroléine, le crotonaldéhyde, le décanaldéhyde, le 2- éthylbutaraldéhyde, l'hexanaldéhyde, l'isobutyraldéhyde, l'isodécanaldéhyde, le laurinaldéhyde, le 2-méthylbutyraldéhyde, le nonanaldéhyde, l'octanaldéhyde, le pivalaldéhyde, le tolualdéhyde, le benzaldéhyde, le tridécanaldéhyde, le undécanaldéhyde.
A titre d'exemple de cétones utilisables dans le procédé de l'invention, on peut notamment citer : l'acétone, la méthyléthyl cétone, la diéthyl cétone, la méthyl isopropyl cétone, la méthylisobutyl cétone, la diisobutyl cétone, la diisopropyl cétone, l'oxyde de mésityle, la butanedione, la cyclohexanone.
Afin de parvenir à un acétal cyclique dont la solubilité dans l'eau est inférieure à 20 000 mg/kg à température ambiante, il sera préférable de choisir comme réactifs des composés à fonction carbonyle ayant eux-mêmes une solubilité en solution aqueuse inférieure à 20 000 mg/kg, et encore plus de préférence inférieure à 10 000 mg/kg à la température ambiante.
Les données concernant les solubilités dans l'eau des composés chimiques sont fournies notamment dans : Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds © 2003 Knovel . Les aldéhydes ou cétones sélectionnés sont généralement pris parmi les aldéhydes et cétones comportant de 4 à 12 atomes de carbone, et encore plus de préférence de 5 à 9. Parmi les aldéhydes et cétones particulièrement adaptées au procédé de l'invention, on peut citer pour les aldéhydes, le benzaldéhyde (6 570 mg/kg), les heptanals et notamment le n-heptanal (1516 mg/kg), l'hexanal (5644 mg/kg), le pentanal (11 700 mg/kg), le n-octanal (370 mg/kg) ; pour les cétones on peut citer l'acétophénone (6842 mg/kg), la benzophénone (136,7 mg/kg), la diisobutyle cétone (2 640 mg/kg), la diisopropyl cétone (5 700 mg/kg).
Selon l'invention, il est particulièrement avantageux d'utiliser l'heptanaldéhyde (n-heptanal), car cet aldéhyde peut être obtenu à partir de biomasse. L'heptanaldéhyde est par exemple obtenu par craquage thermique de l'ester méthylique de l'huile de ricin. Lorsque le composé à fonction carbonyle est un acétal linéaire, on pourra choisir par exemple les acétals entre des alcools légers et des aldéhydes lourds afin de produire des acétals peu solubles dans l'eau. Les alcools légers peuvent être sélectionnés parmi le méthanol, l'éthanol, le propanol, les aldéhydes lourds peuvent être les mêmes que ceux mentionnés ci-dessus. Comme exemple d'acétals linéaires utilisables dans le procédé selon l'invention, on peut citer notamment : le malonaldéhyde bis(diéthylacétal) (CAS RN 122-31-6), le 1 ,1-diéthoxycyclohexane (CAS RN 1670-47-9), le 1 ,4- cyclohexadione bis(éthylène acétal) (CAS RN 183-97-1 ), le phénylacétaldéhyde diméthylacétal (CAS RN 101-48-4), le benzaldéhyde diméthylacétal (CAS RN 1125-88-8), le 1 ,1-diméthoxyheptanalacétal (CAS RN 10032-55-0), le 1 ,1- diméthylhexanalacétal (CAS RN 1599-47-9).
Le catalyseur de la réaction est un catalyseur acide se présentant, soit sous forme solide, catalyse hétérogène, soit sous forme liquide, catalyse homogène. De préférence, le réacteur est un réacteur agité dans le cas d'une catalyse homogène.
Le catalyseur liquide est sélectionné parmi ceux catalysant la réaction entre un alcool et un aldéhyde ou une cétone. Parmi les liquides acides susceptibles d'être utilisés comme catalyseurs, on peut citer : l'acide chlorhydrique, l'acide nitrique, l'acide sulfurique, l'acide méthane sulfonique, l'acide paratoluènesulfonique, l'acide triflique, l'acide oxalique, etc. De préférence on sélectionnera les acides solubles en phase aqueuse.
Parmi les solides acides susceptibles d'être utilisés comme catalyseurs, on peut citer les résines échangeuses d'ions acides, les résines acides, les zéolithes naturelles ou synthétiques telles que mordénite, zéolithes Y, ZSM5, H- Béta, Montmorillonite ou les silice-alumines, le nafion® et les composites nafion® ou enfin les hétéropolyacides supportés, les chlorures de lanthanides, de fer, zinc ou de titane ou les catalyseurs figurant dans la liste donnée dans l'article de F.A.J. Meskens cité précédemment. Avantageusement, le catalyseur acide est constitué d'une phase acide ayant une acidité de Hammett H0 inférieure à +2, de préférence inférieure à 0. Les acidités de Hammett typiques de solides acides sont regroupées dans le tableau ci-dessous
