EP2058525B1 - Turbine de ventilateur radial et ventilateur radial - Google Patents

Turbine de ventilateur radial et ventilateur radial Download PDF

Info

Publication number
EP2058525B1
EP2058525B1 EP07425710A EP07425710A EP2058525B1 EP 2058525 B1 EP2058525 B1 EP 2058525B1 EP 07425710 A EP07425710 A EP 07425710A EP 07425710 A EP07425710 A EP 07425710A EP 2058525 B1 EP2058525 B1 EP 2058525B1
Authority
EP
European Patent Office
Prior art keywords
impeller
main
blade
blades
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07425710A
Other languages
German (de)
English (en)
Other versions
EP2058525A1 (fr
Inventor
Maurizio Achille Abate
Mauro Castello
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elica SpA
Original Assignee
Elica SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elica SpA filed Critical Elica SpA
Priority to DE602007006209T priority Critical patent/DE602007006209D1/de
Priority to EP07425710A priority patent/EP2058525B1/fr
Priority to AT07425710T priority patent/ATE466195T1/de
Priority to RU2008144614/06A priority patent/RU2492363C2/ru
Publication of EP2058525A1 publication Critical patent/EP2058525A1/fr
Application granted granted Critical
Publication of EP2058525B1 publication Critical patent/EP2058525B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • the objects of the present invention are an impeller for a radial fan and a radial fan provided with such impeller.
  • Radial fans in particular fans intended to transfer air and/or gas (frequently in the form of a mixture thereof) to boilers, such as, for example, condensation boilers, comprise a housing provided with a suction port and a air exhausting port. Inside the housing, an impeller is provided which is able to rotate about a rotation axis. The air enters the housing through the suction port in the axial direction, it passes through the impeller, and it is discharged therefrom in the radial direction in a spiral portion of the housing, from where the air reaches the exhausting port.
  • the impeller is provided with a plurality of blades arranged about the rotation axis of the impeller having an arch-shaped profile in the transversal direction to the rotation axis.
  • Radial fans should be capable of providing suitable lifts in well-defined capacity intervals (so-called "working curves") in order to ensure the proper functioning, for example, of the condensation boiler which they are connected to.
  • a further particularly felt need which the research in the field of radial fans devotes considerable efforts to, is to achieve dimension decrements without a performance worsening.
  • a further most felt need is that the energy consumption associated with the impeller operation, which is usually actuated by an electric motor, is reduced.
  • the object of the present invention is to provide an impeller for a radial fan and a radial fan which allow obtaining efficient lift-capacity curves, in particular which are suitable for the operation of condensation boilers, such as not to require undue power consumption for the impeller actuation and which, in the whole, have reduced dimensions.
  • Fig. 1 is an exploded perspective view of a radial fan according to the invention
  • Fig. 2 is a perspective view of an impeller according to the invention.
  • Fig. 3 is a perspective view from a different angle of the impeller in Fig. 2 ;
  • Fig. 4 is a side view of the impeller in Fig. 2 ;
  • Fig. 5 is an enlarged view of the detail A of the impeller in Fig. 4 ;
  • Fig. 6 is an enlarged view of the detail B of the impeller in Fig. 4 ;
  • Fig. 7 is a further side view of the impeller in Fig. 2 ;
  • Fig. 8 a further side view of the impeller in Fig. 2 ;
  • Fig. 9 is a sectional view, according to the IX-IX line, of the impeller in Fig. 8 ;
  • Fig. 10 is a perspective view of a component of the radial fan in Fig. 1 ;
  • Fig. 11 is a further perspective view of the component in Fig. 10 ;
  • Fig. 12 is a side view of the component in Fig. 10 ;
  • Fig. 13 is a sectional view, according to the XIII-XIII line, of the component in Fig. 12 ;
  • Fig. 14 is a further side view of the component in Fig. 10 ;
  • Fig. 15 is a further side view of the component in Fig. 10 ;
  • Fig. 16 is a sectional view, according to the XVI-XVI line, of the component in Fig. 15 ;
  • Fig. 17 is a perspective view of a further component of the radial fan in Fig. 1 ;
  • Fig. 18 is a further perspective view of the component in Fig. 17 ;
  • Fig. 19 is a side view of the component in Fig. 17 ;
  • Fig. 20 is a further side view of the component in Fig. 17 ;
  • Fig. 21 is a sectional view, according to the XXI-XXI line, of the component in Fig. 20 ;
  • Fig. 22 is a further side view of the component in Fig. 17 ;
  • Fig. 23 is an exploded, perspective view of an impeller according to a further embodiment of the invention.
  • Fig. 24 is a perspective view of an impeller according to a further embodiment of the invention.
  • a radial fan is indicated by the reference numeral 1.
  • the fan 1 is, for example, adapted to convey air and/or gas (also as a mixture thereof) towards a burner, a boiler, or a general heating system.
  • the fan 1 is particularly adapted to the conveyance of air and/or gas towards a condensation boiler.
  • the fan 1 comprises an impeller 2 able to rotate about a rotation axis A, in particular inside a fan housing 3.
  • the terms “axial” and “radial” refer to the rotation axis A of the impeller 2, unless otherwise noted.
  • the housing 3 preferably comprises two mutually connectable, separate parts, for example a half-shell 4 which defines an impeller space 6 adapted to receive the impeller 2 therein, and a lid 5 adapted to close the impeller space 6.
  • the half-shell 4 and the lid 5 can be mutually connected, for example, through threaded couplers 7.
  • the lid 5 can further comprise a projecting portion 5' ( Figures 18-19 ) adapted to shape-fit into the impeller space 6 defined by the half-shell 4, which advantageously is essentially complementary thereto.
  • the lid 5 is adapted to support a preferably electric motor 8 intended to rotate the impeller 2 through a shaft 9 thereof which, in the assembled fan 1 condition, is coaxial to the rotation axis A.
  • the motor 8 can be connected to the lid 5 through an intermediate support 10 prearranged for the connection to the lid 5, for example through screws 11 to be inserted in corresponding screw seats 12 of the lid 2.
  • the screw seats 12 are arranged at constant angular distances along a circumference.
  • the screw seats 12 can be in a number of three and spaced at 120° apart one to the other.
  • the intermediate support 10 can be provided with as many radial brackets 15 correspondingly distributed to the screw seats 12 of the lid 10.
  • the fan 1 can comprise vibration dampening means.
  • vibration dampening means comprise first dampeners 13 adapted to act between the intermediate support 10 and the lid 5, for example rubber members provided with an opening passing through the bore for the screws 11, so as to dampen the vibrations parallel to the rotation axis A.
  • the fan 1 can further comprise second dampeners 14, acting between the intermediate support 10 and the lid 5, thus oriented and shaped so as to dampen the vibrations which, from the motor 8, transfer to the housing 3 along radial directions.
