EP2061733A2 - Verfahren zur herstellung eines insbesondere porösen keramischen formkörpers und damit hergestellter formkörper - Google Patents

Verfahren zur herstellung eines insbesondere porösen keramischen formkörpers und damit hergestellter formkörper

Info

Publication number
EP2061733A2
EP2061733A2 EP07800179A EP07800179A EP2061733A2 EP 2061733 A2 EP2061733 A2 EP 2061733A2 EP 07800179 A EP07800179 A EP 07800179A EP 07800179 A EP07800179 A EP 07800179A EP 2061733 A2 EP2061733 A2 EP 2061733A2
Authority
EP
European Patent Office
Prior art keywords
powder
suspension
shaped body
nitride
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07800179A
Other languages
English (en)
French (fr)
Inventor
Reinhard Simon
Robert Danzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montanuniversitaet Leoben
Original Assignee
Montanuniversitaet Leoben
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montanuniversitaet Leoben filed Critical Montanuniversitaet Leoben
Publication of EP2061733A2 publication Critical patent/EP2061733A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0064Multimodal pore size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62823Zirconium or hafnium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]

Definitions

  • the invention relates to a method for producing a particularly porous ceramic molding, which ceramic molding is optionally reinforced with fibers and / or textile semifinished such as tissue, wherein a powder A and at least one further powder B are suspended in a liquid, after which from the thus created Suspension is optionally formed in combination with fibers and / or textile semi-finished a molded body and optionally the shaped body is sintered.
  • the invention further relates to a fiber-free, in particular porous ceramic molding.
  • the invention relates to a composite body consisting of a particular porous ceramic and fibers and / or textile semifinished such as tissue.
  • Porous ceramic materials have very large in this context
  • these materials are suitable for a variety of applications, for example as catalyst supports, as filters for liquid metals or gases, as lightweight components, as bioactive implants or as reinforcement components for composites with metals or polymers.
  • porous ceramics are functionally exposed to high mechanical loads in use, it is procedurally important that they can be produced without cracks and with a homogeneous, preferably defect-free microstructure and that a uniformly distributed over the body porosity in controllable Way is adjustable. Inhomogeneities in the microstructure represent potential weak points under load and should therefore not be present.
  • a suspension can only be used to laminate fibers. It can not be used for other common processing processes such as casting or extrusion.
  • a fiber content in the solid state is therefore limited to a maximum of 48 percent by volume in order to avoid cavities and / or cracks and / or a defect-rich matrix.
  • this known method is therefore extremely time-consuming, can lead to the solidification of the suspension, can only be used for lamination processes and is only applicable for the production of laminate products with a certain fiber content.
  • the invention has the object to provide a method of the type mentioned, in which the disadvantages set out above are eliminated or at least reduced and which has a much wider application potential.
  • Another object of the invention is to provide a prepared from a plurality of powders, fiber-free, in particular porous ceramic moldings of high strength, the homogeneous microstructure with optionally uniform porosity and which is essentially free of cracks produced.
  • a still further object of the invention is to provide a highly tough composite body consisting of a particular porous ceramic and fibers and / or textile semifinished such as fabric, in which the ceramic is made of several powders, having a homogeneous microstructure with optionally uniform porosity and which in Essentially free of cracks can be produced.
  • the object of the invention to provide a method of the type mentioned above, in which the disadvantages set out above are eliminated or at least reduced, is achieved by suspending the powders A and B approximately at a pH of the liquid in a generic method, in which a viscosity minimum of the suspension is given.
  • suspensions can now also be cast or extruded, so that basically all known shaping methods can be used.
  • the pH to be maintained in the suspension of the powder can be readily determined by the skilled person in sufficient accuracy or approximation by a dilute suspension of the powder A and B with z. B. 30 volume percent solids and the viscosity of this suspension is determined depending on the pH.
  • fiber-free molded bodies can be sintered either to porous or also to substantially dense ceramics. The same applies to the ceramic matrix content in fiber-reinforced ceramics.
  • multi-phase microstructures with a homogenous microstructure can be achieved through the use of several different powders and thus materials with specifically adjusted properties can be provided.
  • a suitable surface charge can be brought about by adding an additive such as a peptizer or polyelectrolyte which is adsorbed on at least one of the powders when preparing the suspension.
  • an average grain size of the powder A is at least four times that of the powder B.
  • the powder A has an average grain size of more than 300 nm and the powder B has an average grain size of less than 100 nm. It has proven to be favorable that the powder B has a higher zeta potential in terms of magnitude.
  • Powders B is 0.65: 0.35 to 0.90: 0.10. At these volume ratios of the powder shrinkage can be minimized, which has a favorable effect on a crack-free formation of ceramic components.
  • this is preferably used when a volume fraction of the powders in the suspension is more than 50% by volume, preferably more than 55% by volume.
  • the dispersing medium or the liquid is usually water. If one of the powders used reacts with water, it is also possible to resort to other liquids which do not react with the powder (s).
  • a hardener is added to the suspension before the formation of a shaped body, which supports coagulation of the particles in the shaped body during or after formation of the shaped body.
  • the added hardener causes a Shifting of the pH to the isoelectric point and preferably forms a solid reaction product with the liquid.
  • a hardener may be a metal nitride, in particular magnesium nitride, gallium nitride, lanthanum nitride, zirconium nitride, aluminum nitride, yttrium nitride or hafnium nitride.
  • the curing agent may also be an organosilicon polymer, in particular polysilazane, polycarbosilazane, polysilazilazane or polysilylcarbodiimide.
  • organosilicon polymer in particular polysilazane, polycarbosilazane, polysilazilazane or polysilylcarbodiimide.
  • These hardeners decompose in water with elimination of pH-changing substances and thus ensure a shift of the pH towards the isoelectric point, at which the existing and then neutral composite particles unite due to van der Waals forces, so that it comes to a consolidation.
  • the curing agent can also crosslink to a polymeric solid and thus also lead to a cross-linking of the powder particles with each other, thus acting to increase strength.
  • any two- or three-dimensional semi-finished textile fiber products for. As scrims, braids, knitted or crocheted.
  • the fibers / semi-finished products can be surface-coated before and / or after infiltration with suspension with a bonding agent and thereby glued or solidified.
  • organosilicon polymers or various sols such as metal alkoxides and solutions of inorganic salts are suitable.
  • Inventive moldings can be sintered, optionally partially or completely.
  • the further object of the invention is achieved by a shaped body according to claim 16.
  • a shaped body according to the invention can be seen inter alia in a substantially crack-free structure both in the green state and in the sintered state. At the same time a low-defect or -free structure formation and optionally a uniformly distributed porosity is given.
  • a porosity can be varied depending on the powders used and a sintering temperature in a wide range, for. B. between 0.05 and 50 percent by volume. If porous shaped bodies are desired, a porosity is preferably between 30 and 45 By volume. Alternatively, shaped bodies according to the invention can also be made substantially dense by appropriate sintering guidance.
  • the shaped body advantageously has a structure in which particles of the powder A are largely enveloped by particles of the powder B and firmly bonded to them.
  • Another advantage is that a maximum size of defects in the microstructure is smaller than a maximum grain size. Such low defect sizes lead to a disproportionately high strength of the molding, with an increase in strength was observed both for green moldings and sintered moldings.
  • the volume ratio of the powder A to the powder B or the powders B is 0.65: 0.35 to 0.90: 0.10.
  • the powder A has an average grain size of more than 300 nm and the powder B has an average grain size of less than 100 nm.
  • the still further object of the invention is achieved by a composite body according to claim 20.
  • a composite body according to the invention has a high fiber content and a low-defect matrix and is therefore highly tough and also withstands load situations in which durability of the matrix is the decisive criterion.
  • Fig. 2 Cast green shaped body; 3 shows a scanning electron micrograph of composite particles in a dried green body;
  • Fig. 5 A cross section of a fiber-ceramic composite part in ⁇ 45 ° fiber orientation.
  • a sufficiently accurate determination of the viscosity minimum of a high solids suspension can be carried out by preliminarily at low solids levels, e.g. B. 15 to 30 percent by volume, a viscosity is determined depending on the pH or an amount of acid.
  • additives are proportionally suspended in a determination of a viscosity minimum with the powders.
  • a viscosity of the suspension can then be determined, for example, by means of rotational viscometry.
  • a viscosity minimum depends on the pH and can also have a ratio of fine powder ("fine”, average particle size less than 100 nanometers) to coarse powder (“coarse”, average particle size greater than 500 nanometers). vary.
  • Particle size distributions of the powders used to prepare the suspension are determined individually for each powder in the suspended state by means of electro-acoustics.
  • F denotes the maximum force
  • D the diameter of the sample and t the thickness of the sample. Cylindrical samples with a diameter of 20 mm and a thickness of 10 mm were used.
  • Example 1 (porous alumina ceramic)
  • a ceramic suspension was prepared by bringing deionized water with five molar HNO 3 solution to a pH of 4.2 to 4.5 followed by AIOOH powder having an average particle size (d 50 ) of 120 nanometers and Al 2 O. 3 powders having a mean particle size (d 50 ) of 950 nanometers were suspended. In order to maintain a constant pH in the range of a viscosity minimum, a quantity of HNO 3 solution required for this purpose was simultaneously added with the powders. The suspended powders had a zeta potential of + 65 mV (AIOOH) and + 49 mV (Al 2 O 3 ) in the region of the viscosity minimum.
  • the suspension was deagglomerated continuously during the addition of the individual components, the suspension being ground in the circulation via an agitator ball mill. In this case, a very homogeneous distribution of the powder particles was achieved in the suspension and the coarse powder particles were largely enveloped by the finer powder particles. A proportion of the finer AIOOH powder in the powder mixture was 30% by volume. A solids content in the suspension after preparation was 58% by volume. The preparation of 1.5 liters of suspension required only two hours.
  • the low-viscosity suspension had a viscosity (here as below at 20 0 C) of 200 to 400 mPas. Despite its high solids content in the suspension, this low viscosity made it possible to pour off the suspension into non-porous plastic or metal molds, whereby differently shaped green bodies were produced while maintaining very fine structural details of the negative mold. Solidification of the suspension in the casting mold took place, depending on the reaction conditions, within about one to six Hours. A few hours after pouring the green bodies were removed from the mold and then dried.
  • the green bodies were characterized in the wet state by a high strength of about 28 to 300 kPa, which made possible a problem-free demolding and handling of the green body even with very complicated geometries. Surface structures were preserved in all subtleties (see FIG. 2).
  • the green bodies had a homogeneous, largely defect-free and ordered structure. Such a structure is shown by way of example on the basis of a scanning electron micrograph in FIG. 3. In this structure, the coarse powder particles are largely enveloped by fine powder particles and firmly bonded together, resulting in a high strength of the green body.