L'acidité de Hammett pour un solide est définie dans l'article de K. Tanabe et al dans "Studies in Surface Science and Catalysis", Vol 51 , 1989, chap 1 et 2. L'acidité de Hammett est déterminée par titration aminé à l'aide d'indicateurs ou par adsorption d'une base en phase gazeuse. L'acidité de Hammett est l'une des nombreuses échelles d'acidité des solides. Il existe dans la littérature des corrélations entre les différentes échelles d'acidité.
Des solides acides pouvant convenir sont des matériaux siliceux naturels ou de synthèse ou les zéolithes acides ; des supports minéraux, tels que des oxydes, recouverts par des acides inorganiques, mono, di, tri ou polyacides ; des oxydes ou oxydes mixtes ou encore des hétéropolyacides.
Le catalyseur peut être constitué d'une phase acide choisie parmi les résines acides comme les résines Amberlyst (notamment Amberlyst 15 et 36), par les zéolithes, les composites Nafion© (à base d'acide sulfonique de polymères fluorés), les alumines chlorées, les acides et sels d'acides phosphotungstiques et/ou silicotungstiques, et différents solides de type oxydes métalliques tels que oxyde de tantale Ta2O5, oxyde de niobium Nb2O5, alumine
AI2O3, oxyde de titane TiO2, zircone ZrO2, oxyde d'étain SnO2, silice SiO2 ou silico-aluminate SiO2-AI2Os, imprégnés de fonctions acides telles que borate
BO3, sulfate SO4, tungstate WO3, phosphate PO4, silicate SiO2, ou molybdate
MoO3.
Dans le procédé de l'invention les acétals cycliques sont obtenus selon les mécanismes réactionnels suivants :
1 )
Ri et R2, identiques ou différents, sont soit l'atome d'hydrogène H, soit un radical alkyle linéaire ou ramifié, saturé ou non, comportant le cas échéant une seconde fonction de type cétonique ou éther, soit un radical cyclique ou aromatique, de 1 à 22 atomes de carbone.
2)
R3 est soit l'atome d'hydrogène H, soit un radical alkyle linéaire ou ramifié, saturé ou non, cyclique ou aromatique, de 1 à 22 atomes de carbone, Ri et R2 répondant à la définition précédente.
3) dans laquelle R4 et R5 représentent soit l'atome d'hydrogène H, soit des radicaux alkyles linéaires ou ramifiés, saturés ou non, soit des radicaux cycliques ou aromatiques, de 1 à 22 atomes de carbone. Rε est un groupement alkylène linéaire ou ramifié, saturé ou non, cyclique ou aromatique, de O à 22 atomes de carbone, Ri et R2 répondant à la définition précédente.
De préférence lorsque Ri et/ou R2 sont des radicaux alkyles ou alkényle, le nombre total d'atomes de carbone dans Ri+R2 est supérieur ou égal à 4 et de préférence supérieur à 6.
Il est à noter que dans l'hypothèse où Ri et/ou R2 comporte une seconde fonction de type carbonyle (aldéhyde ou cétone), on peut obtenir des di et/ou triacétals cycliques.
4) par mise en œuvre d'une transacétalisation
ou plus généralement
dans lesquels Ri,R2,R3 et R4 sont des groupements alkyles linéaires ou ramifiés, saturés ou non, cycliques ou aromatiques, de 1 à 22 atomes de carbone et R5 est soit CH2, CHOH, soit un groupement alkylène linéaire ou ramifié, saturé ou non, cyclique ou aromatique, de 0 à 22 atomes de carbone. La réaction d'acétalisation peut être effectuée à une température voisine de la température ambiante, qui sera généralement comprise entre 5 et 2000C, et à une pression généralement comprise entre 100 kPa et 8000 kPa. Le milieu réactionnel doit être fortement agité pour favoriser la mise en contact de la fraction organique contenant l'aldéhyde/cétone non soluble dans l'eau avec la fraction aqueuse contenant le glycérol.
