EP2056260B1 - Procédé destinés à la vérification de documents de valeur - Google Patents

Procédé destinés à la vérification de documents de valeur Download PDF

Info

Publication number
EP2056260B1
EP2056260B1 EP08014847.1A EP08014847A EP2056260B1 EP 2056260 B1 EP2056260 B1 EP 2056260B1 EP 08014847 A EP08014847 A EP 08014847A EP 2056260 B1 EP2056260 B1 EP 2056260B1
Authority
EP
European Patent Office
Prior art keywords
luminescence intensity
value
document
intensity
luminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08014847.1A
Other languages
German (de)
English (en)
Other versions
EP2056260A3 (fr
EP2056260A2 (fr
Inventor
Jürgen Dr. Schützmann
Hendrik Dr. Derks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP2056260A2 publication Critical patent/EP2056260A2/fr
Publication of EP2056260A3 publication Critical patent/EP2056260A3/fr
Application granted granted Critical
Publication of EP2056260B1 publication Critical patent/EP2056260B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties

Definitions

  • the invention relates to a method for checking value documents, in particular for detecting forged value documents.
  • these signals are detected, for example temporally successively, the fluorescence signal during illumination with an excitation light pulse, the phosphorescence signal after the end of the excitation light pulse, in the dark phase between two excitation light pulses.
  • the luminescence signal which contains both a fluorescence and a phosphorescence component, and to detect the decay behavior of the phosphorescence signal in the dark phase.
  • the detected in the dark phase phosphorescence intensity of the detected during the illumination with the excitation light pulse intensity (the sum of fluorescence and phosphorescence intensity) to determine the fluorescence intensity.
  • the light pulses do not end abruptly, but have an afterglow, remains at the time of the phosphorescence signal, due to the afterglow of the UV lamp, but still a certain residual intensity of the excitation light.
  • fluorescent substances present in a value document can be excited to residual fluorescence.
  • the residual fluorescence emitted by the fluorescent substances contributes to a luminescence signal detected in the dark phase, so that the phosphorescence measurement in the dark phase is falsified.
  • the threshold is set relatively high, so that the above-mentioned residual fluorescence of the counterfeits can not lead to exceeding the threshold value.
  • the high threshold may result in the phosphorescence signal from true value documents that are severely polluted not reaching the threshold and being accidentally rejected.
  • a value document with clocked excitation light of a light source is illuminated, which is periodically switched on and off.
  • a first luminescence intensity is detected by the value document or by a subregion of the value document, and a second luminescence intensity is detected within a second time interval in which the light source is switched off.
  • the first luminescence intensity is higher than the second luminescence intensity.
  • the first luminescence intensity is detected exclusively within the first time interval, ie not within the second time interval, the second luminescence intensity is detected exclusively within the second time interval, ie not within the first time interval.
  • the first and second luminescence intensities are detected at one or more measurement times within the first and second time intervals, respectively, which are either discrete or result from averaging over a detection time window.
  • the second luminescence intensity is linked to the first luminescence intensity.
  • the corrected second luminescence intensity essentially corresponds to a phosphorescence signal of the value document or a subarea of the value document.
  • the corrected second luminescence intensity is compared with a threshold value.
  • the exceeding of the threshold value can be used as authenticity criterion of the value document.
  • the threshold can be based on a variety real and / or forged value documents are determined, in particular on the basis of a plurality of value documents of the type of the value document.
  • the light source preferably emits UV light and is operated, for example, with periodic current pulses, through which the light source is switched on and off.
  • the light emission of the light source follows the timing of the current pulses only slightly delayed, so that the light emission does not end abruptly with the end of the current pulse, but decays only in the course of the second time interval in which the light source is turned off.
  • This afterglow of the light source leads to a remaining, but reduced optical excitation of the fluorescent substances of the value document in the second time interval.
  • a correction of the second luminescence intensity is carried out in order to at least partially compensate for the effects of afterglow on the detected second luminescence intensity.
  • the second luminescence intensity is corrected by means of a scaled first luminescence intensity, wherein the scaled first luminescence intensity is subtracted from the second luminescence intensity.
  • the scaled first luminescence intensity is obtained by scaling the first luminescence intensity with a scaling factor, the scaled first luminescence intensity being less than the first luminescence intensity.
  • the first luminescence intensity may be multiplied by a scaling factor that is less than one.