  • Green body prepared as described were sintered in a box furnace for eight hours isothermally at a temperature of 1300 0 C in ambient atmosphere. A linear vibration on sintering was less than 1.85 volume percent.
  • the ceramics consisted of a stable ⁇ -Al 2 O 3 phase.
  • the ceramics typically had an open, interconnect porosity of about 40 volume percent and a mean pore diameter of about 250 nanometers or less. As can be seen by way of example from FIG. 4, the ceramics were characterized by an extremely homogeneous, virtually defect-free microstructure and formed substantially free of cracks.
  • the finer ZrO 2 powder was characterized by a zeta potential of + 52 mV in the region of the viscosity minimum and by a zeta potential of + 39 mV by the coarser one.
  • the particle sizes (d 50 ) were 90 nanometers and 1.2 microns, respectively, with a proportion of the finer powder in the powder mixture in the suspension being 20 percent by volume.
  • a granulate having an average diameter of about 0.8 millimeters was produced.
  • the dried granules were pre-sintered in a chamber oven for five hours isothermally at a temperature of 1200 0 C in ambient atmosphere. After this treatment, the granules had an open, interconnecting porosity and high strength.
  • the presintered granules were then added to a finely dispersed suspension containing ZrO 2 powder with a mean particle size of 90 nanometers, the suspended solids typically being 90 percent by volume granules and 10 percent more fine ZrO 2 powder.
  • a solids content in the suspension was adjusted to 58% by volume.
  • Example 2 the dried green bodies were characterized by a very homogeneous, almost defect-free and ordered microstructure, in which the coarser granulate particles were largely enveloped by the finer powder particles and firmly joined to them.
  • substantially crack-free ceramics consisted of a tetragonal ZrO 2 phase with a typically hierarchical, open, interconnective porosity of about 38 percent by volume.
  • a pore size distribution was bimodal, with a mean pore diameter of smaller pores at about 250 nanometers and a mean pore diameter larger pores at about 170 microns.
  • the powders used were strongly agglomerated or aggregated in the dry state.
  • the powders had zeta potentials of + 57 mV (SiO 2 ), + 68 mV (AIOOH) and + 42 mV (SiC) in the region of the viscosity minimum.
  • the average powder sizes were 66 nm (SiO 2 ), 59 nanometers (AIOOH) and 550 nanometers (SiC), respectively.
  • a cationic condenser eg a polyelectrolyte or a surfactant
  • positive zeta potentials can be set even with normally negatively charged particle surfaces (SiC) or with respect to the sign (positive or negative) for all powders negative) the same zeta potential is adjustable.
  • the suspension was continuously deagglomerated by pumping the suspension through a stirred ball mill.
  • a very homogeneous distribution of the powder particles was achieved in the suspension, wherein the coarse powder particles were largely enveloped by the fine powder particles or were bound to this.
  • a solids content of the suspension after preparation was 54% by volume.
  • the proportion of the fine powder in the powder mixture was typically 10 to 30% by volume.
  • AIN powder For the purpose of solidification, a small amount of AIN powder was added to the suspension. After homogenization of the suspension, this was degassed under vacuum to remove any air bubbles. At this time, the low-viscosity suspension had a viscosity of 500 to 900 mPas. By pouring the suspension into non-porous plastic or metal molds, various shaped green bodies were produced. The solidification of the suspension in the mold was carried out depending on
  • the green bodies had a strength of 23 to 260 kPa when wet.
  • the green bodies were characterized by a very homogeneous, almost defect-free and ordered structure, in which the coarse powder particles were largely enveloped by the fine powder particles and firmly bound to them.
  • a proportion of organic components (resulting from the cationic condenser) in the green body was less than 1, 2 percent by weight.
  • the green bodies thus produced were densely sintered in an oven for 3 hours isothermally at a temperature of 1600 0 C in an inert atmosphere. In the process, the fine powders formed mullite.
  • the substantially crack-free, dense ceramic was characterized by a very homogeneous, nearly defect-free microstructure with the two phases arranged such that mullite preferentially surrounded the SiC grains and formed a substantially continuous seam typically with a thickness of about 80 to 120 nanometers , This shows that the finer powders can be used for the targeted adjustment or modification of grain boundaries, which provides a control of the functional and mechanical properties of ceramics.
  • a ceramic suspension was kept in the region of the viscosity minimum of the suspension (by keeping the pH substantially constant between 3.8 to 4.2) by continuous addition of fine SiO 2 powder, fine AIOOH powder, coarse mullite powder and 5 molar HNO 3 solution to an aqueous solution of a cationic condensing agent.
  • the powders used were strongly agglomerated or aggregated in the dry state.
  • the fine SiO 2 powder was characterized in the region of the viscosity minimum by a zeta potential of + 55 mV.
  • An average particle size (d 50 ) was 65 nanometers; the fine AIOOH powder was characterized by a zeta potential of + 62 mV in the area of the minimum viscosity.
  • An average particle size (d 50 ) was 55 nanometers; the coarse mullite powder was characterized by a zeta potential of + 45 mV in the region of the minimum viscosity. An average particle size (d 50 ) was 710 nanometers.
  • the suspension was continuously deagglomerated by pumping the suspension through a stirred ball mill.
  • a very homogeneous distribution of the powder particles was achieved in the suspension, wherein the coarse powder particles were largely enveloped by the fine powder particles or the fine powder particles were bound to the coarse.
  • the solids content of the suspension after preparation was 51% by volume.
  • the proportion of the fine powder in the powder mixture was typically 10 to 30% by volume.
  • AIN powder For the purpose of solidification, a small amount of AIN powder was added to the suspension. After homogenization of the suspension, this was degassed under vacuum to remove any air bubbles. At that time, the thin liquid pointed Suspension has a viscosity of 150 to 280 mPas.
  • Simply molded composite ceramic components were prepared by individually infiltrating several layers of oxide fiber fabric (Nextel 720; 3M Ceramic Textiles and Composites, St. Paul, MN, USA) with the suspension and depositing them in a plastic or metal mold. The resulting composite molded articles were compacted by means of a vacuum bag and demolded after about 12 hours.
  • the dried laminates were characterized by a very homogeneous and ordered structure, wherein in the matrix, the coarse powder particles were largely enveloped by the fine powder particles and firmly connected with these. A proportion of organic components (resulting from the cationic condenser) in the composite was less than 1, 2 percent by weight.
  • the laminates were characterized by excellent sintering behavior and high strength.
  • the laminates thus produced were sintered in an oven for 10 hours at temperatures between 1200 to 1350 0 C in normal atmosphere.
  • the fine powder compacted almost completely in a first step and formed crystalline mullite in a second step.
  • a linear shrinkage of the matrix was less than 1.8 percent.
  • a fiber content of the ceramic was typically 52 to 55 volume percent (see FIG. 5), a porosity 17 to 20 volume percent.
  • the composite ceramic was characterized by a homogeneous microstructure with a very low residual stress state, as well as excellent mechanical properties and excellent high-temperature stability. The mechanical behavior was itself after
  • Such a composite part are a low-defect matrix state in combination with a high fiber volume fraction. This generally leads to higher mechanical characteristics, above all also in the case of matrix-dominated load situations (eg in tensile load situations). or shear stress at ⁇ 45 ° to the fiber axes), which was previously a significant weak point of such composite ceramics.
  • Example 5 (Ceramic Matrix Composite by Infusion Method) A suspension was prepared as in Example 4. The solids content in the suspension after preparation was 48% by volume. A proportion of the fine powder in the powder mixture was typically 10 to 30% by volume. For the purpose of solidification, a small amount of AIN powder was added to the suspension. After homogenization of the suspension, this was degassed under vacuum to remove any air bubbles. At this time, the very low-viscosity suspension had a viscosity of 80 to 170 mPas.
  • Carbon fiber textile preforms of 3-dimensional reinforcement architecture were placed in a mold and infiltrated with the suspension by infusion. After solidification, the laminates were demolded and sintered in an inert atmosphere at temperatures as in Example 4.
  • the composite ceramic was characterized by a homogeneous microstructure with low-defect matrix structure and 3-dimensional amplification architecture.
  • a ceramic suspension was kept in the region of the viscosity minimum of the suspension (by keeping the pH substantially constant between 4.0 to 4.4) by continuous addition of fine SiC powder, fine AIOOH powder, coarse Al 2 O 3 powder and 5 molar HNO 3 solution to produce an acidic aqueous solution of a cationic-effect condenser.
  • the powders used were strongly agglomerated or aggregated in the dry state.
  • the fine SiC powder was characterized in the range of the minimum viscosity by a zeta potential of + 50 mV (average particle size (d 50 ) of 150 nanometers).
  • the fine AIOOH powder was characterized in the area of the viscosity minimum by a zeta potential of + 65 mV (average particle size (d 50 ) of 59 nanometers).
  • the coarse Al 2 O 3 powder was in the range of Viscosity minimum characterized by a zeta potential of + 45 mV (mean particle size (d 50 ) of 350 nanometers).
  • the suspension was continuously deagglomerated by pumping the suspension through a stirred ball mill.
  • a very homogeneous distribution of the powder particles was achieved in the suspension, wherein the coarse powder particles were largely enveloped by the fine powder particles.
  • a solids content of the suspension after its preparation was 54 percent by volume.
  • a proportion of the fine powder in the powder mixture was typically 10 to 30% by volume.
  • this was degassed under vacuum to remove any air bubbles. At this time, the suspension had a viscosity of 500 to 900 mPas.
  • the suspension was extruded through a die with a small amount of polysilazane added ( ⁇ 1 volume percent) for rapid solidification of the suspension just prior to extrusion. The solidification took place depending on the reaction conditions within a few minutes to one hour.
  • the green bodies were characterized by a high strength, which made a problem-free handling possible.
  • the dried green bodies were further characterized by a very homogeneous, almost defect-free and ordered structure, in which the coarse powder particles were largely enveloped by the fine powder particles and firmly connected to these.
  • the green bodies were further characterized by excellent sintering behavior and high strength.
  • the green bodies thus produced were sintered isothermally in a furnace for 2 hours at a temperature of 1800 0 C in an inert atmosphere to a specific gravity of 99.5%.
  • This forms a nanocomposite with nanoscale inter and intra phases of SiC in an Al 2 O 3 matrix.
  • the polysilazane also formed nanoscale SiCO or SiCNO dispersoids.
  • the essentially dense ceramic was characterized by a very homogenous, almost defect-free microstructure as well as excellent strength and toughness (by microstructural reinforcement with nano-dispersoids) as well as high-temperature resistance.
  • Solidification by means of polysilazane and plastic molding processes such as extrusion can be applied.
  • the polysilazane increases the green strength compared to AIN, since not only ammonia is formed, but also a crosslinking reaction takes place.
  • the crosslinked polysilazane further contributes to the structure reinforcement during sintering by the formation of nano-dispersoids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines insbesondere porösen keramischen Formkörpers, welcher keramische Formkörper optional mit Fasern und/oder textilem Halbzeug wie Gewebe verstärkt ist, wobei ein Pulver A und zumindest ein weiteres Pulver B in einer Flüssigkeit suspendiert werden, wonach aus der so erstellten Suspension optional in Kombination mit Fasern und/oder textilem Halbzeug ein Formkörper gebildet und optional der Formkörper gesintert wird. Erfindungsgemäß ist vorgesehen, dass die Pulver A und B ungefähr bei einem pH-Wert der Flüssigkeit suspendiert werden, bei dem ein Viskositätsminimum der Suspension gegeben ist, wodurch hohe Feststoffgehalte in der Suspension bei niedrigen Viskositäten eingestellt werden können. Dies ermöglicht eine rasche Herstellung von weitgehend rissfreien Formkörpern mit vorteilhaft defektarmen Gefügen.

