EP2059987A1 - Kurzschlussstrombegrenzer - Google Patents

Kurzschlussstrombegrenzer

Info

Publication number
EP2059987A1
EP2059987A1 EP06775944A EP06775944A EP2059987A1 EP 2059987 A1 EP2059987 A1 EP 2059987A1 EP 06775944 A EP06775944 A EP 06775944A EP 06775944 A EP06775944 A EP 06775944A EP 2059987 A1 EP2059987 A1 EP 2059987A1
Authority
EP
European Patent Office
Prior art keywords
power semiconductor
power
predetermined breaking
semiconductor module
breaking point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06775944A
Other languages
English (en)
French (fr)
Inventor
Jörg DORN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2059987A1 publication Critical patent/EP2059987A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • H01H2085/0283Structural association with a semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/38Means for extinguishing or suppressing arc
    • H01H2085/385Impedances connected with the end contacts of the fusible element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/38Means for extinguishing or suppressing arc
    • H01H2085/386Means for extinguishing or suppressing arc with magnetic or electrodynamic arc-blowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/044General constructions or structure of low voltage fuses, i.e. below 1000 V, or of fuses where the applicable voltage is not specified
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/42Impedances connected with contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order

Definitions

  • the invention relates to a power semiconductor module for the power distribution and transmission with a power semiconductor circuit, which are connected via connecting lines with a E nergie appointment.
  • Such a power semiconductor module is already known from GB 2 294 821 A, for example.
  • a so-called multilevel inverter is described, which consists of a series circuit of power semiconductor modules.
  • Each power semiconductor module has an energy store which is connected to a power semiconductor circuit.
  • the energy store in the form of a capacitor forms a so-called full bridge circuit with the power semiconductors.
  • the positive capacitor voltage, the negative capacitor voltage or the zero voltage can be generated at the output of the power semiconductor module.
  • the power semiconductor circuit or, in other words, the power electronics with the power semiconductors is usually connected in a low-inductance manner to the memory unit, for example an intermediate circuit capacitor.
  • the memory unit for example an intermediate circuit capacitor.
  • very high short-circuit current amplitudes may occur due to the ratio of the leakage inductances and the intermediate circuit capacitance, which may well reach several hundred kiloamps.
  • certain power electronics components may suffer serious damage. So it can be For example, come to the explosion of power semiconductor devices with arcing.
  • the object of the invention is to limit the current amplitudes occurring in the event of a fault and to protect the power electronics or other components of an inverter effectively.
  • the invention solves this problem in that the connecting lines have a predetermined breaking point, which breaks at a current load exceeding a threshold value, wherein the connecting lines further comprise a resistor which is connected in parallel to the predetermined breaking point.
  • a predetermined breaking point is provided between the energy store, such as a capacitor, and the power electronics, which are particularly sensitive to the high currents. This is designed so that it breaks up at an increased current flow through the predetermined breaking point.
  • a so-called bypass or shunt is provided parallel to the predetermined breaking point, an auxiliary current branch via which the current can flow after breaking the predetermined breaking point, so that the arcing at the predetermined breaking point substantially ver - is avoided.
  • a so-called bypass or shunt is provided parallel to the predetermined breaking point, an auxiliary current branch via which the current can flow after breaking the predetermined breaking point, so that the arcing at the predetermined breaking point substantially ver - is avoided.
  • the short-circuit current therefore flows through the resistor.
  • the resistor limits the short-circuit current with a dissipative heat development in the wake. In this way, the current flow through the power semiconductors of the power semiconductor circuit is limited and gradually converted into heat by the resistor. If the current through the resistor can not be limited so much that an arc in the power semiconductor electronics is not reliably avoided, then it is crucial in accordance with the invention the energy conversion occurring in the arc of the power semiconductor is reduced in order to either prevent an explosion of the power semiconductor or at least to so far attenuate it that damage to adjacent components is avoided.
  • the sole fracture parts are designed so that when the amplitude of the said current exceeds a threshold current, the predetermined breaking point breaks up.
  • the threshold value can also be a defined energy loss or the like, which is converted at the predetermined breaking point.
  • the predetermined breaking point comprises a conductor, which melts at a lying above the threshold loss energy at the predetermined breaking point. At high currents it thus comes to the melting of the conductor and therefore to interrupt the main current path with a commutation on the auxiliary branch in the wake.
  • the connecting lines have two parallel conductor sections, in which a discharge current of the capacitor flows in opposite directions, so that repelling forces are generated, wherein at a threshold current exceeding the current flow ih the said conductor sections cause the repulsive forces breaking the predetermined breaking point.
  • the electrodynamic forces in opposite directions of flowing currents in parallel conductor tracks are utilized.
  • one of the current conductor sections is formed solid, while the other current conductor section is formed, for example, in the form of an area with low material. allock exists. At high electromagnetic repulsion forces that occur at high currents, therefore, there is a tearing of the conductor track portion in which the predetermined breaking point is provided.
  • the exploitation of electrodynamic forces has the advantage that the forces are directly dependent on the current flow and therefore occur without much time delay.
  • the predetermined breaking point comprises an electrically conductive foil.
  • the film has a thickness which is sufficient at rated current to the power line, but it is due to mechanically acting repulsive forces, it breaks up due to melt effects in the short-circuit current or tearing.
  • the predetermined breaking point comprises an electrically conductive wire.
  • the power semiconductor circuit has turn-off power semiconductors.
  • Such turn-off power semiconductors have the advantage over non-turn-off power semiconductors, such as thyristors, for example, that these can be switched on as well as off.
  • the control options of turn-off power semiconductors are therefore greatly increased.
  • the power semiconductor circuit has bonded power semiconductors.
  • Bonded power semiconductors are commercially available. They generally comprise power semiconductor chips connected in parallel to one another and connected to one another via wire connections. Bonded power semiconductors are less expensive than comparable pressure-contacted power semiconductors. However, they have the disadvantage that, in the case of a short circuit, the currents flowing via the wire connections between the power semiconductor chips Currents that destroy wire bonds may cause the formation of an arc, which may destroy the power semiconductor and result in an explosion of the housing.
  • the invention limits the power flowing through the power semiconductors, so that can be used together with bonded power semiconductors even in energy storage with a high storage capacity and high discharge currents. According to the invention, at least the energy conversion is reduced in an arc.
  • Suitable power semiconductors are, for example, so-called IGBTs, IGCTs, GTOs or the like. In particular, IGBTs come into consideration.