  • the second dampeners 14, for example, rubber members, can be inserted in support brackets 16 formed by or connected to the lid 5, and preferably arranged along a circumference which is inside the circumference along which the screw seats 12 are arranged. Still more preferably, such support brackets 16 are in a number of three and arranged at 120° one to the other.
  • the second dampeners 14 can, for example, be laterally contacted to the intermediate support 10, so as to act in the radial direction between the latter and the support brackets 16.
  • the latter can comprise a covering member 17 which is connectable to the lid 5, for example, through screws 18.
  • a covering member 17 is preferably cup-shaped, so as to make the motor 8 not accessible, once the fan 1 is assembled.
  • the covering member 17 can act so as to protect both the motor 8 and one or more further auxiliary members 48, such as, for example, control logic circuits for the motor 8.
  • the lid 5 comprises a through opening 19.
  • the fan 1 comprises an air and/or gas suction port 20 and exhausting port 21.
  • the suction port 20 and the exhausting port 21 are formed in the half-shell 4 ( Figures 1 and 10-16 ).
  • the suction port 20 is preferably laterally arranged on the half-shell 4 and it is so shaped that the entering air and/or gas enter the impeller space 6 and reach the impeller 2 along an essentially axial direction.
  • the exhausting port 21 is preferably formed at an end 23 of an exhausting portion 22 of the half-shell 4 which extends in a direction which is essentially tangential to the housing 3, so that air and/or gas discharged by the impeller 2 may circulate in the impeller space 6 according to essentially tangential flow lines, and are discharged by the fan 1 through the exhausting port 21 without being subjected to undue deviations of their motion.
  • a flange 24 can be provided, adapted to connect the fan 1 to outer support members (not shown in the Figures), for example, through threaded couplers.
  • the impeller 2 comprises a plurality of main blades 25 sequentially arranged about the rotation axis A ( Figures 2-9 ).
  • Each of such main blades 25 has a radially innermost inlet end 32 and a radially outermost outlet end 33.
  • the inlet end 32 has the function of sucking and entrapping the air and/or gas coming from the suction port 20 in the axial direction
  • the outlet end 34 has the function of guiding the air and/or gas discharged by the impeller 2 to the impeller space 6 of the housing 3.
  • Each of the main blades 25 comprises a concave main blade first surface 26 and a convex main blade second surface 27 opposite the main blade first surface 26. In this way, each of the main blades 25 has an essentially arc-shape. Furthermore, the main blade second surface 27 of each of the main blades 25 is facing the main blade first surface 26 of the next main blade. In this way, a flow passage 28 for air and/or gas conveyance between a radially inner position and a radially outer position of the impeller 1 is formed between two successive main blades of a pair of main blades.
  • the impeller 2 rotating under the effect of the actuation by the motor 8, sucks the air and/or gas from the suction port 20 of the housing 3, coaxial to the impeller 2, and conveys them under the effect of the impeller rotation into the flow passages 28 defined by the main blades 25, finally radially discharging them outside the impeller 2 in the impeller space 6.
  • the main blades 25 are shaped so as to optimize the inner fluid dynamics of the impeller, hence the overall performance of the fan 1.
  • main blade first surfaces 26 of the main blades 25 are so shaped as to define main blade arcs PP which comprise a main blade first circle arc PP1, a main blade second circle arc PP2, a main blade third circle arc PP3, and a main blade fourth circle arc PP4, radially arranged from the inside to the outside of the impeller 2 ( Fig. 5 ).
  • each of such circle arcs PP1, PP2, PP3, PP4 has its own radius of curvature, in particular the first circle arc PP1 has a first radius of curvature R1, the second circle arc PP2 has a second radius of curvature R2, the third circle arc PP3 has a third radius of curvature R3, and the fourth circle arc PP4 has a fourth radius of curvature R4.
  • the main blade radii of curvature have ratios in the following ranges:
  • the above-mentioned ratios between the main blade radii of curvature have approximately the following ratios, ranging within the previously noted intervals:
  • the main blade arcs PP are advantageously without discontinuity points.
  • the adjacent circle arcs have the same slope or, in mathematical terms, have the same first derivative.
  • the impeller 2 comprises a plurality of auxiliary blades 29 preferably having an extension which is smaller than the main blades 25 extension, also arranged about the impeller 2 rotation axis.
  • the auxiliary blades 29 are individually or in groups arranged between a first and a second main blades of a pair of main blades 25.
  • the main blades 25 and the auxiliary blades 29 are alternating one to the others, so that in each of the flow passages 28 a single one of the auxiliary blades 29 is provided for.
  • Each of the auxiliary blades 29 has a radially inner inlet end 34 and a radially outer outlet end 35. Furthermore, each of the auxiliary blades 29 comprises a concave auxiliary blade first surface 30 and a convex auxiliary blade second surface 31, opposite the auxiliary blade first surface 30 of the same auxiliary blade 29 ( Fig. 6 ).
  • the auxiliary blade first surface 30 of each of the auxiliary blades 29 is facing the main blade second surface 27 of a first one of the main blades 25 between which the auxiliary blade 29 is arranged, and the auxiliary blade second surface 31 of each of the auxiliary blades 29 is facing the main blade first surface 26 of a second one of the main blades 25 between which the auxiliary blade 29 is arranged.
  • auxiliary blade first surfaces 30 of each of the auxiliary blades 29 define auxiliary blade arcs PS which comprise a first circle arc PS1, a second circle arc PS2, and a third circle arc PS3, radially arranged from the inside to the outside of the impeller 2.
  • auxiliary blade circle arcs PS1, PS2, PS3 has its own radius of curvature, in particular the first circle arc PS1 has a first radius of curvature r1, the second circle arc PS2 has a second radius of curvature r2, and the third circle arc PS3 has a third radius of curvature r3.
  • the auxiliary blade radii of curvature have ratios which are advantageously in the following ranges:
  • the auxiliary blade radii of curvature have the following dimensional ratios, ranging within the above-mentioned intervals:
  • the auxiliary blade arcs PS also are without discontinuity points.
  • the air and/or gas turbulences are reduced when passing through the flow passages 28; in addition, in this way the overall head losses in the fan 1 during its functioning are also reduced.
  • the main blades 25 and the auxiliary blades 29 have mutual dimensional ratios specifically designed in order to achieve a high overall performance for the fan 1.
  • the first auxiliary blade radius of curvature r1 and the first main blade radius curvature R1 have a ratio r1/R1 ranging within 1.2-1.3.
  • such ratio r1/R1 is equal to about 1.25.
  • the main blades 25 have a main blade thickness s pp defined between the main blade first surface 26 and the main blade second surface 27, and the auxiliary blades 29 have an auxiliary blade thickness s ps defined between the auxiliary blade first surface 30 and the auxiliary blade second surface 31 ( Figures 5 and 6 ).