Dans une variante préférée du procédé de l'invention, la synthèse des acétals cycliques par extraction du polyol en solution est effectuée en plusieurs étages réactionnels (extractifs vis-à-vis du polyol) consécutifs. Dans le premier étage, une partie du polyol de la solution concentrée est extraite à l'aide d'une faible concentration d'aldéhyde/cétone. Après transfert dans l'étage suivant, la solution de polyol est ainsi plus diluée et le polyol est mis en réaction avec une concentration plus élevée en aldéhyde/cétone, cette opération étant répétée autant que nécessaire avec augmentation progressive de la concentration relative en aldéhyde/cétone. La durée de réaction dans chaque étage extractif, dépend des cinétiques de réaction et par conséquent de la concentration en chacun des réactifs. De même, la température et la pression peuvent être ajustées indépendamment dans chaque étage réactionnel. Une température plus élevée permet notamment d'accélérer les réactions, mais déplace aussi les équilibres. C'est pourquoi, il est préférable d'utiliser des concentrations plus élevées en aldéhyde/cétone dans les étages successifs.
Selon un mode préféré de l'invention, le premier étage réactionnel fonctionne à une température plus élevée, et/ou avec un temps de réaction plus court que les étages postérieurs. Un étage réactionnel comprend une zone de mélange des réactifs, une zone de réaction et une zone de séparation de la phase aqueuse et de la phase organique. Dans certaines configurations de réacteurs certaines de ces zones peuvent être confondues.
Le procédé de l'invention est particulièrement adapté au traitement de solutions aqueuses comportant des d'impuretés en solution. Par exemple, la qualité de glycérol dite Glycérine Brute contient du glycérol en solution aqueuse, mais aussi des sels de sodium ou potassium, sous la forme de chlorure de sodium ou de potassium, ou encore de sulfate de sodium ou potassium, sels qui ont pour origine le catalyseur de transestérification des huiles végétales ou des graisses animales ayant par exemple permis la formation de biodiesel. S'il est associé à une unité de production de biodiésel, le procédé de la présente invention permet le traitement direct de la Glycérine Brute à des concentrations en glycérol supérieures à 20 % poids. En utilisant alors la catalyse homogène avec l'acide méthane sulfonique, paratoluène sulfonique ou de préférence l'acide sulfurique ou l'acide chlorhydrique, les effluents aqueux de la réaction peuvent être retournés à l'étape de neutralisation des effluents de l'unité de biodiesel ou de transestérification.
Après la sortie du réacteur, les produits issus de la réaction sont en mélange. L'acétal cyclique est alors séparé de la phase organique par toute technique séparative bien connue de l'homme de l'art. La phase aqueuse peut pour sa part être facilement recyclée. Le procédé de séparation réactive permet de résoudre plusieurs des difficultés de l'art antérieur. Il permet notamment d'avoir un procédé en continu, alors que bien souvent la synthèse des acétals est effectuée en procédés discontinus. Un autre avantage du procédé consiste en ce que le mélange de réactifs n'est pas à l'origine nécessairement exempt d'eau dans la mesure où celle-ci est séparée en continu en cours de processus. Dans les réacteurs discontinus, l'eau étant un produit de la réaction, une présence additionnelle d'eau déplace les équilibres vers la formation des réactifs, ce qui conduit à une baisse des rendements. Pour éviter cet inconvénient, on est contraint à utiliser des réactifs anhydres. Dans le procédé de l'invention, on peut utiliser un mélange de réactifs contenant de 0 à 80 % en poids d'eau, de préférence de 0 à 60 % d'eau et de façon plus préférée de 1 à 50 %. Les acétals cycliques peuvent subir des transformations ultérieures selon la finalité de leur utilisation. Ils pourront par exemple être transformés par transacétalisation en un autre acétal cyclique adapté à l'application. Ils pourront être soumis à une hydrolyse si le produit recherché est un glycérol pur, l'aldéhyde ou la cétone en résultant pouvant être réutilisé dans le processus.