  • the power semiconductor module according to the present invention has a first terminal, a second terminal, an energy storage and a two-connected power semiconductors having power semiconductor branch in parallel to the energy storage, each power semiconductor an opposite freewheeling diode is connected in parallel and the connection point of the emitter of a first power semiconductor the power semiconductor branch and the anode of the opposing diode associated with the first power semiconductor, the first terminal and the connection point of the power semiconductor of the power semiconductor branch and the freewheeling diode form the second terminal.
  • This circuit of the power semiconductors is also referred to as a so-called Marquardt circuit, it has switching positions in which the voltage drop across the energy store or a zero voltage at the terminals drops.
  • the power semiconductor module has a first connection terminal, a second connection terminal, an energy storage device and a two series-connected module.
  • having a power semiconductor branch in parallel to the energy storage each power semiconductor an opposite freewheeling diode is connected in parallel and the connection point of the collector of a first power semiconductor of the power semiconductor branch and the cathode of the first power semiconductor associated opposing freewheeling diode, the first terminal and the connection point of the power semiconductor of the power semiconductor branch and the freewheeling diode form the second connection terminal.
  • the resistance is greater than 30 milliohms. This range of values has proven to be useful for applications in power transmission and distribution.
  • the connecting lines (18, 19) have a capacitor connected in parallel with the predetermined breaking point.
  • the capacitor which is provided for example in addition to the ohmic resistance, the formation of an arc when breaking the predetermined breaking point is avoided even more secure.
  • the invention relates not only to a power semiconductor module but also to a power converter valve branch for power distribution, which has a series circuit of power semiconductor modules according to the present invention.
  • the invention further relates to a power converter which is constructed from converter valve branches according to the present invention, wherein the converter valve branches are interconnected in a bridge circuit.
  • Two converter valve branches form a so-called phase module from which is connected on both sides with a bipolar DC voltage circuit and at the connection point between the converter valve branches with an AC voltage network.
  • the power semiconductor module according to the invention can also be used in conjunction with other applications.
  • the power semiconductor module according to the invention is also suitable for so-called Flexible Alternate Current Transmission Systems, FACTS.
  • FIG. 1 shows an embodiment of power converter valve branches according to the present invention
  • FIG. 2 shows an equivalent circuit diagram of an exemplary embodiment of the power semiconductor module according to the invention
  • FIG. 3 shows an equivalent circuit diagram of a further exemplary embodiment of the power semiconductor module according to the invention
  • FIG. 4 shows an embodiment of the power semiconductor module according to the invention, which may have a circuit according to the figures 3 or 4, and
  • FIG. 5 shows a detailed representation of the power semiconductor module according to FIG. 4.
  • FIG. 1 shows an exemplary embodiment of power converter valve branches 1 according to the invention, each of which has a series circuit of power semiconductor modules 2.
  • Each power semiconductor valve branch 1 is equipped on one side with a DC voltage connection 3 or 4 and with an AC voltage connection 5 facing away from it.
  • the power converter valve branches 1 are configured symmetrically, wherein the AC voltage connection 5 is arranged between the two valve branches.
  • the AC voltage connection 5 is provided for connection to a phase of an AC voltage network, not shown in the figure, via an inductance (not shown in the FIGURE).
  • a rectifier likewise not shown in the figures, is constructed, for example, from a total of six converter valve branches 1, of which two, as shown in FIG. 1, are connected in series, the connection point of the converter valve branches being connected in each case to one phase of the alternating voltage network.
  • FIG. 2 shows the exemplary embodiment of the power semiconductor module 2 according to the invention, shown only schematically in FIG. 1, in an equivalent circuit diagram.
  • the power semiconductor module 2 has two series-connected disconnectable power semiconductors 6, 7, which in the embodiment shown are implemented as so-called IGBTs. Each power semiconductor 6 and 7, an opposite direction free-wheeling diode 8 and 9 connected in parallel.
  • the power semiconductor branch 10 consisting of a series connection of the power semiconductors 6, 7 is connected in parallel with a capacitor 11 as an energy store.
  • the capacitor 11 is connected via connecting lines 12 with the power semiconductor electronics, which the power semiconductor ter 6.7, the diodes 8.9 and not shown control electronics comprises.
  • the power semiconductor module 2 also has two connection terminals 13 and 14, the connection terminal 14 being connected to the emitter of the power semiconductor 7 as the first power semiconductor and to the anode of the opposing diode 9.
  • the second connection terminal 13 is connected to the connection point of the power semiconductors 6 and 7 as well as to the connection point of the respective associated freewheeling diodes 8 and 9. If the power semiconductor 7 is transferred from its blocking position into its passage position, the voltage drop between the terminals 13 and 14 is zero. However, if the power semiconductor switch 7 is in a blocking position, the power semiconductor 6 in a passage position, the voltage of the capacitor 11 drops between terminals 13 and 14.
  • connection lines 12 have a predetermined breaking point 15, which is realized in the embodiment shown in Figure 2 as a fuse wire.
  • the predetermined breaking point 15 is an ohmic resistor 16 connected in parallel, wherein the ohmic resistor 16 is arranged in a bridging branch 17.
  • the ohmic resistor 16 is connected in parallel, wherein the ohmic resistor 16 is arranged in a bridging branch 17.
  • FIG. 3 shows an alternative embodiment of the power semiconductor module 2 according to FIG. 2.
  • the first terminal 14 is connected to the collector of the turn-off power semiconductor 7 and to the cathode of the opposing one Free-wheeling diode 9 connected.
  • the second terminal 13 is connected to the connection point of the power semiconductors 6, 7 and the freewheeling diodes 8, 9.
  • the embodiments of the Marquardt circuit shown in the figures are equivalent to one another and therefore have the same properties.
  • FIG. 4 shows a further exemplary embodiment of a power semiconductor module 1 according to the invention, wherein the power semiconductors are shown only schematically as power semiconductor circuit 18.
  • the connecting lines 12 however, two mutually parallel conductor sections 19 and 20, in which the current, as indicated by the arrows, flows in opposite directions. Due to electrodynamic interactions it comes to repelling forces, but cause no breakage of the predetermined breaking point 15 during normal operation. Only in the event of a fault increase the current flow and thus the repulsion forces so far that it comes to a breaking of the predetermined breaking point 15.
  • the current conductor 19 is made as solid as possible, for example, as a solid copper conductor, wherein the predetermined breaking point 15 is a conductor with relatively lower mechanical strength.
  • FIG. 5 shows an enlarged view of the embodiment shown schematically in FIG.
  • connecting conductor 19 configured as a stable copper conductor, which comprises a substantially rectilinear current conductor section.
  • a likewise rectilinear metal foil 21 as a predetermined breaking point is parallel to it.
  • an ohmic resistance in the form of a metal wire 16 is provided in parallel to the metal foil 21, an ohmic resistance in the form of a metal wire 16 is provided.
  • the flow of current through the metal foil 21 and the connecting conductor 19 is guided in opposite directions. In the event of a short circuit, high repulsive forces therefore occur. It comes to tearing the metal foil 21 and the flow of current through the ohmic resistance 16th