  • the scaling factor can be determined by independent measurement of the light emission of the fluorescent substances, independently of the phosphorescence be based on value documents containing only fluorescent substances, but no phosphors.
  • the fluorescent substance is measured, for example, under the same measuring conditions that are present in the method according to the invention.
  • the fluorescence signal of the fluorescence substances is determined at the measurement times also used in the examination of the value document, such as a first fluorescence intensity at the first measurement time and a second fluorescence intensity at the second measurement time.
  • the ratio of the second fluorescence intensities of the second measurement time point determined in the independent measurement to the first fluorescence intensity of the first measurement time point results in the scaling factor valid for these two measurement times.
  • the scaling factor can also be calculated by the ratio of the intensities of the excitation light to the measurement times used in the examination of the value document. Because the fluorescence intensity For each measurement time is approximately proportional to the excitation intensity at the measurement time, the ratio of the intensity of the excitation light to the second measurement time to the intensity of the excitation light to the first measurement time can be used as a scaling factor.
  • the first luminescence intensity is essentially formed by a fluorescence signal of the value document or of the subregion.
  • the scaled first luminescence intensity in this case corresponds to a residual fluorescence of the value document or of the partial region which is excited by the afterglow of the light source.
  • the second luminescence intensity is substantially corrected by the residual fluorescence intensity of the respective partial region. The correction therefore compensates for a fluorescence contribution to the second luminescence intensity which results from the afterglow of the light source.
  • the result for the corrected second luminescence intensity is approximately zero.
  • the corrected second luminescence intensity therefore corresponds to the (approximately vanishing) phosphorescence signal of the value document or of the subregion in the case of these value documents or subregions. Since the residual fluorescence depends, for example, on the concentration of the fluorescence substances in the respective subarea of the value document, the correction of the second luminescence intensity is preferably carried out individually for each subarea of the value document.
  • the correction of the second luminescence intensity is performed for the purpose of compensating the residual fluorescence in the case when Value document or a subregion, although fluorescent substances, but no or hardly phosphorescers.
  • the method according to the invention is also carried out for the value documents or subregions which have both substances or else exclusively phosphors.
  • the correction of the second luminescence intensity by the scaled first luminescence intensity also takes place in these cases.
  • the corrected second luminescence intensity of the value document or of the subarea with phosphorescent substances corresponds approximately to the phosphorescence signal of the value document or the subarea.
  • the corrected second luminescence intensity is used as the phosphorescence signal, in particular for comparison with the threshold value.
  • the value document To test the value document, it is transported along a transport direction through a detection area of a sensor used for testing. Subareas of the value document which are arranged adjacent to the transport direction are checked successively in terms of time. The subareas of the value document, of which a first and a second luminescence intensity is detected, correspond, for example, to one pixel each. However, due to the transport of the value document, the first and second luminescence intensity are not exactly captured by the same pixel of the value document, but they are approximately assigned to a single pixel. The spatial distances of the pixels along the transport direction are determined by the time intervals of the measurement times at which the respective first and second luminescence intensity is detected.
  • a higher clock frequency of the light source also leads to a shortening of the first and second time intervals.
  • the second luminescence intensity must therefore be detected at a higher clock frequency at a shorter distance after the end of the preceding excitation light pulse or after the end of the first time interval than at a lower clock frequency.
  • a higher afterglow of the light source and a larger residual fluorescence signal of the fluorescent substances excited thereby result at a higher clock frequency.
  • the scaling factor is therefore determined for the respective measurement times and the respective clock frequency of the light source and used as a function of the measurement times and the clock frequency.
  • the clock frequency of the light source results from the desired transport speed and from the desired pixel size or spatial resolution in the transport direction.
  • one or more further luminescence intensities can be detected for each pixel in addition to the second luminescence intensity.
  • further corrected luminescence intensities are determined.