Les applications des acétals cycliques de glycérol sont nombreuses, on citera ainsi la préparation de réticulants, de solvants, d'intermédiaires de synthèse, d'additif de carburants et se retrouvent dans de nombreux domaines comme la pharmacie et les produits cosmétiques, les biorégulateurs dans l'agrochimie, les polymères biodégradables (notamment dans la formulation de chewing-gum), la préparation de glycérides.
Dans les réactions de synthèses d'acétals cycliques, les sous produits de la réaction peuvent être des éthers obtenus par déshydratation de l'alcool
(ou du polyol), des polyacétals obtenus par réaction consécutive de l'aldéhyde/cétone sur l'acétal. La formation des éthers intervient en général lorsqu'on augmente la température de réaction dans le but de déplacer les équilibres. Dans une séparation réactive selon l'invention, le déplacement des équilibres étant assuré par l'élimination de l'un des produits de la réaction, et non par une augmentation de la température, l'apparition de tels sous-produits est ainsi réduite.
Le procédé selon l'invention permet ainsi d'obtenir non seulement des conversions élevées, mais aussi des sélectivités élevées.
Le procédé de l'invention est illustré par les exemples suivants donnés à titre non limitatif, ainsi que par la figure 1 dans laquelle on a représenté la concentration relative du glycérol dans la phase aqueuse en fonction du temps.
EXEMPLES
Exemple 1 Cet exemple illustre l'extraction réactive du glycérol par acétalisation avec l'heptanaldéhyde, en utilisant l'acide chlorhydrique comme catalyseur, et avec un ratio molaire heptanaldéhyde/glycérol de 1. Une solution aqueuse de glycérol (à 60 % poids de glycérol, 40 % poids d'eau) contenant 10 mmoles de glycérol (soit 0,920 g) est mélangée avec 10 mmoles d'heptanaldéhyde (soit 1 ,14 g) pour avoir un ratio molaire heptanal/glycérol de 1. Une solution d'acide chlorhydrique à 35 % est ajoutée à la solution aqueuse de glycérol + heptanaldéhyde, dans une proportion de 15 % par rapport au glycérol. Le mélange est alors chauffé à 400C pendant 5 heures sous agitation. Ensuite les deux phases sont séparées par décantation, et la phase organique est lavée avec de l'eau, jusqu'à obtenir un pH neutre. La solution obtenue est alors séchée sur MgSO4 anhydre, puis concentrée par évaporation sous vide. Le produit obtenu a été analysé par RMN et spectrométrie de masse, et quantifié par analyse chromatographique. Le rendement en acétal de glycérol obtenu est de 43 % poids par rapport à l'heptanaldéhyde.
Exemple 2 L'acétal cyclique de glycérol et d'heptanaldéhyde est obtenu comme dans l'exemple précédent, mais en utilisant un ratio molaire heptanaldéhyde/glycérol de 0,6, et avec une masse de glycérol de 1 ,47 g (16 mmoles) au lieu de 0,920 g. Dans ce cas, le rendement de la synthèse est de 73 % poids par rapport à l'heptanaldéhyde.
Exemple 3
L'acétal cyclique de glycérol et d'heptanaldéhyde est obtenu comme dans l'exemple 1 , mais en utilisant un ratio molaire heptanaldéhyde/glycérol de 0,33, et avec une masse de glycérol de 2,76 g (30 mmoles) au lieu de 0,920 g. Dans ce cas, le rendement de la synthèse est de 79 % poids.
Ces 3 exemples illustrent la formation de l'acétal cyclique avec d'excellents rendements et montrent qu'il est préférable d'avoir des ratios aldéhyde ou cétone / glycérol faibles et donc d'effectuer l'extraction en plusieurs étages successifs. Exemple 4
Extraction réactive du glycérol par acétalisation avec l'heptanaldéhyde, en utilisant une résine Amberlyst 36 comme catalyseur hétérogène, et avec un ratio molaire heptanaldéhyde/glycérol de 0,33. Une solution aqueuse de glycérol à 60 % poids de glycérol, 40 % poids d'eau contenant 30 mmoles de glycérol (soit 2,76 g) est mélangée avec 10 mmoles d'heptanaldéhyde (soit 1 ,14 g) pour avoir un ratio molaire heptanal/glycérol de 0,33. Une résine Amberlyst 36 est ajoutée à la solution aqueuse de glycérol + heptanaldéhyde, dans une proportion de 15 % par rapport au glycérol. Le mélange est alors chauffé à 400C pendant 5 heures sous agitation.