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

Um ein Leistungshalbleitermodul (2) für die Energieverteilung und -Übertragung mit einer Leistungshalbleiterschaltung (18), die über Verbindungsleitungen (19,20) mit einem Energiespeicher (11) verbunden sind, bereitzustellen, welches im Fehlerfall auftretende Stromamplituden begrenzt und die Leistungselektronik wirksam schützt, wird vorgeschlagen, dass die Verbindungsleitungen (18,19) eine Sollbruchstelle (15,21) aufweisen, die bei einer einen Schwellenwert übersteigenden Strombelastung aufbricht, wobei die Verbindungsleitungen (18,19) ferner einen Widerstand (16) aufweisen, der parallel zur Sollbruchstelle (15,21) geschaltet ist.

Description

Beschreibung
Kurzschlussstrombegrenzer
Die Erfindung betrifft ein Leistungshalbleitermodul für die Energieverteilung und -Übertragung mit einer Leistungshalbleiterschaltung, die über Verbindungsleitungen mit einem E- nergiespeicher verbunden sind.
Ein solches Leistungshalbleitermodul ist beispielsweise aus der GB 2 294 821 A bereits bekannt. Dort ist ein so genannter Multilevel-Umrichter beschrieben, der aus einer Reihenschaltung von Leistungshalbleitermodulen besteht. Jedes Leistungshalbleitermodul verfügt über einen Energiespeicher, der mit einer Leistungshalbleiterschaltung verbunden ist. Dabei bildet der Energiespeicher in Gestalt eines Kondensators eine so genannte Vollbrückenschaltung mit den Leistungshalbleitern aus. Je nach Schaltstellung der Leistungshalbleiter kann die positive Kondensatorspannung, die negative Kondensatorspan- nung oder die Spannung null am Ausgang des Leistungshalbleitermoduls erzeugt werden.
Bei Spannungszwischenkreisumrichtern ist die Leistungshalbleiterschaltung oder mit anderen Worten die Leistungselektro- nik mit den Leistungshalbleitern üblicherweise niederinduktiv an die Speichereinheit, beispielsweise einen Zwischenkreis- kondensator, angeschlossen. Im Fehlerfall, beispielsweise beim Durchlegieren eines Leistungshalbleiters, können aufgrund des Verhältnisses der Streuinduktivitäten und der Zwi- schenkreiskapazität sehr hohe Kurzschlussstromamplituden auftreten, die durchaus mehrere hundert Kiloampere erreichen können. Als Folge davon können bestimmte Leistungselektronikkomponenten schwere Schäden davon tragen. So kann es bei- spielsweise auch zur Explosion von Leistungshalbleiterbauteilen mit Lichtbogenbildung kommen.
Aufgabe der Erfindung ist es, die im Fehlerfall auftretenden Stromamplituden zu begrenzen und die Leistungselektronik oder andere Bauteile eines Umrichters wirksam zu schützen.
Die Erfindung löst diese Aufgabe dadurch, dass die Verbindungsleitungen eine Sollbruchstelle aufweisen, die bei einer einen Schwellenwert übersteigenden Strombelastung aufbricht, wobei die Verbindungsleitungen ferner einen Widerstand aufweisen, der parallel zur Sollbruchstelle geschaltet ist.
Erfindungsgemäß ist zwischen dem Energiespeicher, wie bei- spielsweise einem Kondensator, und der hinsichtlich der besagten hohen Ströme besonders empfindlichen Leistungselektronik eine Sollbruchstelle vorgesehen. Diese ist so ausgelegt, dass diese bei einem erhöhten Stromfluss über die Sollbruchstelle aufbricht. Um die Ausbildung eines Lichtbogens an der Sollbruchstelle zu vermeiden oder zumindest zu unterdrücken, ist parallel zur Sollbruchstelle ein so genannter Bypass oder Shunt vorgesehen, ein Hilfsstromzweig über den nach Aufbrechen der Sollbruchstelle der Strom fließen kann, so dass die Lichtbogenbildung an der Sollbruchstelle im Wesentlichen ver- mieden ist. In dem Hilfsstromzweig ist erfindungsgemäß ein
Widerstand vorgesehen. Der Kurzschlussstrom fließt daher über den Widerstand. Der Widerstand begrenzt den Kurzschlussstrom mit einer dissipativen Wärmeentwicklung im Gefolge. Auf diese Weise ist der Stromfluss durch die Leistungshalbleiter der Leistungshalbleiterschaltung begrenzt und wird allmählich von dem Widerstand in Wärme umgesetzt. Wenn der Strom durch den Widerstand nicht so stark begrenzt werden kann, dass ein Lichtbogen in der Leistungshalbleiterelektronik nicht sicher vermieden wird, dann ist erfindungsgemäß entscheidend, dass der im Lichtbogen des Leistungshalbeiters auftretende Energieumsatz reduziert wird, um eine Explosion des Leistungshalbleiters entweder zu vermeiden oder jedenfalls so weit abzuschwächen, dass Beschädigungen benachbarter Bauteile ver- mieden sind.