  • the first luminescence intensity and / or the second luminescence intensity and / or the further luminescence intensities can each be discrete measured values. However, they can also each result from an averaging over a plurality of measured values, for example from an averaging over a plurality of discrete measured values or from a temporal integration over an acquisition time window at the respective measuring time.
  • the method according to the invention can be carried out for one or more subareas of the value document.
  • the corrected second luminescence intensity of each of the plurality of subregions may be compared to an individual threshold. From these comparisons, an overall result can be determined, which is used to check the authenticity of the value document.
  • the first and the second luminescence intensity are determined, e.g. each determined as a function of the location on the value document, wherein preferably a respective two-dimensional distribution of the first and the second luminescence intensity is determined.
  • the examined subregion of the value document contains a plurality of pixels.
  • the subregion is a region of interest (ROI) with several pixels.
  • ROI region of interest
  • first of each pixel of the ROI a first and a second luminescence intensity are detected.
  • the mean of the first and the second luminescent intensity average of the ROI are combined to determine a corrected second luminescence intensity of the ROI.
  • the mean value of the first luminescence intensity is scaled by the scaling factor and subtracted from the mean value of the second luminescence intensity. For the ROI, this results in exactly one corrected second luminescence intensity, which is compared with a threshold value.
  • the tested subregion corresponds to exactly one pixel of the value document, with a corrected one for each pixel second luminescence intensity is determined.
  • the pixels can be distributed over the entire area or also over one or more ROIs of the value document.
  • the value documents which are checked by the method according to the invention are, for example, banknotes. However, it may also be any other value documents of which the luminescence properties are to be tested.
  • a device for checking value documents can be used which has one or more sensors for checking the value documents. The device can be designed in particular for the identification and / or for checking the authenticity of the value documents.
  • FIG. 1a schematically shows the time course of the light intensity of a conventional UV lamp, which is used for the optical excitation of a value document to be tested, for example a hot or cold cathode lamp.
  • the UV lamp is part of a sensor for checking documents of value.
  • the excitation light E 0 of the UV lamp is in the case of FIG. 1a clocked at a relatively low clock frequency, for example, 1 kHz.
  • the light pulses of the excitation light E 0 are not ideal rectangular pulses (dashed lines for comparison), but delayed both when switching on and when switching off the UV lamp. After the switch-off time t 0 of the UV lamp, therefore, there is an afterglow of the excitation light.
  • the excitation light leads to a periodic excitation of fluorescent substances and phosphors in the value document to be tested.
  • the time course of a fluorescence signal emitted by the fluorescent substances corresponds approximately to the intensity profile of the excitation light.
  • the fluorescence signal of the value document can be detected during the optical excitation, for example at the time t F.
  • the phosphorescence signal of the value document has a significantly longer decay time. The phosphorescence signal of the value document can therefore be detected in this example after the end of the excitation light pulse, for example at the time t P , independently of the fluorescence signal.
  • FIG. 1b For comparison, the light pulses of an excitation light E of the UV lamp, which has a higher clock frequency than the excitation light E 0 FIG. 1a , In contrast to the excitation light E 0 , the excitation intensity of the excitation light E does not drop back to zero after the UV lamp has been switched off, ie in the period T off . Also during the period T off , an optical excitation of the fluorescence substances of the value document takes place, so that a fluorescence signal F is also emitted during the period T off , cf.
  • FIG. 2a is shown as a function of the location x on the value document, a spatial distribution of a detected luminescence intensity at time t 2 L2.
  • a luminescence peak which is caused by the phosphorescence signal of phosphors, which are present in this area of the value document.
  • the detected luminescence intensity is formed by the residual fluorescence F 2 of the fluorescence substances present in this region of the value document.
  • the document of value has no phosphors.
  • the measured luminescence intensity is compared in the previous method with a threshold value Tho which lies between the maximum of the residual fluorescence signal F 2 and that of the phosphorescence signal. Due to the residual fluorescence signal F 2 , the threshold Th 0 must be set relatively high.
  • the t in the period T off for example for measuring time 2 detected second luminescence intensity L 2 corrected by that of L 2, a portion of the first time point t 1 detected first luminescence intensity is subtracted. In the value document regions of the fluorescent substances, the residual fluorescence F 2 present at the time of measurement t 2 is thus essentially subtracted.