  • the first main blade radius R1 and the main blade thickness s pp have a ratio R1/s pp ranging within 18-21, preferably equal to about 19.5.
  • the first main blade radius r1 and the auxiliary blade thickness s ps have a ratio r1/s ps ranging within 23-26, preferably equal to about 24.32.
  • the main blade thickness s pp and the auxiliary blade thickness s ps are constant and essentially equal one to the other, so as to simplify the impeller 2 working operations.
  • the main blades and/or auxiliary blades thicknesses are evaluated in one of their axial ends. Due to the working operations of the impeller, the blades can have a gradually variable thickness between such two axial ends (for example, in order to make their detachment from the moulds easier). In such a case, the smallest thicknesses of the blades are taken as main blade s pp and auxiliary blade s ps thicknesses.
  • the blades In order to ensure an efficient air and/or gas conveyance through the impeller 2, as well as reduced power consumptions by the motor 8 actuating the impeller 2, it is important that the blades, as well as the above-described shape, also have a suitable spatial arrangement inside the impeller, as well as a suitable orientation at the inlet and outlet ends thereof, where the air and/or gas are respectively suctioned and discharged.
  • T outpp which is tangential to the main blade arc PP
  • R outpp which connects such outlet end 33 to the impeller center, that is to the rotation axis A.
  • T outpp and R outpp define a main blade exiting angle ⁇ outpp which, advantageously, ranges between 45° and 55°, and which is preferably equal to about 50.4°.
  • T inpp which is tangential to the main blade arc PP
  • R inpp which connects such inlet end 32 to the rotation axis A.
  • T inpp and R inpp individuate a main blade entering angle ⁇ inpp which, advantageously, ranges between 0° and 15°, and which is preferably equal to about 12.9°.
  • the auxiliary blade exiting angle ⁇ outps can range between 45° and 55°, and it is preferably equal to about 50.7°.
  • the auxiliary blade entering angle ⁇ inps can range between 25° and 35°, and it is preferably equal to about 30.1°.
  • the auxiliary blade enclosing angle ⁇ ps can range between 15° and 20°, and it is preferably equal to about 17.8°.
  • the outlet ends 33 of the main blades 25 are arranged so as to define an impeller outer circumference which essentially delimits the maximum radial dimensions of the impeller.
  • the inlet ends 32 of the main blades 25 are arranged so as to define a main blades inner circumference.
  • the impeller outer circumference and the main blades inner circumference have an impeller diameter D max and a main blades inner diameter d ipp ( Fig. 8 ), respectively, which, advantageously, have a dimensional ratio D max /d ipp ranging within 2-3.5, and which is preferably equal to about 2.78.
  • the impeller 2 has an impeller axial height h ext ( Fig. 7 ).
  • the impeller diameter D max and the impeller axial height h ext have a ratio D max /h ext ranging within 6-9, and which is preferably equal to about 7.37.
  • the outlet ends 35 of the auxiliary blades are also arranged along the impeller outer circumference ( Fig. 4 ). Furthermore, the inlet ends 34 thereof are arranged so as to define an auxiliary blades inner circumference with an auxiliary blades inner diameter d ips .
  • the impeller diameter D max and the auxiliary blades inner diameter d ips have a ratio D max /d ips ranging within 1.2-1.6, preferably equal to about 1.43.
  • the impeller diameter D max and the first main blade radius of curvature R1 have a ratio D max /R1 ranging within 4-5, preferably equal to 4.4.
  • the impeller 2 provided with the blades having the previously-described features can be constructively produced according to different conformations.
  • the impeller 2 comprises a first 36 and a second 37 separate and connectable support members.
  • the first support member 36 is intended to be connected to the motor 8 shaft 9 for the impeller 2 actuation.
  • the second support member 37 is located opposite the first support member 36 and comprises an opening 38 which is designed, once the fan is assembled, to be arranged in a position which corresponds to the suction port 20 of the housing 3, so as to axially suck the air and/or gas from outside the fan during the impeller 2 rotational movement.
  • the first 36 and the second 37 support members enclose, on two axially opposing sides, the flow passages 28 defined by the blades, thereby forcing the air and/or gas to pass therein.
  • the main and/or auxiliary blades can be made in a single piece with the second support member 37 (as shown in Fig. 23 ).
  • the blades can be made in a single piece with the first support member 36 (such solution is not shown in the Figures).
  • first support member 36, the second support member 37, and the main 25 and/or second 29 blades are mutually separate and connectable (in this regard, reference is to be made, for example, to Fig. 24 , in which an impeller 2 is shown provided only with main blades 25).
  • first 36 and the second 37 support members can comprise connection seats 39 intended to receive connection means which are either connectable to the blades or formed in a single piece therewith.
  • first support member 36, the second support member 37, and the main and/or second blades are made as one piece ( Figures 2-9 ), for example by means of a moulding process.
  • the first support member 36 and the second support member 37 advantageously have essentially complementary shapes. Furthermore, the first support member 36 and the second support member 37 are arranged so that the projection of the first support member 36 on the second support member 37 along the impeller A rotation axis is correspondent or inner to the air and/or gas opening 38 of the second support member 37.
  • the second support member 37 may be of a ring shape, the air and/or gas passage opening 38 having a circular shape, and the first support member 36 may be of a circular shape having dimensions which are equal to or smaller (preferably slightly smaller) than those of the opening 38.
  • suitable rakes are provided for one or more of the members which extend according to the rotation axis A.
  • a rake angle ⁇ is provided which ranges between 4 and 9°, preferably it is equal to 7° at the outlet ends 33 and 35 thereof, respectively (in this regard, see, for example, Fig. 9 ).
  • the rake angle ⁇ is so arranged that the impeller 2 radial dimensions are bigger on the first support member 36 side than on the second support member 37 side.
  • the first support member 36 and the second support member 37 are mutually connected through the main blades 25 ( Fig. 3 ).
  • the latter have their inlet ends 32 on the first support member 36 and comprise connection portions 40 in which the height thereof (in the impeller axial direction) gradually increases, from such inlet ends 32, radially towards the outside, until reaching the peak value at the second support member 37.
  • the main blades 25 radially extend to the outside along the second support member 37 to the outlet ends 33 thereof ( Fig. 2 ).
  • the outlet ends 33 of the main blades 25, which define the impeller circumference with diameter D max radially protrude in relation to the second support member 37, so as to suck air and/or gas possibly entrapped between the impeller 2 and the housing 3 during the fan 1 functioning ( Fig. 3 ).