Description

Verfahren zur Herstellung eines insbesondere porösen keramischen Formkörpers und damit hergestellter Formkörper
Die Erfindung betrifft ein Verfahren zur Herstellung eines insbesondere porösen keramischen Formkörpers, welcher keramische Formkörper optional mit Fasern und/oder textilem Halbzeug wie Gewebe verstärkt ist, wobei ein Pulver A und zumindest ein weiteres Pulver B in einer Flüssigkeit suspendiert werden, wonach aus der so erstellten Suspension optional in Kombination mit Fasern und/oder textilem Halbzeug ein Formkörper gebildet und optional der Formkörper gesintert wird.
Weiter hat die Erfindung einen faserfreien, insbesondere porösen keramischen Formkörper zum Gegenstand.
Schließlich betrifft die Erfindung einen Verbundkörper bestehend aus einer insbesondere porösen Keramik und Fasern und/oder textilem Halbzeug wie Gewebe.
In der Werkstofftechnologie kommt der Entwicklung von neuen Materialien mit maßgeschneiderten Eigenschaftsprofilen ein hoher Stellenwert zu. Beispielsweise bietet ein gezielter Aufbau von Materialien aus mehreren individuellen Komponenten bzw. Werkstoffen und/oder ein Einführen von Porosität in Materialien die Möglichkeit, deren mechanische, elektrische, optische und/oder magnetische Eigenschaften zu variieren. Form- und Bauteile können so je nach Einsatzzweck in ihren Eigenschaften angepasst werden.
Poröse keramische Materialien haben in diesem Zusammenhang sehr große
Aufmerksamkeit erlangt. Auf Grund einer niedrigen Dichte, hohen spezifischen Oberfläche und Permeabilität sowie niedrigen Wärmeleitfähigkeit kommen diese Materialien für eine Vielzahl von Anwendungen in Betracht, beispielsweise als Katalysatorträger, als Filter für flüssige Metalle oder Gase, als Leichtbauteile, als bioaktive Implantate oder als Verstärkungskomponenten für Verbundwerkstoffe mit Metallen oder Polymeren.
Für Anwendungen, in denen poröse Keramiken im Einsatz funktionell auch hohen mechanischen Belastungen ausgesetzt sind, kommt es verfahrensmäßig darauf an, dass diese ohne Risse und mit einem homogenen, möglichst defektfreien Gefüge herstellbar sind und dass eine über den Körper gleichmäßig verteilte Porosität in kontrollierbarer Weise einstellbar ist. Inhomogenitäten im Gefüge stellen potentielle Schwachstellen bei Belastungen dar und sollen deshalb nicht vorliegen.
Gemäß dem Stand der Technik war man zur Herstellung poröser Keramiken lange Zeit auf Verfahren wie Einbringen organischer Phasen in Grünlinge und Ausbrennen dieser Phasen (z. B. US 5,030,396), partielles Sintern von pulvermetallurgisch erstellten Grünlingen (z. B. US 4,218,255), Reproduktion polymerer Schäume (z. B. US 5,382,396) oder Schäumen von Suspensionen (z. B. US 4,814,300) angewiesen. Diese Verfahren bringen gravierende Nachteile mit sich, insbesondere inhomogene Porenstrukturen bzw. ungleichmäßige Porosität und/oder defektbehaftete, im Hochtemperatureinsatz wenig stabile Gefüge.
Im Hinblick auf eine kontrollierbar einstellbare Porosität wurde gemäß dem Stand der Technik ein Fortschritt erzielt und ein Verfahren zur Herstellung von faserverstärkten, porösen keramischen Compositen angegeben (DE 103 18 514 B3; R. A. Simon, Progress in Processing and Performance of Porous-matπx Oxide/Oxide Composites, International Journal of Applied Ceramic Technology, 2005, Seiten 141 bis 149; R. A. Simon et al., Kolloidale Herstellung und Eigenschaften einer neuen faserverstärkten Oxidkeramik, Verbundwerkstoffe, Verlag Wiley-VCH, Weinheim, 2003, Seiten 298 bis 303).
Bei diesem bekannten Verfahren wird aus zwei keramischen Pulvern unterschiedlicher Korngröße (ca. 1 μm bzw. kleiner 100 nm) bei pH = 7 eine Suspension von Verbundteilchen mit Kern-Schale-Struktur erstellt, die Suspension nach Absenken des pH-Wertes mit Fasern zu einem grünen Formkörper verarbeitet und dieser Formkörper anschließend bei einer Temperatur gesintert, bei der nur die kleineren Teilchen, welche um die größeren Teilchen herum angeordnet sind, sintern.
Wenngleich mit diesem Verfahren bei der Herstellung von porösen, faserverstärkten Keramiken eine Porosität von Formkörpern kontrollierbar ist, so weist dieses Verfahren dennoch wesentliche Nachteile und Limitierungen auf, wie die Erfinder erkannt haben:
Eine Anlagerung der kleineren Teilchen auf den größeren Teilchen und die Ausbildung einer Kern-Schale-Struktur in der Suspension ist im Hinblick auf das auszubildende poröse Gefüge durchaus erwünscht, allerdings steigt beim Suspendieren der Pulver sehr rasch eine Viskosität der Suspension an, was unter Umständen zu deren Verfestigung führen kann. Die Pulver können daher mit dem Nachteil eines hohen Zeitaufwandes nur sehr langsam und in vielen Schritten zugegeben bzw. suspendiert werden, z. B. in Schritten von 3 % des gewünschten Feststoffanteiles in der Suspension.
Von Nachteil ist auch, dass auf Grund der Verfestigungsproblematik mit dem bekannten Verfahren lediglich Suspensionen mit einem maximalen Feststoffanteil von weniger als 50 Volumenprozent hergestellt werden können (DE 103 18 514 B3). Dies hat folgende Konsequenzen:
Beim Trocknen/Sintern der Formkörper treten Risse auf, da wegen niedriger Feststoffgehalte große Schwindungen gegeben sind. Reine poröse oder wahlweise dichte Keramiken ohne Faserverstärkung können schon deswegen nicht hergestellt werden, weil eine Formstabilität bzw. Festigkeit feuchter, grüner (d. h. nicht gesinterter) Formkörper ohne Faserverstärkung zu gering wäre.
Aus den gleichen Gründen kann eine Suspension lediglich zum Laminieren von Fasern eingesetzt werden. Für andere übliche Verarbeitungsprozesse wie Gießen oder Extrudieren ist sie nicht einsetzbar.
Aus anderem Blickwinkel betrachtet, ist bei den maximal einstellbaren Feststoffanteilen in der Suspension eine Viskosität schon so groß, dass für Formkörper mit hohen Fasergehalten eine vollständige Infiltration problematisch ist. Ein Faseranteil im Festkörper ist daher auf maximal 48 Volumenprozent zu beschränken, um Hohlräume und/oder Risse und/oder eine defektreiche Matrix zu vermeiden.
Zusammengefasst ist dieses bekannte Verfahren also äußerst zeitaufwendig, kann zur Verfestigung der Suspension führen, lässt sich nur für Laminierprozesse einsetzen und ist lediglich zur Herstellung von Laminatprodukten mit bestimmtem Faseranteil anwendbar.
Von diesem Stand der Technik ausgehend setzt sich die Erfindung das Ziel, ein Verfahren der eingangs genannten Art anzugeben, bei welchem die vorstehend dargelegten Nachteile beseitigt oder zumindest vermindert sind und das ein wesentlich breiteres Anwendungspotential aufweist.
Ein weiteres Ziel der Erfindung ist es, einen aus mehreren Pulvern erstellten, faserfreien, insbesondere porösen keramischen Formkörper hoher Festigkeit anzugeben, der ein homogenes Mikrogefüge mit gegebenenfalls gleichmäßiger Porosität aufweist und welcher im Wesentlichen rissfrei herstellbar ist.
Ein noch weiteres Ziel der Erfindung ist es, einen hochzähen Verbundkörper bestehend aus einer insbesondere porösen Keramik und Fasern und/oder textilem Halbzeug wie Gewebe anzugeben, bei dem die Keramik aus mehreren Pulvern erstellt ist, ein homogenes Mikrogefüge mit gegebenenfalls gleichmäßiger Porosität aufweist und welcher im Wesentlichen rissfrei herstellbar ist.
Das Ziel der Erfindung, ein Verfahren der eingangs genannten Art anzugeben, bei welchem die vorstehend dargelegten Nachteile beseitigt oder zumindest vermindert sind, wird dadurch erreicht, dass bei einem gattungsgemäßen Verfahren die Pulver A und B ungefähr bei einem pH-Wert der Flüssigkeit suspendiert werden, bei dem ein Viskositätsminimum der Suspension gegeben ist.
Dabei ist von Vorteil, dass die im Stand der Technik gegebenen Probleme bezüglich hoher Viskositäten vermieden sind, weil am Viskositätsminimum suspendiert wird. Einzelne Komponenten können daher in kürzerer Zeit suspendiert werden, in der Regel in 20 % oder weniger jener Zeit, die gemäß dem Stand der Technik notwendig ist. Daneben hat sich gezeigt, dass bei dieser Vorgehensweise eine verbesserte Deagglomeration vor allem von Pulvern mit kleinen durchschnittlichen Korngrößen von weniger als 100 nm auftritt, was vermutlich überadditiv zum Erreichen einer niedrigen Viskosität, insbesondere bei hohen Feststoffgehalten, beiträgt. Infolge niedrigerer Viskositäten ist auch eine Verfestigungsgefahr während einer Herstellung der Suspension minimiert.
Im Vergleich mit dem Stand der Technik ist es entsprechend diesen Vorteilen nunmehr einerseits möglich, bei gleicher Viskosität wesentlich höhere Feststoffgehalte in einer Suspension einzustellen. Dies erlaubt in der Folge die Verarbeitung zu faser- bzw. gewebefreien grünen Formkörpern, die auch ohne Einsatz von Fasern/textilem Halbzeug beim Trocknen/Sintern formstabil bleiben und rissfrei entformbar sind.
Andererseits liegen bei vorgegebenen Feststoffgehalten niedrigere Viskositäten der Suspensionen vor, weshalb sich diese besser zum Infiltrieren textiler Halbzeuge eignen und auch faserverstärkte keramische Formkörper herstellbar sind, welche mehr als 50 Volumenprozent Fasern aufweisen. Auf Grund der einstellbaren hohen Feststoffgehalte können Suspensionen nunmehr auch gegossen oder extrudiert werden, so dass grundsätzlich alle bekannten Formgebungsverfahren angewendet werden können.
