EP2067871B2 - Aluminium strip for lithographic pressure plate carriers and its manufacture - Google Patents

Aluminium strip for lithographic pressure plate carriers and its manufacture Download PDF

Info

Publication number
EP2067871B2
EP2067871B2 EP07023245.9A EP07023245A EP2067871B2 EP 2067871 B2 EP2067871 B2 EP 2067871B2 EP 07023245 A EP07023245 A EP 07023245A EP 2067871 B2 EP2067871 B2 EP 2067871B2
Authority
EP
European Patent Office
Prior art keywords
rolling
printing plate
strip
aluminum
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07023245.9A
Other languages
German (de)
French (fr)
Other versions
EP2067871A1 (en
EP2067871B1 (en
Inventor
Bernhard Kernig
Henk-Jan Brinkman
Jochen Hasenclever
Gerd Steinhoff
Christoph Settele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Speira GmbH
Original Assignee
Speira GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39400918&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2067871(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Speira GmbH filed Critical Speira GmbH
Priority to EP07023245.9A priority Critical patent/EP2067871B2/en
Priority to SI200731221T priority patent/SI2067871T2/en
Priority to ES07023245T priority patent/ES2407655T5/en
Priority to ES08853549.7T priority patent/ES2456269T3/en
Priority to DE202008018332U priority patent/DE202008018332U1/en
Priority to BRPI0819596A priority patent/BRPI0819596B8/en
Priority to EP08853549.7A priority patent/EP2220262B1/en
Priority to JP2010535350A priority patent/JP5319693B2/en
Priority to CN2008801185883A priority patent/CN101883876A/en
Priority to PCT/EP2008/066086 priority patent/WO2009068502A1/en
Publication of EP2067871A1 publication Critical patent/EP2067871A1/en
Application granted granted Critical
Publication of EP2067871B1 publication Critical patent/EP2067871B1/en
Priority to US15/494,285 priority patent/US11326232B2/en
Publication of EP2067871B2 publication Critical patent/EP2067871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/08Printing plates or foils; Materials therefor metallic for lithographic printing
    • B41N1/083Printing plates or foils; Materials therefor metallic for lithographic printing made of aluminium or aluminium alloys or having such surface layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils

Definitions

  • the invention relates to a method for producing aluminum strips for lithographic printing plate supports, the aluminum strip being produced from a rolling ingot which, after optional homogenization, is hot-rolled to a thickness of 2 mm to 7 mm and to a final thickness of 0.15 mm to 0.5 mm is cold rolled.
  • Very high demands are placed on the quality of aluminum strips for the production of lithographic printing plate supports.
  • the aluminum strip for the production of lithographic printing plate supports is usually subjected to electrochemical roughening, which should result in roughening over the entire area and a structureless appearance without streaky effects.
  • the roughened structure is important for applying a photosensitive layer, which is then exposed.
  • the photo layer is baked at temperatures of 220 °C to 300 °C and annealing times of 3 to 10 minutes, with typical combinations of baking times representing, for example, 240 °C for 10 minutes, 260 °C for 6 minutes and 260 °C for 4 minutes.
  • the printing plate support must lose as little strength as possible after baking, so that it can still be easily handled and easily clamped in a printing device.
  • the printing plate carrier and thus also the aluminum strip to be produced must have the highest possible reverse bending strength, so that plate tearing due to mechanical stress on the printing plate can be almost completely ruled out. So far, these requirements have been met with conventional aluminum coils be fulfilled.
  • printing presses are increasingly being used, which require that the printing plate supports be clamped in such a way that they are bent transversely to the rolling direction and are therefore also mechanically loaded transversely to the rolling direction.
  • large lithographic printing plate supports are becoming more difficult to handle as size and strength levels remain the same.
  • the present invention has for its object to provide a method for producing an aluminum strip for lithographic printing plate supports to make available, the coil set is easily corrected in the rolled condition and from which oversized printing plate carriers can be produced, which are easy to handle and show only a low tendency to plate tearing.
  • the task outlined above is achieved in terms of the method in that the aluminum strip consists of an aluminum alloy with the following alloy components in percent by weight: 0.3% ⁇ Fe ⁇ 0.4%, 0.3% ⁇ Mg ⁇ 0.4%, 0.05% ⁇ Si ⁇ 0.25%, Mn ⁇ 0.05%, Cu ⁇ 0.04%,
  • the hot rolling is carried out at a temperature of 250 °C to 550 °C, the hot strip finishing temperature being 280 °C to 350 °C, during the cold rolling an intermediate annealing is carried out at a thickness of 1.5 mm to 0.5 mm, during the intermediate annealing, the metal temperature is 200 °C to 450 °C and the aluminum strip is kept at the specified metal temperature for at least one to two hours, the aluminum strip is then cold-rolled to a final thickness of 0.15 mm to 0.5 mm and for further processing is wound up to form a lithographic printing plate support in the as-rolled condition.
  • the aluminum strip produced by the method according to the invention provides a moderate increase in strength together with a very high resistance to flexural fatigue and, at the same time, very good thermal stability. Coil set corrections are possible without difficulty due to the moderate increase in strength. At the same time, however, the handling of the printing plate, even in the burned-in state, is simple, for example when it is clamped in the printing press, since good thermal stability of the aluminum strip is obtained with the method according to the invention.
  • the properties according to the invention can be achieved in a particularly process-reliable manner in that the aluminum alloy additionally has a titanium (Ti) content of max. 0.05% by weight, preferably max. 0.015% by weight, a zinc( Zn) content of max. 0.05% by weight and a chromium (Cr) content of less than 100 ppm, preferably a Cr content of max. 50 ppm.
  • Ti titanium
  • Cr chromium
  • Titanium is commonly used for grain refinement in casting.
  • An increased Ti content however, leads to casting problems.
  • Zinc influences the roughenability, so that its content should not exceed 0.05% by weight.
  • Typical problems arise with increased Zn content due to inhomogeneities when roughening the lithographic printing plate support. Chromium inhibits recrystallization and should therefore only be contained in the aluminum alloy in very small proportions of less than 100 ppm, preferably a maximum of 50 ppm.
  • the aluminum alloy for use in the method according to the present invention has a Mg content of 0.3 to 0.4% by weight. As a result, maximum strength with high flexural fatigue strength can be made available. Higher Mg contents enable a further reduction in the degree of rolling after intermediate annealing while at the same time maintaining or increasing the tensile strength values, especially transverse to the rolling direction.
  • the hot rolling temperatures in the range from 250 °C to 550 °C, with the hot strip final temperature being 280 °C to 350 °C, a continuous recrystallization of the surface is achieved during hot rolling, which, for example, allows the wall surface to be easily roughened during the production of the lithographic Printing plate carrier guaranteed.
  • the metal temperature of the aluminum strip is 200° C. to 450° C. during the intermediate annealing.
  • the aluminum strip is then held at metal temperature for at least one to two hours. This is usually done in batch ovens.
  • the Further processing of the aluminum coil can take place either in the recovered or recrystallized state or a combination of both. Recrystallization begins at temperatures of around 300 to 350 °C, depending on the production parameters, in particular the hardening that has been introduced.
  • a recovery anneal at lower temperatures can only reduce the hardening, so that very low degrees of rolling are possible after the recovery anneal.
  • An aluminum strip produced using the method according to the invention consists of an aluminum alloy with the following alloy components in % by weight: 0.3% ⁇ Fe ⁇ 0.4%, 0.3% ⁇ Mg ⁇ 0.4%, 0.05% ⁇ Si ⁇ 0.25%, Mn ⁇ 0.05%, Cu ⁇ 0.04%,
  • the aluminum strip has a tensile strength of up to 200 MPa in the as-rolled condition along the rolling direction and after a baking process at a temperature of 240 °C and a duration of 10 minutes of at least 145 MPa as well as a flexural fatigue strength transverse to the rolling direction of at least 1850 cycles in the flexural fatigue test on.
  • the aluminum strips according to the invention achieve reverse bending cycles of more than 1850 also transverse to the rolling direction after a baking process, which means an increase of over 70% compared to the standard alloys previously used. Due to the moderate increase in tensile strength to values of up to 200 MPa in the as-rolled state, measured along the rolling direction, the coil set of the aluminum strip according to the invention can also be corrected in a simple manner.
  • the handling of the lithographic printing plate base made from the aluminum strip is good even after a baking process. Even with very large lithographic printing plate supports, the increased strength after baking can make the printing plates easier to handle.
  • the high number of possible reverse bending cycles greater than 1850 both in the as-rolled and in the baked state of the aluminum strip according to the invention shows that the tendency to plate tearing due to mechanical loads is low in lithographic printing plate supports clamped transversely or longitudinally to the rolling direction.
  • the aluminum strip produced by the process according to the invention with an Mg content of 0.3% by weight to 0.4% % by weight also enables particularly high elongation values in the as-rolled state with sufficiently high tensile strength values, since the necessary strength values are already achieved with low degrees of rolling after intermediate annealing.
  • the properties of the finished aluminum strip are reliably achieved in that the aluminum alloy has a Ti content of max. 0.05% by weight, preferably max. 0.015% by weight, a Zn content of max. 0.05% by weight. -% and a Cr content of less than 100 ppm, preferably of max. 10 ppm.
  • oversized printing plate supports can be produced particularly well and processed and handled in a simple manner.
  • Table 1 only shows the essential alloying components of the aluminum strips examined.
  • the various test alloys had a Ti content of less than 0.015% by weight, a Zn content of less than 0.05% by weight and a Cr content of less than 100 ppm.
  • the rolling ingots cast from the various aluminum alloys were subjected to homogenization before rolling, with the rolling ingots being annealed at a temperature of around 580°C for more than four hours. This was followed by hot rolling at temperatures of 250 °C to 550 °C, with the final hot strip temperature being between 280 °C and 350 °C.
  • the aluminum hot strip of alloy VRef was subjected to an intermediate anneal during cold rolling at a thickness of 2 to 2.4 mm, the cold rolled strip being exposed to a temperature of 300 to 450 °C for one to two hours.
  • the interanneal thickness for the other aluminum strips was only 0.9 to 1.2 mm, as can also be seen from Table 2. Since the intermediately annealed strips were further cold-rolled to the final gauge without a final final anneal, they were coiled in the as-rolled condition. Table 2 legs -No.
  • the correspondingly produced aluminum ribbons for lithographic printing plate supports or litho ribbons were subjected to further tests. All four aluminum strips are characterized by very good roughening behavior.
  • the tensile strength in the as-rolled condition was examined.
  • tensile strengths were also measured after a baking process at 240° C. for 10 minutes.
  • reverse bending tests were carried out, in which the in 1 the test arrangement shown schematically was used.
  • Fig. 1a shows a schematic sectional view of the structure of the reverse bending test device 1 used to examine the resistance to reverse bending of the aluminum strips according to the invention.
  • Samples 2 from the aluminum strips produced for lithographic printing plate supports are mounted on a movable segment 3 and a stationary segment 4 in the reverse bending test device 1 .
  • the segment is moved back and forth on the stationary segment 4 by means of a rolling movement, so that the sample 2 is exposed to bending perpendicular to the extent of the sample 2.
  • the various bending states are shown schematically Fig. 1b ).
  • Samples 2 were cut out either longitudinally or transversely to the rolling direction from the prepared aluminum webs for lithographic printing plate supports.
  • the radius of the segments 3.4 was 30 mm.
  • the tensile strengths were measured according to DIN. The results of the tensile strength measurements in the as-rolled state or after a baking process and the reverse bending test results are shown in Tables 3a and 3b. Table 3a leg no. Tensile strength (MPa) as rolled Tensile Strength (MPA) 240°/10 min . along across along across Vref 198 201 154 154 V582 184 201 153 161 V581 177 192 145 155 V580 218 228 157 169 leg no. Alternating bending test after 260°/4 min. number of cycles Alternating bending test, rolled Number of cycles along across along across Vref 3400 1500 3030 1930 V582 4570. 2670 4070 2320 V581 4230 2150 4100 2000 V580 3190 2090 2840 2200
  • the conventional aluminum strip has sufficient tensile strength for correcting the coil set before the stoving process and for handling the lithographic printing plate support after the stoving process, as well as sufficient flexural fatigue strength along the rolling direction.
  • the conventionally produced aluminum strip (VRef) achieved only 1500 bending cycles across the rolling direction.
  • the aluminum strip V582 according to the invention shows very good tensile strengths with regard to coil set correction and handling of the printing plate after a baking process, as well as very high flexural fatigue strength. Up to 78% more flex cycles were achieved, alloy V582.
  • the comparative aluminum strip V580 also showed good values in terms of flexural fatigue strength.
  • the very high tensile strengths of 218 and 228 MPa longitudinally and transversely to the rolling direction make it difficult to correct the coil set before baking the photo layer of the lithographic printing plate base.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Metal Rolling (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Aluminiumbändern für lithografische Druckplattenträger, wobei das Aluminiumband aus einem Walzbarren hergestellt wird, welcher nach einem optionalen Homogenisieren auf eine Dicke von 2 mm bis 7 mm warmgewalzt und auf eine Enddicke von 0,15 mm bis 0,5 mm kaltgewalzt wird. An die Qualität von Aluminiumbändern für die Herstellung von lithografischen Druckplattenträgern werden sehr hohe Anforderungen gestellt. Das Aluminiumband zur Herstellung von lithografischen Druckplattenträgern wird üblicherweise einer elektrochemischen Aufrauung unterzogen, welche eine flächendeckende Aufrauung und ein strukturloses Aussehen ohne Streifigkeitseffekte zur Folge haben sollte. Die aufgeraute Struktur ist wichtig für das Aufbringen einer fotosensitiven Schicht, welche anschließend belichtet wird. Die Fotoschicht wird bei Temperaturen von 220 °C bis 300 °C und Glühzeiten von 3 bis 10 Minuten eingebrannt, wobei typische Kombinationen von Einbrennzeiten beispielsweise 240 °C bei 10 Minuten, 260 °C bei 6 Minuten und 260 °C für 4 Minuten darstellen. Der Druckplattenträger muss nach dem Einbrennen möglichst wenig an Festigkeit verlieren, so dass dieser noch gut handhabbar ist und leicht in eine Druckvorrichtung eingespannt werden kann. Gleichzeitig muss der Druckplattenträger und damit auch das entsprechend herzustellende Aluminiumband eine möglichst hohe Biegewechselfestigkeit besitzen, so dass Plattenausreißer aufgrund von mechanischen Belastungen der Druckplatte nahezu ausgeschlossen werden können. Bisher konnten diese Anforderungen mit konventionellen Aluminiumbändern gut erfüllt werden. Zur Steigerung der Produktivität werden aber zunehmend Druckmaschinen eingesetzt, welche es erfordern, dass die Druckplattenträger derart eingespannt werden, dass sie quer zur Walzrichtung gebogen und daher auch quer zur Walzrichtung mechanisch belastet werden. Gleichzeitig wird die Handhabung großer lithografischer Druckplattenträger mit zunehmender Größe und gleichbleibenden Festigkeitswerten schwieriger.The invention relates to a method for producing aluminum strips for lithographic printing plate supports, the aluminum strip being produced from a rolling ingot which, after optional homogenization, is hot-rolled to a thickness of 2 mm to 7 mm and to a final thickness of 0.15 mm to 0.5 mm is cold rolled. Very high demands are placed on the quality of aluminum strips for the production of lithographic printing plate supports. The aluminum strip for the production of lithographic printing plate supports is usually subjected to electrochemical roughening, which should result in roughening over the entire area and a structureless appearance without streaky effects. The roughened structure is important for applying a photosensitive layer, which is then exposed. The photo layer is baked at temperatures of 220 °C to 300 °C and annealing times of 3 to 10 minutes, with typical combinations of baking times representing, for example, 240 °C for 10 minutes, 260 °C for 6 minutes and 260 °C for 4 minutes. The printing plate support must lose as little strength as possible after baking, so that it can still be easily handled and easily clamped in a printing device. At the same time, the printing plate carrier and thus also the aluminum strip to be produced must have the highest possible reverse bending strength, so that plate tearing due to mechanical stress on the printing plate can be almost completely ruled out. So far, these requirements have been met with conventional aluminum coils be fulfilled. To increase productivity, however, printing presses are increasingly being used, which require that the printing plate supports be clamped in such a way that they are bent transversely to the rolling direction and are therefore also mechanically loaded transversely to the rolling direction. At the same time, large lithographic printing plate supports are becoming more difficult to handle as size and strength levels remain the same.

