EP2049835B1 - Lamp - Google Patents

Lamp Download PDF

Info

Publication number
EP2049835B1
EP2049835B1 EP07788239A EP07788239A EP2049835B1 EP 2049835 B1 EP2049835 B1 EP 2049835B1 EP 07788239 A EP07788239 A EP 07788239A EP 07788239 A EP07788239 A EP 07788239A EP 2049835 B1 EP2049835 B1 EP 2049835B1
Authority
EP
European Patent Office
Prior art keywords
light
reflector
emitting diode
luminaire according
luminaire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07788239A
Other languages
German (de)
French (fr)
Other versions
EP2049835A1 (en
Inventor
Jens Clark
Udo Custodis
Ulrich Henger
Ulrich Biebel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2049835A1 publication Critical patent/EP2049835A1/en
Application granted granted Critical
Publication of EP2049835B1 publication Critical patent/EP2049835B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/04Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/505Cooling arrangements characterised by the adaptation for cooling of specific components of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/89Metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B35/00Electric light sources using a combination of different types of light generation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • F21V7/0016Reflectors for light sources providing for indirect lighting on lighting devices that also provide for direct lighting, e.g. by means of independent light sources, by splitting of the light beam, by switching between both lighting modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/005Reflectors for light sources with an elongated shape to cooperate with linear light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved
    • F21Y2103/37U-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/20Combination of light sources of different form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a luminaire according to claim 1.
  • Such a lamp is for example in the WO 2006/086967 (published on August 24, 2006).
  • This document describes a color adaptive illumination system with a first light source in the form of at least one low-pressure discharge lamp and with a second light source in the form of at least two light-emitting diodes.
  • the luminaire according to the invention has a first light source, which comprises at least one fluorescent lamp or an incandescent lamp, and a second light source, which comprises at least one light-emitting diode arrangement, and a.
  • a reflector for the light emitted by the light sources wherein a cooling device is provided for the at least one light emitting diode array, which is thermally coupled to the at least one light emitting diode array and disposed on the reflector, and wherein the light comprises a light transmitting, light scattering means, which in the Beam path of the emitted light from the lamp is arranged.
  • the first light source white light is generated with a color location and color temperature defined by the properties of this light source, while the color locus and / or the color temperature is shifted to a desired value by means of the second light source comprising at least one light-emitting diode arrangement.
  • the color locus of the luminaire along the Planckian curve in FIG FIG. 6 to color locations lower color temperature to be moved.
  • the at least one light emitting diode array consists of a combination of a plurality of light emitting diodes, which, due to their small size, in the vicinity of the first light source can be placed so that by means of a reflector and a light-transmitting Lichtstreuschs the light generated by both light sources can be homogeneously mixed and the viewer can no longer assign the light emitted by the lamp light of the first or second light source.
  • the cooling device required for operating the at least one light-emitting diode arrangement is arranged on the reflector, whereby a simple mounting of the light-emitting diode arrangement and a good thermal coupling of light-emitting diode arrangement and cooling device are made possible.
  • the color temperature of the white light emitted by the lamp can be varied within wide limits, for example between 2700 Kelvin and 6000 Kelvin, or alternatively the color tone of the light emitted by the lamp over the entire color spectrum, from bluish to reddish, can be varied ,
  • the reflector has an inner side facing the two light sources, a light-reflecting inner side and an outer side facing away from the light sources, the cooling device for the at least one light-emitting diode arrangement being arranged on the outer side of the reflector.
  • the reflector can be used for both light sources and the cooling device is not heated by the electromagnetic radiation emitted by the light sources.
  • the cooling device is arranged for ease of mounting on the edge of a light exit opening of the reflector.
  • the at least one light-emitting diode arrangement is advantageously arranged on the inside of the reflector, in order to allow simple mounting and optimum coupling to the light-reflecting surface of the reflector.
  • the at least one light emitting diode array is mounted on a surface of the cooling device to ensure good thermal coupling between the light emitting diodes and the cooling device.
  • this surface of the cooling device faces the outside of the reflector and the at least one light-emitting diode arrangement protrudes through one or more openings in the reflector, to allow a simple and space-saving installation of the light emitting diode array and the associated cooling device on the reflector.
  • the cooling device can thereby be fixed to the outside of the reflector, so that the light-emitting diode arrangement protrudes through the aforementioned openings.
  • a thermal insulation layer can be arranged between the surface of the cooling device provided with the at least one light-emitting diode arrangement and the outside of the reflector.
  • This insulating layer may for example consist of a plastic with low thermal conductivity or be formed by the reflector itself, if this is made of a plastic of low thermal conductivity and its light-reflecting inside is formed, for example, as a metallization.
  • the cooling device advantageously has cooling ribs which are arranged such that they lie outside the beam path of the light emitted by the light. As a result, the cooling fins cause no shading and are not heated by the light emitted by the lamp light.
  • the cooling device may be formed as a cooling plate, for example made of aluminum sheet, over the surface of which the heat generated by the lamp is dissipated to the outside. In this case, advantageously, a gap or cavity between the heat sink and the reflector is provided to place there an operating device or an operating circuit for the light sources.
  • the at least one light emitting diode array comprises a combination of red or orange light emitting diodes with green light emitting diodes and the first light source consists of one or more fluorescent lamps.
  • fluorescent lamps are used which generate light that is daylight during their operation, that is to say with a color temperature in the range of approximately 5400 Kelvin to 6000 Kelvin.
  • red and orange LEDs are used which generate light that is daylight during their operation, that is to say with a color temperature in the range of approximately 5400 Kelvin to 6000 Kelvin.
  • red and orange LEDs with green LEDs, white light with low color temperature and color temperature can be generated of the light emitted by the lamp can be efficiently reduced to values up to 2700 Kelvin.
  • the red and orange and green LEDs have a higher efficiency than other complementary colored combination of light emitting diodes, such as blue and yellow LEDs.
  • the first light source fluorescent lamps are preferred to incandescent lamps, because the former have a higher luminous efficacy and daylight-like light can be generated by halogen in
  • the at least one light emitting diode array comprises light emitting diodes which produce warm white light during operation, that is, white light having a color temperature in the range of about 2700 Kelvin to 3000 Kelvin, and the first light source consists of one or more light emitting diodes.
  • the first light source consists of one or more light emitting diodes.
  • fluorescent lamps are used which generate daylight-like light during their operation.
  • the at least one light-emitting diode arrangement comprises a combination of red, green and blue light-emitting diodes.
  • the translucent, light-diffusing means is arranged according to the preferred embodiments of the light exit opening of the reflector and formed as a cover, whereby a simple assembly is made possible and ensures that all, generated by the light sources light must pass the light scattering agent.
  • the luminaire according to the invention is equipped with a color sensor which serves to control the color temperature or the color of the light emitted by the luminaire.
  • a color sensor which serves to control the color temperature or the color of the light emitted by the luminaire.
  • an automatic adjustment of the color temperature or the color tone of the light emitted by the light to changes in the natural ambient light can be carried out during the course of the day.
  • an exact color coordination of the individual luminaires can be performed on each other, for example to adapt the lighting in a room to changes in the natural ambient light.
  • the luminaire according to the invention is equipped with a brightness sensor which serves to control the brightness of the light emitted by the luminaire.
  • a brightness sensor which serves to control the brightness of the light emitted by the luminaire.
  • an automatic adjustment of the brightness of the light emitted by the light to the change in the brightness of the natural ambient light can be carried out during the day.
  • the combination of a color sensor and a brightness sensor is particularly preferred.
  • the reflector is formed trough-like, aligned the first light source parallel to the longitudinal extent of the trough-like reflector and the second light source of two light emitting diode arrangements formed on both sides of the first light source are arranged and each extending parallel to the longitudinal extent of the reflector.
  • the aforementioned reflector can be manufactured in a simple manner, for example as a plastic high-pressure profile, wherein the inside of the channel-shaped reflector is metallized, for example, in order to achieve a high degree of light reflection.
  • the two light-emitting diode arrangements are preferably arranged in each case along an edge of the trough-like reflector running parallel to the longitudinal extent. This allows the associated cooling device on the edge of Reflectors are fixed.
  • the two light-emitting diode arrays are each arranged along a reflector section bent back in the direction of the inside gutter floor, so that the light emitted by the light-emitting diode arrangements is reflected at least once before leaving the light at the inside of the reflector that is designed to reflect light.
  • the cooling devices of the two light-emitting diode arrangements preferably extend along the outer sides of the aforementioned bent-back reflector sections, so that they can be fixed to these bent-back or angled reflector sections.
  • the reflector is hood-like and substantially rotationally symmetrical and arranged the first light source along the axis of rotation of the reflector, and the second light source comprises at least one annular or ring segment-shaped light-emitting diode array, which is arranged on the inside and coaxial with the axis of rotation of the reflector.
  • This lamp is well suited to illuminate only a certain part of a room or to realize an accent lighting.
  • the cooling device for the at least one annular or ring-segment-shaped light-emitting diode arrangement is advantageously arranged on the outside of the reflector, at the level of the light-emitting diode arrangement in order to allow a good thermal coupling between the light-emitting diodes and the cooling device and a simple mounting of the cooling device on the reflector and a heating of the cooling device to avoid the light emitted by the lamp.
  • the first light source is preferably a single-capped fluorescent lamp whose longitudinal extension axis is aligned parallel to the axis of rotation of the reflector. As a result, the reflector can be fixed to the base of the fluorescent lamp.
  • the use of a single-ended fluorescent lamp has the advantage of a higher light output compared to a single-ended incandescent lamp.
  • the one-sided capped fluorescent lamp is a so-called compact fluorescent lamp having an operating device integrated in the base. As a result, no separate operating device for the lamp is required.
  • FIGS. 1, 2 and 3 is schematically illustrated a lamp according to the first embodiment of the invention.
  • This lamp comprises a channel-shaped reflector 1, which consists for example of a plastic extruded profile or aluminum sheet.
  • the inner side 10 of the reflector 1 is formed reflecting light.
  • the inside 10 of the reflector 1 for example, metallized to achieve a high degree of light reflectance.
  • a rod-shaped fluorescent lamp 2 is arranged, the phosphor coating is designed such that it emits during operation light like light with a color temperature of 6000 Kelvin.
  • the longitudinal axis of the fluorescent lamp 2 is aligned parallel to the longitudinal axis of the reflector 1.
  • the reflector 1 is mirror-symmetrical with respect to its center line or longitudinal axis and the fluorescent lamp 2 is arranged along the longitudinal axis, so that the lamp also has mirror symmetry.
  • the reflector 1 has at both, parallel to its longitudinal axis extending gutter edges in the direction of the inside 10 and the gutter bottom by an angle of about 90 degrees bent back reflector sections 11, 12. These reflector sections 11, 12 delimit the light exit opening of the channel-shaped reflector 1. This light exit opening is covered by means of a translucent, light-scattering plastic cover 3.