  • a stiffening ring 41 can be provided on the impeller 2, also preferably made in a single piece with the impeller 2, connecting the outlet ends 33 of the main blades 25.
  • the stiffening ring 41 is located on the first support member 36 side.
  • the first support member 36 advantageously comprises a tubular portion 42 adapted to receive the motor 8 shaft 9 and which preferably extends parallel to the impeller rotation axis A.
  • the shaft 9 can be connected to the tubular portion 42 through locking means (not shown in the Figures) adapted to integrally connect rotationally and translationally the latter along the rotation axis A.
  • the first support member 36 of the impeller 2 comprises stiffening members adapted to oppose the impeller strains.
  • the first support member 36 can comprise one or more ribs 43 which radially extend starting from the tubular portion 42.
  • the ribs 43 are in a number of four and, still more preferably, are crosswise arranged and mutually spaced apart of about 90° (see, for example, Fig. 4 ).
  • the auxiliary blades 29 extend on the second support member 37 and, still more preferably, are also radially projecting to the outside of the latter, as the main blades 25 are, so as to co-operate in the suction of residual air and/or gas in the gap between the impeller 2 and the housing 3. Furthermore, the auxiliary blades inner circumference, along which the inlet ends 34 of the auxiliary blades 29 are arranged, is preferably located internally to the second support member 37, in a concentric manner thereto ( Fig. 4 ).
  • the impeller 2 in the single piece configuration is preferably made of a plastic material.
  • the impeller space 6 preferably has a configuration designed for coupling with the impeller 2 according to one or more of the embodiments described above.
  • the impeller space 6 of the housing transversally to the height H all thereof, therefore transversally to the impeller A rotation axis, has a transversal profile which comprises a main length 45 advantageously shaped as a plurality of successive housing circle arcs ( Fig. 12 ).
  • the impeller space 6 transversal profile can further comprise an exhausting length 46, in which the housing 3 extends in the exhausting portion 22, individuated by a reference angle ⁇ .
  • the main length 45 comprises four of the above-mentioned successive housing circle arcs, in particular a first CC1, a second CC2, a third CC3, and a fourth CC4 housing circle arcs having a first RC1, a second RC2, a third RC3, and a fourth RC4 housing radii of curvature, respectively.
  • Such housing circle arcs are arranged, preferably starting from the exhausting length 46, with a direction opposite to the rotation of the impeller 2 (in particular, with reference to the Fig. 12 , the housing circle arcs are arranged counter-clockwise, while the impeller is intended to rotate clockwise).
  • housing radii of curvature have ratios in the following ranges:
  • the above-mentioned ratios between the housing radii of curvature are approximately equal to:
  • D max /RC1 is equal to about 1.63.
  • the housing circle arcs are advantageously connected so that the main length 45 of the impeller space 6 transversal profile is essentially without discontinuity points.
  • the exhausting length 46 may have a width ⁇ ranging between 60° and 80°, preferably equal to about 70°.
  • the housing 3 comprises a conveyance tongue 47 adapted to convey air and/or gas exhausted by the impeller 2 towards the exhausting portion 22 and, therefrom, to the exhausting port 21 ( Figures 10-16 ).
  • conveyance tongue 47 preferably cantilevered formed in a single piece with the half-shell 4 of the housing 3, is located in the impeller space 6 at the exhausting length 46.
  • the conveyance tongue 47 advantageously extends along a tongue axis L which comprises an essentially rectilinear length, and which may optionally have slight curvatures at the two conveyance tongue ends, so as to partially enclose the impeller 2.
  • the conveyance tongue 47 has a gradually increasing section along the tongue extension axis L towards the exhausting port 21, so as to force the air and/or gas discharged by the impeller to run a circumferential path along all the impeller space, before reaching the exhausting portion 22.
  • such gradually increase of the conveyance tongue 47 section takes place in such a way that, proceeding along the tongue L extension axis towards the exhausting port 21, the conveyance tongue 47 width parallel to the rotation axis A increases towards the inner part of the impeller space 6 ( Fig. 13 ).
  • the housing 3, in particular the half-shell 4 and the lid 5, are preferably made in aluminium or an aluminium alloy.
  • the impeller 2 is provided with seventeen main blades 25 and seventeen auxiliary blades 29.
  • the auxiliary blades 25 and the auxiliary blades 29 are alternatively arranged about the impeller rotation axis A.
  • the impeller circumference has an impeller diameter D max equal to about 120 mm, along which the outlet ends 33 and 35 of the main blades 25 and the auxiliary blades 29 are arranged, respectively.
  • the impeller 2 further has an axial height h ext at the impeller circumference equal to about 16.28 mm.
  • the inlet end 32 of the main blades 25 are arranged according to a main blades inner circumference having a diameter d ipp of about 43.2 mm.
  • the four main blade circle arcs PP1, PP2, PP3, and PP4 have radii of curvature R1 equal to about 27.3 mm, R2 equal to about 29 mm, R3 equal to about 31.5 mm, and R4 equal to about 37.5 mm, respectively, and are mutually connected without discontinuity in the main blade arc PP profile.
  • the main blades 25 have a main blade enclosing angle ⁇ pp equal to about 22.8°, a main blade entering angle ⁇ inpp equal to about 12.9°, and a main blade exiting angle ⁇ outpp equal to about 50.4°.
  • the main blades 25 further have a thickness s pp essentially constant and equal to about 1.4 mm (to the axial end with smallest thickness).
  • the inlet ends 34 of the auxiliary blades 29 are arranged according to an auxiliary blades inner circumference having a diameter d ips of about 84 mm.
  • the three auxiliary blade circle arcs PS1, PS2, and PS3 have radii of curvature r1 equal to about 34.05 mm, r2 equal to about 37.8 mm, and r3 equal to about 36.75 mm, respectively, and are mutually connected without discontinuity in the auxiliary blade arc PS profile.
  • the auxiliary blades 29 have an enclosing angle of auxiliary blade ⁇ pa equal to about 17.8°, an auxiliary blade entering angle ⁇ inps equal to about 30.1°, and an auxiliary blade exiting angle ⁇ outps equal to about 50.7°.
  • the auxiliary blades further have a thickness s ps essentially constant and equal to about 1.4 mm (at the axial end with smallest thickness).
  • a housing 3 adapted to be coupled with an impeller of this kind has the impeller space 6 with an axial height H all of about 20.28 mm.
  • the impeller space transversal profile is so divided:
  • the four housing circle arcs have the following radii of curvature:
  • the fan overall dimensions essentially due to the impeller axial and radial dimensions, which dictate the housing axial and radial dimensions, are suitable for the applications which the fans according to the invention are intended to, in particular for air and/or gas supply to condensation boilers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (35)