Unter Strombelastung ist beispielsweise die Amplitude des ü- ber die Verbindungsleitungen und damit über die Sollbruchstelle fließenden Stroms zu verstehen. Dabei ist die SoIl- bruchsteile so ausgestaltet, dass, wenn die Amplitude des besagten Stroms einen Schwellenstrom überschreitet, die Sollbruchstelle aufbricht. Abweichend hiervon kann der Schwellenwert auch eine festgelegte Verlustenergie oder dergleichen sein, die an der Sollbruchstelle umgesetzt wird.
Vorteilhafterweise umfasst die Sollbruchstelle einen Stromleiter, der bei einer über dem Schwellenwert liegenden Verlustenergie an der Sollbruchstelle schmilzt. Bei hohen Strömen kommt es somit zum Schmelzen des Stromleiters und daher zur Unterbrechung des Hauptstrompfades mit einer Kommutierung auf den Hilfsstromzweig im Gefolge.
Abweichend hiervon weisen die Verbindungsleitungen zwei parallel zueinander verlaufenden Stromleiterabschnitte auf, in denen ein Entladungsstrom des Kondensators gegensinnig fließt, so dass Abstoßkräfte erzeugt werden, wobei bei einem den Schwellenstrom übersteigenden Stromfluss ih den besagten Stromleiterabschnitten die Abstoßkräfte ein Aufbrechen der Sollbruchstelle bewirken. Gemäß dieser vorteilhaften Weiter- entwicklung werden die elektrodynamischen Kräfte gegensinnig fließender Ströme in parallelen Leiterbahnen ausgenutzt. Dabei ist zweckmäßigerweise einer der Stromleiterabschnitte massiv ausgebildet, während der andere Stromleiterabschnitt beispielsweise in Gestalt eines Bereichs mit geringer Materi- alstärke vorliegt. Bei hohen elektromagnetischen Abstoßkräften, die bei hohen Strömen auftreten, kommt es daher zum Aufreißen des Leiterbahnabschnittes, in dem die Sollbruchstelle vorgesehen ist. Das Ausnutzen elektrodynamischer Kräfte hat den Vorteil, dass die Kräfte vom Stromfluss unmittelbar abhängig sind und daher ohne große Zeitverzögerung auftreten.
Vorteilhafterweise umfasst die Sollbruchstelle eine elektrisch leitende Folie. Die Folie weist eine Dicke auf, die bei Nennstrom zur Stromleitung ausreichend ist, die jedoch sei es aufgrund mechanisch einwirkender Abstoßkräfte, sei es aufgrund von Schmelzeffekten beim Kurzschlussstrom aufbricht o- der zerreißt.
Abweichend hiervon umfasst die Sollbruchstelle einen elektrisch leitenden Draht.
Weiterhin ist es zweckmäßig, dass die Leistungshalbleiterschaltung abschaltbare Leistungshalbleiter aufweist. Solche abschaltbaren Leistungshalbleiter weisen gegenüber nicht abschaltbaren Leistungshalbleitern, wie beispielsweise Thyristoren, den Vorteil auf, dass diese sowohl ein- als auch ausgeschaltet werden können. Die Regelungsmöglichkeiten abschaltbarer Leistungshalbleiter sind daher stark erhöht.
Vorteilhafterweise weist die Leistungshalbleiterschaltung ge- bondete Leistungshalbleiter auf. Gebondete Leistungshalbleiter sind im Handel erhältlich. Sie umfassen in der Regel parallel zueinander geschaltete Leistungshalbleiterchips, die über Drahtverbindungen miteinander verbunden sind. Gebondete Leistungshalbleiter sind kostengünstiger als vergleichbare druckkontaktierte Leistungshalbleiter. Sie weisen jedoch den Nachteil auf, dass im Kurzschlussfall die über die Drahtverbindungen zwischen den Leistungshalbleiterchips fließenden Ströme die Drahtverbindungen zerstören, so dass die Bildung eines Lichtbogens eintreten kann, der den Leistungshalbleiter zerstört und eine Explosion des Gehäuses zur Folge haben kann. Die Erfindung begrenzt jedoch den über die Leistungs- halbleiter fließenden Strom, so dass auch bei Energiespeichern mit einer hohen Speicherkapazität und hohen Entladungsströmen zusammen mit gebondeten Leistungshalbleitern eingesetzt werden können. Erfindungsgemäß wird zumindest der Energieumsatz in einem Lichtbogen reduziert. Als Leistungshalb- leiter kommen beispielsweise so genannte IGBTs, IGCTs, GTOs oder dergleichen in Betracht. Insbesondere kommen IGBTs in Betracht .
Vorteilhafterweise verfügt das Leistungshalbleitermodul gemäß der vorliegenden Erfindung über eine erste Anschlussklemme, eine zweite Anschlussklemme, einen Energiespeicher und einen zwei in Reihe geschaltete Leistungshalbleiter aufweisenden Leistungshalbleiterzweig in Parallelschaltung zum Energiespeicher, wobei jedem Leistungshalbleiter eine gegensinnige Freilaufdiode parallel geschaltet ist und der Verbindungspunkt des Emitters eines ersten Leistungshalbleiters des Leistungshalbleiterzweiges und der Anode der dem ersten Leistungshalbleiter zugeordneten gegensinnigen Diode die erste Anschlussklemme und der Verbindungspunkt der Leistungshalb- leiter des Leistungshalbleiterzweiges und der Freilaufdiode die zweite Anschlussklemme ausbilden. Diese Schaltung der Leistungshalbleiter wird auch als so genannte Marquardt- Schaltung bezeichnet, sie weist Schaltstellungen auf, in denen die an dem Energiespeicher abfallenden Spannung oder eine Null-Spannung an den Anschlussklemmen abfällt.