  • the lamp has two light emitting diode arrangements 4, 5, each consisting of a plurality of pairs of light emitting diodes 41, 42 and 51, 52, each light emitting diode pair 41, 42 of a red 41 and 51 and a green 42 and 52 lit. LED is formed.
  • Each light-emitting diode arrangement 4, 5 is assigned a cooling device 6, 7 equipped with cooling fins 60, 70 for the light-emitting diode pairs 41, 42, 51, 52.
  • the cooling devices 6, 7 are each, for example, an aluminum plate which has cooling fins 60 or 70 integrally formed on one side.
  • the light-emitting diode arrangements 4, 5 and the cooling devices 6, 7 extend over the Entire length of the channel-shaped reflector 1.
  • the LEDs 41, 42 and 51, 52 are mounted on a flat, facing away from the cooling fins 60 and 70 surface 61 and 71 of the cooling device 6 and 7 respectively.
  • This surface 61 or 71 of the cooling device 6 or 7 is attached via a thermal insulation layer 8 on the outside of the bent-back reflector section 11 and 12, wherein the light-emitting diode pairs 41, 42 and 51, 52 respectively by passroye openings in the respective reflector section 11th or 12 protrude through, so that they face the inside 10 of the reflector 1.
  • the insulating layer 8 is, for example, a plastic with low thermal conductivity.
  • the attachment of the cooling devices 6, 7 with the light-emitting diode pairs 41, 42 or 51, 52 mounted thereon on the bent-back reflector sections 11 and 12 can be carried out, for example, by means of screws, clamps, adhesives or similar fastening means.
  • the thermal insulation layer 8 may optionally be dispensed with if the reflector 1 is made of a plastic extruded profile.
  • the light-emitting diode pairs 41, 42 and 51, 52 of the two light-emitting diode arrays 4 and 5 are each arranged equidistantly along a straight line extending parallel to the longitudinal axis of the reflector 1 on both sides of the fluorescent lamp 2.
  • the reflector 1 From the end faces of the reflector 1 project electrical connections 9 for the power supply of the fluorescent lamp 2 and the LED assemblies 4, 5 out.
  • a color sensor 91 and a brightness sensor 92 are attached in order to allow color and brightness control of the light emitted by the light in dependence on the natural ambient light.
  • the operating circuits for the fluorescent lamp 2 and the LED assemblies 4, 5 are arranged outside of the reflector 1 and therefore not shown in the figures.
  • the lamp may additionally have a housing in which the aforementioned operating circuits are housed.
  • the light emitting diode arrangements 4 and 5 with the LEDs 41, 42 and 51, 52 are not normally visible because they are covered by the cooling device 6 and 7 and the cooling fins 60 and 70 and the reflector sections 11 and 12 respectively.
  • the fluorescent lamp 2 During operation, the fluorescent lamp 2 generates white light with a color temperature of about 6000 Kelvin.
  • the closely spaced LEDs 41, 42 and 51, 52 of each pair of LEDs produce red and green light, which is mixed homogeneously after reflection on the inside 10 of the reflector 1 and passing the light scattering cover 3 as yellowish mixed light the bluish, daylight fluorescent light, such that the light emitted by the lamp has a reduced color temperature compared to the light generated by the fluorescent lamp 2.
  • the red LEDs 41 and 51 can be dimmed independently of the green LEDs 42 and 52, respectively, that is, the brightness of the red and green LED lights mixed with the fluorescent lamp light can be controlled independently.
  • the color location of the light emitted by the light from the color location of the fluorescent lamp with a color temperature of 6000 Kelvin can be shifted to a color location with a reduced color temperature.
  • the standard color chart according to DIN 5033 is shown with the color loci FL, L1, L2 of the light emitted by the fluorescent lamp 2 (color locus FL) and by the red (color locus L1) and green (color locus L2) light-emitting diodes 41, 42, 51, 52.
  • the color locus L3 of a blue light emitting diode and a warm white light emitting diode (color locus L4) and the Planckian curve P is entered, which corresponds to the light emitted by a black radiator light at different annealing temperatures. That in the FIG. 6 The dashed rectangle delimits the white light color loci.
  • the color temperature of the light decreases along the Planckian curve P with increasing color coordinates x and y.
  • the color temperature is 6000 Kelvin and at the color locus L4 of the warm white light emitting diode or at the intersection of the connecting path of the color locus L1, L2, the color temperature is about 2300 Kelvin.
  • the brightness of the light generated by the red and green LEDs 41, 42, 51, 52 and the fluorescent lamp 2 is controlled so that the lamp emits white light with a color temperature in the range of 2700 Kelvin to 6000 Kelvin.
  • the brightness of the aforementioned light sources 2, 41, 42, 51, 52 is infinitely variable and accordingly, the color temperature in the aforementioned range can be varied continuously.
  • a similar effect can also be achieved by the combination of the fluorescent lamp 2 with warm white LEDs. That is, in place of the red and green light-emitting diode pairs 41, 42 and 51, 52 and warm white light-emitting light-emitting diodes in the lamp according to the FIGS. 1 to 3 be used.
  • light-emitting diodes producing warm-white light are light-emitting diodes based on blue light-emitting diodes which are equipped with a conversion agent in order to convert the blue light into white light of low color temperature (about 2300 Kelvin).
  • the color temperature of the light emitted by the light can be varied steplessly.
  • the color temperature and the brightness of the light emitted by the luminaire according to the first embodiment are automatically controlled with the aid of the color and light sensor 91, 92 as a function of the natural ambient light by an external central control device to which a plurality of luminaires according to the invention can be connected or connected are connected.
  • the central control device communicates via bidirectional control lines with the operating circuits of the lights according to the invention and optionally further, conventional lights that belong to the lighting system. Control commands are transmitted to the operating circuits via these control lines and operating states of the individual lights are queried.
  • the communication between the central control device and the operating circuits of the individual lights of the lighting system is carried out according to the DALI standard (DALI stands for Digitally Addressable Lighting Interface).
  • an automatic control of the lights according to the invention can be ensured as a function of the ambient light, without a significant color dispersion occurs in the light emitted by several lights according to the invention ,
  • FIGS. 4 and 5 a second embodiment of the luminaire according to the invention is shown schematically.
  • This second embodiment differs from the first embodiment only in that instead of the two-sided fluorescent lamp 2 according to the first embodiment, a single-capped fluorescent lamp 2 'is used and the lamp accordingly only at one end of the reflector 1 outstanding electrical connections 9' for the fluorescent lamp 2 'and the light-emitting diode arrangements 4, 5.
  • the first and second embodiments are the same. Therefore, in the FIGS. 1 to 3 and 4 to 5 for identical components the same reference numerals.
  • FIGS. 7 and 8 a third embodiment of a lamp according to the invention is shown schematically, which is intended primarily for use in private rooms and in the living area.
  • This lamp has a hood-like, in particular funnel-shaped reflector 100, a compact fluorescent lamp 200 as a first light source and a light-emitting diode array 300 as a second light source and a translucent, light-scattering cover 500 for the light exit opening of the reflector 100 and a cooling device 400 for cooling the light emitting diode array.
  • the reflector 100 is with its narrow opening at the base 201 of the compact fluorescent lamps 200, so that the electrical connections 203 of the fluorescent lamp and the lamp protrude from the reflector 100.
  • the reflector 100 consists for example of a plastic injection molded part.
  • the inner side 101 of the funnel-shaped, rotationally symmetrical reflector 100 is designed to be light-reflecting.
  • the inside 101 is preferably metallized, for example, provided with an aluminum layer.
  • the fluorescent lamp 200 is disposed in the axis of rotation of the reflector 100 so that the legs of the U-shaped portions 202 of the lamp vessel are parallel to the axis of rotation of the reflector 100.
  • the light emitting diode array 300 is disposed on the inner side 101 of the reflector 100, annularly around the lamp vessel portions 201 around. It consists of a combination of red, green and blue light-emitting diodes, each of which is present in the same number.
  • the phosphor coating of the fluorescent lamp 200 is configured so that the fluorescent lamp 200 in operation generates cold white light, that is, white light having a color temperature of about 4000 Kelvin.
  • the cooling device 400 is arranged on the outside of the reflector 100 at the level of the light-emitting diode arrangement 300.
  • the cooling device 400 is an annular aluminum body, on the surface of which the light-emitting diodes of the light-emitting diode arrangement 300 are mounted, so that the light-emitting diodes protrude through openings in the reflector 100 into the interior of the reflector 100.
  • the operation circuit for the fluorescent lamp 200 and the light-emitting diode array 300 is housed, for example, in the interior of the lamp cap 201.
  • the electrical connection between the light-emitting diode arrangement 300 and its operating circuit can be achieved, for example, via electrical lines which are embedded as conductor tracks in the plastic material of the reflector 100 or guided along the reflector 100 to the lamp base 201.
  • the reflector 100 can be fixed to the base 201 by means of a metallic latching or snap connection, which at the same time also establishes the electrical connection between the operating circuit accommodated in the base and the light-emitting diode arrangement 300.
  • the fluorescent lamp During operation, the fluorescent lamp generates white light having a color temperature of about 4000 Kelvin, which is homogeneously mixed by means of the reflector 100 and the light-scattering cover 500 with the light of the LEDs 300, so that the light light with a color temperature in the range of about. 2700 Kelvin to 4000 Kelvin can emit.
  • a further switch is provided on the lamp next to the switch-on with which a plurality, for example two or three, predetermined different color temperatures for the white light emitted by the lamp can be selected.
  • a color and brightness sensor 600 may be mounted, which allows an automatic and continuous color and brightness control of the white light emitted by the lamp in dependence on the ambient light, as has already been described in the previous embodiments.
  • a manually operated controller can be provided be independently of each other allows a continuous manual brightness control of the red, green and blue LEDs to the color locus and the color of the light emitted by the light in the light in the FIG. 6 through the points L1, L2 and L3 limited triangle, even outside the Planckian curve P to vary.
  • FIG. 9 is schematically illustrated a fourth embodiment of a lamp according to the invention.
  • This fourth embodiment is largely identical to the first embodiment. Therefore, in the FIGS. 1 and 3 for identical components the same reference numerals.
  • the fourth embodiment differs from the first embodiment only by the reflector 1 'and the cooling device 6' for the LEDs 41, 42, 51, 52 of the LED assemblies 4, 5.
  • the reflector 1 ' has the same shape as the reflector 1 according to the first embodiment.
  • the reflector 1 ' consists of a plastic extruded profile and not of aluminum sheet as the reflector 1 of the first embodiment.
  • the inside of the trough-shaped reflector 1 ' is formed by an aluminum layer 10', which has a high degree of light reflection.
  • the cooling device 6 ' consists of a metal sheet, for example an aluminum sheet, which extends over the entire length of the lamp and the channel-shaped reflector 1'.
  • the angled edge portions 11 ', 12' of the channel-shaped reflector 1 ' are provided with openings through which the light-emitting diodes 41, 42 and 51, 52 protrude so that their light is emitted in the direction of the inner side 10' of the reflector 1 '.
  • the cooling plate 6 surrounds the reflector 1' like a hood, so that a gap 93 is formed by the reflector 1 'and the cooling plate 6', in which preferably an operating device or an operating circuit for the fluorescent lamp 2 and the light-emitting diodes 41, 42, 51, 52 of the light emitting diode assemblies 4, 5 is arranged.
  • the cooling plate 6 ' is located on the outside of the angled, bent back edge portions 11' 12 'of the reflector 1' and is attached thereto.
  • the light-emitting diodes 41, 42, 51, 52 are mounted on the surface 61 'of the cooling plate 6' facing the reflector 1 ', so that the light-emitting diodes 41, 42 of the first light-emitting diode arrangement 4 project through apertures in the first angled reflector section 11' and the light-emitting diodes 51, 52 of the second Light emitting diode array 5 through openings in the second angled, bent back reflector portion 12 'protrude.
  • the plastic material of the reflector 1 ' acts here as a thermal insulation layer between the cooling plate 6' and the inner side 10 'and the interior of the reflector 1'.
  • the Lichtaustiittsötechnisch the reflector 1 ' which is bounded by the two angled reflector sections 11', 12 'and the cooling plate 6' is provided with a translucent, light-scattering cover 3.
  • the fourth embodiment is consistent with the first embodiment.