Le catalyseur est alors filtré. Ensuite les deux phases liquides sont séparées par décantation. La phase aqueuse est extraite plusieurs fois avec du dichlorométhane. La solution de dichlorométhane est ensuite ajoutée à la phase organique, qui est ensuite concentrée par évaporation sous vide. Le produit obtenu a été analysé par RMN et spectrométrie de masse, et quantifié par analyse chromatographique. Le rendement en acétal de glycérol obtenu est de 80 % poids par rapport à l'heptanaldéhyde.
Exemple 5 L'exemple 5 est effectué comme l'exemple 4, mais en utilisant une solution aqueuse plus diluée de glycérol (40 % poids de glycérol au lieu de 60 % poids). Le rendement en acétal est alors de 71 % poids par rapport à l'heptanaldéhyde.
Ces deux exemples 4 et 5 montrent qu'il est préférable d'utiliser des solutions concentrées plutôt que des solutions diluées.
Exemple 6
Extraction réactive du glycérol par acétalisation avec l'heptanaldéhyde, en utilisant une Zéolithe Béta de ratio atomique Si/Ai de 13 comme catalyseur hétérogène, et avec un ratio molaire heptanaldéhyde/glycérol de 0,33.
Une solution aqueuse de glycérol à 60 % poids de glycérol et 40 % poids d'eau contenant 30 mmoles de glycérol (soit 2,76 g) est mélangée avec 10 mmoles d'heptanaldéhyde (soit 1 ,14 g) pour avoir un ratio molaire heptanal/glycérol de 0,33. Une Zéolithe Béta de ratio atomique Si/Ai de 13 est ajoutée à la solution aqueuse de glycérol + heptanaldéhyde, dans une proportion de 20 % par rapport au glycérol. Le mélange est alors chauffé à 400C pendant 5 heures sous agitation.
Le catalyseur est alors filtré. Ensuite, les deux phases liquides sont séparées par décantation, et la phase aqueuse est extraite plusieurs fois avec du dichlorométhane. La solution de dichlorométhane est ensuite ajoutée à la phase organique, qui est ensuite concentrée par évaporation sous vide. Le produit obtenu a été analysé par RMN et spectrométrie de masse, et quantifié par analyse chromatographique. Le rendement en acétal de glycérol obtenu est de 42 % poids par rapport à l'heptanaldéhyde.
Ce résultat illustre l'impact du choix du catalyseur sur le rendement de la synthèse.
Exemple 7
Etude de la composition de la phase organique et de la phase aqueuse au cours de la réaction d'acétalisation entre le glycérol et l'heptaldéhyde.
A 5 g d'heptaldéhyde sont ajoutés 3 équivalents de glycérol (11.92 g) en solution aqueuse à 60 % poids, c'est-à-dire 40 % poids d'eau (7.85 g). Une solution aqueuse d'acide chlorhydrique à 35 % est alors additionnée au mélange (0.75 g), 4 % en poids par rapport au glycérol. Le mélange est donc chauffé à 40 0C, sous agitation. Des échantillons de 20 μL de la phase organique et 20 μL de la phase aqueuse, sont alors prélevés après décantation de chaque phase après 0, 15, 30 min, 1 , 2, 4, 6 et 24 h de temps de réaction. Ces aliquotes sont alors dilués avec 1.5 ml de méthanol. Aux échantillons de la phase aqueuse sont ajoutés 20 μL de décanol. Tous les extraits sont alors analysés par chromatographie gazeuse.
La composition de la phase organique est donnée en pourcentages déterminés à partir du chromatogramme et, est présentée dans le Tableau 1 , Figure 1 et 2. Tableau 1 Composition de la phase organique
Temps (min) Heptaldéhyde (%) HGA (%) Glycérol (%) Autres
(%)
0 97% 0% 3% 0%
15 38% 58% 2% 3%
30 21 % 75% 1 % 3%
60 12% 84% 1 % 3%
120 9% 87% 1 % 3%
240 7% 88% 1 % 3%
360 6% 90% 1 % 2%
1440 3% 93% 1 % 2%
La teneur en glycérol de la phase aqueuse a été déterminée a partir du ratio des aires glycérol/décanol obtenu au temps 0 et pris comme référence (100 %). Ainsi, ce même ratio calculé à 15, 30 min, 1 , 2, 4, 6 et 24 h est exprimé en pourcentage par rapport au ratio initial.
Le calcul théorique de la variation de la concentration en glycérol dans la phase aqueuse conduit a un ratio concentration initiale/concentration finale de
82 %. Pour ce calcul il a été considéré un excès molaire de glycérol de 3 et donc une conversion maximum de 33 %. Les résultats expérimentaux sont présentés dans la Figure 1.