Abweichend hiervon verfügt das Leistungshalbleitermodul über eine erste Anschlussklemme, eine zweite Anschlussklemme, einen Energiespeicher und einen zwei in Reihe geschaltete Leis- tungshalbleiter aufweisenden Leistungshalbleiterzweig in Parallelschaltung zum Energiespeicher, wobei jedem Leistungshalbleiter eine gegensinnige Freilaufdiode parallel geschaltet ist und der Verbindungspunkt des Kollektors eines ersten Leistungshalbleiters des Leistungshalbleiterzweiges und der Kathode der dem ersten Leistungshalbleiter zugeordneten gegensinnigen Freilaufdiode die erste Anschlussklemme und der Verbindungspunkt der Leistungshalbleiter des Leistungshalbleiterzweiges und der Freilaufdiode die zweite Anschlussklem- me ausbilden. Dies ist eine alternative Ausgestaltung der
Marquardt-Schaltung, welche im Wesentlichen die gleichen Eigenschaften aufweist.
Zweckmäßigerweise ist der Widerstand größer als 30 mΩ. Dieser Wertebereich hat sich für Anwendungen in der Energieübertragung und -Verteilung als zweckmäßig erwiesen.
Vorteilhafterweise weisen die Verbindungsleitungen (18,19) einen parallel zur Sollbruchstelle geschalteten Kondensator auf. Durch den Kondensator, der beispielsweise zusätzlich zum Ohmschen Widerstand vorgesehen ist, wird die Bildung eines Lichtbogens beim Aufbrechen der Sollbruchstelle noch sicherer vermieden.
Die Erfindung betrifft neben einem Leistungshalbleitermodul auch einen Stromrichterventilzweig für die Energieverteilung, der eine Reihenschaltung aus Leistungshalbleitermodulen gemäß der vorliegenden Erfindung aufweist.
Die Erfindung betrifft ferner einen Stromrichter, der aus Stromrichterventilzweigen gemäß der vorliegenden Erfindung aufgebaut ist, wobei die Stromrichterventilzweige in einer Brückenschaltung miteinander verschaltet sind. Dabei bilden zwei Stromrichterventilzweige ein so genanntes Phasenmodul aus, das beidseitig mit einem bipolaren Gleichspannungskreis und an dem Verbindungspunkt zwischen den Stromrichterventilzweigen mit einem Wechselspannungsnetz verbunden ist.
Selbstverständlich ist das erfindungsgemäße Leistungshalbleitermodul auch im Zusammenhang mit anderen Anwendungen einsetzbar. So ist das erfindungsgemäße Leistungshalbleitermodul beispielsweise auch für so genannten Flexible Alternate Cur- rent Transmission Systemen, FACTS, geeignet.
Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleiche Bauteile mit gleichen Bezugszei- chen versehen sind und wobei
Figur 1 ein Ausführungsbeispiel von Stromrichterventilzweigen gemäß der vorliegenden Erfindung,
Figur 2 ein Ersatzschaltbild eines Ausführungsbeispiels des erfindungsgemäßen Leistungshalbleitermoduls,
Figur 3 ein Ersatzschaltbild eines weiteren Ausfüh- rungsbeispiels des erfindungsgemäßen Leistungshalbleitermoduls
Figur 4 ein Ausführungsbeispiel des erfindungsgemäßen Leistungshalbleitermoduls, das eine Schaltung gemäß der Figuren 3 oder 4 aufweisen kann, und
Figur 5 eine Detaildarstellung des Leistungshalbleitermoduls gemäß Figur 4 zeigen. Figur 1 zeigt ein Ausführungsbeispiel erfindungsgemäßer Stromrichterventilzweige 1, die jeweils eine Reihenschaltung aus Leistungshalbleitermodulen 2 aufweisen. Jeder Leistungs- halbleiterventilzweig 1 ist auf einer Seite mit einem Gleich- spannungsanschluss 3 beziehungsweise 4 sowie mit einem von diesem abgewandten Wechselspannungsanschluss 5 ausgerüstet. In dem gezeigten Ausführungsbeispiel sind die Stromrichterventilzweige 1 symmetrisch ausgestaltet, wobei der Wechselspannungsanschluss 5 zwischen den beiden Ventilzweigen ange- ordnet ist. Der Wechselspannungsanschluss 5 ist zur Verbindung mit einer Phase eines figürlich nicht dargestellten Wechselspannungsnetzes über eine figürlich nicht dargestellte Induktivität vorgesehen. Ein ebenfalls figürlich nicht dargestellter Stromrichter ist beispielsweise aus insgesamt sechs Stromrichterventilzweigen 1 aufgebaut, von denen jeweils zwei, wie in Figur 1 gezeigt, in Reihe zueinander geschaltet sind, wobei der Verbindungspunkt der Stromrichterventilzweige jeweils mit einer Phase des Wechselspannungsnetzes verbunden ist .
Figur 2 zeigt das in Figur 1 nur schematisch dargestellte Ausführungsbeispiel des erfindungsgemäßen Leistungshalbleitermoduls 2 in einem Ersatzschaltbild. Das Leistungshalbleitermodul 2 weist zwei in Reihe zueinander geschaltete ab- schaltbare Leistungshalbleiter 6,7 auf, die in dem gezeigten Ausführungsbeispiel als so genannte IGBTs realisiert sind. Jedem Leistungshalbleiter 6 beziehungsweise 7 ist eine gegensinnige Freilaufdiode 8 beziehungsweise 9 parallel geschaltet. Der aus einer Reihenschaltung der Leistungshalbleiter 6,7 bestehenden Leistungshalbleiterzweig 10 ist einem Kondensator 11 als Energiespeicher parallel geschaltet. Der Kondensator 11 ist über Verbindungsleitungen 12 mit der Leistungshalbleiterelektronik verbunden, welche die Leistungshalblei- ter 6,7, die Dioden 8,9 und eine nicht gezeigte Ansteuerelektronik umfasst.