  1. Turbine (2) pour un ventilateur radial (1) adaptée pour tourner autour d'un axe de rotation (A) et comprenant une pluralité d'aubes principales (25) agencées en séquence autour dudit axe de rotation (A), et ayant des extrémités d'entrée situées radialement le plus à l'intérieur (32) et des extrémités de sortie situées radialement le plus à l'extérieur (33), chacune desdites aubes principales (25) comprenant une première surface d'aube principale concave (26) et une seconde surface d'aube principale convexe (27) opposée à ladite première surface d'aube principale (26) et faisant face à la première surface d'aube principale de l'aube principale successive, dans laquelle les premières surfaces d'aube principale (26) définissent des arcs d'aube principale (PP) comprenant un premier (PP1), un deuxième (PP2), un troisième (PP3) et un quatrième (PP4) arcs de cercle d'aube principale qui sont agencés de manière radiale à partir de l'intérieur jusqu'à l'extérieur de la turbine (2) et ayant un premier (R1), un deuxième (R2), un troisième (R3) et un quatrième (R4) rayons de courbure d'aube principale, respectivement, caractérisée en ce que lesdits rayons de courbure d'aube principale (R1, R2, R3, R4) ont des rapports dans les plages suivantes : R 2 / R 1 = 1 - 1 , 1 ; R 3 / R 1 = 1 , 1 - 1 , 2 ; R 4 / R 1 = 1 , 2 - 1 , 5.
    Figure imgb0003
  2. Turbine (2) selon la revendication précédente, comprenant une pluralité d'aubes auxiliaires (29) individuellement ou en groupes, agencée autour dudit axe de rotation (A) entre une première et une seconde de ladite pluralité d'aubes principales successives (25), et ayant des extrémités d'entrée situées radialement le plus à l'intérieur (34) et des extrémité de sortie situées radialement le plus à l'extérieur (35), dans laquelle chacune desdites aubes auxiliaires (29) comprend une première surface d'aube auxiliaire concave (30) faisant face à la seconde surface d'aube principale (27) de ladite première aube principale, et une seconde surface d'aube auxiliaire convexe (31) opposée à ladite première surface d'aube auxiliaire (30) et faisant face à la première surface d'aube principale (26) de ladite seconde aube principale, dans laquelle les premières surfaces d'aube auxiliaire (30) définissent des arcs d'aube auxiliaire (PS) comprenant un premier (PS1), un deuxième (PS2) et un troisième (PS3) arcs de cercle d'aube auxiliaire qui sont agencés radialement de l'intérieur vers l'extérieur de la turbine (2), et ayant un premier (r1), un deuxième (r2) et un troisième (r3) rayons de courbure d'aube auxiliaire, respectivement, dans laquelle lesdits rayons de courbure d'aube auxiliaire (r1, r2, r3) ont des rapports dans les plages suivantes : r2/r1 = 1,08 - 1,15; r3/r1 = 1,05 - 1,1.
  3. Turbine (2) selon la revendication précédente, dans laquelle ledit premier rayon de courbure d'aube auxiliaire (r1) et ledit premier rayon de courbure d'aube principale (R1) ont un rapport dans la plage suivante : r1/R1 = 1,2-1,3.
  4. Turbine (2) selon l'une quelconque des revendications précédentes, dans laquelle les rapports entre lesdits rayons de courbure d'aube principale (R1, R2, R3, R4) sont approximativement égaux aux valeurs suivantes : R2/R1 = 1,06; R3/R1 = 1,15; R4/R1 = 1,37.
  5. Turbine (2) selon l'une quelconque des revendications 2 à 4, dans laquelle :
    les rapports entre lesdits rayons de courbure d'aube auxiliaire (r1, r2, r3) sont approximativement égaux aux valeurs suivantes : r2/r1 = 1,11 ; r3/r1 = 1,08 ; et
    ledit premier rayon de courbure d'aube auxiliaire (r1) et ledit premier rayon de courbure d'aube principale (R1) ont un rapport approximativement égal à : r1/R1 = 1,25.
  6. Turbine (2) selon l'une quelconque des revendications précédentes, dans laquelle des lignes droites (Toutpp) qui sont tangentielles auxdits arcs d'aube principale (PP) au niveau desdites extrémités de sortie (33) des aubes principales (25) forment, avec des lignes droites radiales (Routpp) passant par ledit axe de rotation (A) et par lesdites extrémités de sortie (33) des aubes principales (25), des angles sortant d'aube principale (Poutpp) de l'ordre de 45°-55°.
  7. Turbine (2) selon l'une quelconque des revendications précédentes, dans laquelle des lignes droites (Tinpp) tangentielles auxdits arcs d'aube principale (PP) au niveau desdites extrémités d'entrée (32) des aubes principales (25) forment, avec les lignes droites radiales (Rinpp) passant par ledit axe de rotation (A) et par lesdites extrémités d'entrée (32) des aubes principales (25), des angles entrants d'aube principale (Pinpp) de l'ordre de 0-15°.
  8. Turbine (2) selon les revendications 6 et 7, dans laquelle lesdites lignes droites radiales (Routpp) passant par les extrémités de sortie (33) des aubes principales (25) et lesdites lignes droites radiales (Rinpp) passant par les extrémités d'entrée (32) des aubes principales (25) forment des angles clos (θpp) de l'ordre de 15°-25°.
  9. Turbine (2) selon la revendication précédente, dans laquelle :