  • a scaled first luminescence intensity is calculated for each of the pixels. In order to be independent of changes in the excitation light during the operating period of the light source, the scaled first luminescence intensity for each of the pixels is determined individually by multiplying the first luminescence intensity L 1 detected by the pixel at the measurement time t 1 by one Scaling factor S.
  • the scaling factor S is characteristic for the respectively selected measurement times t 1 and t 2 and for the distance and the pulse shape of the light pulses of the excitation light.
  • the scaling factor S can be determined by an independent measurement of the fluorescent substances on the basis of value documents containing only fluorescent substances, but no phosphors.
  • the fluorescence signal of the fluorescence substances is determined at the measurement times also used in the examination of the value document, either at the discrete measurement times t 1 , t 2 or also over the time course of the fluorescence decrease, cf.
  • Figure 1c From the ratio of the fluorescence intensity determined during the independent measurement to the second measurement time t 2 to the fluorescence intensity at the first measurement time t 1 , the valid for the two measurement times t 1 , t 2 scaling factor S can be determined.
  • the scaling factor can also be determined by dividing the intensity of the excitation light at the second measurement time t 2 (afterglow of the light source) by the intensity of the excitation light at the first measurement time t 1 .
  • the scaled second luminescence intensity S ⁇ L 1 (x, y) is calculated as a function of the position x, y of the subarea on the value document for each of the subregions of the value document to be tested.
  • the scaled second luminescence intensity S ⁇ L 1 (x, y) corresponds to the residual fluorescence intensity F 2 (x, y) present at the second measurement time t 2 .
  • FIG. 2b the spatial distribution of the corrected second luminescence intensity P 2 is shown, which in this way is made up of the second luminescence intensity L 2 FIG. 2a was determined.
  • Th Compared to the original threshold value Tho, it is now possible to use a significantly lower threshold Th with which the corrected second luminescence intensity P 2 is compared in order to check the examined value documents for their phosphorescence properties.
  • Th By comparing the corrected second luminescence intensity with The low threshold Th can also be used to ascertain the authenticity of used value documents whose phosphorescence is reduced due to contamination.
  • luminescence intensities can also be detected at further points in time T off , such as a third luminescence intensity L 3 at time t 3 , a fourth luminescence intensity L 4 at time t 4 , etc., cf. Figure 1c , For each of the measuring times t 3 , t 4 , a respectively valid scaling factor is determined for this measuring time. From the further luminescence intensities L 3 , L 4 , further corrected luminescence intensities P 3 , P 4 are determined by the method according to the invention.
  • the decay behavior of the phosphorescence intensity of one or more phosphors can be determined, which are present in the value document to be tested.
  • the decay behavior can be compared with reference data and used to identify one or more phosphors and / or for checking the authenticity of the value documents.
  • the luminescence intensities can also be detected by temporal integration, for example over a period of time T on or T off or over the entire period T on or T off .
  • a scaling factor valid for the respectively integrated detection time window is then determined.
  • FIG. 3a By way of example, a two-dimensional spatial distribution of the first luminescence intensity L 1 which was detected at a first measurement time t 1 within the time period T on is shown .
  • the luminescence intensity of the pixels for example of pixel A, is given by gray levels, with high luminescence intensities being bright.
  • a phosphor range P of the value document is marked in which phosphors are present and which forms an ROI.
  • the value document also has fluorescent substances which show a clear fluorescence signal, in particular outside the phosphorescence range P.
  • FIG. 3b shows a two-dimensional spatial distribution of the second luminescence intensity L 2 , which was detected at a measurement time t 2 within the period T off .
  • the luminescence intensity is mainly due to the residual fluorescence F 2 of the fluorescent substances.
  • the second luminescence intensity L 2 is determined for each pixel FIG. 3b subtracted the scaled first luminescence intensity S ⁇ L 1 , wherein for scaling the valid for the measurement times t 1 , t 2 scaling factor S is used.
  • the mean values of the first luminescence intensity and the second luminescence intensity can also be determined for the marked phosphorescence range P and, using the scaling factor S, a corrected second luminescence intensity of the phosphorescence range P calculated therefrom.
  • the scaling factor is about 15% in the example shown. From the first luminescence intensity L 1 and from the second luminescence intensity L 2, the results in Figure 3c illustrated corrected second luminescence intensity P 2 . The luminescence intensity detected outside the phosphorescence range P is thereby largely eliminated.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Claims (11)