Beispielsweise ist aus dem auf die Anmelderin zurückgehenden europäischen Patent EP 1 065 071 B1 ein Band zur Herstellung von lithografischen Druckplattenträgern bekannt, welches sich durch eine gute Aufraubarkeit kombiniert mit einer hohen Biegewechselbeständigkeit und einer ausreichenden thermischen Stabilität nach einem Einbrennvorgang auszeichnet. Aufgrund der zunehmenden Größe der Druckmaschinen und der daraus resultierenden Vergrößerung der benötigten Druckplattenträger hat sich jedoch die Notwenigkeit ergeben, die Eigenschaften der bekannten Aluminiumlegierung und der daraus hergestellten lithografischen Druckplattenträger weiter zu verbessern. Eine einfache Erhöhung der Zugfestigkeiten, welche beispielsweise durch eine Änderung der Aluminiumlegierung möglich ist, führte nicht zu dem gewünschten Erfolg, da bei hoher Zugfestigkeit die Korrektur des Coilsets des Aluminiumbandes schwieriger wurde. Diese wird üblicherweise im walzharten Zustand vor dem Einbrennvorgang durchgeführt.For example, from the applicant's European patent EP 1 065 071 B1 a band for the production of lithographic printing plate supports is known, which is characterized by good roughenability combined with high flexural fatigue strength and sufficient thermal stability after a baking process. Due to the increasing size of the printing machines and the resulting increase in the number of printing plate supports required, however, it has become necessary to further improve the properties of the known aluminum alloy and the lithographic printing plate supports produced from it. A simple increase in the tensile strength, which is possible, for example, by changing the aluminum alloy, did not lead to the desired success, since the correction of the coil set of the aluminum strip became more difficult with high tensile strength. This is usually carried out in the as-rolled state before the stoving process.

Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Aluminiumbandes für lithografische Druckplattenträger zur Verfügung zu stellen, dessen Coilset in walzhartem Zustand leicht korrigierbar ist und aus welchem auch übergroße Druckplattenträger herstellbar sind, die leicht handhabbar sind und nur eine geringe Neigung zu Plattenreißern zeigen.Proceeding from this, the present invention has for its object to provide a method for producing an aluminum strip for lithographic printing plate supports to make available, the coil set is easily corrected in the rolled condition and from which oversized printing plate carriers can be produced, which are easy to handle and show only a low tendency to plate tearing.

Gemäß der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe verfahrensmäßig dadurch gelöst, dass das Aluminiumband aus einer Aluminiumlegierung mit folgenden Legierungsbestandteilen in Gewichtsprozent besteht: 0,3 % ≤ Fe ≤ 0,4 %, 0,3 % ≤ Mg ≤ 0,4 %, 0,05 % ≤ Si ≤ 0,25 %, Mn ≤ 0, 05 %, Cu ≤ 0,04 %, According to the present invention, the task outlined above is achieved in terms of the method in that the aluminum strip consists of an aluminum alloy with the following alloy components in percent by weight: 0.3% ≤ Fe ≤ 0.4%, 0.3% ≤ Mg ≤ 0.4%, 0.05% ≤ Si ≤ 0.25%, Mn ≤ 0.05%, Cu ≤ 0.04%,

Rest Al sowie unvermeidbare Verunreinigungen, einzeln max. 0,05 %, in Summe max. 0,15 %; das Warmwalzen bei einer Temperatur von 250 °C bis 550 °C erfolgt, wobei die Warmbandendtemperatur 280 °C bis 350 °C beträgt, während des Kaltwalzens eine Zwischenglühung bei einer Dicke von 1,5 mm bis 0,5 mm durchgeführt wird, während der Zwischenglühung die Metalltemperatur 200 °C bis 450 °C beträgt und das Aluminiumband für mindestens ein bis zwei Stunden auf der genannten Metalltemperatur gehalten wird, das Aluminiumband anschließend durch Kaltwalzen auf eine Enddicke von 0,15 mm bis 0,5 mm gewalzt wird und zur Weiterverarbeitung zu einem lithografischen Druckplattenträger in walzhartem Zustand aufgehaspelt wird.remainder Al and unavoidable impurities, individually max. 0.05%, in total max. 0.15%; the hot rolling is carried out at a temperature of 250 °C to 550 °C, the hot strip finishing temperature being 280 °C to 350 °C, during the cold rolling an intermediate annealing is carried out at a thickness of 1.5 mm to 0.5 mm, during the intermediate annealing, the metal temperature is 200 °C to 450 °C and the aluminum strip is kept at the specified metal temperature for at least one to two hours, the aluminum strip is then cold-rolled to a final thickness of 0.15 mm to 0.5 mm and for further processing is wound up to form a lithographic printing plate support in the as-rolled condition.

Das nach dem erfindungsgemäßen Verfahren hergestellte Aluminiumband stellt eine moderate Festigkeitserhöhung zusammen mit einer sehr hohen Biegewechselbeständigkeit und einer gleichzeitig sehr guten thermischen Stabilität bereit. Coilsetkorrekturen sind aufgrund der moderaten Festigkeitssteigerung ohne Schwierigkeiten möglich. Gleichzeitig ist aber auch das Handling der Druckplatte auch in eingebranntem Zustand, beispielsweise beim Einspannen in die Druckmaschine, einfach, da eine gute thermische Stabilität des Aluminiumbandes mit dem erfindungsgemäßen Verfahren erhalten wird. Wird das Aluminiumband für die Herstellung von sehr großen lithografischen Druckplattenträgern eingesetzt, wird vorzugsweise das Aluminiumband auf eine Enddicke von 0,25 bis 0,5 mm nach dem Zwischenglühen kaltgewalzt. Die besondere Eignung der nach dem erfindungsgemäßen Verfahren hergestellten Aluminiumbänder für übergroße lithografische Druckplattenträger ergibt sich daraus, dass einerseits aufgrund der geringen Abwalzgrade nach dem Zwischenglühen eine hohe Dehnung zur Verfügung gestellt wird und andererseits durch den erhöhten Magnesiumanteil höhere Festigkeiten durch Verfestigungen zur Verfügung gestellt werden, die das Handling vereinfachen.The aluminum strip produced by the method according to the invention provides a moderate increase in strength together with a very high resistance to flexural fatigue and, at the same time, very good thermal stability. Coil set corrections are possible without difficulty due to the moderate increase in strength. At the same time, however, the handling of the printing plate, even in the burned-in state, is simple, for example when it is clamped in the printing press, since good thermal stability of the aluminum strip is obtained with the method according to the invention. When the aluminum strip is used for the manufacture of very large lithographic printing plate supports, it is preferable to cold-roll the aluminum strip to a final thickness of 0.25 to 0.5 mm after the intermediate anneal. The particular suitability of the aluminum strips produced by the process according to the invention for oversized lithographic printing plate supports results from the fact that, on the one hand, due to the low degree of rolling after the intermediate annealing, high elongation is made available and, on the other hand, the increased magnesium content provides higher strength through hardening, which simplify handling.

Gemäß einer Ausgestaltung der vorliegenden Erfindung können die erfindungsgemäßen Eigenschaften besonders prozesssicher dadurch erreicht werden, dass die Aluminiumlegierung zusätzlich einen Titan(Ti)-Gehalt von max. 0,05 Gew.-%, vorzugsweise max. 0,015 Gew.-%, einen Zink(Zn)-Gehalt von max. 0,05 Gew.-% und einen Chrom(Cr)-Gehalt von weniger als 100 ppm, vorzugsweise einen Cr-Gehalt von max. 50 ppm aufweist. Titan wird üblicherweise zur Kornfeinung beim Gießen eingesetzt. Ein erhöhter Ti-Gehalt führt jedoch zu Gießproblemen. Zink beeinflusst die Aufraubarkeit, so dass dessen Gehalt max. 0,05 Gew.-% betragen sollte. Typische Probleme ergeben sich bei erhöhtem Zn-Gehalt aufgrund von Inhomogenitäten beim Aufrauen der lithografischen Druckplattenträger. Chrom ist rekristallisationshemmend und sollte daher nur in ganz geringen Anteilen von weniger als 100 ppm, vorzugsweise von max. 50 ppm in der Aluminiumlegierung enthalten sein.According to one embodiment of the present invention, the properties according to the invention can be achieved in a particularly process-reliable manner in that the aluminum alloy additionally has a titanium (Ti) content of max. 0.05% by weight, preferably max. 0.015% by weight, a zinc( Zn) content of max. 0.05% by weight and a chromium (Cr) content of less than 100 ppm, preferably a Cr content of max. 50 ppm. Titanium is commonly used for grain refinement in casting. An increased Ti content however, leads to casting problems. Zinc influences the roughenability, so that its content should not exceed 0.05% by weight. Typical problems arise with increased Zn content due to inhomogeneities when roughening the lithographic printing plate support. Chromium inhibits recrystallization and should therefore only be contained in the aluminum alloy in very small proportions of less than 100 ppm, preferably a maximum of 50 ppm.