Claims

REVENDICATIONS
1 ) Procédé de synthèse d'acétals cycliques par réaction d'au moins un composé à fonction carbonyle choisi parmi les aldéhydes, les cétones et/ou les acétals linéaires sur un polyol en solution aqueuse concentrée, caractérisé en ce qu'il est mis en œuvre dans un réacteur contenant un catalyseur acide et que le composé à fonction carbonyle est choisi de telle sorte que l'acétal cyclique produit présente une solubilité dans l'eau inférieure à 20 OOOmg/kg à la température ambiante et que simultanément à la réaction catalytique de synthèse de l'acétal cyclique, on sépare par extraction au sein du réacteur au moins une partie de la phase organique contenant l'acétal cyclique de la phase continue aqueuse.
2) Procédé selon la revendication 1 , caractérisé en ce que la solution aqueuse de polyol a une concentration en polyols égale ou supérieure à 20 % poids.
3) Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il met en œuvre une catalyse homogène avec un acide choisi parmi l'acide chlorhydrique, l'acide nitrique, l'acide sulfurique, l'acide méthane sulfonique, l'acide paratoluènesulfonique, l'acide triflique, l'acide oxalique dans un réacteur agité.
4) Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il met en œuvre une catalyse hétérogène avec un solide acide présentant une acidité de Hammett Ho inférieure à +2, et de préférence inférieure à 0.
5) Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le composé à fonction carbonyle est un aldéhyde ou une cétone dont le nombre d'atomes de carbone est compris entre 4 et 12 et de préférence entre 5 et 9.
6) Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le composé à fonction carbonyle présente une solubilité dans l'eau inférieure à 20 OOOmg/kg. 7) Procédé selon la revendication 5 ou 6, caractérisé en ce que le composé à fonction carbonyle est le n-heptanal.
8) Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'il est mis en œuvre dans un système de réacteurs à étages dans lesquels la concentration relative en aldéhyde/cétone est en augmentation d'un étage au suivant.
EP07858522A 2006-10-09 2007-10-08 Procédé de synthèse d'acétals cycliques par extraction réactive d'un polyol en solution concentrée Withdrawn EP2076505A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0654153A FR2906807A1 (fr) 2006-10-09 2006-10-09 Procede de synthese d'acetals cycliques par extraction reactive d'un polyol en solution concentree
PCT/FR2007/052091 WO2008043947A1 (fr) 2006-10-09 2007-10-08 Procédé de synthèse d'acétals cycliques par extraction réactive d'un polyol en solution concentrée