  1. Procédé de vérification de documents de valeur, en particulier pour la la reconnaissance de documents de valeur contrefaits, comprenant les étapes :
    - éclairage d'un document de valeur avec de la lumière d'excitation (E) cadencée d'au moins une source de lumière allumée dans au moins un premier intervalle de temps (Ton) et éteinte dans au moins un deuxième intervalle de temps (Toff),
    - saisie d'une première intensité de luminescence (L1) exclusivement à l'intérieur du premier intervalle de temps (Ton),
    - saisie d'une deuxième intensité de luminescence (L2) exclusivement à l'intérieur du deuxième intervalle de temps (Toff),
    - liaison de la deuxième intensité de luminescence (L2) avec la première intensité de luminescence (L1) pour la détermination d'une deuxième intensité corrigée de luminescence (P2) du document de valeur ou d'une zone partielle (A, P) du document de valeur, cependant que, lors de la liaison, la deuxième intensité de luminescence (L2) est, à l'aide d'une première intensité de luminescence mise à l'échelle, corrigée en ce que la première intensité de luminescence mise à l'échelle est soustraite de la deuxième intensité de luminescence (L2),
    - vérification du document de valeur quant à ses propriétés de phosphorescence au moyen de la deuxième intensité corrigée de luminescence, cependant que la deuxième intensité corrigée de luminescence est comparée avec une valeur seuil (Th) ;
    cependant que le document de valeur est transporté pour sa vérification le long d'une direction de transport à travers une zone de saisie d'un capteur utilisé pour la vérification.
  2. Procédé selon la revendication 1, caractérisé en ce que la deuxième intensité corrigée de luminescence (P2) correspond essentiellement à un signal de phosphorescence du document de valeur ou d'une zone partielle (A, P) du document de valeur.
  3. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que la première intensité de luminescence, mise à l'échelle, est calculée par mise à l'échelle de la première intensité de luminescence (L1) avec une facteur de mise à l'échelle (S), cependant que la première intensité de luminescence mise à l'échelle est inférieure à la première intensité de luminescence (L1).
  4. Procédé selon la revendication 3, caractérisé en ce que le facteur de mise à l'échelle (S) est déterminé en fonction d'une fréquence d'horloge de la source de lumière et/ou en fonction de moments de mesure (t1, t2) auxquels la première et la deuxième intensité de luminescence sont saisies.
  5. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que la deuxième intensité de luminescence (L2) est, lors de la liaison, essentiellement corrigée d'une intensité restante de fluorescence (F2), du document de valeur ou de la zone partielle (A, P) du document de valeur, existante dans le deuxième intervalle de temps (Toff).
  6. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que, à l'intérieur du deuxième intervalle de temps (Toff), au moins une autre intensité de luminescence est saisie (L3, L4).
  7. Procédé selon la revendication 6, caractérisé en ce que la au moins une autre intensité de luminescence (L3, L4) est, pour la détermination d'au moins une autre intensité corrigée de luminescence (P3, P4), liée à la première intensité de luminescence (L1).
  8. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que la première (L1) et/ou la deuxième intensité de luminescence (L2) et/ou la au moins une autre intensité de luminescence (L3, L4) sont respectivement issues d'une valeur discrète de mesure.
  9. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que la première (L1) et/ou la deuxième intensité de luminescence (L2) et/ou la au moins une autre intensité de luminescence (L3, L4) sont respectivement issues d'une communication sur plusieurs valeurs de mesure.
  10. Procédé selon une ou plusieurs des revendications précédentes, caractérisé en ce que le procédé est exécuté pour une ou plusieurs zones partielles (A, P) du document de valeur, cependant que chacune des zones partielles (A, P) correspond en particulier à un point d'image (A) ou à une Région d'Intérêt (P) du document de valeur.
  11. Procédé selon la revendication 10, caractérisé en ce que la première intensité de luminescence (L1) et la deuxième intensité de luminescence (L2) sont saisies en tant que fonction de la position (x, y) des zones partielles (A, P) sur le document de valeur, cependant que, de préférence, respectivement une répartition bidimensionnelle de la première et de la deuxième intensité de luminescence (L1, L2) est saisie.
EP08014847.1A 2007-09-20 2008-08-21 Procédé destinés à la vérification de documents de valeur Active EP2056260B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007044878A DE102007044878A1 (de) 2007-09-20 2007-09-20 Verfahren und Vorrichtung zur Prüfung von Wertdokumenten