    lesdits angles sortants d'aube principale (Poutpp) ont des largueurs approximativement égales à 50,4°;
    lesdits angles entrants d'aube principale (βinpp) ont des largeurs approximativement égales à 12,9° ;
    lesdits angles clos d'aube principale (θpp) ont des largeurs approximativement égales à 22,8°.
  10. Turbine (2) selon l'une quelconque des revendications 2 à 9, dans laquelle les lignes droites tangentielles auxdits arcs d'aube auxiliaire (PS) au niveau desdites extrémités de sortie (35) des aubes auxiliaires (29) forment, avec des lignes droites radiales passant par ledit axe de rotation (A) et par lesdites extrémités de sortie (35) des aubes auxiliaires (29), des angles sortants d'aube auxiliaire (βoutps) de l'ordre de 45 - 55°.
  11. Turbine (2) selon l'une quelconque des revendications 2 à 10, dans laquelle les lignes droites tangentielles auxdits arcs d'aube principale (PS) au niveau desdites extrémités d'entrée (34) des aubes auxiliaires (29), forment avec des lignes droites radiales passant par ledit axe de rotation (A) et lesdites extrémités d'entrée (34) des aubes auxiliaires (29), des angles entrants d'aubes auxiliaires (βinps) de l'ordre de 25° - 35°.
  12. Turbine (2) selon les revendications 10 et 11, dans laquelle les lignes droites radiales passant par les extrémités de sortie (35) des aubes auxiliaires (29) et les lignes droites radiales passant par les extrémités d'entrée (34) des aubes auxiliaires (29) forment des angles clos d'aube auxiliaire (θps) de l'ordre de 15°-20°.
  13. Turbine (2) selon la revendication précédente, dans laquelle :
    lesdits angles sortants d'aube auxiliaire (βoutps) ont des largeurs approximativement égales à 50,7° ;
    lesdits angles entrant d'aubes auxiliaires (Binps) ont des largeurs approximativement égales à 30,1° ;
    lesdits angles clos d'aube principale (θps) ont des largeurs égales à 17,8°.
  14. Turbine (2) selon l'une quelconque des revendications précédentes, dans laquelle lesdites extrémités de sortie (33) des aubes principales (25) définissent une circonférence externe de turbine ayant un diamètre de turbine (Dmax) et lesdites extrémités d'entrée des aubes principales (25) définissent une circonférence interne des aubes principales ayant un diamètre interne des aubes principales (dipp) , ledit diamètre de turbine (Dmax) et ledit diamètre interne des aubes principales (dipp) ayant un rapport dans la plage suivante : Dmax/dipp = 2 - 3,5.
  15. Turbine (2) selon la revendication précédente ayant une hauteur axiale de turbine (hext) au niveau de ladite circonférence externe de turbine, ledit diamètre de turbine (Dmax) et ladite hauteur axiale de turbine (hext) ayant un rapport dans la plage suivante : Dmax/hext = 6 - 9.
  16. Turbine (2) selon la revendication 14 ou 15, dans laquelle lesdites extrémités de sortie (35) des aubes auxiliaires (29) sont agencées le long de ladite circonférence externe de turbine, et lesdites extrémités d'entrée (34) des aubes auxiliaires (29) définissent une circonférence interne des aubes auxiliaires ayant un diamètre interne des aubes auxiliaires (dips), ledit diamètre de turbine (Dmax) et ledit diamètre interne des aubes auxiliaires (dips) ayant un rapport dans la plage suivante : Dmax/dips = 1, 2 - 1, 6.
  17. Turbine (2) selon la revendication précédente, dans laquelle :
    ledit diamètre de turbine (Dmax) et ladite hauteur axiale de turbine (hext) ont un rapport approximativement égal à Dmax/hext = 7,37 ;
    ledit diamètre de turbine (Dmax) et ledit diamètre interne des aubes principales (dipp) ont un rapport approximativement égal à Dmax/dipp = 2,78 ;
    ledit diamètre de turbine (Dmax) et ledit diamètre interne des aubes auxiliaires (dips) ont un rapport approximativement égal à Dmax/dipe = 1, 43.
  18. Turbine (2) selon l'une quelconque des revendications 14 à 17, dans laquelle ledit diamètre de turbine (Dmax) et ledit premier rayon de courbure d'aube principale (R1) ont un rapport dans la plage suivante : Dmax/R1 = 4 - 5.
  19. Turbine (2) selon la revendication précédente, dans laquelle ledit diamètre de turbine (Dmax) et ledit premier rayon de courbure d'aubes principales (R1) ont un rapport approximativement égal à la valeur suivante : Dmax/R1 = 4,4.
  20. Turbine (2) selon l'une quelconque des revendications précédentes, dans laquelle lesdites aubes principales (25) ont une épaisseur d'aube principale (spp) définie entre ladite première surface d'aube principale (26) et ladite seconde surface d'aube principale (27), ledit premier rayon de courbure d'aube principale (R1) et ladite épaisseur d'aube principale (spp) ayant un rapport dans la plage suivante : R1/spp = 18 - 21.
  21. Turbine (2) selon la revendication précédente, dans laquelle ledit premier rayon de courbure d'aube principale (R1) et ladite épaisseur d'aube principale (spp) ont un rapport approximativement égal à R1/spp = 19,5.