Der bei der Suspendierung der Pulver einzuhaltende pH-Wert kann vom Fachmann ohne Weiteres in ausreichender Genauigkeit bzw. Näherung ermittelt werden, indem eine verdünnte Suspension der Pulver A und B mit z. B. 30 Volumenprozent Feststoffanteil hergestellt und die Viskosität dieser Suspension in Abhängigkeit vom pH-Wert ermittelt wird.
Werden faserfreie Formkörper erstellt, so können diese wahlweise zu porösen oder auch zu im Wesentlichen dichten Keramiken gesintert werden. Analoges gilt für den keramischen Matrix-Anteil in faserverstärkten Keramiken.
Gleichzeitig können durch die Verwendung mehrerer unterschiedlicher Pulver mehrphasige Gefüge mit homogenem Gefüge erreicht und somit Materialien mit gezielt eingestellten Eigenschaften bereitgestellt werden.
Die erzielten Effekte können äußerst wirkungsvoll noch weiter gesteigert werden, wenn Pulver suspendiert werden, deren Zeta-Potentiale beim eingestellten pH-Wert gleiches Vorzeichen aufweisen. Unerwartet hat sich gezeigt, dass Pulver A und B trotz Zeta- Potentialen mit gleichen Vorzeichen Verbundteilchen mit Kern-Schale-Struktur ausbilden, obwohl sie sich auf Grund gleicher Ladung eigentlich abstoßen sollten. Im Gegensatz dazu erfolgt im Stand der Technik eine Ausbildung von Verbundteilchen über so genannte Heterokoagulation, also die Vereinigung von Teilchen mit positiven und negativen Zeta- Potentialen, was beim Eintragen der Pulver auf Grund einer hohen Wechselwirkung eine sofortige, starke Erhöhung der Viskosität der Suspension nach sich zieht.
Wenn die Zeta-Potentiale einzusetzender Pulver nicht jeweils positiv oder negativ sind, kann eine geeignete Oberflächenladung herbeigeführt werden, indem bei der Erstellung der Suspension ein Additiv wie ein Peptisator oder Polyelektrolyt zugegeben wird, welches an zumindest einem der Pulver adsorbiert wird bzw. ist.
Bei vielen keramischen Pulvern lassen sich besonders hohe Feststoffgehalte in der Suspension ohne Verfestigung derselben erreichen, wenn der pH-Wert auf pH < 7 eingestellt wird und Pulver A und B eingesetzt werden, deren Zeta-Potential positiv ist. Um eine Bildung von Verbundteilchen der Pulver A und B in der Suspension und damit in der Folge die Ausbildung eines homogenen Gefüges zu begünstigen, kann vorgesehen sein, dass eine durchschnittliche Korngröße des Pulvers A zumindest das vierfache jener des Pulvers B beträgt. Bevorzugt weist das Pulver A eine durchschnittliche Korngröße von mehr als 300 nm und das Pulver B eine durchschnittliche Korngröße von weniger als 100 nm auf. Dabei hat es sich als günstig erwiesen, dass das Pulver B betragsmäßig ein höheres Zeta-Potential aufweist.
Insbesondere um einen möglichst schwindungsfreien Sinterkörper zu erhalten, kann vorgesehen sein, dass das Volumenverhältnis des Pulvers A zum Pulver B oder den
Pulvern B 0,65 : 0,35 bis 0,90 : 0,10 beträgt. Bei diesen Volumenverhältnissen der Pulver kann eine Schwindung minimiert werden, was sich günstig auf eine rissfreie Ausbildung keramischer Komponenten auswirkt.
Bevorzugt ist auch eine Weiterbildung des erfindungsgemäßen Verfahrens, bei der während der Suspendierung der Pulver die Flüssigkeit und die darin suspendierten Pulver gemahlen werden. Hierbei wird auch eine sehr effiziente Mahlwirkung auf Agglomerate von Pulvern mit (Primär-) Korngrößen von weniger als 200 nm erreicht. Dieser Effekt ist noch ungeklärt. Vermutet wird, dass die größeren Teilchen auf die kleineren Teilchen eine Mahlwirkung ausüben und so deren Agglomerate aufbrechen.
In einer alternativen, allerdings nicht ganz so wirkungsvollen Variante ist es auch möglich, dass während der Suspendierung der Pulver die Flüssigkeit und die Pulver mit Ultraschall beaufschlagt werden, um eine Deagglomeration zu unterstützen.
Entsprechend den Vorteilen eines erfindungsgemäßen Verfahrens kommt dieses bevorzugt zum Einsatz, wenn ein Volumenanteil der Pulver in der Suspension mehr als 50 Volumenprozent, vorzugsweise mehr als 55 Volumenprozent, beträgt.
Das Dispergiermedium bzw. die Flüssigkeit ist üblicherweise Wasser. Reagiert eines der eingesetzten Pulver mit Wasser, so kann auch auf andere Flüssigkeiten, die mit dem/den Pulver nicht reagieren, zurückgegriffen werden.
Bevorzugt ist weiter vorgesehen, dass der Suspension vor Bildung eines Formkörpers ein Härter zugegeben wird, welcher bei bzw. nach Bildung des Formkörpers eine Koagulation der Teilchen im Formkörper unterstützt. Bevorzugt bewirkt der zugegebene Härter eine Verschiebung des pH-Wertes zum isoelektrischen Punkt hin und bildet vorzugsweise mit der Flüssigkeit ein festes Reaktionsprodukt. Ein solcher Härter kann ein Metallnitrid, insbesondere Magnesiumnitrid, Galliumnitrid, Lanthannitrid, Zirkoniumnitrid, Aluminiumnitrid, Yttriumnitrid oder Hafniumnitrid sein. Alternativ kann der Härter auch ein siliciumorganisches Polymer, insbesondere Polysilazan, Polycarbosilazan, Polysilasilazan oder Polysilylcarbodiimid, sein. Diese Härter zersetzen sich in Wasser unter Abspaltung pH-Wert verändernder Substanzen und sorgen so für eine Verschiebung des pH-Wertes in Richtung zum isoelektrischen Punkt, an welchem sich die vorhandenen und dann neutralen Verbundteilchen auf Grund von van-der-Waals-Kräften vereinigen, so dass es zu einer Verfestigung kommt. Zusätzlich kann der Härter auch zu einem polymeren Feststoff vernetzen und damit auch zu einer Vernetzung der Pulverteilchen miteinander führen, also festigkeitssteigernd wirken.
Werden faserverstärkte Keramiken hergestellt, so können beliebige zwei- oder dreidimensionale textile Faserhalbzeuge, z. B. Gelege, Geflechte, Gewirke oder Gestricke verwendet werden. Ebenso ist ein Einsatz von Kurz- und/oder Langfasern oder auch Endlosfasern möglich. Dabei können die Fasern/Halbzeuge vor und/oder nach einer Infiltrierung mit Suspension mit einem Haftvermittler oberflächig beschichtet und dadurch verklebt bzw. verfestigt werden. Hierfür eignen sich beispielsweise siliciumorganische Polymere oder verschiedenste Sole wie Metallalkoxide und Lösungen anorganischer Salze.
Erfindungsgemäße Formkörper können gesintert werden, und zwar optional teilweise oder auch vollständig.
Das weitere Ziel der Erfindung wird durch einen Formkörper nach Anspruch 16 erreicht.
Vorteile eines erfindungsgemäßen Formkörpers sind unter anderem in einer im Wesentlichen rissfreien Struktur sowohl im grünen Zustand als auch im gesinterten Zustand zu sehen. Gleichzeitig ist eine defektarme bzw. -freie Gefügeausbildung sowie gegebenenfalls eine gleichmäßig verteilte Porosität gegeben.
Eine Porosität kann in Abhängigkeit der eingesetzten Pulver und einer Sintertemperatur in einem weiten Bereich variiert werden, z. B. zwischen 0,05 und 50 Volumenprozent. Werden poröse Formkörper angestrebt, liegt eine Porosität bevorzugt zwischen 30 und 45 Volumenprozent. Alternativ können erfindungsgemäße Formkörper durch entsprechende Sinterführung auch im Wesentlichen dicht ausgebildet sein.
Dabei weist der Formkörper in Bezug auf Homogenität mit Vorteil ein Gefüge auf, in welchem Teilchen des Pulvers A weitgehend von Teilchen des Pulvers B umhüllt und mit diesen fest verbunden sind.
Von Vorteil ist weiter, dass eine maximale Größe von Defekten im Gefüge kleiner als eine maximale Korngröße ist. Derart niedrige Defektgrößen führen zu einer überproportional hohen Festigkeit des Formkörpers, wobei sowohl für grüne Formkörper als auch gesinterte Formkörper eine Festigkeitssteigerung beobachtet wurde.
Um vom Sintern herrührende Schwindungsrisse möglichst zu vermeiden oder gering zu halten, beträgt das Volumenverhältnis des Pulvers A zum Pulver B oder den Pulvern B 0,65 : 0,35 bis 0,90 : 0,10. Im Hinblick auf die Einstellung eines homogenen Gefüges ist es bevorzugt, wenn das Pulver A eine durchschnittliche Korngröße von mehr als 300 nm und das Pulver B eine durchschnittliche Korngröße von weniger als 100 nm aufweist.
Das noch weitere Ziel der Erfindung wird durch einen Verbundkörper gemäß Anspruch 20 erreicht.
Vorteile eines erfindungsgemäßen Verbundkörpers sind insbesondere darin zu sehen, dass dieser einen hohen Fasergehalt sowie eine defektarme Matrix aufweist und daher hochzäh ist und auch bei Belastungssituationen, bei denen eine Haltbarkeit der Matrix das ausschlaggebende Kriterium ist, lange standhält.
Weitere Vorteile, Merkmale und Wirkungen der Erfindung ergeben sich aus dem Zusammenhang der Beschreibung und den nachfolgenden Ausführungsbeispielen.
Im Folgenden wird die Erfindung anhand lediglich beispielhafter Ausführungswege und Figuren noch weitergehend dargestellt. Es versteht sich für den Fachmann, dass einzelne Merkmale der nachfolgenden Beispiele, auch wenn sie in Kombination mit weiteren Merkmalen genannt sind, mit der vorstehenden allgemeinen Darstellung der Erfindung verbunden werden können.