Die Aluminiumlegierung zur Verwendung im Verfahren gemäß der vorliegenden Erfindung weist einen Mg-Gehalt von 0,3 bis 0,4 Gew.-% auf. Hierdurch können maximale Festigkeiten bei hoher Biegewechselbeständigkeit zur Verfügung gestellt werden. Höhere Mg-Gehalten ermöglichen eine weitere Verringerung der Abwalzgrade nach der Zwischenglühung bei gleichzeitigem Erhalt oder Vergrößerung der Zugfestigkeitswerte, insbesondere auch quer zur Walzrichtung.The aluminum alloy for use in the method according to the present invention has a Mg content of 0.3 to 0.4% by weight. As a result, maximum strength with high flexural fatigue strength can be made available. Higher Mg contents enable a further reduction in the degree of rolling after intermediate annealing while at the same time maintaining or increasing the tensile strength values, especially transverse to the rolling direction.

Durch die Einstellung der Warmwalztemperaturen im Bereich von 250 °C bis 550 °C, wobei die Warmbandendtemperatur 280 °C bis 350 °C beträgt, wird eine durchgehende Rekristallisation der Oberfläche beim Warmwalzen erzielt, was beispielsweise eine gute Aufraubarkeit der Wandoberfläche während der Herstellung der lithografischen Druckplattenträger gewährleistet.By setting the hot rolling temperatures in the range from 250 °C to 550 °C, with the hot strip final temperature being 280 °C to 350 °C, a continuous recrystallization of the surface is achieved during hot rolling, which, for example, allows the wall surface to be easily roughened during the production of the lithographic Printing plate carrier guaranteed.

Erfindungsgemäß beträgt während der Zwischenglühung die Metalltemperatur des Aluminiumbandes 200 °C bis 450 °C. Das Aluminiumband wird dann für mindestens ein bis zwei Stunden auf der Metalltemperatur gehalten. Dies erfolgt üblicherweise in Batchöfen. Durch die Zwischenglühung in dem genannten Temperaturbereich kann die Weiterverarbeitung des Aluminiumbandes entweder in erholtem oder rekristallisiertem Zustand oder einer Kombination aus beidem erfolgen. Die Rekristallisation beginnt etwa ab Temperaturen von 300 bis 350 °C, wobei diese von den Fertigungsparametern, insbesondere den eingebrachten Verfestigungen abhängig ist. Durch ein Erholungsglühen bei niedrigeren Temperaturen kann dagegen lediglich ein Abbau der Verfestigungen erzielt werden, so dass sehr geringe Abwalzgrade nach dem Erholungsglühen möglich sind. Abhängig von den jeweiligen Abwalzgraden nach dem Zwischenglühen und der Legierungszusammensetzung kann es jedoch auch notwendig sein, ein Rekristallisationsglühen als Zwischenglühung vorzunehmen.According to the invention, the metal temperature of the aluminum strip is 200° C. to 450° C. during the intermediate annealing. The aluminum strip is then held at metal temperature for at least one to two hours. This is usually done in batch ovens. Through the intermediate annealing in the temperature range mentioned, the Further processing of the aluminum coil can take place either in the recovered or recrystallized state or a combination of both. Recrystallization begins at temperatures of around 300 to 350 °C, depending on the production parameters, in particular the hardening that has been introduced. A recovery anneal at lower temperatures, on the other hand, can only reduce the hardening, so that very low degrees of rolling are possible after the recovery anneal. However, depending on the degree of rolling after intermediate annealing and the composition of the alloy, it may also be necessary to perform recrystallization annealing as an intermediate anneal.

Ein nach dem erfindungsgemäßen Verfahren hergestelltes Aluminiumband besteht aus einer Aluminiumlegierung mit folgenden Legierungsbestandteilen in Gew.-%: 0,3 % ≤ Fe ≤ 0,4 %, 0,3 % ≤ Mg ≤ 0,4 %, 0, 05 % ≤ Si ≤ 0,25 %, Mn ≤ 0, 05 %, Cu ≤ 0,04 %, An aluminum strip produced using the method according to the invention consists of an aluminum alloy with the following alloy components in % by weight: 0.3% ≤ Fe ≤ 0.4%, 0.3% ≤ Mg ≤ 0.4%, 0.05% ≤ Si ≤ 0.25%, Mn ≤ 0.05%, Cu ≤ 0.04%,

Rest Al sowie unvermeidbare Verunreinigungen, einzeln max. 0,05 %, in Summe max. 0,15 %; ferner weist das Aluminiumband eine Zugfestigkeit von bis zu 200 MPa in walzhartem Zustand längs zur Walzrichtung und nach einem Einbrennvorgang mit einer Temperatur von 240 °C und einer Dauer von 10 Minuten von mindestens 145 MPa sowie eine Biegewechselbeständigkeit quer zur Walzrichtung von mindestens 1850 Zyklen im Biegewechseltest auf.remainder Al and unavoidable impurities, individually max. 0.05%, in total max. 0.15%; In addition, the aluminum strip has a tensile strength of up to 200 MPa in the as-rolled condition along the rolling direction and after a baking process at a temperature of 240 °C and a duration of 10 minutes of at least 145 MPa as well as a flexural fatigue strength transverse to the rolling direction of at least 1850 cycles in the flexural fatigue test on.

Im Biegewechseltest wird ein Streifen aus dem Aluminiumband herausgeschnitten und zwischen zwei zylinderförmigen Segmenten mit einem Radius von 30 mm hinund hergebogen. Im Gegensatz zu den bisher hergestellten Aluminiumbändern für lithografische Druckplattenträger erreichen die erfindungsgemäßen Aluminiumbänder nach einem Einbrennvorgang Biegewechselzyklen von mehr als 1850 auch quer zur Walzrichtung, was einen Anstieg gegenüber den bisher verwendeten Standardlegierungen von über 70 % bedeutet. Aufgrund der moderaten Steigerung der Zugfestigkeit auf Werte bis zu 200 MPa in walzhartem Zustand längs zur Walzrichtung gemessen, kann der Coilset des erfindungsgemäßen Aluminiumbandes weiterhin auf einfache Weise korrigiert werden. Aufgrund der guten thermischen Stabilität, welche sich durch eine Zugfestigkeit von mindestens 14b MPa nach einem Einbrennvorgang längs oder quer zur Walzrichtung zeigt, ist das Handling der aus dem Aluminiumband hergestellten lithografischen Druckplattenträger auch nach einem Einbrennvorgang gut. Selbst bei sehr großen lithografischen Druckplattenträgern kann durch die erhöhten Festigkeiten nach dem Einbrennen das Handling der Druckplatten erleichtert werden. Zudem zeigt die hohe Anzahl von möglichen Biegewechselzyklen größer als 1850 sowohl im walzharten als auch im eingebrannten Zustand des erfindungsgemäßen Aluminiumbandes, dass die Neigung zu Plattenreißern aufgrund von mechanischen Belastungen bei quer oder längs zur Walzrichtung eingespannten lithografischen Druckplattenträger gering ausgeprägt ist.In the reverse bending test, a strip is cut out of the aluminum strip and bent back and forth between two cylindrical segments with a radius of 30 mm. In contrast to the aluminum strips previously produced for lithographic printing plate supports, the aluminum strips according to the invention achieve reverse bending cycles of more than 1850 also transverse to the rolling direction after a baking process, which means an increase of over 70% compared to the standard alloys previously used. Due to the moderate increase in tensile strength to values of up to 200 MPa in the as-rolled state, measured along the rolling direction, the coil set of the aluminum strip according to the invention can also be corrected in a simple manner. Due to the good thermal stability, which is shown by a tensile strength of at least 14b MPa after a baking process in the longitudinal or transverse direction to the rolling direction, the handling of the lithographic printing plate base made from the aluminum strip is good even after a baking process. Even with very large lithographic printing plate supports, the increased strength after baking can make the printing plates easier to handle. In addition, the high number of possible reverse bending cycles greater than 1850 both in the as-rolled and in the baked state of the aluminum strip according to the invention shows that the tendency to plate tearing due to mechanical loads is low in lithographic printing plate supports clamped transversely or longitudinally to the rolling direction.