Abstract

The invention relates to a lamp with a first light source generating white light, comprising at least one fluorescent lamp (2) or an incandescent lamp, as well as a second light source comprising at least one set of light-emitting diodes (4, 5; 300), and comprising a reflector (1) for the light emitted by the light sources, wherein a cooling device (6, 7) for the at least one set of light-emitting diodes (4, 5) is attached to the reflector (1) and is thermally linked to the at least one set of light-emitting diodes (4, 5), and wherein the lamp comprises a translucent and light-dispersing medium (3) in the optical path of the light emitted by the lamp.

Description

Die Erfindung betrifft eine Leuchte gemäß dem Anspruch 1.The invention relates to a luminaire according to claim 1.

Eine derartige Leuchte ist beispielsweise in der WO 2006/086967 (veröffentlicht am 24. August 2006) offenbart. Diese Schrift beschreibt ein farbadaptives Beleuchtungssystem mit einer ersten Lichtquelle in Form mindestens einer Niederdruckentladungslampe und mit einer zweiten Lichtquelle in Form mindestens zweier Leuchtdioden.Such a lamp is for example in the WO 2006/086967 (published on August 24, 2006). This document describes a color adaptive illumination system with a first light source in the form of at least one low-pressure discharge lamp and with a second light source in the form of at least two light-emitting diodes.

I. Darstellung der Erfindung I. Presentation of the invention

Es ist Aufgabe der Ereindung, eine Leuchte bereitzustellen, die eine farbadaptive Beleuchtung ermöglicht.It is the task of Ereindung to provide a lamp that allows color-adaptive lighting.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den abhängigen Ansprüchen beschrieben.This object is achieved by the features of claim 1. Particularly advantageous embodiments of the invention are described in the dependent claims.