Das Leistungshalbleitermodul 2 weist ferner zwei Anschluss- klemmen 13 und 14 auf, wobei die Anschlussklemme 14 mit dem Emitter des Leistungshalbleiters 7 als ersten Leistungshalbleiter und mit der Anode der gegensinnigen Diode 9 verbunden ist. Die zweite Anschlussklemme 13 ist mit dem Verbindungspunkt der Leistungshalbleiter 6 und 7 sowie mit dem Verbin- dungspunkt der jeweils zugeordneten Freilaufdioden 8 und 9 verbunden. Wird der Leistungshalbleiter 7 von seiner Sperrstellung in seine Durchgangsstellung überführt, ist die zwischen den Anschlussklemmen 13 und 14 abfallende Spannung gleich null. Befindet sich jedoch der Leistungshalbleiter- Schalter 7 in einer Sperrstellung, der Leistungshalbleiter 6 in einer Durchgangsstellung, fällt zwischen Anschlussklemmen 13 und 14 die Spannung des Kondensators 11 ab.
Zum Schutz der Leistungshalbleiter 6 und 7 und der Dioden 8 und 9 verfügen die Verbindungsleitungen 12 über eine Sollbruchstelle 15, die in dem gezeigten Ausführungsbeispiel gemäß Figur 2 als Schmelzdraht realisiert ist. Der Sollbruchstelle 15 ist ein Ohmscher Widerstand 16 parallel geschaltet, wobei der Ohmsche Widerstand 16 in einem Überbrückungszweig 17 angeordnet ist. Im Kurzschlussfall kommt es zur plötzlichen Entladung des Kondensators 11 und somit zu einem erhöhten Stromfluss über die Verbindungsleitungen 12 und den Schmelzdraht 15. Übersteigt der Stromfluss durch den Schmelzdraht 15 einen von der Dicke und dem Material des Schmelz- drahtes abhängigen Schwellenwert, kommt es zum Schmelzen und somit zum Aufbrechen der Sollbruchstelle 15. Der Strom fließt dann über den Überbrückungszweig 17, wobei er durch den Ohm- schen Widerstand 16 begrenzt wird. Dabei sorgt der Ohmsche Widerstand 16 für eine dissipative Umwandlung der im Kondensator 11 gespeicherten Energie in Wärmeenergie.
Figur 3 zeigt eine alternative Ausgestaltung des Leistungs- halbleitermoduls 2 gemäß Figur 2. Im Gegensatz zu der in Figur 2 gezeigten Variante einer Marquardt-Schaltung ist in Figur 3 die erste Anschlussklemme 14 mit dem Kollektor des abschaltbaren Leistungshalbleiters 7 und mit der Kathode der hierzu gegensinnigen Freilaufdiode 9 verbunden. Die zweite Anschlussklemme 13 ist mit dem Verbindungspunkt der Leistungshalbleiter 6,7 und der Freilaufdioden 8,9 verbunden. Die in den Figuren gezeigten Ausführungsbeispiele der Marquardt- Schaltung sind zueinander äquivalent und weisen daher die gleichen Eigenschaften auf.
Figur 4 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Leistungshalbleitermoduls 1, wobei die Leistungshalbleiter nur noch schematisch als Leistungshalbleiterschaltung 18 dargestellt sind. Im Gegensatz zu dem in Figur 2 dargestellten Ausführungsbeispiel weisen die Verbindungsleitungen 12 jedoch zwei parallel zueinander verlaufenden Stromleiterabschnitte 19 und 20 auf, in denen der Strom, wie durch die Pfeile angedeutet, gegensinnig fließt. Aufgrund elektrodynamischer Wechselwirkungen kommt es zu Abstoßkräften, die jedoch bei Normalbetrieb kein Aufbrechen der Sollbruchstelle 15 bewirken. Erst im Fehlerfall steigen der Stromfluss und damit die Abstoßkräfte soweit an, dass es zu einem Aufbrechen der Sollbruchstelle 15 kommt. Dabei ist der Stromleiter 19 möglichst massiv ausgestaltet, beispielsweise als massiver Kupferleiter, wobei die Sollbruchstelle 15 ein Leiter mit vergleichsweise geringerer mechanischer Festigkeit ist.
Figur 5 zeigt eine vergrößerte Ansicht des in Figur 3 schematisch dargestellten Ausführungsbeispiels. Hier ist der in Fi- gur 3 oben dargestellte Verbindungsleiter 19 als stabiler Kupferleiter ausgestaltet, der einen im Wesentlichen geradlinig verlaufenden Stromleiterabschnitt umfasst. In räumlicher Nähe zum Stromleiterabschnitt des Verbindungsleiters 19 er- streckt sind parallel eine ebenfalls geradlinige Metallfolie 21 als Sollbruchstelle. In Parallelschaltung zur Metallfolie 21 ist ein Ohmscher Widerstand in Form eines Metalldrahtes 16 vorgesehen. Der Stromfluss über die Metallfolie 21 und den Verbindungsleiter 19 ist gegensinnig geführt. Im Kurzschluss- fall treten daher hohe Abstoßkräfte auf. Es kommt zum Aufreißen der Metallfolie 21 und zum Stromfluss über den Ohmschen Widerstand 16.