Das nach dem erfindungsgemäßen Verfahren hergestellte Aluminiumband mit einem Mg-Gehalt von 0,3 Gew.-% bis 0,4 Gew.-% ermöglicht zudem bei ausreichend hohen Zugfestigkeitswerten besonders hohe Dehnungswerte im walzharten Zustand, da bereits bei geringen Abwalzgraden nach dem Zwischenglühen die notwendigen Festigkeitswerte erreicht werden.The aluminum strip produced by the process according to the invention with an Mg content of 0.3% by weight to 0.4% % by weight also enables particularly high elongation values in the as-rolled state with sufficiently high tensile strength values, since the necessary strength values are already achieved with low degrees of rolling after intermediate annealing.

Die Eigenschaften des fertig hergestellten Aluminiumbandes werden dadurch prozesssicher erreicht, dass die Aluminiumlegierung einen Ti-Gehalt von max. 0,05 Gew.-%, vorzugsweise max. 0,015 Gew.-%, einen Zn-Gehalt von max. 0,05 Gew.-% und einen Cr-Gehalt von weniger als 100 ppm, vorzugsweise von max. 10 ppm aufweist.The properties of the finished aluminum strip are reliably achieved in that the aluminum alloy has a Ti content of max. 0.05% by weight, preferably max. 0.015% by weight, a Zn content of max. 0.05% by weight. -% and a Cr content of less than 100 ppm, preferably of max. 10 ppm.

Aus erfindungsgemäß hergestellten Aluminiumbändern mit einer Dicke von 0,25 bis 0,5 mm können besonderes gut übergroße Druckplattenträger hergestellt und auf einfache Weise prozessiert und gehandhabt werden.From aluminum strips produced according to the invention with a thickness of 0.25 to 0.5 mm, oversized printing plate supports can be produced particularly well and processed and handled in a simple manner.

Es gibt nun eine Vielzahl von Möglichkeiten, das erfindungsgemäße Verfahren zur Herstellung von Aluminiumbändern, für lithografische Druckplattenträger weiterzuentwickeln und auszugestalten. Hierzu wird verwiesen einerseits auf die dem Patentanspruch 1 nachgeordneten Patentansprüche sowie auf die Beschreibung von Ausführungsbeispielen in Verbindung mit der Zeichnung. In der Zeichnung zeigt die einzige Figur eine schematische Darstellung des Biegewechseltests zur Prüfung der Biegewechselbeständigkeit.There are now a large number of possibilities for further developing and designing the method according to the invention for the production of aluminum strips for lithographic printing plate supports. For this purpose, reference is made on the one hand to the patent claims subordinate to patent claim 1 and to the description of exemplary embodiments in connection with the drawing. In the drawing, the only figure shows a schematic representation of the flexural fatigue test for testing the flexural fatigue strength.

Ein Vergleich zwischen einem konventionellen Aluminiumband zur Herstellung von lithografischen Druckplattenträgern sowie einem erfindungsgemäß hergestellten Aluminiumband und zwei Vergleichsaluminiumbändern, welche ebenfalls für die Herstellung von lithografischen Druckplattenträgern geeignet sind, wird im folgenden dargestellt. Die Legierungsbestandteile der unterschiedlichen, getesteten Aluminiumbänder sind in Tabelle 1 dargelegt. Tab.1 Leg. -Nr. Fe Mn Mg Si Cu /Gew. -% Vref 0,32 - 0,17 0,12 7 ppm Stand der Technik V582 0,36 0,0034 0,3 0,09 3 ppm Erfindung V581 0,36 0,018 0,2 0,08 5 ppm Vergleich V580 0,4 0,10 0,11 0,08 < 10 ppm Vergleich A comparison between a conventional aluminum tape for the production of lithographic printing plate supports and an aluminum tape produced according to the invention and two comparative aluminum tapes, which are also used for suitable for the manufacture of lithographic printing plate supports is set out below. The alloying components of the different aluminum coils tested are set out in Table 1. Tab.1 legs -No. feet Mn mg si Cu /wt -% Vref 0.32 - 0.17 0.12 7 ppm State of the art V582 0.36 0.0034 0.3 0.09 3 ppm invention V581 0.36 0.018 0.2 0.08 5 ppm comparison V580 0.4 0.10 0.11 0.08 < 10ppm comparison

Die Tabelle 1 zeigt nur die wesentlichen Legierungsbestandteile der untersuchten Aluminiumbänder. Darüber hinaus wiesen die verschiedenen Versuchslegierungen einen Ti-Gehalt von weniger als 0,015 Gew.-%, einen Zn-Gehalt von weniger als 0,05 Gew.-% sowie einen Cr-Gehalt von weniger als 100 ppm auf. Die aus den verschiedenen Aluminiumlegierungen gegossenen Walzbarren sind vor dem Walzen einer Homogenisierung unterzogen worden, wobei die Walzbarren auf eine Temperatur von etwa 580 °C für mehr als vier Stunden geglüht wurden. Anschließend erfolgte das Warmwalzen bei Temperaturen von 250 °C bis 550 °C, wobei die Warmbandendtemperatur zwischen 280 °C und 350 °C betrug. Das Aluminiumwarmband aus der Legierung VRef wurde während des Kaltwalzens bei einer Dicke von 2 bis 2,4 mm einer Zwischenglühung unterzogen, wobei das kaltgewalzte Band einer Temperatur von 300 bis 450 °C für ein bis zwei Stunden ausgesetzt war. Bei gleichen Zwischenglühungstemperaturen betrug die Zwischenglühungsdicke für die anderen Aluminiumbänder nur 0,9 bis 1,2 mm, wie auch aus der Tabelle 2 ersichtlich ist. Da die zwischengeglühten Bänder auf Enddicke weiter kaltgewalzt wurden, ohne dass eine abschließende Endglühung erfolgte, wurden diese im Zustand walzhart aufgehaspelt. Tab. 2 Leg. -Nr. Warmbandenddicke Zwischenglühungsdicke Enddicke Zustand Vref 3 - 4 mm 2 - 2,4 mm 0,29 mm Walzhart V582 3 - 4 mm 0,9 - 1,2 mm 0,28 mm Walzhart V581 3 - 4 mm 0,9 - 1,2 mm 0,28 mm Walzhart V580 3 - 4 mm 0,9 - 1,2 mm 0,28 mm Walzhart Table 1 only shows the essential alloying components of the aluminum strips examined. In addition, the various test alloys had a Ti content of less than 0.015% by weight, a Zn content of less than 0.05% by weight and a Cr content of less than 100 ppm. The rolling ingots cast from the various aluminum alloys were subjected to homogenization before rolling, with the rolling ingots being annealed at a temperature of around 580°C for more than four hours. This was followed by hot rolling at temperatures of 250 °C to 550 °C, with the final hot strip temperature being between 280 °C and 350 °C. The aluminum hot strip of alloy VRef was subjected to an intermediate anneal during cold rolling at a thickness of 2 to 2.4 mm, the cold rolled strip being exposed to a temperature of 300 to 450 °C for one to two hours. At the same interanneal temperatures, the interanneal thickness for the other aluminum strips was only 0.9 to 1.2 mm, as can also be seen from Table 2. Since the intermediately annealed strips were further cold-rolled to the final gauge without a final final anneal, they were coiled in the as-rolled condition. Table 2 legs -No. hot strip thickness intermediate anneal thickness final thickness Condition Vref 3 - 4mm 2 - 2.4mm 0.29mm rolling hard V582 3 - 4mm 0.9 - 1.2mm 0.28mm rolling hard V581 3 - 4mm 0.9 - 1.2mm 0.28mm rolling hard V580 3 - 4mm 0.9 - 1.2mm 0.28mm rolling hard

Die entsprechend hergestellten Aluminiumbänder für lithografische Druckplattenträger bzw. Lithobänder, wurden weiteren Tests unterzogen. Alle vier Aluminiumbänder zeichnen sich durch ein sehr gutes Aufrauverhalten aus. Darüber hinaus wurde die Zugfestigkeit im walzharten Zustand untersucht. Um die praktische Handhabung der Druckplatten, insbesondere bei übergroßen lithografischen Druckplatten zu prüfen, wurden Zugfestigkeiten auch nach einem Einbrennvorgang von 240 °C für 10 Minuten gemessen. Zusätzlich wurden Biegewechseltests durchgeführt, bei welchem die in Fig. 1 schematisch dargestellte Versuchsanordnung verwendet wurde.The correspondingly produced aluminum ribbons for lithographic printing plate supports or litho ribbons were subjected to further tests. All four aluminum strips are characterized by very good roughening behavior. In addition, the tensile strength in the as-rolled condition was examined. In order to test the practical handling of the printing plates, particularly in the case of oversized lithographic printing plates, tensile strengths were also measured after a baking process at 240° C. for 10 minutes. In addition, reverse bending tests were carried out, in which the in 1 the test arrangement shown schematically was used.