Es zeigen: Fig. 1: Abhängigkeiten von Viskositäten von Dispersionen aus Pulvern mit einem durchschnittlichen Korngrößendurchmesser von mehr als 0,5 μm („Grob") und weniger als
100 nm („Fein");
Fig. 2: Abgegossene grüne Formkörper; Fig. 3: Eine rasterelektronenmikroskopische Aufnahme von Verbundteilchen in einem getrockneten Grünkörper;
Fig. 4: Eine rasterelektronenmikroskopische Aufnahme eines Teils eines gesinterten, porösen Formkörpers;
Fig. 5: Einen Querschnitt eines Faser-Keramik-Verbundteiles in ± 45° Faserorientierung.
Ermittlung eines Viskositätsminimums einer Suspension. Bestimmung von Zeta-
Potentialen und Ermittlung von Grünfestigkeiten
Eine ausreichend genaue Bestimmung des Viskositätsminimums einer Suspension mit hohem Feststoffgehalt (bei 20 0C) kann durchgeführt werden, indem vorab bei niedrigen Feststoffgehalten, z. B. 15 bis 30 Volumenprozent, eine Viskosität in Abhängigkeit vom pH-Wert bzw. einer Säuremenge festgestellt wird. Eine Herstellung einer solchen
Suspension mit niedrigem Feststoffgehalt ist an sich unproblematisch und kann in kurzer
Zeit, gegebenenfalls mit Hilfe von Ultraschall zur Deagglomeration, durchgeführt werden.
Soweit Additive eingesetzt werden, werden diese bei einer Bestimmung eines Viskositätsminimums mit den Pulvern anteilig suspendiert. Eine Viskosität der Suspension kann dann beispielsweise mittels Rotations-Viskosimetrie ermittelt werden. Anschließend wird ein pH-Bereich, in welchem ein Viskositätsminimum liegt, bei der Erstellung einer
Suspension eingestellt und während einer Suspendierung der Pulver aufrechterhalten.
Wie aus Fig. 1 ersichtlich, ist ein Viskositätsminimum pH-Wert abhängig und kann auch mit einem Verhältnis von feinem Pulver („Fein", durchschnittliche Korngröße kleiner als 100 Nanometer) zu grobem Pulver („Grob", durchschnittliche Korngröße größer als 500 Nanometer) variieren.
In den nachstehend beschriebenen Beispielen wurden Zeta-Potentiale und
Teilchengrößenverteilungen der zur Suspensionsherstellung verwendeten Pulver für jedes Pulver einzeln im suspendierten Zustand mittels Elektroakkustik ermittelt.
Eine Festigkeit von Grünkörpern wurde mittels Scheibendruckversuch (BDT - Brazilian Disc Test) ermittelt. Im Probeninneren treten dadurch Zugspannungen auf, die zum Versagen der Grünkörper führten. Eine maximale Zugspannung wurde gemäß nachfolgender Gleichung berechnet:
2 F
BDT ~ p.
D π t
Darin bezeichnet F die maximale Kraft, D den Durchmesser der Probe und t die Dicke der Probe. Es wurden zylindrische Proben mit einem Durchmesser von 20 mm und einer Dicke von 10 mm verwendet.
Beispiel 1 (poröse Aluminiumoxidkeramik)
Eine keramische Suspension wurde hergestellt, indem entionisiertes Wasser mit fünf molarer HNO3-Lösung auf einen pH-Wert von 4,2 bis 4,5 gebracht und anschließend AIOOH-Pulver mit einer durchschnittlichen Teilchengröße (d50) von 120 Nanometer und AI2O3-Pulver mit einer mittleren Teilchengröße (d50) von 950 Nanometer suspendiert wurden. Dabei wurde, um einen pH-Wert konstant im Bereich eines Viskositätsminimums zu halten, mit den Pulvern gleichzeitig eine hierfür erforderliche Menge an HNO3-Lösung zugegeben. Die suspendierten Pulver wiesen im Bereich des Viskositätsminimums ein Zeta-Potential von + 65 mV (AIOOH) bzw. + 49 mV (AI2O3) auf. Die Suspension wurde während der Zugabe der einzelnen Komponenten kontinuierlich deagglomeriert, wobei die Suspension im Kreislauf über eine Rührwerkskugelmühle gemahlen wurde. Dabei wurde in der Suspension eine sehr homogene Verteilung der Pulverteilchen erreicht und die groben Pulverteilchen wurden weitgehend von den feineren Pulverteilchen umhüllt. Ein Anteil des feineren AIOOH-Pulvers an der Pulvermischung lag bei 30 Volumenprozent. Ein Feststoffanteil in der Suspension betrug nach deren Herstellung 58 Volumenprozent. Für die Zubereitung von 1 ,5 Liter Suspension war lediglich eine Zeit von zwei Stunden erforderlich.
Zum Zwecke der Verfestigung wurde der Suspension eine geringe Menge an Aluminiumnitrid-Pulver zugegeben. Nach Homogenisierung der Suspension wurde diese unter Vakuum entgast, um eventuelle Lufteinschlüsse zu entfernen. Zu diesem Zeitpunkt wies die dünnflüssige Suspension eine Viskosität (hier wie im Folgenden bei 20 0C) von 200 bis 400 mPas auf. Diese niedrige Viskosität ermöglichte trotz hohem Feststoffgehalt in der Suspension ein Abgießen der Suspension in nicht poröse Kunststoff- oder Metallformen, wobei verschieden geformte Grünkörper unter Erhaltung sehr feiner Strukturdetails der Negativform hergestellt wurden. Eine Verfestigung der Suspension in der Gießform erfolgte je nach Reaktionsbedingungen innerhalb von ca. ein bis sechs Stunden. Wenige Stunden nach dem Abgießen wurden die Grünkörper entformt und anschließend getrocknet. Die Grünkörper zeichneten sich im feuchten Zustand durch eine hohe Festigkeit von ca. 28 bis 300 kPa aus, was selbst bei sehr komplizierten Geometrien ein problemloses Entformen und Handhaben der Grünkörper ermöglichte. Oberflächenstrukturen blieben dabei in allen Feinheiten erhalten (siehe Fig. 2).
Die Grünkörper wiesen ein homogenes, weitgehend defektfreies und geordnetes Gefüge auf. Ein solches Gefüge ist anhand einer rasterelektronenmikroskopischen Aufnahme in Fig. 3 exemplarisch dargestellt. In diesem Gefüge sind die groben Pulverteilchen weitestgehend von feinen Pulverteilchen umhüllt und untereinander fest verbunden, was zu einer hohen Festigkeit des grünen Formkörpers führt.
Wie beschrieben hergestellte Grünkörper wurden in einem Kammerofen acht Stunden lang isotherm bei einer Temperatur von 1300 0C in Umgebungsatmosphäre gesintert. Eine lineare Schwingung beim Sintern betrug weniger als 1,85 Volumenprozent. Nach dem Sintern bestanden die Keramiken aus einer stabilen α-AI2O3-Phase. Die Keramiken wiesen typischerweise eine offene, interkonnektive Porosität von ca. 40 Volumenprozent und einen mittleren Porendurchmesser von ca. 250 Nanometer oder weniger auf. Wie aus Fig. 4 beispielhaft ersichtlich, waren die Keramiken durch ein äußerst homogenes, nahezu defektfreies Gefüge charakterisiert und im Wesentlichen rissfrei ausgebildet.
Beispiel 2 (hierarchisch poröses Zirkoniumoxid) Analog zu Beispiel 1 wurde eine keramische Suspension im Bereich des Viskositätsminimums derselben aus einem feineren ZrO2-Pulver und einem gröberen ZrO2-Pulver und mit fünf molarer HNO3-Lösung bei pH = 3,6 bis 3,8 erstellt. Das feinere ZrO2-Pulver war im Bereich des Viskositätsminimums durch ein Zeta-Potential von + 52 mV und das gröbere durch ein Zeta-Potential von + 39 mV charakterisiert. Die Teilchengrößen (d50) betrugen 90 Nanometer bzw. 1 ,2 Mikrometer, wobei ein Anteil des feineren Pulvers an der Pulvermischung in der Suspension 20 Volumenprozent betrug.
Aus einer so erstellten Suspension mit einem Feststoffanteil von 56 Volumenprozent wurde ein Granulat mit einem mittleren Durchmesser von etwa 0,8 Millimeter hergestellt. Das getrocknete Granulat wurde in einem Kammerofen fünf Stunden lang isotherm bei einer Temperatur von 1200 0C in Umgebungsatmosphäre vorgesintert. Nach dieser Behandlung wies das Granulat eine offene, interkonnektive Porosität und hohe Festigkeit auf. Das vorgesinterte Granulat wurde anschließend zu einer feindispersen Suspension, enthaltend ZrO2-Pulver mit einer mittleren Teilchengröße von 90 Nanometer zugegeben, wobei der suspendierte Feststoff typischerweise zu 90 Volumenprozent aus Granulat und zu 10 Prozent aus feinerem ZrO2-Pulver bestand. Ein Feststoffanteil in der Suspension wurde auf 58 Volumenprozent eingestellt.
Zur Verfestigung sowie zur teilweise chemischen Stabilisierung einer tetragonalen Hochtemperaturphase von ZrO2 mittels Y2O3 wurde der Suspension eine geringe Menge an Yttriumnitrid-Pulver zugegeben (ca. ein Volumenprozent). Nach Homogenisieren der Suspension wurde diese unter Vakuum entgast, um eventuelle Lufteinschlüsse zu entfernen. Die dünnflüssige Suspension wies zu diesem Zeitpunkt eine Viskosität von 450 bis 600 mPas auf und wurde in nichtporöse Kunststoff- bzw. Metallformen abgegossen. Innerhalb von 30 Minuten bis ca. 3 Stunden erfolgte eine Verfestigung der Suspension in Gießformen. Die Grünkörper wurden anschließend im feuchten Zustand entformt und getrocknet. Eine hohe Festigkeit von ca. 42 bis 450 kPa erlaubte selbst bei komplizierten Geometrien ein problemloses Entformen unter Erhaltung von Strukturdetails. Wie in Beispiel 1 zeichneten sich die getrockneten Grünkörper durch ein sehr homogenes, nahezu defektfreies und geordnetes Gefüge aus, in dem die gröberen Granulatteilchen weitestgehend von den feineren Pulverteilchen umhüllt und mit diesen fest verbunden waren.
Abschließend wurden die so hergestellten Grünkörper in einem Kammerofen acht Stunden lang isotherm bei einer Temperatur von 1250 0C gesintert. Eine lineare Schwindung lag dabei etwa bei 1 ,4 Volumenprozent.
Die so hergestellten, im Wesentlichen rissfreien Keramiken bestanden aus einer tetragonalen ZrO2-Phase mit einer typischerweise hierarchisch aufgebauten, offenen, interkonnektiven Porosität von ca. 38 Volumenprozent. Eine Porengrößenverteilung war bimodal, wobei ein mittlerer Porendurchmesser von kleineren Poren bei ca. 250 Nanometer und ein mittlerer Porendurchmesser von größeren Poren bei ca. 170 Mikrometer lag.