Claims

Patentansprüche
1. Leistungshalbleitermodul (2) für die Energieverteilung und -Übertragung mit einer Leistungshalbleiterschaltung (18), die über Verbindungsleitungen (19,20) mit einem Energiespeicher (11) verbunden sind, d a d u r c h g e k e n n z e i c h n e t , dass die Verbindungsleitungen (18,19) eine Sollbruchstelle (15,21) aufweisen, die bei einer einen Schwellenwert übersteigenden Strombelastung aufbricht, wobei die Verbindungsleitungen
(18,19) ferner einen Widerstand (16) aufweisen, der parallel zur Sollbruchstelle (15,21) geschaltet ist.
2. Leistungshalbleitermodul (2) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Sollbruchstelle (15,21) einen Stromleiter umfasst, der bei einem über dem Schwellenwert liegenden Verlustenergie an der Sollbruchstelle (12,21) schmilzt.
3. Leistungshalbleitermodul (2) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Verbindungsleitungen (18,19) zwei parallel zueinander verlaufende Stromleiterabschnitte aufweisen, in denen der Strom gegensinnig fließt, so dass Abstoßkräfte erzeugt wer- den, wobei bei einem den Schwellenstrom übersteigenden Strom- fluss in den besagten Stromleiterabschnitten die Abstoßkräfte ein Aufbrechen der Sollbruchstelle (21) bewirken.
4. Leistungshalbleitermodul (2) nach einem der vorhergehenden Ansprüchen, d a d u r c h g e k e n n z e i c h n e t , dass die Sollbruchstelle (21) eine elektrisch leitende Folie umfasst.
5. Leistungshalbleitermodul (2) nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass die Sollbruchstelle einen elektrisch leitenden Draht umfasst.
6. Leistungshalbleitermodul (2) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Leistungshalbleiterschaltung (18) abschaltbare Leistungs- halbleiter (6,7) aufweist.
7. Leistungshalbleitermodul (2) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Leistungshalbleiterschaltung gebondete Leistungshalbleiter aufweist.
8. Leistungshalbleitermodul nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t d u r c h eine erste Anschlussklemme (14), eine zweite Anschlussklemme (13) , einen Energiespeicher (11) und einen zwei in Reihe geschaltete Leistungshalbleiter (6,7) aufweisenden Leistungshalbleiterzweig (10) in Parallelschaltung zum Energiespeicher (11), wobei jedem Leistungshalbleiter (6,7) eine Freilaufdiode (8,9) antiparallel geschaltet ist und der Verbindungspunkt des Emitters eines ersten Leistungshalbleiters (14) des Leistungshalbleiterzweiges (10) und der Anode der dem ersten Leistungshalbleiter (7) zugeordneten gegensinnigen Freilauf- diode (9) die erste Anschlussklemme (14) und der Verbindungspunkt der Leistungshalbleiter (6,7) des Leistungshalbleiterzweiges (10) und der Freilaufdiode (8,9) die zweite Anschlussklemme (13) ausbilden.
9. Leistungshalbleitermodul nach einem der Ansprüche 1 bis 7, g e k e n n z e i c h n e t d u r c h eine erste Anschlussklemme (14), eine zweite Anschlussklemme (13), einen Energiespeicher (11) und einen zwei in Reihe ge- schaltete Leistungshalbleiter (6,7) aufweisenden Leistungshalbleiterzweig (10) in Parallelschaltung zum Energiespeicher (11), wobei jedem Leistungshalbleiter (6,7) eine Freilaufdiode (8,9) antiparallel geschaltet ist und der Verbindungspunkt des Kollektors eines ersten Leistungshalbleiters (14) des Leistungshalbleiterzweiges (10) und der Kathode der dem ersten Leistungshalbleiter (7) zugeordneten gegensinnigen Freilaufdiode (9) die erste Anschlussklemme (14) und der Verbindungspunkt der Leistungshalbleiter (6,7) des Leistungshalbleiterzweiges (10) und der Freilaufdiode (8,9) die zweite An- schlussklemme (13) ausbilden.
10. Leistungshalbleitermodul (2) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Widerstand (16) größer als 30 mΩ ist.
11. Leistungshalbleitermodul (2) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das die Verbindungsleitungen (18,19) einen parallel zur Sollbruchstelle (15,21) geschalteten Kondensator aufweisen.
12. Stromrichterventilzweig (1) g e k e n n z e i c h n e t d u r c h eine Reihenschaltung aus Leistungshalbleitermodulen (2) gemäß einem der vorhergehenden Ansprüche.
13. Stromrichter mit in Brückenschaltung angeordneten Stromrichterventilzweigen (1) gemäß Anspruch 10.
EP06775944A 2006-09-06 2006-09-06 Kurzschlussstrombegrenzer Withdrawn EP2059987A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2006/001586 WO2008028435A1 (de) 2006-09-06 2006-09-06 Kurzschlussstrombegrenzer

Publications (1)

Publication Number Publication Date
EP2059987A1 true EP2059987A1 (de) 2009-05-20

Family

ID=37923480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06775944A Withdrawn EP2059987A1 (de) 2006-09-06 2006-09-06 Kurzschlussstrombegrenzer

Country Status (6)