Fig. 1a) zeigt in einer schematischen Schnittansicht den Aufbau der verwendeten Biegewechseltestvorrichtung 1, welche zur Untersuchung der Biegewechselbeständigkeit der erfindungsgemäßen Aluminiumbänder eingesetzt wurde. Proben 2 aus den hergestellten Aluminiumbändern für lithografische Druckplattenträger werden in der Biegewechseltestvorrichtung 1 auf einem beweglichen Segment 3 sowie einem feststehenden Segment 4 befestigt. Das Segment wird beim Biegewechseltest auf dem feststehenden Segment 4 durch eine Abrollbewegung hin- und herbewegt, so dass die Probe 2 Biegungen senkrecht zur Erstreckung der Probe 2 ausgesetzt ist. Die verschiedenen Biegezustände zeigt schematisch Fig. 1b). Die Proben 2 wurden entweder längs oder quer zur Walzrichtung aus den hergestellten Aluminiumbändern, für lithografische Druckplattenträger ausgeschnitten. Der Radius der Segmente 3,4 betrug 30 mm. Fig. 1a ) shows a schematic sectional view of the structure of the reverse bending test device 1 used to examine the resistance to reverse bending of the aluminum strips according to the invention. Samples 2 from the aluminum strips produced for lithographic printing plate supports are mounted on a movable segment 3 and a stationary segment 4 in the reverse bending test device 1 . During the reverse bending test, the segment is moved back and forth on the stationary segment 4 by means of a rolling movement, so that the sample 2 is exposed to bending perpendicular to the extent of the sample 2. The various bending states are shown schematically Fig. 1b ). Samples 2 were cut out either longitudinally or transversely to the rolling direction from the prepared aluminum webs for lithographic printing plate supports. The radius of the segments 3.4 was 30 mm.

Die Zugfestigkeiten wurden nach DIN gemessen. Die Ergebnisse der Zugfestigkeitsnessungen im walzharten Zustand bzw. nach einem Einbrennvorgang sowie die Biegewechseltestergebnisse sind in Tabelle 3a und 3b dargestellt. Tab. 3a Leg.-Nr. Zugfestigkeit (MPa) walzhart Zugfestigkeit (MPA) 240°/10 min. längs quer längs quer Vref 198 201 154 154 V582 184 201 153 161 V581 177 192 145 155 V580 218 228 157 169 Tab. 3b Leg.-Nr. Biegewechseltest nach 260°/4 min. Anzahlzyklen Biegewechseltest walzhart Anzahlzyklen längs quer längs quer Vref 3400 1500 3030 1930 V582 4570. 2670 4070 2320 V581 4230 2150 4100 2000 V580 3190 2090 2840 2200 The tensile strengths were measured according to DIN. The results of the tensile strength measurements in the as-rolled state or after a baking process and the reverse bending test results are shown in Tables 3a and 3b. Table 3a leg no. Tensile strength (MPa) as rolled Tensile Strength (MPA) 240°/10 min . along across along across Vref 198 201 154 154 V582 184 201 153 161 V581 177 192 145 155 V580 218 228 157 169 leg no. Alternating bending test after 260°/4 min. number of cycles Alternating bending test, rolled Number of cycles along across along across Vref 3400 1500 3030 1930 V582 4570. 2670 4070 2320 V581 4230 2150 4100 2000 V580 3190 2090 2840 2200

Es zeigte sich, dass das konventionelle Aluminiumband zwar eine für die Korrektur des Coilsets vor dem Einbrennvorgang und für das Handling des lithografischen Druckplattenträgers nach dem Einbrennvorgang ausreichende Zugfestigkeit sowie eine ausreichende Biegewechselbeständigkeit längs zur Walzrichtung aufweist. Quer zur Walzrichtung erreichte das konventionell hergestellte Aluminiumband (VRef) jedoch lediglich 1500 Biegezyklen. Das erfindungsgemäße Aluminiumband V582 zeigt dagegen sehr gute Zugfestigkeiten in Bezug auf Coilsetkorrektur und Handling der Druckplatte nach einem Einbrennvorgang sowie eine sehr hohe Biegewechselbeständigkeit. Es wurden eine bis zu 78 % höhere Anzahl an Biegezyklen erreicht, Legierung V582. Im Vergleich dazu zeigte das Vergleichsaluminiumband V580 zwar ebenfalls gute Werte bezüglich der Biegewechselbeständigkeit. Die sehr hohen Zugfestigkeiten von 218 bzw. 228 MPa längs respektive quer zur Walzrichtung erschweren die Korrektur des Coilsets jedoch vor dem Einbrennen der Fotoschicht der lithografischen Druckplattenträger.It was found that the conventional aluminum strip has sufficient tensile strength for correcting the coil set before the stoving process and for handling the lithographic printing plate support after the stoving process, as well as sufficient flexural fatigue strength along the rolling direction. However, the conventionally produced aluminum strip (VRef) achieved only 1500 bending cycles across the rolling direction. The aluminum strip V582 according to the invention, on the other hand, shows very good tensile strengths with regard to coil set correction and handling of the printing plate after a baking process, as well as very high flexural fatigue strength. Up to 78% more flex cycles were achieved, alloy V582. In comparison, the comparative aluminum strip V580 also showed good values in terms of flexural fatigue strength. However, the very high tensile strengths of 218 and 228 MPa longitudinally and transversely to the rolling direction make it difficult to correct the coil set before baking the photo layer of the lithographic printing plate base.

Im walzharten Zustand, welcher für negative Druckplatten verwendet wird, zeigte sich insbesondere längs zur Walzrichtung eine deutliche Verbesserung der Biegewechselbeständigkeit. Quer zur Walzrichtung erhöhten sich die Werte ebenfalls.In the as-rolled condition, which is used for negative printing plates, there was a significant improvement in the flexural fatigue strength, particularly along the direction of rolling. The values also increased transversely to the rolling direction.

Es hat sich gezeigt, dass die Auswahl einer speziell auf die Bedürfnisse großer lithografischer Druckplattenträger abgestimmten Aluminiumlegierung in Kombination mit ausgewählten Verfahrensparametern die Herstellung von deutlich verbesserten lithografischen Druckplattenträgern ermöglicht, welche auch bei der Verwendung von Übergrößen, d.h. wenn diese quer zur Walzrichtung eingespannt werden, auf einfache Weise gehandhabt werden können und dennoch resistent gegen Plattenreißer sind.It has been shown that the selection of an aluminum alloy specially tailored to the needs of large lithographic printing plate supports, in combination with selected process parameters, enables the production of significantly improved lithographic printing plate supports, which also when oversizes are used, i.e. if they are clamped transversely to the rolling direction can be handled easily and yet are resistant to plate tearing.