Publications (1)

Publication Number Publication Date
EP2076505A1 true EP2076505A1 (fr) 2009-07-08

Family

ID=37969805

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07858522A Withdrawn EP2076505A1 (fr) 2006-10-09 2007-10-08 Procédé de synthèse d'acétals cycliques par extraction réactive d'un polyol en solution concentrée

Country Status (4)

Country Link
US (1) US20100099894A1 (fr)
EP (1) EP2076505A1 (fr)
FR (1) FR2906807A1 (fr)
WO (1) WO2008043947A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931150B1 (fr) * 2008-05-19 2010-07-30 Rhodia Poliamida E Especialidades Ltda Procede de purification du glycerol brut
BRPI0902550B1 (pt) * 2009-01-05 2018-04-24 Senai/dr-ba-serviço Nacional De Aprendizagem Industrial, Departamento Regional Da Bahia Processo de purificação da glicerina loura, oriunda da transesterificação do biodiesel
DE102009027420A1 (de) 2009-07-02 2011-01-05 Evonik Degussa Gmbh Verfahren zur Herstellung von Acrolein
FR2950894B1 (fr) * 2009-10-06 2011-12-23 Arkema France Utilisation d'acetals de glycerol comme agents de coalescence pour laques, peintures ou vernis et compositions les comprenant
FR2964658B1 (fr) * 2010-09-15 2013-01-04 Rhodia Operations Procede de fabrication de dioxolane
US8969598B2 (en) 2011-06-24 2015-03-03 Eastman Chemical Company Production of cyclic acetals or ketals using liquid-phase acid catalysts
US9056313B2 (en) 2011-06-24 2015-06-16 Eastman Chemical Company Catalysts for the production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US9000229B2 (en) 2011-06-24 2015-04-07 Eastman Chemical Company Production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US8829206B2 (en) 2011-06-24 2014-09-09 Eastman Chemical Company Production of cyclic acetals or ketals using solid acid catalysts
US9388105B2 (en) 2011-06-24 2016-07-12 Eastman Chemical Company Production of hydroxy ether hydrocarbons by liquid phase hydrogenolysis of cyclic acetals or cyclic ketals
US8785697B2 (en) 2011-06-24 2014-07-22 Eastman Chemical Company Nickel modified catalyst for the production of hydroxy ether hydrocarbons by vapor phase hydrogenolysis of cyclic acetals and ketals
US8829207B2 (en) 2011-06-24 2014-09-09 Eastman Chemical Company Production of cyclic acetals by reactive distillation
US10285972B2 (en) 2014-01-23 2019-05-14 Greenyn Biotechnology Co., Ltd Trans-2-nonadecyl-4-hydroxymethyl-1,3-dioxolane and producing methodthereof
TWI553000B (zh) * 2014-01-23 2016-10-11 綠茵生技股份有限公司 反式-2-19烷基-4-羥甲基-1,3-二氧戊環化合物及其製備方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1365451A (fr) * 1962-05-23 1964-07-03 Chemical Investors Sa Nouveaux composés organiques acryliques et procédés de préparation
US3412160A (en) * 1964-08-07 1968-11-19 Schierholt Joseph Method for the production of low volatility alcohols, acids, aldehydes and their derivatives
FR2351935A1 (fr) * 1974-07-31 1977-12-16 Du Pont Preparation d'acetals a partir d'aldehydes et d'alcools et/ou de diols
US4108869A (en) * 1977-08-25 1978-08-22 E. I. Du Pont De Nemours And Company Preparation of an acetal from a diol and acrolein
EP0624563A1 (fr) * 1993-05-13 1994-11-17 Kao Corporation Dérivés de glycérol et leur préparation
US5576449A (en) * 1993-09-30 1996-11-19 Basf Aktiengesellschaft Preparation of 2-substituted but-2-ene-1,4-dial-4-acetals and novel hemiacetals of glyoxal monoacetals
FR2866654B1 (fr) * 2004-02-24 2007-09-21 Inst Francais Du Petrole Procede de fabrication de biocarburants ; transformation de triglycerides en deux familles de biocarburants : monoesters d'acides gras et acetals solubles du glycerol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008043947A1 *