Beispiel 3 (SiC-Mullit-Nanocomposite)
Eine keramische Suspension wurde im Bereich des Viskositätsminimums der Suspension (indem der pH-Wert auf pH = 3,7 bis 3,9 eingestellt und anschließend weitgehend konstant gehalten wurde) durch kontinuierliche Zugabe von feinem SiO2-Pulver, feinem AIOOH-Pulver, grobem SiC-Pulver und 5 molarer HCI-Lösung zu einer sauren Lösung eines kationisch wirkenden Verflüssigers bzw. Additivs in Wasser hergestellt. Die verwendeten Pulver waren im trockenen Zustand stark agglomeriert bzw. aggregiert. Die Pulver wiesen im Bereich des Viskositätsminimums Zeta-Potentiale von + 57 mV (SiO2), + 68 mV (AIOOH) und + 42 mV (SiC) auf. Die durchschnittlichen Pulvergrößen betrugen 66 nm (SiO2), 59 Nanometer (AIOOH) bzw. 550 Nanometer (SiC). Dies zeigt, dass durch Verwendung eines kationischen Verflüssigers (z. B. ein Polyelektrolyt oder ein Tensid) auch bei normalerweise negativ geladenen Partikeloberflächen (SiC) positive Zeta- Potentiale eingestellt werden können bzw. für alle Pulver ein in Bezug auf das Vorzeichen (positiv oder negativ) gleiches Zeta-Potential einstellbar ist.
Während der Zugabe der Suspensionskomponenten wurde die Suspension kontinuierlich deagglomeriert, indem die Suspension im Kreislauf über eine Rührwerkskugelmühle gepumpt wurde. Hierbei wurde in der Suspension eine sehr homogene Verteilung der Pulverteilchen erreicht, wobei die groben Pulverteilchen weitestgehend von den feinen Pulverteilchen umhüllt bzw. an diese gebunden wurden. Ein Feststoffanteil der Suspension betrug nach der Herstellung 54 Volumenprozent. Der Anteil des feinen Pulvers an der Pulvermischung lag typischerweise bei 10 bis 30 Volumenprozent.
Zum Zwecke der Verfestigung wurde der Suspension eine geringe Menge an AIN-Pulver zugegeben. Nach Homogenisierung der Suspension wurde diese unter Vakuum entgast, um eventuelle Lufteinschlüsse zu entfernen. Zu diesem Zeitpunkt wies die dünnflüssige Suspension eine Viskosität von 500 bis 900 mPas auf. Durch Abgießen der Suspension in nichtporöse Kunststoff- oder Metallformen wurden verschieden geformte Grünkörper hergestellt. Die Verfestigung der Suspension in der Gießform erfolgte je nach
Reaktionsbedingungen innerhalb von ca. 30 Minuten bis 5 Stunden. Die Grünkörper wurden wenige Stunden nach dem Abgießen im feuchten Zustand entformt und anschließend getrocknet.
Die Grünkörper wiesen im feuchten Zustand eine Festigkeit von 23 bis 260 kPa auf. Im getrockneten Zustand zeichneten sich die Grünkörper durch ein sehr homogenes, nahezu defektfreies und geordnetes Gefüge aus, in dem die groben Pulverteilchen weitestgehend von den feinen Pulverteilchen umhüllt sowie an diese fest gebunden waren. Ein Anteil an organischen Komponenten (resultierend vom kationischen Verflüssiger) im Grünkörper lag unter 1 ,2 Gewichtsprozent. Die so hergestellten Grünkörper wurden in einem Ofen 3 Stunden lang isotherm bei einer Temperatur von 1600 0C in inerter Atmosphäre dicht gesintert. Dabei bildete sich aus den feinen Pulvern Mullit. Die im Wesentlichen rissfreie, dichte Keramik war durch ein sehr homogenes, nahezu defektfreies Gefüge charakterisiert, wobei die beiden Phasen derart angeordnet waren, dass Mullit bevorzugt die SiC-Körner umgab und einen weitgehend zusammenhängenden Saum typischerweise mit einer Dicke von etwa 80 bis 120 Nanometer bildete. Dies zeigt, dass die feineren Pulver zur gezielten Einstellung bzw. Modifikation von Korngrenzen genutzt werden können, womit eine Steuerung von funktionalen und mechanischen Eigenschaften von Keramiken gegeben ist.
Beispiel 4 (Ceramic Matrix Composite mit Mullit)
Eine keramische Suspension wurde im Bereich des Viskositätsminimums der Suspension (indem der pH-Wert weitgehend zwischen 3,8 bis 4,2 konstant gehalten wurde) durch kontinuierliche Zugabe von feinem SiO2-Pulver, feinem AIOOH-Pulver, grobem Mullit- Pulver und 5 molarer HNO3-Lösung zu einer wässrigen Lösung eines kationisch wirkenden Verflüssigers hergestellt. Die verwendeten Pulver waren im trockenen Zustand stark agglomeriert bzw. aggregiert. Das feine SiO2-Pulver war im Bereich des Viskositätsminimums durch ein Zeta-Potential von + 55 mV charakterisiert. Eine mittlere Teilchengröße (d50) betrug 65 Nanometer; das feine AIOOH-Pulver war im Bereich des Viskositätsminimums durch ein Zeta-Potential von + 62 mV charakterisiert. Eine mittlere Teilchengröße (d50) betrug 55 Nanometer; das grobe Mullit-Pulver war im Bereich des Viskositätsminimums durch ein Zeta-Potential von + 45 mV charakterisiert. Eine mittlere Teilchengröße (d50) betrug 710 Nanometer.
Während der Zugabe der Suspensionskomponenten wurde die Suspension kontinuierlich deagglomeriert, indem die Suspension im Kreislauf über eine Rührwerkskugelmühle gepumpt wurde. Hierbei wurde in der Suspension eine sehr homogene Verteilung der Pulverteilchen erreicht, wobei die groben Pulverteilchen weitestgehend von den feinen Pulverteilchen umhüllt bzw. die feinen Pulverteilchen an die groben gebunden wurden. Der Feststoffanteil der Suspension betrug nach der Herstellung 51 Volumenprozent. Der Anteil des feinen Pulvers an der Pulvermischung lag typischerweise bei 10 bis 30 Volumenprozent.
Zum Zwecke der Verfestigung wurde der Suspension eine geringe Menge an AIN-Pulver zugegeben. Nach Homogenisierung der Suspension wurde diese unter Vakuum entgast, um eventuelle Lufteinschlüsse zu entfernen. Zu diesem Zeitpunkt wies die dünnflüssige Suspension eine Viskosität von 150 bis 280 mPas auf. Einfach geformte Verbundkeramik- Bauteile wurden hergestellt, indem mehrere Gewebelagen aus oxidischen Fasern (Nextel 720; 3M Ceramic Textiles and Composit.es, St. Paul, MN, USA) einzeln mit der Suspension infiltriert und in einer Kunststoff- oder Metallform abgelegt wurden. Die so erhaltenen Verbundformkörper wurden mittels Vakuumsack verdichtet und nach ca. 12 Stunden entformt.
Zur Herstellung kompliziert geformter Verbundkeramik-Bauteile wurden mehrere Gewebelagen aus oxidischen Fasern (Nextel 720; 3M Ceramic Textiles and Composites, St. Paul, MN, USA) einzeln mit der Suspension infiltriert und anschließend mit einem nicht-wässrigen Mullit-Sol (Precursor) besprüht, der den Gewebelagen eine hohe Klebrigkeit verlieh. Die Gewebelagen wurden in eine Kunststoff- oder Metallform laminiert, mittels Vakuumsack verdichtet und nach ca. 12 Stunden entformt.
Die getrockneten Laminate zeichneten sich durch ein sehr homogenes und geordnetes Gefüge aus, wobei in der Matrix die groben Pulverteilchen weitestgehend von den feinen Pulverteilchen umhüllt sowie fest mit diesen verbunden waren. Ein Anteil an organischen Komponenten (resultierend vom kationischen Verflüssiger) im Verbundkörper lag unter 1 ,2 Gewichtsprozent. Die Laminate waren durch ein ausgezeichnetes Sinterverhalten und eine hohe Festigkeit charakterisiert.
Die so hergestellten Laminate wurden in einem Ofen 10 Stunden lang bei Temperaturen zwischen 1200 bis 1350 0C in normaler Atmosphäre gesintert. Dabei verdichtete das feine Pulver in einem ersten Schritt nahezu vollständig und bildete in einem zweiten Schritt kristallinen Mullit. Eine lineare Schwindung der Matrix betrug weniger als 1 ,8 Prozent. Ein Faseranteil der Keramik lag typischerweise bei 52 bis 55 Volumenprozent (siehe Fig. 5), eine Porosität bei 17 bis 20 Volumenprozent. Die Verbundkeramik zeichnete sich durch ein homogenes Gefüge mit sehr niedrigem Eigenspannungszustand, sowie ausgezeichneten mechanischen Kennwerten und einer exzellenten Hochtemperaturstabilität aus. Das mechanische Verhalten war selbst nach
Hochtemperatur-Auslagerungen über 1000 Stunden bis 1250 0C nahezu unverändert.
Vorteile eines solchen Verbundteiles sind ein defektarmer Matrixzustand in Kombination mit einem hohen Faservolumenanteil. Das führt allgemein zu höheren mechanischen Kennwerten vor allem auch bei matrixdominierten Belastungssituationen (z. B. bei Zug- oder Schubbeanspruchung in ± 45° zu den Faserachsen), was bisher eine deutliche Schwachstelle von derartigen Verbundkeramiken war.
Beispiel 5 (Ceramic Matrix Composite im Infusionsverfahren) Eine Suspension wurde wie in Beispiel 4 hergestellt. Der Feststoffanteil in der Suspension betrug nach deren Herstellung 48 Volumenprozent. Ein Anteil des feinen Pulvers an der Pulvermischung lag typischerweise bei 10 bis 30 Volumenprozent. Zum Zwecke der Verfestigung wurde der Suspension eine geringe Menge an AIN-Pulver zugegeben. Nach Homogenisierung der Suspension wurde diese unter Vakuum entgast, um eventuelle Lufteinschlüsse zu entfernen. Zu diesem Zeitpunkt wies die sehr dünnflüssige Suspension eine Viskosität von 80 bis 170 mPas auf.
Textile Vorkörper aus Kohlenstofffasern mit 3-dimensionaler Verstärkungsarchitektur wurden in eine Form gelegt und mittels Infusionsverfahrens mit der Suspension infiltriert. Nach der Verfestigung wurden die Laminate entformt und in inerter Atmosphäre bei Temperaturen wie in Beispiel 4 gesintert. Die Verbundkeramik war durch ein homogenes Gefüge mit defektarmen Matrixaufbau und 3-dimensionaler Verstärkungsarchitektur charakterisiert.