Claims (2)

  1. A method for producing aluminium strips for lithographic printing plate carriers, wherein the aluminium strip is produced from a rolling ingot, which after optional homogenization is hot-rolled to a thickness of 2 mm to 7 mm and the aluminium strip is cold-rolled to a final thickness of 0.15 mm to 0.5 mm by cold rolling the hot strip,
    characterized in that
    the aluminium strip is made from an aluminium alloy with the following alloy components in percent by weight: 0.3% ≤ Fe ≤ 0.4%, 0.3% ≤ Mg ≤ 0.4%, 0.05% ≤ Si ≤ 0.25%, Mn ≤ 0.05%, Cu ≤ 0.04%,
    the remainder being Al and unavoidable impurities, individually 0.05% at maximum, in total 0.15% at maximum; hot rolling is carried out at a temperature of 250 °C to 550 °C, wherein the final hot strip temperature is 280 °C to 350 °C, an intermediate annealing is carried out during cold rolling at a thickness of 1.5 mm to 0.5 mm, during the intermediate annealing the metal temperature is 200 °C to 450 °C and the aluminium strip is maintained at said metal temperature for at least one to two hours, the aluminium strip is then rolled to a final thickness of 0.15 mm to 0.5 mm by cold-rolling, and is coiled in the hard-as-rolled state for further processing into a lithographic printing plate carrier.
  2. The method according to claim 1,
    characterized in that
    the aluminium alloy has a Ti content of 0.05% by weight at maximum, a Zn content of 0.05% by weight at maximum, and a Cr content of less than 100 ppm.
EP07023245.9A 2007-11-30 2007-11-30 Aluminium strip for lithographic pressure plate carriers and its manufacture Active EP2067871B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP07023245.9A EP2067871B2 (en) 2007-11-30 2007-11-30 Aluminium strip for lithographic pressure plate carriers and its manufacture
SI200731221T SI2067871T2 (en) 2007-11-30 2007-11-30 Aluminium strip for lithographic pressure plate carriers and its manufacture
ES07023245T ES2407655T5 (en) 2007-11-30 2007-11-30 Aluminum strip for supports for lithographic printing plates and their production
BRPI0819596A BRPI0819596B8 (en) 2007-11-30 2008-11-24 METHOD FOR THE PRODUCTION OF ALUMINUM STRIPS FOR LITHOGRAPHIC PLATE SUPPORTS
PCT/EP2008/066086 WO2009068502A1 (en) 2007-11-30 2008-11-24 Aluminum strip for lithographic printing plate carriers and the production thereof
DE202008018332U DE202008018332U1 (en) 2007-11-30 2008-11-24 Aluminum strip for lithographic printing plate supports and its production
ES08853549.7T ES2456269T3 (en) 2007-11-30 2008-11-24 Aluminum band for supports for lithographic printing plates and their production
EP08853549.7A EP2220262B1 (en) 2007-11-30 2008-11-24 Aluminium strip for lithographic pressure plate carriers and its manufacture
JP2010535350A JP5319693B2 (en) 2007-11-30 2008-11-24 Aluminum strip for lithographic printing plate support and its manufacture
CN2008801185883A CN101883876A (en) 2007-11-30 2008-11-24 Aluminium strip for lithographic pressure plate carriers and its manufacture
US15/494,285 US11326232B2 (en) 2007-11-30 2017-04-21 Aluminum strip for lithographic printing plate carriers and the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07023245.9A EP2067871B2 (en) 2007-11-30 2007-11-30 Aluminium strip for lithographic pressure plate carriers and its manufacture

Publications (3)

Publication Number Publication Date
EP2067871A1 EP2067871A1 (en) 2009-06-10
EP2067871B1 EP2067871B1 (en) 2013-02-20
EP2067871B2 true EP2067871B2 (en) 2022-10-19

Family

ID=39400918

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07023245.9A Active EP2067871B2 (en) 2007-11-30 2007-11-30 Aluminium strip for lithographic pressure plate carriers and its manufacture
EP08853549.7A Revoked EP2220262B1 (en) 2007-11-30 2008-11-24 Aluminium strip for lithographic pressure plate carriers and its manufacture

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08853549.7A Revoked EP2220262B1 (en) 2007-11-30 2008-11-24 Aluminium strip for lithographic pressure plate carriers and its manufacture

Country Status (9)

Country Link
US (1) US11326232B2 (en)
EP (2) EP2067871B2 (en)
JP (1) JP5319693B2 (en)
CN (1) CN101883876A (en)
BR (1) BRPI0819596B8 (en)
DE (1) DE202008018332U1 (en)
ES (2) ES2407655T5 (en)
SI (1) SI2067871T2 (en)
WO (1) WO2009068502A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2435404T5 (en) 2005-10-19 2021-02-22 Hydro Aluminium Rolled Prod Procedure for the manufacture of an aluminum strip for lithographic printing plate supports
SI2067871T2 (en) 2007-11-30 2023-01-31 Speira Gmbh Aluminium strip for lithographic pressure plate carriers and its manufacture
ES2587024T3 (en) 2008-11-21 2016-10-20 Hydro Aluminium Rolled Products Gmbh Aluminum band for lithographic printing plate supports with high alternating flexural strength
WO2012059362A1 (en) 2010-11-04 2012-05-10 Novelis Inc. Aluminium lithographic sheet
EP2495106B1 (en) * 2011-03-02 2015-05-13 Hydro Aluminium Rolled Products GmbH Aluminium band for lithographic printing plate carriers with water-based coatings
JP2013177685A (en) * 2013-04-11 2013-09-09 Kobe Steel Ltd High strength aluminum alloy sheet for automatic plate-making printing plate
CN103667819B (en) * 2013-11-22 2015-09-16 中铝瑞闽股份有限公司 CTP version base and preparation method thereof
CN109072389B (en) 2016-04-20 2020-05-19 海德鲁铝业钢材有限公司 Lithographic strip production with high cold rolling reduction
CN107868887A (en) * 2016-09-23 2018-04-03 镇江龙源铝业有限公司 A kind of LED lamp aluminium strip new material
BR112022007669A2 (en) * 2019-11-12 2022-08-09 Speira Gmbh SHEET REGULATED HEAT TREATMENT
EP4015658A1 (en) * 2020-12-18 2022-06-22 Speira GmbH Aluminium foil with improved barrier property

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605861A (en) 1983-06-22 1985-01-12 Furukawa Alum Co Ltd Production of base for lithographic printing plate
JPS62181191A (en) 1986-02-06 1987-08-08 Furukawa Alum Co Ltd Production of planographic plate material
JPS62181190A (en) 1986-02-06 1987-08-08 Furukawa Alum Co Ltd Production of aluminum alloy base for planographic plate
EP0257957A1 (en) 1986-08-18 1988-03-02 Fuji Photo Film Co., Ltd. Aluminium alloy support for lithography, process for producing thereof and lithographic printing plate using the same
US4822715A (en) 1986-04-01 1989-04-18 Furukawa Aluminum Co., Ltd. Aluminum alloy supporter for lithographic printing plate
JPH1161364A (en) 1997-08-22 1999-03-05 Sky Alum Co Ltd Manufacture of aluminum alloy support for lithographic printing plate and aluminum alloy support for lithographic printing plate
EP1065071A1 (en) 1999-07-02 2001-01-03 VAW aluminium AG Aluminum alloy strip used for making lithographic plate and method of production
EP1172228A2 (en) 2000-07-11 2002-01-16 Fuji Photo Film Co., Ltd. Support for lithographic printing plate and pre-sensitized plate
WO2002048415A1 (en) 2000-12-11 2002-06-20 Alcan International Limited Aluminium alloy for lithographic sheet
WO2007115167A2 (en) 2006-03-31 2007-10-11 Alcoa Inc. Manufacturing process to produce litho sheet