Die erfindungsgemäße Leuchte besitzt eine erste Lichtquelle, die mindestens eine Leuchtstofflampe oder eine Glühlampe umfasst, sowie eine zweite Lichtquelle, die mindestens eine Leuchtdiodenanordnung umfasst, und einen. Reflektor für das von den Lichtquellen emittierte Licht, wobei eine Kühlvorrichtung für die mindestens eine Leuchtdiodenanordnung vorgesehen ist, die thermisch an die mindestens eine Leuchtdiodenanordnung gekoppelt ist und an dem Reflektor angeordnet ist, und wobei die Leuchte ein lichtdurchlässiges, lichtstreuendes Mittel umfasst, das in dem Strahlengang des von der Leuchte emittierten Lichts angeordnet ist. Durch die Kombination der vorgenannten Merkmale wird eine Leuchte geschaffen, die eine Anpassung des Farbtons und der Farbtemperatur des von ihr emittierten Lichts in weiten Grenzen ermöglicht. Mittels der ersten Lichtquelle wird weißes Licht mit einem durch die Eigenschaften dieser Lichtquelle definierten Farbort und Farbtemperatur erzeugt, während mittels der zweiten Lichtquelle, die mindestens eine Leuchtdiodenanordnung umfasst, der Farbort oder bzw. und die Farbtemperatur zu einem gewünschten Wert verschoben wird. Insbesondere kann mittels der mindestens einen Leuchtdiodenanordnung der Farbort der Leuchte entlang der Planckschen Kurve in Figur 6 zu Farborten geringerer Farbtemperatur verschoben werden. Die mindestens eine Leuchtdiodenanordnung besteht aus einer Kombination von mehreren Leuchtdioden, die sich, aufgrund ihrer geringen Baugröße, in der Nähe der ersten Lichtquelle platzieren lassen, so dass sich mittels eines Reflektors und eines lichtdurchlässigen Lichtstreumittels das von beiden Lichtquellen generierte Licht homogen mischen lässt und der Betrachter das von der Leuchte emittierte Licht nicht mehr der ersten oder zweiten Lichtquelle zuordnen kann. Die zum Betrieb der mindestens einen Leuchtdiodenanordnung erforderlich Kühlvorrichtung ist am Reflektor angeordnet, wodurch eine einfache Montage der Leuchtdiodenanordnung und eine gute thermische Kopplung von Leuchtdiodenanordnung und Kühlvorrichtung ermöglicht werden. Mit Hilfe der erfindungsgemäßen Kombination kann die Farbtemperatur des von der Leuchte emittierten weißen Lichts in weiten Grenzen, beispielsweise zwischen 2700 Kelvin und 6000 Kelvin variiert werden oder alternativ der Farbton des von der Leuchte emittierten Lichts über das gesamte Farbspektrum, von bläulich bis rötlich, variiert werden.The luminaire according to the invention has a first light source, which comprises at least one fluorescent lamp or an incandescent lamp, and a second light source, which comprises at least one light-emitting diode arrangement, and a. A reflector for the light emitted by the light sources, wherein a cooling device is provided for the at least one light emitting diode array, which is thermally coupled to the at least one light emitting diode array and disposed on the reflector, and wherein the light comprises a light transmitting, light scattering means, which in the Beam path of the emitted light from the lamp is arranged. By combining the aforementioned features, a lamp is provided which allows an adjustment of the hue and the color temperature of the light emitted by it within wide limits. By means of the first light source, white light is generated with a color location and color temperature defined by the properties of this light source, while the color locus and / or the color temperature is shifted to a desired value by means of the second light source comprising at least one light-emitting diode arrangement. In particular, by means of the at least one light-emitting diode arrangement, the color locus of the luminaire along the Planckian curve in FIG FIG. 6 to color locations lower color temperature to be moved. The at least one light emitting diode array consists of a combination of a plurality of light emitting diodes, which, due to their small size, in the vicinity of the first light source can be placed so that by means of a reflector and a light-transmitting Lichtstreumittels the light generated by both light sources can be homogeneously mixed and the viewer can no longer assign the light emitted by the lamp light of the first or second light source. The cooling device required for operating the at least one light-emitting diode arrangement is arranged on the reflector, whereby a simple mounting of the light-emitting diode arrangement and a good thermal coupling of light-emitting diode arrangement and cooling device are made possible. With the aid of the combination according to the invention, the color temperature of the white light emitted by the lamp can be varied within wide limits, for example between 2700 Kelvin and 6000 Kelvin, or alternatively the color tone of the light emitted by the lamp over the entire color spectrum, from bluish to reddish, can be varied ,

Vorteilhafterweise weist der Reflektor eine den beiden Lichtquellen zugewandte, Licht reflektierend ausgebildete Innenseite und eine von den Lichtquellen abgewandte Außenseite auf, wobei die Kühlvorrichtung für die mindestens eine Leuchtdioden- - anordnung an der Außenseite des Reflektors angeordnet ist. Dadurch kann der Reflektor für beide Lichtquellen genutzt werden und die Kühlvorrichtung wird nicht durch die von den Lichtquellen emittierte elektromagnetische Strahlung aufgeheizt.Advantageously, the reflector has an inner side facing the two light sources, a light-reflecting inner side and an outer side facing away from the light sources, the cooling device for the at least one light-emitting diode arrangement being arranged on the outer side of the reflector. As a result, the reflector can be used for both light sources and the cooling device is not heated by the electromagnetic radiation emitted by the light sources.

Gemäß einem bevorzugten Ausführungsbeispiel ist die Kühlvorrichtung zwecks einfacher Montage am Rand einer Lichtaustrittsöffnung des Reflektors angeordnet.According to a preferred embodiment, the cooling device is arranged for ease of mounting on the edge of a light exit opening of the reflector.

Die mindestens eine Leuchtdiodenanordnung ist vorteilhafterweise an der Innenseite des Reflektors angeordnet, um eine einfache Montage und eine optimale Kopplung an die lichtreflektierende Fläche des Reflektors zu ermöglichen.The at least one light-emitting diode arrangement is advantageously arranged on the inside of the reflector, in order to allow simple mounting and optimum coupling to the light-reflecting surface of the reflector.

Vorteilhafterweise ist die mindestens eine Leuchtdiodenanordnung auf einer Oberfläche der Kühlvorrichtung montiert, um eine gute thermische Kopplung zwischen den Leuchtdioden und der Kühlvorrichtung zu gewährleisten. Vorzugsweise ist diese Oberfläche der Kühlvorrichtung der Außenseite des Reflektors zugewandt und die mindestens eine Leuchtdiodenanordnung ragt durch einen oder mehrere Durchbrüche im Reflektor hindurch, um eine einfache und Platz sparende Montage der Leuchtdiodenanordnung und der zugehörigen Kühlvorrichtung am Reflektor zu erlauben. Die Kühlvorrichtung kann dadurch an der Außenseite des Reflektors fixiert werden, so dass die Leuchtdiodenanordnung durch die vorgenannten Durchbrüche hindurchragt. Um eine bessere thermische Isolation zwischen dem Reflektor und dem Kühlkörper zu gewährleisten, kann zwischen der mit der mindestens einen Leuchtdiodenanordnung versehenen Oberfläche der Kühlvorrichtung und der Außenseite des Reflektors eine thermische Isolationsschicht angeordnet sein. Diese Isolationsschicht kann beispielsweise aus einem Kunststoff mit geringer Wärmeleitfähigkeit bestehen oder von dem Reflektor selbst gebildet werden, wenn dieser aus einem Kunststoff geringer Wärmeleitfähigkeit gefertigt ist und seine Licht reflektierende Innenseite beispielsweise als Metallisierung ausgebildet ist.Advantageously, the at least one light emitting diode array is mounted on a surface of the cooling device to ensure good thermal coupling between the light emitting diodes and the cooling device. Preferably, this surface of the cooling device faces the outside of the reflector and the at least one light-emitting diode arrangement protrudes through one or more openings in the reflector, to allow a simple and space-saving installation of the light emitting diode array and the associated cooling device on the reflector. The cooling device can thereby be fixed to the outside of the reflector, so that the light-emitting diode arrangement protrudes through the aforementioned openings. In order to ensure better thermal insulation between the reflector and the heat sink, a thermal insulation layer can be arranged between the surface of the cooling device provided with the at least one light-emitting diode arrangement and the outside of the reflector. This insulating layer may for example consist of a plastic with low thermal conductivity or be formed by the reflector itself, if this is made of a plastic of low thermal conductivity and its light-reflecting inside is formed, for example, as a metallization.