Es zeigte sich somit, dass auf Grund der erreichbaren niedrigen Viskositäten eine Suspension auch zur Infiltrierung 3-dimensionaler Faservorkörper verwendet werden kann, die aufgrund der überlegenen mechanischen Kennwerte zunehmend bedeutender werden. Daneben sind Infusionsverfahren wirtschaftlicher und besser reproduzierbar als Laminierverfahren.
Beispiel 6 (AI2Og-SiC Nanocomposite)
Eine keramische Suspension wurde im Bereich des Viskositätsminimums der Suspension (indem der pH-Wert weitgehend zwischen 4,0 bis 4,4 konstant gehalten wurde) durch kontinuierliche Zugabe von feinem SiC-Pulver, feinem AIOOH-Pulver, grobem AI2O3- Pulver und 5 molarer HNO3-Lösung zu einer sauren wässrigen Lösung eines kationisch wirkenden Verflüssigers hergestellt. Die verwendeten Pulver waren im trockenen Zustand stark agglomeriert bzw. aggregiert. Das feine SiC-Pulver war im Bereich des Viskositätsminimums durch ein Zeta-Potential von + 50 mV (mittlere Teilchengröße (d50) von 150 Nanometer) charakterisiert. Das feine AIOOH-Pulver war im Bereich des Viskositätsminimums durch ein Zeta-Potential von + 65 mV (mittlere Teilchengröße (d50) von 59 Nanometer) charakterisiert. Das grobe AI2O3-Pulver war im Bereich des Viskositätsminimums durch ein Zeta-Potential von + 45 mV (mittlere Teilchengröße (d50) von 350 Nanometer) charakterisiert.
Während der Zugabe der Suspensionskomponenten wurde die Suspension kontinuierlich deagglomeriert, indem die Suspension im Kreislauf über eine Rührwerkskugelmühle gepumpt wurde. Hierbei wurde in der Suspension eine sehr homogene Verteilung der Pulverteilchen erreicht, wobei die groben Pulverteilchen weitestgehend von den feinen Pulverteilchen umhüllt wurden. Ein Feststoffanteil der Suspension betrug nach deren Herstellung 54 Volumenprozent. Ein Anteil des feinen Pulvers an der Pulvermischung lag typischerweise bei 10 bis 30 Volumenprozent. Nach Homogenisierung der Suspension wurde diese unter Vakuum entgast, um eventuelle Lufteinschlüsse zu entfernen. Zu diesem Zeitpunkt wies die Suspension eine Viskosität von 500 bis 900 mPas auf.
Zur kontinuierlichen Formgebung von Grünkörpern wurde die Suspension durch eine Düse extrudiert, wobei zum Zwecke einer raschen Verfestigung der Suspension unmittelbar vor der Extrusion eine geringe Menge an Polysilazan zugemischt wurde (~ 1 Volumenprozent). Die Verfestigung erfolgte je nach Reaktionsbedingungen innerhalb von wenigen Minuten bis zu einer Stunde. Die Grünkörper zeichneten sich durch eine hohe Festigkeit aus, was ein problemloses Handhaben ermöglichte. Die getrockneten Grünkörper waren weiters durch ein sehr homogenes, nahezu defektfreies und geordnetes Gefüge charakterisiert, in dem die groben Pulverteilchen weitestgehend von den feinen Pulverteilchen umhüllt sowie fest mit diesen verbunden waren. Die Grünkörper waren weiters durch ein ausgezeichnetes Sinterverhalten und eine hohe Festigkeit charakterisiert.
Die so hergestellten Grünkörper wurden in einem Ofen 2 Stunden lang isotherm bei einer Temperatur von 1800 0C in inerter Atmosphäre auf eine relative Dichte von 99,5 % gesintert. Dabei bildet sich ein Nanocomposite mit nanoskaligen Inter- und Intra-Phasen aus SiC in einer AI2O3-Matrix. Das Polysilazan bildete dabei ebenfalls nanoskalige SiCO- bzw. SiCNO-Dispersoide. Die im Wesentlichen dichte Keramik war durch ein sehr homogenes, nahezu defektfreies Gefüge sowie exzellente Festigkeit und Zähigkeit (durch Gefügeverstärkung mit Nano-Dispersoiden) sowie Hochtemperaturbeständigkeit charakterisiert.
Vorteile dieser erfindungsgemäßen Anwendung sind, dass durch die relativ rasche
Verfestigung mittels Polysilazan auch plastische Formgebungsverfahren wie die Extrusion angewendet werden können. Das Polysilazan erhöht gegenüber AIN die Grünfestigkeit, da nicht nur Ammoniak gebildet wird, sondern auch eine Vernetzungsreaktion stattfindet. Das vernetzte Polysilazan trägt weiters beim Sintern zur Gefügeverstärkung durch die Bildung von Nano-Dispersoiden bei.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines insbesondere porösen keramischen Formkörpers, welcher keramische Formkörper optional mit Fasern und/oder textilem Halbzeug wie Gewebe verstärkt ist, wobei ein Pulver A und zumindest ein weiteres Pulver B in einer Flüssigkeit suspendiert werden, wonach aus der so erstellten Suspension optional in Kombination mit Fasern und/oder textilem Halbzeug ein Formkörper gebildet und optional der Formkörper gesintert wird, dadurch gekennzeichnet, dass die Pulver A und B ungefähr bei einem pH-Wert der Flüssigkeit suspendiert werden, bei dem ein Viskositätsminimum der Suspension gegeben ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Pulver suspendiert werden, deren Zeta-Potentiale beim eingestellten pH-Wert gleiches Vorzeichen aufweisen. . ',
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass bei der Erstellung der Suspension ein Additiv wie ein Peptisator oder Polyelektrolyt zugegeben wird, welches zumindest an einem der Pulver adsorbiert wird bzw. ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Pulver A und B mit unterschiedlicher durchschnittlicher Korngröße eingesetzt werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine durchschnittliche Korngröße des Pulvers A zumindest das vierfache jener des Pulvers B beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Pulver A eine durchschnittliche Korngröße von mehr als 300 nm und das Pulver B eine durchschnittliche Korngröße von weniger als 100 nm aufweist.
7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass das Volumenverhältnis des Pulvers A zum Pulver B oder den Pulvern B 0,65 : 0,35 bis 0,90 : 0,10 beträgt.
δ. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass während der Suspendierung der Pulver die Flüssigkeit und die Pulver gemahlen werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass während der Suspendierung der Pulver die Flüssigkeit und die Pulver mit Ultraschall beaufschlagt werden.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein Volumenanteil der Pulver in der Suspension mehr als 50 Volumenprozent, vorzugsweise mehr als 55 Volumenprozent, beträgt.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Flüssigkeit Wasser ist.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Suspension vor Bildung eines Formkörpers ein Härter zugegeben wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass der Härter eine Verschiebung des pH-Wertes zum isoelektrischen Punkt bewirkt und vorzugsweise mit der Flüssigkeit ein festes Reaktionsprodukt bildet.
14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der Härter ein Metallnitrid, insbesondere Magnesiumnitrid, Galliumnitrid, Lanthannitrid, Zirkoniumnitrid,
Aluminiumnitrid, Yttriumnitrid oder Hafniumnitrid, ist.
15. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der Härter ein siliciumorganisches Polymer, insbesondere Polysilazan, Polycarbosilazan, Polysilasilazan oder Polysilylcarbodiimid, ist.
16. Faserfreier, insbesondere poröser keramischer Formkörper, erhältlich nach einem der Ansprüche 1 bis 15.
17. Faserfreier Formkörper nach Anspruch 16, dadurch gekennzeichnet, dass der Formkörper ein Gefüge aufweist, in welchem Teilchen des Pulvers A weitgehend von Teilchen des Pulvers B umhüllt und mit diesen fest verbunden sind.
18. Faserfreier Formkörper nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass eine maximale Größe von Defekten im Gefüge kleiner als eine maximale Korngröße ist.
19. Faserfreier Formkörper nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, dass der Formkörper porös ist und eine bimodale oder multimodale Porengrößenverteilung aufweist.
20. Verbundkörper, bestehend aus einer insbesondere porösen Keramik und Fasern und/oder textilem Halbzeug wie Gewebe, wobei ein Anteil an Fasern und/oder textilem Halbzeug mehr als 50 Volumenprozent beträgt, erhältlich nach einem der Ansprüche 1 bis 15.
21. Verbundkörper nach Anspruch 20, dadurch gekennzeichnet, dass der
Verbundkörper ein Gefüge aufweist, in welchem Teilchen des Pulvers A weitgehend von Teilchen des Pulvers B umhüllt und mit diesen fest verbunden sind.
22. Verbundkörper nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass eine maximale Größe von Defekten im Gefüge kleiner als eine maximale Korngröße ist.
23. Verbundkörper nach einem der Ansprüche 20 bis 22, dadurch gekennzeichnet, dass die Keramik porös ist und eine bimodale oder multimodale Porengrößenverteilung aufweist.
EP07800179A 2006-09-14 2007-09-13 Verfahren zur herstellung eines insbesondere porösen keramischen formkörpers und damit hergestellter formkörper Withdrawn EP2061733A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0152906A AT504168B1 (de) 2006-09-14 2006-09-14 Verfahren zur herstellung eines insbesondere porösen keramischen formkörpers und damit hergestellter formkörper
PCT/AT2007/000434 WO2008031130A2 (de) 2006-09-14 2007-09-13 Verfahren zur herstellung eines insbesondere porösen keramischen formkörpers und damit hergestellter formkörper