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH493642A (en) * 1967-12-29 1970-07-15 Alusuisse Process for the production of fine-grained strips from aluminum alloys containing manganese
JPS5842745A (en) * 1981-09-03 1983-03-12 Furukawa Alum Co Ltd Aluminum alloy plate for printing and its manufacture
JPS60230951A (en) * 1984-04-27 1985-11-16 Fuji Photo Film Co Ltd Aluminum alloy supporting body for lithographic printing plate
JPS6126746A (en) * 1984-07-18 1986-02-06 Kobe Steel Ltd Aluminum alloy for lithographic printing plate
DE3507402A1 (en) 1985-03-02 1986-09-04 Vereinigte Aluminium-Werke AG, 1000 Berlin und 5300 Bonn ALUMINUM OFFSET TAPE AND METHOD FOR THE PRODUCTION THEREOF
US4729939A (en) * 1985-07-25 1988-03-08 Nippon Light Metal Company Limited Aluminum alloy support for lithographic printing plates
JPH07100844B2 (en) * 1985-10-04 1995-11-01 日本軽金属株式会社 Method for manufacturing aluminum alloy support for offset printing
JPS6286143A (en) 1985-10-11 1987-04-20 Sky Alum Co Ltd Aluminum alloy blank for support of printing plate
JPS6347348A (en) * 1986-08-18 1988-02-29 Sky Alum Co Ltd Aluminum alloy support for lithographic printing plate
JPS6347347A (en) * 1986-08-18 1988-02-29 Sky Alum Co Ltd Aluminum alloy support for lithographic printing plate
JPH10195568A (en) 1997-01-10 1998-07-28 Konica Corp Aluminum alloy sheet for lithographic printing
DE69723061T3 (en) 1997-06-26 2010-06-10 Fujifilm Corp. Aluminum alloy support for a lithographic printing plate
JPH11161364A (en) 1997-11-25 1999-06-18 Mitsubishi Electric Corp Semiconductor circuit device
DE19956692B4 (en) * 1999-07-02 2019-04-04 Hydro Aluminium Deutschland Gmbh litho
EP2460909B1 (en) 2005-05-19 2017-12-27 Hydro Aluminium Rolled Products GmbH Conditioning of an aluminium strip
ES2435404T5 (en) * 2005-10-19 2021-02-22 Hydro Aluminium Rolled Prod Procedure for the manufacture of an aluminum strip for lithographic printing plate supports
SI2067871T2 (en) 2007-11-30 2023-01-31 Speira Gmbh Aluminium strip for lithographic pressure plate carriers and its manufacture
US20110039121A1 (en) 2007-11-30 2011-02-17 Hydro Aluminium Deutschland Gmbh Aluminum strip for lithographic printing plate carriers and the production thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605861A (en) 1983-06-22 1985-01-12 Furukawa Alum Co Ltd Production of base for lithographic printing plate
JPS62181191A (en) 1986-02-06 1987-08-08 Furukawa Alum Co Ltd Production of planographic plate material
JPS62181190A (en) 1986-02-06 1987-08-08 Furukawa Alum Co Ltd Production of aluminum alloy base for planographic plate
US4822715A (en) 1986-04-01 1989-04-18 Furukawa Aluminum Co., Ltd. Aluminum alloy supporter for lithographic printing plate
EP0257957A1 (en) 1986-08-18 1988-03-02 Fuji Photo Film Co., Ltd. Aluminium alloy support for lithography, process for producing thereof and lithographic printing plate using the same
JPH1161364A (en) 1997-08-22 1999-03-05 Sky Alum Co Ltd Manufacture of aluminum alloy support for lithographic printing plate and aluminum alloy support for lithographic printing plate
EP1065071A1 (en) 1999-07-02 2001-01-03 VAW aluminium AG Aluminum alloy strip used for making lithographic plate and method of production
EP1065071B1 (en) 1999-07-02 2004-11-10 Hydro Aluminium Deutschland GmbH Aluminum alloy strip used for making lithographic plate and method of production
EP1172228A2 (en) 2000-07-11 2002-01-16 Fuji Photo Film Co., Ltd. Support for lithographic printing plate and pre-sensitized plate
US6494137B2 (en) 2000-07-11 2002-12-17 Fuji Photo Film Co., Ltd. Support for lithographic printing plate and presensitized plate
WO2002048415A1 (en) 2000-12-11 2002-06-20 Alcan International Limited Aluminium alloy for lithographic sheet
WO2007115167A2 (en) 2006-03-31 2007-10-11 Alcoa Inc. Manufacturing process to produce litho sheet

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"The Fatigue of Metals", 1 November 1957, CHAPMAN AND HALL LTD. , article G. FORREST: "Fatigue Properties of Aluminium Alloys", pages: 831 - 845
CATRIN KAMMER: "Aluminium-Taschenbuch, 15. Auflage", ALUMINIUM-ZENTRALE DÜSSELDORF, 1995, [retrieved on 20170512]
DIETRICH G. ALTENPOHL: "Aluminum", THE ALUMINUM ASSOCIATION, INC, 2000, [retrieved on 20170512]
J. C. GROSSKREUTZ, G.G. SHAW: "Critical Mechanisms in the Development of Fatigue Cracks in 2024-T4 Aluminum", TECHNICAL REPORT AFML-TR-68-137, 1 May 1968 (1968-05-01), pages 1 - 28
T 2003/09
WILLIAM M. JOHNSTON: "Fracture Tests on Thin Sheet 2024-T3 Aluminum Alloy for Specimens With and Without Anti-Buckling Guides", NASA REPORT CR-2001-210832, 1 March 2001 (2001-03-01), pages 1 - 35

Also Published As

Publication number Publication date
BRPI0819596B1 (en) 2021-03-02
SI2067871T2 (en) 2023-01-31
JP5319693B2 (en) 2013-10-16
DE202008018332U1 (en) 2013-02-07
EP2067871A1 (en) 2009-06-10
BRPI0819596A2 (en) 2020-08-25
EP2220262B1 (en) 2014-01-08
ES2407655T5 (en) 2023-02-23
SI2067871T1 (en) 2013-06-28
ES2407655T3 (en) 2013-06-13
EP2220262A1 (en) 2010-08-25
ES2456269T3 (en) 2014-04-21
EP2067871B1 (en) 2013-02-20
BRPI0819596B8 (en) 2023-01-10
JP2011505493A (en) 2011-02-24
WO2009068502A1 (en) 2009-06-04
CN101883876A (en) 2010-11-10
US20170253952A1 (en) 2017-09-07
US11326232B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
EP2067871B2 (en) Aluminium strip for lithographic pressure plate carriers and its manufacture
EP2770071B2 (en) Aluminium alloy for the production of semi-finished products or components for motor vehicles, method for producing an aluminium alloy strip from this aluminium alloy and aluminium alloy strip and uses thereof
EP3314031B1 (en) High strength and easily reformable almg tape and method for producing the same
EP1937860B2 (en) Method of production of an aluminium strip for lithographic printing plate supports
EP2270249B1 (en) AlMgSi-sheet for applications with high shaping requirements
EP2570509B1 (en) Production method for AlMgSi-aluminium strip
EP2192202B9 (en) Aluminium sheet for lithographic printing plate support having high resistance to bending cycles
EP0352597A1 (en) Process for producing hot-rolled strip or heavy plates
EP3445887B1 (en) Lithographic sheet manufacturing with high cold roll pass reduction
DE69230447T3 (en) HIGH-FIXED, COLD-ROLLED STEEL PLATE WITH EXCELLENT FORMABILITY, FIRE-DIRECT, COLD-ROLLED STEEL PLATE AND METHOD FOR PRODUCING THIS PLATE
EP2243848B1 (en) Manganese and magnesium rich aluminium strip
EP2243849B1 (en) Manganese and magnesium rich aluminium strip
EP1748088B1 (en) Process for producing a semi-finished product or component for chassis or structural automotive applications
DE1903554A1 (en) Process for the production of hot rolled steel strip
EP1194598B1 (en) Use of a steel for producing components of picture tubes and method for producing components of picture tubes made of sheet steel
EP3781717B1 (en) Cold-rolled flat steelproduct and use, and method for producing such a flat steel product
DE19956692B4 (en) litho

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STEINHOFF, GERD

Inventor name: SETTELE, CHRISTOPH

Inventor name: HASENCLEVER, JOCHEN

Inventor name: BRINKMAN, HENK-JAN

Inventor name: KERNIG, BERNHARD

17P Request for examination filed

Effective date: 20091209

17Q First examination report despatched

Effective date: 20100105

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRINKMAN, HENK-JAN

Inventor name: KERNIG, BERNHARD

Inventor name: STEINHOFF, GERD

Inventor name: HASENCLEVER, JOCHEN

Inventor name: SETTELE, CHRISTOPH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 597610

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007011319

Country of ref document: DE

Effective date: 20130418

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2407655

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130613

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130520

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130521

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

26 Opposition filed

Opponent name: NOVELIS INC.

Effective date: 20131119

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007011319

Country of ref document: DE

Effective date: 20131119

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 597610

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007011319

Country of ref document: DE

Owner name: SPEIRA GMBH, DE

Free format text: FORMER OWNER: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH, 41515 GREVENBROICH, DE

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SPEIRA GMBH

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20221019

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502007011319

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: SPEIRA GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH

Effective date: 20221020

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: SPEIRA GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH

Effective date: 20221206

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: SPEIRA GMBH; DE

Effective date: 20221118

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2407655

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20230223

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231121

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20231023

Year of fee payment: 17

Ref country code: IT

Payment date: 20231122

Year of fee payment: 17

Ref country code: FR

Payment date: 20231121

Year of fee payment: 17

Ref country code: DE

Payment date: 20231121

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231121

Year of fee payment: 17