Country Link
US (1) US8149555B2 (de)
EP (1) EP2059987A1 (de)
JP (1) JP5202528B2 (de)
CN (1) CN101512862B (de)
DE (1) DE112006004119A5 (de)
WO (1) WO2008028435A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958371B2 (en) 2008-09-12 2015-02-17 Qualcomm Incorporated Interference management for different wireless communication technologies
US8792261B2 (en) 2009-03-30 2014-07-29 Hitachi, Ltd. Power conversion device
JP5268744B2 (ja) * 2009-03-31 2013-08-21 株式会社日立製作所 電力変換装置
JP5268739B2 (ja) * 2009-03-30 2013-08-21 株式会社日立製作所 電力変換装置
CN101860228A (zh) * 2010-05-07 2010-10-13 中国科学院电工研究所 高压配电用电力电子变压器
US9431918B2 (en) 2012-09-28 2016-08-30 General Electric Company Grounding scheme for modular embedded multilevel converter
US9559611B2 (en) * 2012-09-28 2017-01-31 General Electric Company Multilevel power converter system and method
CN104813578A (zh) * 2012-12-10 2015-07-29 西门子公司 具有电流浪涌限制器的子模块
WO2015090428A1 (en) * 2013-12-19 2015-06-25 Abb Technology Ltd Method and system for handling converter cell failure
US9515568B2 (en) * 2014-03-28 2016-12-06 General Electric Company Power converter with a first string having diodes and a second string having switching units
CN105099242B (zh) * 2014-05-09 2018-09-11 南京南瑞继保电气有限公司 电压源型多电平换流器、直流输电系统、故障处理方法和装置
JP6438839B2 (ja) * 2015-05-18 2018-12-19 株式会社日立製作所 半導体装置およびそれを用いた電力変換装置
CN111989850B (zh) * 2018-06-15 2023-09-15 株式会社村田制作所 Cr缓冲元件
US11699959B2 (en) * 2019-03-01 2023-07-11 Mitsubishi Electric Corporation Power conversion device
CN112910237A (zh) * 2021-03-09 2021-06-04 国家电网有限公司 换流链、换流器及故障清除方法
LU500997B1 (de) * 2021-12-13 2023-06-13 Phoenix Contact Gmbh & Co Kurzschlussschutz für einen Umrichter
JP7275414B1 (ja) * 2022-09-14 2023-05-17 三菱電機株式会社 電力変換装置および洋上風力発電システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333860A (ja) * 2002-05-15 2003-11-21 Toshiba Elevator Co Ltd 電力変換装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1638052U (de) * 1952-01-09 1952-05-08 Wunder Kg Heinrich Sohlenhalter fuer ski-bindungen.
US3529210A (en) * 1967-02-28 1970-09-15 Mitsubishi Electric Corp Current limiting circuit
DE1638052A1 (de) * 1968-01-18 1971-03-11 Kaiser & Co Leuchten Kg Elektrische Abschalteinrichtung
JPS6230278Y2 (de) 1978-08-24 1987-08-04
US4516182A (en) * 1981-01-16 1985-05-07 Ga Technologies Inc. Current limiting apparatus
DE4330381A1 (de) 1993-09-08 1995-03-09 Abb Management Ag Schutzschaltung für einen Stromkreis mit einer Kondensatorschaltung
SE510597C2 (sv) * 1997-03-24 1999-06-07 Asea Brown Boveri Anläggning för överföring av elektrisk effekt
JPH10326554A (ja) * 1997-03-27 1998-12-08 Ngk Insulators Ltd Ptc素子を備えた限流器及び/又は遮断器
DE19739551A1 (de) 1997-09-09 1999-03-11 Siemens Ag Kurzschlußstrombegrenzung für eine Stromrichterschaltung mit einem kapazitiven Speicher
JP4131769B2 (ja) * 1999-03-15 2008-08-13 株式会社東芝 超電導限流ヒューズおよびこれを用いた過電流制御システム
CN2459751Y (zh) 2000-11-07 2001-11-14 曹迅 一种新型限流熔断组合保护器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333860A (ja) * 2002-05-15 2003-11-21 Toshiba Elevator Co Ltd 電力変換装置

Also Published As

Publication number Publication date
JP5202528B2 (ja) 2013-06-05
CN101512862B (zh) 2015-11-25
JP2010503221A (ja) 2010-01-28
WO2008028435A1 (de) 2008-03-13
US8149555B2 (en) 2012-04-03
US20090262477A1 (en) 2009-10-22
DE112006004119A5 (de) 2009-08-13
CN101512862A (zh) 2009-08-19

Similar Documents

Publication Publication Date Title
EP2059987A1 (de) Kurzschlussstrombegrenzer
DE19639279C2 (de) Stromrichterschaltung
DE102007018344B4 (de) Vorrichtung zum Schutz von Umrichtermodulen
EP2100368B1 (de) Halbleiterschutzelemente zur beherrschung von dc-seitigen kurzschlüssen bei spannungszwischenkreisumrichtern
EP2338214B1 (de) Vorrichtung mit einem umrichter
EP2507884B1 (de) Umrichter für hohe spannungen
EP3257147B1 (de) Umrichteranordnung und verfahren zu deren kurzschlussschutz
EP2810290B1 (de) Vorrichtung zum schalten eines gleichstroms in einem pol eines gleichspannungsnetzes
DE102015109466A1 (de) Stromrichter-Submodul mit Kurzschlusseinrichtung und Stromrichter mit diesem
DE102019203977B4 (de) Schutzschalteinrichtung für Gleichspannung und Gleichspannungsabzweig mit Schutzschalteinrichtung
EP3593434B1 (de) Verfahren und anordnung zum erzeugen eines auslösesignals für einen hvdc-schalter
EP2810291B1 (de) Vorrichtung zum schalten von gleichströmen
EP1894240B1 (de) Elektronikmodul
WO2018149493A1 (de) Modul für modularen mehrpunktumrichter mit kurzschliesser und kondensatorstrombegrenzung
EP2580859B1 (de) Doppelmodul für einen modularen mehrstufenumrichter
EP3635851B1 (de) Stromrichtereinheit
EP3783783A1 (de) Anordnung zum regeln eines leistungsflusses in einem wechselspannungsnetz und verfahren zum schutz der anordnung
EP2564501B1 (de) Submodul für einen modularen mehrstufenumrichter
EP3639360B1 (de) Umrichteranordnung mit phasenmodulableiter sowie verfahren zu deren kurzschlussschutz
WO2018024407A1 (de) Antriebssystem für ein schienenfahrzeug
EP3878088B1 (de) Anordnung mit einem multilevelstromrichter
EP2904625B1 (de) Gleichspannungsleistungsschalter
DE102004016456A1 (de) Generator mit integriertem Leistungsschalter
WO2020043273A1 (de) Anordnung mit einem modul eines multilevelstromrichters
DE102019203982A1 (de) Schalteinrichtung für einen Gleichspannungsstromkreis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20170207

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RIC1 Information provided on ipc code assigned before grant

Ipc: H02H 7/122 20060101AFI20171120BHEP

Ipc: H02M 7/483 20070101ALI20171120BHEP

Ipc: H01H 85/38 20060101ALI20171120BHEP

Ipc: H02H 9/02 20060101ALI20171120BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180424