Publications (1)

Publication Number Publication Date
EP2061733A2 true EP2061733A2 (de) 2009-05-27

Family

ID=39154271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07800179A Withdrawn EP2061733A2 (de) 2006-09-14 2007-09-13 Verfahren zur herstellung eines insbesondere porösen keramischen formkörpers und damit hergestellter formkörper

Country Status (4)

Country Link
US (1) US20090325442A1 (de)
EP (1) EP2061733A2 (de)
AT (1) AT504168B1 (de)
WO (1) WO2008031130A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879731B (zh) * 2017-11-13 2020-07-07 清华大学 一种利用水性聚氨酯增强超轻泡沫陶瓷坯体强度的方法
US20210154641A1 (en) * 2019-11-27 2021-05-27 Solenis Technologies, L.P. Sorbent for at least one metal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218255A (en) * 1976-08-30 1980-08-19 University Of Dayton Porous ceramic carriers for controlled release of proteins, polypeptide hormones, and other substances within human and/or other mamillian species and method
CA1325327C (en) * 1987-01-20 1993-12-21 Kenji Saita Process for production of porous ceramic article
US4814300A (en) * 1987-12-02 1989-03-21 The Duriron Company, Inc. Porous ceramic shapes, compositions for the preparation thereof, and method for producing same
US5009822A (en) * 1989-07-17 1991-04-23 University Of Florida Alumina-or alumina/zirconia-silicon carbide whisker ceramic composites and methods of manufacture
US5188780A (en) * 1991-04-18 1993-02-23 Regents Of The University Of California Method for preparation of dense ceramic products
US5382396A (en) * 1992-06-15 1995-01-17 Industrial Technology Research Institute Method of making a porous ceramic filter
ES2088677T3 (es) * 1992-07-28 1996-08-16 Ludwig J Gauckler Procedimiento para la fabricacion de cuerpos ceramicos en bruto.
US5788891A (en) * 1994-05-09 1998-08-04 Gauckler; Ludwig J. Method for the forming of ceramic green parts
SI9500073A (en) * 1995-03-09 1996-10-31 Inst Jozef Stefan Process of modifying of ceramic products from water solution with a high contains of dry substance.
DE19943103A1 (de) * 1999-09-09 2001-03-15 Wacker Chemie Gmbh Hochgefüllte SiO2-Dispersion, Verfahren zu ihrer Herstellung und Verwendung
DE10318514B3 (de) * 2003-04-24 2004-09-16 Dornier Gmbh Mehrschichtiges keramisches Verbundmaterial mit thermischer Schutzwirkung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008031130A2 *

Also Published As

Publication number Publication date
AT504168A1 (de) 2008-03-15
AT504168B1 (de) 2008-08-15
WO2008031130A2 (de) 2008-03-20
WO2008031130A3 (de) 2008-07-03
US20090325442A1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
DE10318514B3 (de) Mehrschichtiges keramisches Verbundmaterial mit thermischer Schutzwirkung
DE102008000100B4 (de) Verfahren zur Herstellung eines leichtgewichtigen Grünkörpers, danach hergestellter leichtgewichtiger Grünkörper und Verfahren zur Herstellung eines leichtgewichtigen Formkörpers
DE602005000767T2 (de) Kohlenstofffaser-Verstärktes Metall-Matrix-Verbundwerkstoff und Verfahren zu dessen Herstellung
EP1734024B1 (de) Oxidkeramischer Faser-Verbundwerkstoff und ein Verfahren zur Herstellung desselben
EP2661344B1 (de) Verfahren zur herstellung eines bauteils aus faserverstärktem verbundwerkstoff
DE102005027561B4 (de) Einstellung des Faservolumengehaltes in oxidkeramischen Faser-Verbundwerkstoffen
EP2875858B1 (de) Verfahren zur herstellung poröser sinterkörper
DE10013378A1 (de) Poröse Keramik
DE3445765A1 (de) Keramischer formkoerper
DE10335224A1 (de) Verfahren und Schlicker zur Herstellung eines Formkörpers aus keramischem Material, keramischer Formkörper und Verwendung eines solchen Formkörpers
AT504168B1 (de) Verfahren zur herstellung eines insbesondere porösen keramischen formkörpers und damit hergestellter formkörper
DE102015212290A1 (de) Wärmedämmstoff
DE69220960T2 (de) Verfahren zur herstellung eines verbundwerkstoff
DE68905032T2 (de) Herstellung von faserverstaerktem keramischem verbundwerkstoff.
EP0947485B1 (de) Verfahren zur Herstellung eines gesinterten, keramischen Schleifmittels
DE102011117764B4 (de) Druckschlickergießverfahren für deagglomerierte Schlicker auf der Basis keramischer, metallokeramischer oder metallischer Pulver mit Teilchengrößen im Bereich von 20 nm bis 50 µm
DE102006011224B4 (de) Schlicker sowie damit hergestellter keramischer Verbundwerkstoff
DE102008027323B4 (de) Verfahren zur Herstellung von keramischen Komponenten
DE102008013471A1 (de) Keramische Grünkörper mit einstellbarer Sinterschwindung, Verfahren zu ihrer Herstellug und Anwendung
EP3514122B1 (de) Verfahren zur herstellung poröser anorganischer formkörper
DE102010032174B4 (de) Verfahren zur Herstellung von stäbchenverstärkten Keramiken, Keramikwerkstoff und seine Verwendung, Pulverwerkstoff, Granulat, sowie vorgesinterter Körper
KR101991351B1 (ko) 기능성 다공성 세라믹스의 제조방법 및 기능성 다공성 세라믹스
DE102022002259A1 (de) Verfahren zur Herstellung eines mit Aluminiumborat-Whisker verstärkten Verbundwerkstoffs mit nicht-metallischer Matrix durch Heißpressen und heißisostatisches Pressen
DE10310343A1 (de) Herstellung von Pulvergranulaten durch ein Flüssigkondensationsverfahren, und Herstellung von Pulverpresskörpern daraus
DE10221537A1 (de) Verfahren zur Herstellung sphärischer, hybridischer Formkörper aus löslichen Polymeren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090320

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100607

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101019