Die Kühlvorrichtung weist vorteilhafterweise Kühlrippen auf, die derart angeordnet sind, dass sie außerhalb des Strahlengangs des von der Leuchte ausgesandten Lichts liegen. Dadurch verursachen die Kühlrippen keine Abschattung und werden nicht von dem von der Leuchte emittierten Licht aufgeheizt. Alternativ kann die Kühlvorrichtung als Kühlblech, beispielsweise aus Aluminiumblech ausgebildet sein, über dessen Oberfläche die von der Leuchte erzeugte Wärme nach Außen abgeführt wird. In diesem Fall ist vorteilhafterweise ein Zwischenraum oder Hohlraum zwischen dem Kühlblech und dem Reflektor vorgesehen, um dort ein Betriebsgerät oder eine Betriebsschaltung für die Lichtquellen zu platzieren.The cooling device advantageously has cooling ribs which are arranged such that they lie outside the beam path of the light emitted by the light. As a result, the cooling fins cause no shading and are not heated by the light emitted by the lamp light. Alternatively, the cooling device may be formed as a cooling plate, for example made of aluminum sheet, over the surface of which the heat generated by the lamp is dissipated to the outside. In this case, advantageously, a gap or cavity between the heat sink and the reflector is provided to place there an operating device or an operating circuit for the light sources.

Gemäß einem bevorzugten Ausführungsbeispiel der Erfindung umfasst die mindestens eine Leuchtdiodenanordnung eine Kombination von rot oder orange leuchtenden Leuchtdioden mit grün leuchtenden Leuchtdioden und die erste Lichtquelle besteht aus einer oder mehreren Leuchtstofflampen. Vorzugsweise werden Leuchtstofflampen verwendet, die während ihres Betriebs tageslichtailigen Licht, das heißt mit einer Farbtemperatur im Bereich von ca. 5400 Kelvin bis 6000 Kelvin, erzeugen. Durch die Kombination von roten bzw. orangefarbenen Leuchtdioden mit grünen Leuchtdioden kann weißes Licht mit geringer Farbtemperatur erzeugt werden und die Farbtemperatur des von der Leuchte emittierten Lichts auf Werte bis zu 2700 Kelvin in effizienter Weise reduziert werden. Die roten bzw. orangefarbenen und grünen Leuchtdioden haben eine höhere Effizienz als andere komplementärfarbige Kombination von Leuchtdioden, wie beispielsweise blaue und gelbe Leuchtdioden. Als erste Lichtquelle sind Leuchtstofflampen gegenüber Glühlampen bevorzugt, weil erstere eine höhere Lichtausbeute aufweisen und tageslichtartiges Licht mittels Halogenglühlampen nur mit hohem Aufwand an Filtermitteln und geringer Effizienz generierbar ist.According to a preferred embodiment of the invention, the at least one light emitting diode array comprises a combination of red or orange light emitting diodes with green light emitting diodes and the first light source consists of one or more fluorescent lamps. Preferably, fluorescent lamps are used which generate light that is daylight during their operation, that is to say with a color temperature in the range of approximately 5400 Kelvin to 6000 Kelvin. By combining red and orange LEDs with green LEDs, white light with low color temperature and color temperature can be generated of the light emitted by the lamp can be efficiently reduced to values up to 2700 Kelvin. The red and orange and green LEDs have a higher efficiency than other complementary colored combination of light emitting diodes, such as blue and yellow LEDs. As the first light source fluorescent lamps are preferred to incandescent lamps, because the former have a higher luminous efficacy and daylight-like light can be generated by halogen incandescent lamps only with great expense of filter means and low efficiency.

Gemäß einem anderen bevorzugten Ausführungsbeispiel umfasst die mindestens eine Leuchtdiodenanordnung Leuchtdioden, die während ihres Betriebs warmweißes Licht, das heißt weißes Licht mit einer Farbtemperatur im Bereich von ca. 2700 Kelvin bis 3000 Kelvin, erzeugen, und die erste Lichtquelle besteht aus einer oder mehreren Leuchtdioden. Vorzugsweise werden Leuchtstofflampen verwendet, die während ihres Betriebs tageslichtartiges Licht erzeugen. Mittels Kombination der warmweißes Licht erzeugenden Leuchtdioden mit der bzw. den Leuchtstofflampen kann die Farbtemperatur des von der Leuchte emittierten Lichts ebenfalls auf effiziente Weise reduziert werden.According to another preferred embodiment, the at least one light emitting diode array comprises light emitting diodes which produce warm white light during operation, that is, white light having a color temperature in the range of about 2700 Kelvin to 3000 Kelvin, and the first light source consists of one or more light emitting diodes. Preferably, fluorescent lamps are used which generate daylight-like light during their operation. By combining the warm white light-emitting light-emitting diodes with the or the fluorescent lamps, the color temperature of the light emitted by the light can also be reduced in an efficient manner.

Gemäß einem weiteren Ausführungsbeispiel umfasst die mindestens eine Leuchtdiodenanordnung eine Kombination von rot, grün und blau leuchtenden Leuchtdioden. Dadurch kann jede Lichtfarbe des Farbspektrums erzeugt und mit dem weißen Licht der ersten Lichtquelle gemischt werden, so dass die Farbtönung des von der Leuchte emittierten Lichts in weiten Grenzen variiert werden kann. Insbesondere kann auch die Farbtemperatur des von dieser Leuchte emittierten Lichts variiert werden.According to a further exemplary embodiment, the at least one light-emitting diode arrangement comprises a combination of red, green and blue light-emitting diodes. As a result, each light color of the color spectrum can be generated and mixed with the white light of the first light source, so that the hue of the light emitted by the light can be varied within wide limits. In particular, the color temperature of the light emitted by this light can also be varied.

Das lichtdurchlässige, lichtstreuende Mittel ist gemäß den bevorzugten Ausführungsbeispielen an der Lichtaustrittsöffnung des Reflektors angeordnet und als Abdeckscheibe ausgebildet, wodurch eine einfache Montage ermöglicht wird und gewährleistet ist, dass das gesamte, von den Lichtquellen generierte Licht das Lichtstreumittel passieren muss.The translucent, light-diffusing means is arranged according to the preferred embodiments of the light exit opening of the reflector and formed as a cover, whereby a simple assembly is made possible and ensures that all, generated by the light sources light must pass the light scattering agent.

Vorteilhafterweise ist die erfindungsgemäße Leuchte mit einem Farbsensor ausgestattet, der zur Steuerung der Farbtemperatur oder der Farbe des von der Leuchte emittierten Lichts dient. Mittels des Farbsensors kann eine automatische Anpassung der Farbtemperatur oder der Farbtönung des von der Leuchte ausgesandten Lichts an Änderungen des natürlichen Umgebungslicht im Verlauf des Tages durchgeführt werden. Außerdem kann in einem Beleuchtungssystem, das mehrere der erfindungsgemäßen Leuchten umfasst, mittels der Farbsensoren eine exakte farbliche Abstimmung der einzelnen Leuchten aufeinander durchgeführt werden, um beispielsweise die Beleuchtung in einem Raum an Änderungen des natürlichen Umgebungslichts anzupassen.Advantageously, the luminaire according to the invention is equipped with a color sensor which serves to control the color temperature or the color of the light emitted by the luminaire. By means of the color sensor, an automatic adjustment of the color temperature or the color tone of the light emitted by the light to changes in the natural ambient light can be carried out during the course of the day. In addition, in an illumination system comprising a plurality of the luminaires according to the invention, by means of the color sensors, an exact color coordination of the individual luminaires can be performed on each other, for example to adapt the lighting in a room to changes in the natural ambient light.

Vorzugsweise ist die erfindungsgemäße Leuchte mit einem Helligkeitssensor ausgestattet, der zur Steuerung der Helligkeit des von der Leuchte emittierten Lichts dient. Mittels des Lichtsensors kann eine automatische Anpassung der Helligkeit des von der Leuchte ausgesandten Lichts an die Veränderung der Helligkeit des natürlichen Umgebungslichts im Verlauf des Tages durchgeführt werden. Besonders bevorzugt ist aus den vorgenannten Gründen die Kombination von einem Farb- und einem Helligkeitssensor.Preferably, the luminaire according to the invention is equipped with a brightness sensor which serves to control the brightness of the light emitted by the luminaire. By means of the light sensor, an automatic adjustment of the brightness of the light emitted by the light to the change in the brightness of the natural ambient light can be carried out during the day. For the aforementioned reasons, the combination of a color sensor and a brightness sensor is particularly preferred.