Publications (3)

Publication Number Publication Date
EP2056260A2 EP2056260A2 (fr) 2009-05-06
EP2056260A3 EP2056260A3 (fr) 2010-02-17
EP2056260B1 true EP2056260B1 (fr) 2019-10-30

Family

ID=40417842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08014847.1A Active EP2056260B1 (fr) 2007-09-20 2008-08-21 Procédé destinés à la vérification de documents de valeur

Country Status (3)

Country Link
US (1) US7829869B2 (fr)
EP (1) EP2056260B1 (fr)
DE (1) DE102007044878A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493805B2 (en) 2001-06-01 2016-11-15 Colorado State University Research Foundation Enzymatic biosensors with enhanced activity retention for detection of organic compounds
US9493806B2 (en) 2001-06-01 2016-11-15 Colorado State University Research Foundation Enzymatic biosensing systems
US9796998B2 (en) 2007-04-09 2017-10-24 Colorado State University Research Foundation Oxygenase-based biosensing systems for measurement of halogenated alkene concentrations
US8455844B2 (en) * 2009-03-11 2013-06-04 Colorado State University Research Foundation System and method for time-division multiplexed optical sensing of biosensors
US10024797B2 (en) 2010-11-22 2018-07-17 Colorado State University Research Foundation Biosensing systems for measurement of lactose
WO2013019982A2 (fr) 2011-08-02 2013-02-07 Colorado State University Research Foundation Système de biocaptage avec durée de vie prolongée via un recyclage de cofacteur
JP6037889B2 (ja) * 2013-02-25 2016-12-07 オリンパス株式会社 走査型観察装置
EP3133562B1 (fr) * 2014-04-18 2023-02-15 Glory Ltd. Dispositif de détermination de l'authenticité de feuilles de papier et procédé de détermination de l'authenticité de feuilles de papier
JP6288709B2 (ja) 2014-05-22 2018-03-07 グローリー株式会社 蛍光・燐光検知装置
JP6316148B2 (ja) * 2014-09-04 2018-04-25 株式会社東芝 励起光検知装置
DE102016000011A1 (de) * 2016-01-05 2017-07-06 Giesecke & Devrient Gmbh Vollständigkeitsprüfung eines Wertdokuments
CN108171868B (zh) * 2017-12-26 2019-12-10 深圳怡化电脑股份有限公司 一种港币分类方法以及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0943087A1 (fr) * 1996-12-09 1999-09-22 Giesecke & Devrient GmbH Dispositif et procede pour la detection de la lumiere fluorescente et phosphorescente
DE10238568A1 (de) * 2002-08-22 2004-03-04 Giesecke & Devrient Gmbh Vorichtung und Verfahren zur Untersuchung der Lumineszenzeigenschaften von Dokumenten