Also Published As

Publication number Publication date
US20100099894A1 (en) 2010-04-22
FR2906807A1 (fr) 2008-04-11
WO2008043947A1 (fr) 2008-04-17

Similar Documents

Publication Publication Date Title
EP2076505A1 (fr) Procédé de synthèse d'acétals cycliques par extraction réactive d'un polyol en solution concentrée
EP2294041B1 (fr) Procede de purification du glycerol brut
FR2906246A1 (fr) Procede de synthese d'acetals cycliques dans un reacteur a lit mobile simule
WO2016097840A1 (fr) Ether-ester de cetal ou d'acetal de glycerol, procedes de preparation, utilisations et compositions le comprenant
KR100748797B1 (ko) 트리메틸올알칸 비스-모노 선형 포름알을 포함하는 조성물의 처리 방법
EP0092463B1 (fr) Procédé de fabrication de monoéther de monoéthylèneglycol par hydrogénolyse d'acétals cycliques
EP2516374B1 (fr) Procede de synthese perfectionne d'acroleine a partir de glycerol
EP1625108B1 (fr) Separation d'un diacetal du glyoxal par extraction liquide-liquide a contre-courant
EP0770051B1 (fr) Procede d'acylation d'ethers aromatiques
CA2050906C (fr) Procede de preparation du citral
FR2489307A1 (fr) Procede de fabrication d'ethylene glycol
EP2616452A1 (fr) Procede de fabrication de dioxolane
FR2941452A1 (fr) Procede de purification de la fraction azeotropique generee lors de la synthese de l'acrylate de n,n-dimethyl aminoethyle
FR2984313A1 (fr) Procede de preparation d'un melange d'alcools
EP3466941B1 (fr) Procédé pour préparer un composé acétal cyclique
EP3560916B1 (fr) Procédé de synthèse de 5-dialkylacétal-2-furoates d'alkyle et leur utilisation dans la préparation d'agents tensioactifs biosourcés
FR2624507A1 (fr) Procede de preparation de derives aromatiques hydroxyles par la reaction de baeyer-villiger
JP4253366B2 (ja) ポリヒドロキシエーテルの製法及び新規非対称ポリヒドロキシエーテル
JP2002030021A (ja) アルキル−またはアリールオキシアセトアルデヒドを製造する方法
WO2003066562A2 (fr) PROCEDE DE PREPARATION DE COMPOSES ω-BROMOALKYLCARBOXYLIQUES
FR2696739A1 (fr) Propanoate de 2-méthoxypropyle et procédé pour sa préparation.
Ch et al. Novel route for recovery of glycerol from aqueous solutions by reversible reactions
FR2695124A1 (fr) Procédé de préparation d'esters de l'acide acrylique ou méthacrylique.
FR2719582A1 (fr) Iso- ou n-butyrate de propylèneglycol-monométhyléther et leurs isomères, et procédé pour leur préparation.
FR3113055A1 (fr) Procede comprenant une etape de retroaldolisation et une etape d’extraction reactive

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090820

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121213