Gemäß einem bevorzugten Ausführungsbeispiel der erfindungsgemäßen Leuchte, die vornehmlich zum Einsatz in Büro- oder Geschäftsräumen vorgesehen ist, ist der Reflektor rinnenartig ausgebildet, die erste Lichtquelle parallel zur Längserstreckung des rinnenartigen Reflektors ausgerichtet und die zweite Lichtquelle von zwei Leuchtdiodenanordnungen gebildet, die zu beiden Seiten der ersten Lichtquelle angeordnet sind und sich jeweils parallel zur Längserstreckung des Reflektors erstrecken. Der vorgenannte Reflektor kann auf einfache Weise, beispielsweise als Strengpressprofil aus Kunststoff gefertigt werden, wobei die Innenseite des rinnenförmigen Reflektors beispielsweise metallisiert ist, um einen hohen Grad an Lichtreflexion zu erzielen. Die beiden Leuchtdiodenanordnungen sind vorzugsweise jeweils entlang eines parallel zur Längserstreckung verlaufenden Randes des rinnenartigen Reflektors angeordnet. Dadurch können die zugehörigen Kühlvorrichtung am Rand des Reflektors fixiert werden. Vorteilhafterweise sind die beiden Leuchtdiodenanordnungen jeweils entlang eines in Richtung des innenseitigen Rinnenbodens zurückgebogenen Reflektorabschnitts angeordnet, so dass das von den Leuchtdiodenanordnungen emittierte Licht vor dem Verlassen der Leuchte zumindest einmal an der lichtreflektierend ausgebildeten Innenseite des Reflektors reflektiert wird. Dadurch wird eine bessere Mischung des von den beiden Lichtquellenarten ausgesandten Lichts erreicht und die einzelnen Leuchtdioden sind nicht durch die Lichtaustrittsöffnung sichtbar. Die Kühlvorrichtungen der beiden Leuchtdiodenanordnungen erstrecken sich vorzugsweise entlang der Außenseiten der vorgenannten zurückgebogenen Reflektorabschnitte, so dass sie an diesen zurückgebogenen bzw. abgewinkelten Reflektorabschnitten fixiert werden können.According to a preferred embodiment of the luminaire according to the invention, which is intended primarily for use in office or business premises, the reflector is formed trough-like, aligned the first light source parallel to the longitudinal extent of the trough-like reflector and the second light source of two light emitting diode arrangements formed on both sides of the first light source are arranged and each extending parallel to the longitudinal extent of the reflector. The aforementioned reflector can be manufactured in a simple manner, for example as a plastic high-pressure profile, wherein the inside of the channel-shaped reflector is metallized, for example, in order to achieve a high degree of light reflection. The two light-emitting diode arrangements are preferably arranged in each case along an edge of the trough-like reflector running parallel to the longitudinal extent. This allows the associated cooling device on the edge of Reflectors are fixed. Advantageously, the two light-emitting diode arrays are each arranged along a reflector section bent back in the direction of the inside gutter floor, so that the light emitted by the light-emitting diode arrangements is reflected at least once before leaving the light at the inside of the reflector that is designed to reflect light. As a result, a better mixing of the light emitted by the two light source types is achieved and the individual light-emitting diodes are not visible through the light exit opening. The cooling devices of the two light-emitting diode arrangements preferably extend along the outer sides of the aforementioned bent-back reflector sections, so that they can be fixed to these bent-back or angled reflector sections.

Gemäß einem anderen bevorzugten Ausführungsbeispiel der erfindungsgemäßen Leuchte, die vornehmlich für den Einsatz in Privaträumen oder im Wohnbereich vorgesehen ist, ist der Reflektor haubenartig und im wesentlichen rotationssymmetrisch ausgebildet und die erste Lichtquelle entlang der Rotationsachse des Reflektors angeordnet, und die zweite Lichtquelle umfasst mindestens eine ringförmige oder ringsegmentförmige Leuchtdiodenanordnung, die auf der Innenseite und koaxial zur Rotationsachse des Reflektors angeordnet ist. Diese Leuchte eignet sich gut, um nur einen bestimmten Teil eines Raums auszuleuchten oder eine Akzentbeleuchtung zu realisieren. Die Kühlvorrichtung für die mindestens eine ringförmige oder ringsegmentförmige Leuchtdiodenanordnung ist vorteilhafterweise auf der Außenseite des Reflektors, auf Höhe der Leuchtdiodenanordnung angeordnet, um eine gute thermische Kopplung zwischen den Leuchtdioden und der Kühlvorrichtung und eine einfache Montage der Kühlvorrichtung am Reflektor zu ermöglichen sowie eine Aufheizung der Kühlvorrichtung durch das von der Leuchte ausgesandte Licht zu vermeiden. Als erste Lichtquelle dient vorzugsweise eine einseitig gesockelte Leuchtstofflampe, deren Längserstreckungsachse parallel zur Rotationsachse des Reflektors ausgerichtet ist. Dadurch kann der Reflektor an dem Sockel der Leuchtstofflampe fixiert werden. Die Verwendung einer einseitig gesockelten Leuchtstofflampe hat gegenüber einer einseitig gesockelten Glühlampe den Vorteil einer höheren Lichtausbeute. Vorzugsweise ist die einseitige gesockelte Leuchtstofflampe eine so genannte kompakte Leuchtstofflampe, die eine im Sockel integrierte Betriebsvorrichtung aufweist. Dadurch ist kein separates Betriebsgerät für die Leuchte erforderlich.According to another preferred embodiment of the luminaire according to the invention, which is intended primarily for use in private rooms or in the living area, the reflector is hood-like and substantially rotationally symmetrical and arranged the first light source along the axis of rotation of the reflector, and the second light source comprises at least one annular or ring segment-shaped light-emitting diode array, which is arranged on the inside and coaxial with the axis of rotation of the reflector. This lamp is well suited to illuminate only a certain part of a room or to realize an accent lighting. The cooling device for the at least one annular or ring-segment-shaped light-emitting diode arrangement is advantageously arranged on the outside of the reflector, at the level of the light-emitting diode arrangement in order to allow a good thermal coupling between the light-emitting diodes and the cooling device and a simple mounting of the cooling device on the reflector and a heating of the cooling device to avoid the light emitted by the lamp. The first light source is preferably a single-capped fluorescent lamp whose longitudinal extension axis is aligned parallel to the axis of rotation of the reflector. As a result, the reflector can be fixed to the base of the fluorescent lamp. The use of a single-ended fluorescent lamp has the advantage of a higher light output compared to a single-ended incandescent lamp. Preferably, the one-sided capped fluorescent lamp is a so-called compact fluorescent lamp having an operating device integrated in the base. As a result, no separate operating device for the lamp is required.

II. Beschreibung der bevorzugten Ausführungsbeispiele II. Description of the Preferred Embodiments

Nachstehend wird die Erfindung anhand einiger bevorzugter Ausführungsbeispiele näher erläutert. Es zeigen:

Figur 1
Einen schematischen Querschnitt durch eine Leuchte gemäß dem ersten Ausführungsbeispiel der Erfindung
Figur 2
Eine schematische Draufsicht auf die Leuchte gemäß dem ersten Ausfüh- rungsbeispiel
Figur 3
Eine vergrößerte Darstellung der in Figur 1 abgebildeten Leuchtdiodenan- ordnung und Kühlvorrichtung
Figur 4
Einen schematischen Querschnitt durch eine Leuchte gemäß dem zweiten Ausführungsbeispiel der Erfindung
Figur 5
Eine schematische Draufsicht auf die Leuchte gemäß dem zweiten Aus- führungsbeispiel
Figur 6
Eine Darstellung der Normfarbtafel gemäß DIN 5033 mit den Farborten der in den Ausfühmngsbeispielen verwendeten Lichtquellen
Figur 7
Einen schematischen Querschnitt durch eine Leuchte gemäß dem dritten Ausführungsbeispiel der Erfindung
Figur 8
Eine schematische Draufsicht auf die Leuchte gemäß dem dritten Ausfüh- rungsbeispiel
Figur 9
Eine schematische, teilweise geschnittene Darstellung einer Leuchte ge- mäß dem vierten Ausführungsbeispiel der Erfindung mit einer Aus- schnittsvergrößerung
The invention will be explained in more detail below with reference to a few preferred embodiments. Show it:
FIG. 1
A schematic cross section through a lamp according to the first embodiment of the invention
FIG. 2
A schematic plan view of the lamp according to the first exemplary embodiment
FIG. 3
An enlarged view of the in FIG. 1 illustrated light emitting diode arrangement and cooling device
FIG. 4
A schematic cross section through a lamp according to the second embodiment of the invention
FIG. 5
A schematic plan view of the lamp according to the second exemplary embodiment
FIG. 6
A representation of the standard color chart according to DIN 5033 with the color locations of the light sources used in the Ausfühmngsbeispielen
FIG. 7
A schematic cross section through a lamp according to the third embodiment of the invention
FIG. 8
A schematic plan view of the lamp according to the third exemplary embodiment
FIG. 9
A schematic, partially sectioned view of a lamp according to the fourth embodiment of the invention with an enlarged detail