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150295A (en) * 1978-01-05 1979-04-17 Analytical Radiation Corporation Method and apparatus for background correction in photoluminescent analysis
US6035914A (en) * 1993-10-22 2000-03-14 Martin Marietta Energy Systems Inc. Counterfeit-resistant materials and a method and apparatus for authenticating materials
GB9717194D0 (en) * 1997-08-13 1997-10-22 De La Rue Thomas & Co Ltd Detector methods and apparatus
US6473165B1 (en) * 2000-01-21 2002-10-29 Flex Products, Inc. Automated verification systems and methods for use with optical interference devices
ATE412224T1 (de) * 2000-05-16 2008-11-15 Sicpa Holding Sa Verfahren , vorrichtung und system zur authentifikation einer markierung
CA2352639A1 (fr) * 2000-07-14 2002-01-14 John Joseph Cullen Une methode et un appareil pour surveiller l'etat d'une matiere contenant de la chlorophylle
GB2366371A (en) * 2000-09-04 2002-03-06 Mars Inc Sensing documents such as currency items
DE10259293A1 (de) * 2002-12-18 2004-07-22 Giesecke & Devrient Gmbh Vorrichtung für die Überprüfung der Echtheit von Banknoten
US20070145293A1 (en) * 2005-12-27 2007-06-28 Ncr Corporation Secure tag validation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0943087A1 (fr) * 1996-12-09 1999-09-22 Giesecke & Devrient GmbH Dispositif et procede pour la detection de la lumiere fluorescente et phosphorescente
DE10238568A1 (de) * 2002-08-22 2004-03-04 Giesecke & Devrient Gmbh Vorichtung und Verfahren zur Untersuchung der Lumineszenzeigenschaften von Dokumenten

Also Published As

Publication number Publication date
DE102007044878A1 (de) 2009-04-09
EP2056260A3 (fr) 2010-02-17
US7829869B2 (en) 2010-11-09
EP2056260A2 (fr) 2009-05-06
US20090078886A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
EP2056260B1 (fr) Procédé destinés à la vérification de documents de valeur
EP2377104B1 (fr) Dispositif et procédé de détection de lumière réfléchie et/ou émise par un objet
DE102007019107A1 (de) Verfahren und Vorrichtung zur Prüfung von Wertdokumenten
EP0943087A1 (fr) Dispositif et procede pour la detection de la lumiere fluorescente et phosphorescente
EP1112555B1 (fr) Procédé et dispositif pour contrôler l'état des papiers de valeur utilisant de mesure fond noir et fond clair.
EP2936455B1 (fr) Détecteur et procédé de vérification de documents de valeur
EP1456819A2 (fr) Procedes et dispositifs pour verifier l'authenticite d'articles en feuille
EP3400583B1 (fr) Authentification de documents de valeur
DE102018004884A1 (de) Verfahren und Sensor zur Prüfung von Dokumenten
WO2011128080A1 (fr) Capteur pour vérification de documents de valeur
EP4186042B1 (fr) Procédé et capteur destinés à analyser des documents de valeur
WO2017118467A1 (fr) Vérification de l'intégrité d'un document de valeur
AT505771A4 (de) Verfahren und vorrichtung zum prufen von lumineszenzfarbmuster tragenden gegenstanden
EP3210195B1 (fr) Dispositif et procédé de vérification de documents de valeur, en particulier des billets de banque, et système de traitement de documents de valeur
DE102018109142A1 (de) Verfahren zur Verifikation eines leuchtstoffbasierten Sicherheitsmerkmals
EP1567991B1 (fr) Procede et dispositif permettant de verifier des documents de valeur
EP1064624A1 (fr) Procede pour verifier l'etat d'un dispositif servant a controler un article se presentant sous la forme de feuilles
DE19527446A1 (de) Verfahren und Vorrichtung zur optischen Oberflächenprüfung von Werkstücken
WO2017194190A1 (fr) Dispositif et procédé de vérification en temps réel d'un élément de sécurité
EP3517891A1 (fr) Dispositif de mesure selon le procédé de triangulation par coupe optique
WO2018054529A1 (fr) Procédé et dispositif de détection dégradations de couleurs sur un document de valeur, en particulier un billet de banque, ainsi que système de traitement de documents de valeur
DE10160580A1 (de) Verfahren und Vorrichtung für die Überprüfung der Echtheit von Blattgut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100817

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100929

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190524

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1196975

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008016929

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200302

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200131

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008016929

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200820

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200821

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200821

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502008016929

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230818

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240831

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240822

Year of fee payment: 17