  22. Turbine (2) selon la revendication 20 ou 21, dans laquelle lesdites aubes auxiliaires (29) ont une épaisseur d'aube auxiliaire (sps) définie entre ladite première surface d'aube auxiliaire (30) et ladite seconde surface d'aube auxiliaire (31), ladite épaisseur d'aube principale (spp) et ladite épaisseur d'aube auxiliaire (sps) étant approximativement constantes et essentiellement égales l'une par rapport à l'autre.
  23. Turbine (2) selon l'une quelconque des revendications précédentes, dans laquelle lesdits rayons de courbure d'aube principale ont environ les valeurs suivantes : R1 = 27,3 mm; R2 = 29 mm; R3 = 31,5 mm; R4 = 37,5 mm.
  24. Ventilateur radial (1) comprenant un boîtier (3) qui définit un espace de turbine (6) adapté pour recevoir une turbine (2) selon l'une quelconque des revendications précédentes.
  25. Ventilateur radial (1) selon la revendication précédente lorsqu'elle dépend de la revendication 15, dans lequel ledit espace de turbine (6) du boîtier (3) a une hauteur axiale de boîtier (Ha11), ladite hauteur axiale de boîtier (Hall) et ladite hauteur axiale de turbine (hext) ayant un rapport dans la plage suivante : Hall/hext = 1, 2 - 1,3.
  26. Ventilateur radial (1) selon la revendication 1, dans lequel ladite hauteur axiale de boîtier (Hall) et ladite hauteur axiale de turbine (hext) ont un rapport approximativement égal à : Hall/hext = 1,24.
  27. Ventilateur radial (1) selon l'une quelconque des revendications 24 à 26, dans lequel ledit espace de turbine (6) a de manière transversale par rapport audit axe de rotation (A) de la turbine (2), un profil transversal comprenant une longueur principale (45) formée comme une pluralité d'arcs de cercle successifs.
  28. Ventilateur radial (1) selon la revendication précédente, dans lequel ledit profil transversal d'espace de turbine (6) comprend en outre une longueur d'échappement (46), au niveau d'une partie d'échappement (22) faisant saillie du boîtier (3), qui comprend un orifice d'échappement (21) pour une sortie d'air et/ou de gaz agencée en raccordement de fluide avec ledit espace de turbine (6).
  29. Ventilateur radial (1) selon la revendication précédente, dans lequel ladite longueur principale (45) comprend un premier (CC1), un deuxième (CC2), un troisième (CC3) et un quatrième (CC4) arc de cercle de boîtier de ladite pluralité d'arcs de cercle successive de boîtier agencés en commençant à partir de ladite longueur d'échappement (46) ayant une direction qui est opposée à la direction de rotation de la turbine (2), lesdits arcs de cercle de boîtier (CC1, CC2, CC3, CC4) ayant un premier (RC1), un deuxième (RC2), un troisième (RC3) et un quatrième (RC4) rayon de courbure de boîtier, respectivement, dans lequel lesdits rayons de courbure de boîtier (RC1, RC2, RC3, RC4) ont des rayons dans les plages suivantes : RC 1 / RC 2 = 1 , 04 - 1 , 075 ; RC 1 / RC 3 = 1 , 075 - 1 , 15 ; RC 1 / RC 4 = 1 , 2 - 1 , 4.
    Figure imgb0004
  30. Ventilateur radial (1) selon la revendication précédente, dans lequel lesdits rayons de courbure de boîtier (RC1, RC2, RC3, RC4) ont les rapports suivantes : RC 1 / RC 2 = 1 , 06 ; RC 1 / RC 3 = 1 , 09 ; RC 1 / RC 4 = 1 , 29.
    Figure imgb0005
  31. Ventilateur radial (1) selon la revendication 29 ou 30, dans lequel le diamètre de turbine (Dmax) et ledit premier rayon de courbure de boîtier (RC1) ont un rapport dans la plage suivante : Dmax/RC1 = 1,5 - 1,8.
  32. Ventilateur radial (1) selon la revendication précédente, dans lequel ledit rapport entre le diamètre de turbine (Dmax) et le premier rayon de courbure de boîtier (RC1) est égal à environ 1,63.
  33. Ventilateur radial (1) selon l'une quelconque des revendications 29 à 32, dans lequel lesdits rayons de courbure de boîtier (RC1, RC2, RC3, RC4) ont environ les valeurs suivantes : RC1 = 74,1 mm ; RC2 = 69,9 mm ; RC3 = 68,2 mm ; RC4 = 57,6 mm.
  34. Ventilateur radial (1) selon l'une quelconque des revendications 28 à 33, dans lequel ladite longueur d'échappement (46) a une largeur (α) comprise entre 60° et 80°.
  35. Ventilateur radial (1) selon l'une quelconque des revendications 28 à 34, dans lequel ledit boîtier (3) comprend en outre une languette de transport (47) située dans l'espace de turbine (6) au niveau de ladite longueur d'échappement (46), dans lequel ladite languette de transport (47) s'étend selon un axe de languette (L) qui comprend une longueur essentiellement rectiligne, et a une section progressivement croissante vers ledit orifice d'échappement (21) le long dudit axe de languette (L).
EP07425710A 2007-11-12 2007-11-12 Turbine de ventilateur radial et ventilateur radial Active EP2058525B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE602007006209T DE602007006209D1 (de) 2007-11-12 2007-11-12 Rad für ein Radialgebläse und Radialgebläse
EP07425710A EP2058525B1 (fr) 2007-11-12 2007-11-12 Turbine de ventilateur radial et ventilateur radial
AT07425710T ATE466195T1 (de) 2007-11-12 2007-11-12 Rad für ein radialgebläse und radialgebläse
RU2008144614/06A RU2492363C2 (ru) 2007-11-12 2008-11-11 Центробежный вентилятор и его рабочее колесо