In den Figuren 1, 2 und 3 ist schematisch eine Leuchte gemäß dem ersten Ausführungsbeispiel der Erfindung abgebildet. Diese Leuchte umfasst einen rinnenförmigen Reflektor 1, der beispielsweise aus einem Kunststoffstrangpressprofil oder aus Aluminiumblech besteht. Die Innenseite 10 des Reflektors 1 ist Licht reflektierend ausgebildet. Im Fall eines Kunststoffstrangpressprofils ist die Innenseite 10 des Reflektors 1 beispielsweise metallisiert, um einen hohen Lichtreflexionsgrad zu erreichen. In dem rinnenförmigen Reflektor 1 ist eine stabförmige Leuchtstofflampe 2 angeordnet, deren Leuchtstoffbeschichtung derart ausgebildet ist, dass sie während des Betriebs tageslichtartiges Licht mit einer Farbtemperatur von 6000 Kelvin aussendet. Die Längsachse der Leuchtstofflampe 2 ist parallel zur Längsachse des Reflektors 1 ausgerichtet. Vorzugsweise ist der Reflektor 1 spiegelsymmetrisch bezüglich seiner Mittellinie oder Längsachse ausgebildet und die Leuchtstofflampe 2 entlang der Längsachse angeordnet, so dass die Leuchte ebenfalls Spiegelsymmetrie aufweist. Der Reflektor 1 weist an beiden, parallel zu seiner Längsachse verlaufenden Rinnenrändern in Richtung der Innenseite 10 und des Rinnenbodens um einen Winkel von ungefähr 90 Grad zurückgebogene Reflektorabschnitte 11, 12 auf. Diese Reflektorabschnitte 11, 12 begrenzen die Lichtaustrittsöffnung des rinnenförmigen Reflektors 1. Diese Lichtaustrittsöffnung ist mittels einer lichtdurchlässigen, Licht streuenden Abdeckscheibe aus Kunststoff 3 abgedeckt. Als weitere Lichtquellen besitzt die Leuchte zwei Leuchtdiodenanordnungen 4, 5, die jeweils aus einer Vielzahl von Leuchtdiodenpaaren 41, 42 bzw. 51, 52 bestehen, wobei jedes Leuchtdiodenpaar 41, 42 von einer rot 41 bzw. 51 und einer grün 42 bzw. 52 leuchtenden Leuchtdiode gebildet wird. Jeder Leuchtdiodenanordnung 4, 5 ist eine mit Kühlrippen 60, 70 ausgestattete Kühlvorrichtung 6, 7 für die Leuchtdiodenpaare 41, 42, 51, 52 zugeordnet. Bei den Kühlvorrichtungen 6, 7 handelt es sich beispielsweise jeweils um eine Aluminiumplatte, die an einer Seite angeformte Kühlrippen 60 bzw. 70 besitzt. Die Leuchtdiodenanordnungen 4, 5 und die Kühlvorrichtungen 6, 7 erstrecken sich über die gesamte Länge des rinnenförmigen Reflektors 1. Die Leuchtdioden 41, 42 bzw. 51, 52 sind auf einer ebenen, von den Kühlrippen 60 bzw. 70 abgewandten Oberfläche 61 bzw. 71 der Kühlvorrichtung 6 bzw. 7 montiert. Diese Oberfläche 61 bzw. 71 der Kühlvorrichtung 6 bzw. 7 ist über eine thermische Isolationsschicht 8 an der Außenseite des zurückgebogenen Reflektorabschnitts 11 bzw. 12 befestigt, wobei die Leuchtdiodenpaare 41, 42 bzw. 51, 52 jeweils durch passgerechte Durchbrüche in dem jeweiligen Reflektorabschnitt 11 bzw. 12 hindurch ragen, so dass sie der Innenseite 10 des Reflektors 1 zugewandt sind. Bei der Isolationsschicht 8 handelt es sich beispielsweise um einen Kunststoff mit geringer Wärmeleitfähigkeit. Die Befestigung der Kühlvorrichtungen 6, 7 mit den darauf montierten Leuchtdiodenpaaren 41, 42 bzw. 51, 52 an den zurück gebogenen Reflektorabschnitten 11 bzw. 12 kann beispielsweise mittels Schrauben, Klemmen, Klebemittel oder ähnlichen Befestigungsmitteln durchgeführt werden. Auf die thermische Isolationsschicht 8 kann gegebenenfalls verzichtet werden, wenn der Reflektor 1 aus einem Kunststoffstrangpressprofil gefertigt ist. Die Leuchtdiodenpaare 41, 42 bzw. 51, 52 der beiden Leuchtdiodenanordnungen 4 bzw. 5 sind jeweils äquidistant entlang einer parallel zur Längsachse des Reflektors 1 verlaufenden Geraden zu beiden Seiten der Leuchtstofflampe 2 angeordnet. Aus den Stirnseiten des Reflektors 1 ragen elektrische Anschlüsse 9 zur Energieversorgung der Leuchtstofflampe 2 und der Leuchtdiodenanordnungen 4, 5 heraus. An der Außenseite des Reflektors 1 sind ein Farbsensor 91 und ein Helligkeitssensor 92 befestigt, um eine Farb- und Helligkeitsregelung des von der Leuchte ausgesandten Lichts in Abhängigkeit vom natürlichen Umgebungslicht zu ermöglichen. Die Betriebschaltungen für die Leuchtstofflampe 2 und die Leuchtdiodenanordnungen 4, 5 sind außerhalb des Reflektors 1 angeordnet und daher in den Figuren nicht abgebildet. Die Leuchte kann zusätzlich ein Gehäuse aufweisen, in dem die vorgenannten Betriebsschaltungen untergebracht sind. Bei der Draufsicht gemäß der schematischen Figur 2 sind die Leuchtdiodenanordnungen 4 bzw. 5 mit den Leuchtdioden 41, 42 bzw. 51, 52 normalerweise nicht sichtbar, weil sie durch die Kühlvorrichtung 6 bzw. 7 und die Kühlrippen 60 bzw. 70 sowie die Reflektorabschnitte 11 bzw. 12 verdeckt werden.In the FIGS. 1, 2 and 3 is schematically illustrated a lamp according to the first embodiment of the invention. This lamp comprises a channel-shaped reflector 1, which consists for example of a plastic extruded profile or aluminum sheet. The inner side 10 of the reflector 1 is formed reflecting light. In the case of a plastic extruded profile, the inside 10 of the reflector 1, for example, metallized to achieve a high degree of light reflectance. In the channel-shaped reflector 1, a rod-shaped fluorescent lamp 2 is arranged, the phosphor coating is designed such that it emits during operation light like light with a color temperature of 6000 Kelvin. The longitudinal axis of the fluorescent lamp 2 is aligned parallel to the longitudinal axis of the reflector 1. Preferably, the reflector 1 is mirror-symmetrical with respect to its center line or longitudinal axis and the fluorescent lamp 2 is arranged along the longitudinal axis, so that the lamp also has mirror symmetry. The reflector 1 has at both, parallel to its longitudinal axis extending gutter edges in the direction of the inside 10 and the gutter bottom by an angle of about 90 degrees bent back reflector sections 11, 12. These reflector sections 11, 12 delimit the light exit opening of the channel-shaped reflector 1. This light exit opening is covered by means of a translucent, light-scattering plastic cover 3. As further light sources, the lamp has two light emitting diode arrangements 4, 5, each consisting of a plurality of pairs of light emitting diodes 41, 42 and 51, 52, each light emitting diode pair 41, 42 of a red 41 and 51 and a green 42 and 52 lit. LED is formed. Each light-emitting diode arrangement 4, 5 is assigned a cooling device 6, 7 equipped with cooling fins 60, 70 for the light-emitting diode pairs 41, 42, 51, 52. The cooling devices 6, 7 are each, for example, an aluminum plate which has cooling fins 60 or 70 integrally formed on one side. The light-emitting diode arrangements 4, 5 and the cooling devices 6, 7 extend over the Entire length of the channel-shaped reflector 1. The LEDs 41, 42 and 51, 52 are mounted on a flat, facing away from the cooling fins 60 and 70 surface 61 and 71 of the cooling device 6 and 7 respectively. This surface 61 or 71 of the cooling device 6 or 7 is attached via a thermal insulation layer 8 on the outside of the bent-back reflector section 11 and 12, wherein the light-emitting diode pairs 41, 42 and 51, 52 respectively by passgerechte openings in the respective reflector section 11th or 12 protrude through, so that they face the inside 10 of the reflector 1. The insulating layer 8 is, for example, a plastic with low thermal conductivity. The attachment of the cooling devices 6, 7 with the light-emitting diode pairs 41, 42 or 51, 52 mounted thereon on the bent-back reflector sections 11 and 12 can be carried out, for example, by means of screws, clamps, adhesives or similar fastening means. The thermal insulation layer 8 may optionally be dispensed with if the reflector 1 is made of a plastic extruded profile. The light-emitting diode pairs 41, 42 and 51, 52 of the two light-emitting diode arrays 4 and 5 are each arranged equidistantly along a straight line extending parallel to the longitudinal axis of the reflector 1 on both sides of the fluorescent lamp 2. From the end faces of the reflector 1 project electrical connections 9 for the power supply of the fluorescent lamp 2 and the LED assemblies 4, 5 out. On the outside of the reflector 1, a color sensor 91 and a brightness sensor 92 are attached in order to allow color and brightness control of the light emitted by the light in dependence on the natural ambient light. The operating circuits for the fluorescent lamp 2 and the LED assemblies 4, 5 are arranged outside of the reflector 1 and therefore not shown in the figures. The lamp may additionally have a housing in which the aforementioned operating circuits are housed. In the plan view according to the schematic FIG. 2 the light emitting diode arrangements 4 and 5 with the LEDs 41, 42 and 51, 52 are not normally visible because they are covered by the cooling device 6 and 7 and the cooling fins 60 and 70 and the reflector sections 11 and 12 respectively.