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07425710A EP2058525B1 (fr) 2007-11-12 2007-11-12 Turbine de ventilateur radial et ventilateur radial

Publications (2)

Publication Number Publication Date
EP2058525A1 EP2058525A1 (fr) 2009-05-13
EP2058525B1 true EP2058525B1 (fr) 2010-04-28

Family

ID=39381877

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07425710A Active EP2058525B1 (fr) 2007-11-12 2007-11-12 Turbine de ventilateur radial et ventilateur radial

Country Status (4)

Country Link
EP (1) EP2058525B1 (fr)
AT (1) ATE466195T1 (fr)
DE (1) DE602007006209D1 (fr)
RU (1) RU2492363C2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022003842A1 (de) 2021-10-19 2023-04-20 Truma Gerätetechnik GmbH & Co. KG Gebläserad

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516739C1 (ru) * 2012-11-12 2014-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Лопасть осевого вентилятора
KR101625828B1 (ko) * 2014-12-08 2016-05-31 주식회사 토네이도시스템즈 스월러팬을 구비한 배기장치 모듈
JP6135702B2 (ja) * 2015-03-16 2017-05-31 東芝ホームテクノ株式会社 送風装置
DE102016113589A1 (de) * 2016-07-22 2018-01-25 Ebm-Papst Landshut Gmbh Gebläserad
DE102017114682A1 (de) * 2017-02-23 2018-08-23 Ebm-Papst Landshut Gmbh Einstückiges Gebläserad
CN108953236B (zh) * 2018-07-17 2019-11-26 青岛永胜昌风机科技有限公司 一种离心风机的转子结构
CN112032103B (zh) * 2019-06-03 2022-08-26 日本电产株式会社 叶轮、送风装置以及吸尘器
CN114233680A (zh) * 2021-12-29 2022-03-25 续新电器技术(深圳)有限公司 组合式扇叶及组合出风装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU909334A1 (ru) * 1980-01-02 1982-02-28 Предприятие "Уралтехэнерго"Производственного Объединения По Наладке,Совершенствованию Технологии И Эксплуатации Электростанций И Сетей "Союзтехэнерго" Рабочее колесо центробежного пылевого вентил тора
US6499954B1 (en) * 2000-08-21 2002-12-31 Textron Automotive Company Inc. Centrifugal impeller and housing
RU24519U1 (ru) * 2001-12-10 2002-08-10 Федеральное государственное унитарное предприятие "Научно-производственный центр "Полюс" Рабочее колесо центробежного вентилятора
ITBO20020519A1 (it) * 2002-08-02 2004-02-03 Spal Srl Girante per ventilatore centrifugo dotata di pale
US6945753B2 (en) * 2003-08-06 2005-09-20 Chao Cheng Chiang Smoke exhauster having improved fan device
DE202004012015U1 (de) 2004-07-31 2005-12-22 Ebm-Papst Landshut Gmbh Radialgebläserad
US7597541B2 (en) 2005-07-12 2009-10-06 Robert Bosch Llc Centrifugal fan assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022003842A1 (de) 2021-10-19 2023-04-20 Truma Gerätetechnik GmbH & Co. KG Gebläserad

Also Published As

Publication number Publication date
ATE466195T1 (de) 2010-05-15
RU2492363C2 (ru) 2013-09-10
DE602007006209D1 (de) 2010-06-10
RU2008144614A (ru) 2010-05-20
EP2058525A1 (fr) 2009-05-13

Similar Documents

Publication Publication Date Title
EP2058525B1 (fr) Turbine de ventilateur radial et ventilateur radial
JP2019515194A (ja) インタクーラーを備えたターボ圧縮機
EP1924772B1 (fr) Ventilateur centrifuge d'appareil de traitement d'air
US11420544B2 (en) Cooling fan and seat cooling device comprising same
EP2205875B1 (fr) Compresseur à canal latéral
US11248615B2 (en) Side-channel machine (compressor, vacuum pump or blower) having an extraction duct in the stripper
CN109983232B (zh) 电动汽车冷却剂泵
EP1704792B1 (fr) Sèche-cheveux
US20180245598A1 (en) Turbo Fan
KR101658728B1 (ko) 모터­구동형 터보 압축기
US10443606B2 (en) Side-channel blower for an internal combustion engine
CN105431636A (zh) 用于涡旋式压缩机风扇的壳体
US20140170000A1 (en) Side channel blower having a plurality of feed channels distributed over the circumference
CN103850981A (zh) 医用或牙科用的风机
EP2921712B1 (fr) Rotor destiné à un ventilateur radial et ventilateur radial
CN109563841A (zh) 真空泵及真空泵中具备的旋转圆筒体
CA2447421A1 (fr) Ventilateur d'evacuation d'air
US20070134083A1 (en) Regenerative pump
EP1624191A1 (fr) Ventilateur à canal latéral
WO2017212297A1 (fr) Compresseur de suralimentation électrique pourvu d'un ensemble compresseur centrifuge
JP6553360B2 (ja) 電動送風機及びそれを搭載した電気掃除機
KR20240071499A (ko) 터보식 공기압축기
CN112513472A (zh) 径流式流体机械
WO2020012185A1 (fr) Compresseur centrifuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20090826

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007006209

Country of ref document: DE

Date of ref document: 20100610

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100828

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101029

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: EMC FIME S.R.L.; IT

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: ELICA S.P.A.

Effective date: 20220620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007006209

Country of ref document: DE

Owner name: EMC FIME S.R.L., CASTELFIDARDO, IT

Free format text: FORMER OWNER: ELICA S.P.A, FABRIANO, ANCONA, IT

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007006209

Country of ref document: DE

Representative=s name: DEHNS PATENT AND TRADEMARK ATTORNEYS, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220818 AND 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221122

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230905

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231124

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231113

Year of fee payment: 17

Ref country code: DE

Payment date: 20231121

Year of fee payment: 17