Während des Betriebs erzeugt die Leuchtstofflampe 2 weißes Licht mit einer Farbtemperatur von ca. 6000 Kelvin. Die nahe beieinander liegenden Leuchtdioden 41, 42 bzw. 51, 52 jedes Leuchtdiodenpaares erzeugen rotes und grünes Licht, das nach Reflexion an der Innenseite 10 des Reflektors 1 und Passieren der Licht streuenden Abdeckscheibe 3 als gelbliches Mischlicht dem bläulichen, tageslichtartigen Leuchtstofflampenlicht homogen beigemischt ist, so dass das von der Leuchte ausgesandte Licht eine im Vergleich zu dem von der Leuchtstofflampe 2 erzeugten Licht reduzierte Farbtemperatur besitzt. Die roten Leuchtdioden 41 bzw. 51 können unabhängig von den grünen Leuchtdioden 42 bzw. 52 gedimmt werden, das heißt, die Helligkeit des roten und grünen Leuchtdiodenlichts, das dem Leuchtstofflampenlicht beigemischt wird, kann unabhängig voneinander geregelt werden. Dadurch kann der Farbort des von der Leuchte ausgesandten Lichts von dem Farbort der Leuchtstofflampe mit einer Farbtemperatur von 6000 Kelvin zu einem Farbort mit reduzierter Farbtemperatur verschoben werden. In der Figur 6 ist die Normfarbtafel gemäß DIN 5033 mit den Farborten FL, L1, L2 des von der Leuchtstofflampe 2 (Farbort FL) und von den roten (Farbort L1) sowie grünen (Farbort L2) Leuchtdioden 41, 42, 51, 52 emittierten Lichts dargestellt. Außerdem ist auch der Farbort L3 einer blauen Leuchtdiode und einer warmweißen Leuchtdiode (Farbort L4) sowie der Plancksche Kurvenzug P eingetragen, der dem von einem schwarzen Strahler ausgesandten Licht bei unterschiedlichen Glühtemperaturen entspricht. Das in der Figur 6 gestrichelt eingezeichnete Rechteck begrenzt die zum weißen Licht gehörenden Farborte. Die Farbtemperatur des Lichts nimmt entlang des Planckschen Kurvenzugs P mit wachsenden Farbkoordinaten x und y ab. Am Farbort FL der Leuchtstofflampe beträgt die Farbtemperatur 6000 Kelvin und am Farbort L4 der warmweißen Leuchtdiode bzw. am Schnittpunkt der Verbindungstrecke der Farborte L1, L2 beträgt die Farbtemperatur ca. 2300 Kelvin. Vorzugsweise wird die Helligkeit des von den roten und grünen Leuchtdioden 41, 42, 51, 52 und von der Leuchtstofflampe 2 erzeugten Lichts derart geregelt, dass die Leuchte weißes Licht mit einer Farbtemperatur im Bereich von 2700 Kelvin bis 6000 Kelvin emittiert. Die Helligkeit der vorgenannten Lichtquellen 2, 41, 42, 51, 52 ist stufenlos regelbar und dementsprechend kann auch die Farbtemperatur in dem vorgenannten Bereich stufenlos variiert werden.During operation, the fluorescent lamp 2 generates white light with a color temperature of about 6000 Kelvin. The closely spaced LEDs 41, 42 and 51, 52 of each pair of LEDs produce red and green light, which is mixed homogeneously after reflection on the inside 10 of the reflector 1 and passing the light scattering cover 3 as yellowish mixed light the bluish, daylight fluorescent light, such that the light emitted by the lamp has a reduced color temperature compared to the light generated by the fluorescent lamp 2. The red LEDs 41 and 51 can be dimmed independently of the green LEDs 42 and 52, respectively, that is, the brightness of the red and green LED lights mixed with the fluorescent lamp light can be controlled independently. As a result, the color location of the light emitted by the light from the color location of the fluorescent lamp with a color temperature of 6000 Kelvin can be shifted to a color location with a reduced color temperature. In the FIG. 6 the standard color chart according to DIN 5033 is shown with the color loci FL, L1, L2 of the light emitted by the fluorescent lamp 2 (color locus FL) and by the red (color locus L1) and green (color locus L2) light-emitting diodes 41, 42, 51, 52. In addition, the color locus L3 of a blue light emitting diode and a warm white light emitting diode (color locus L4) and the Planckian curve P is entered, which corresponds to the light emitted by a black radiator light at different annealing temperatures. That in the FIG. 6 The dashed rectangle delimits the white light color loci. The color temperature of the light decreases along the Planckian curve P with increasing color coordinates x and y. At the color locus FL of the fluorescent lamp, the color temperature is 6000 Kelvin and at the color locus L4 of the warm white light emitting diode or at the intersection of the connecting path of the color locus L1, L2, the color temperature is about 2300 Kelvin. Preferably, the brightness of the light generated by the red and green LEDs 41, 42, 51, 52 and the fluorescent lamp 2 is controlled so that the lamp emits white light with a color temperature in the range of 2700 Kelvin to 6000 Kelvin. The brightness of the aforementioned light sources 2, 41, 42, 51, 52 is infinitely variable and accordingly, the color temperature in the aforementioned range can be varied continuously.

Wie aus der Figur 6 ersichtlich ist, kann eine ähnliche Wirkung auch durch die Kombination der Leuchtstofflampe 2 mit warmweißen Leuchtdioden erzielt werden. Das heißt, an Stelle der rot und grün leuchtenden Leuchtdiodenpaare 41, 42 bzw. 51, 52 können auch warmweißes Licht erzeugende Leuchtdioden in der Leuchte gemäß den Figuren 1 bis 3 verwendet werden. Bei warmweißes Licht erzeugenden Leuchtdioden handelt es sich beispielsweise um Leuchtdioden auf der Basis blauer Leuchtdioden, die mit einem Konversionsmittel ausgestattet sind, um das blaue Licht in weißes Licht niedriger Farbtemperatur (ca. 2300 Kelvin) umzuwandeln. Durch Verändern der Helligkeit des von der Leuchtstofflampe und bzw. oder den warmweißen Leuchtdioden erzeugten Lichts kann die Farbtemperatur des von der Leuchte emittierten Lichts stufenlos variiert werden.Like from the FIG. 6 can be seen, a similar effect can also be achieved by the combination of the fluorescent lamp 2 with warm white LEDs. That is, in place of the red and green light-emitting diode pairs 41, 42 and 51, 52 and warm white light-emitting light-emitting diodes in the lamp according to the FIGS. 1 to 3 be used. For example, light-emitting diodes producing warm-white light are light-emitting diodes based on blue light-emitting diodes which are equipped with a conversion agent in order to convert the blue light into white light of low color temperature (about 2300 Kelvin). By changing the brightness of the light generated by the fluorescent lamp and / or the warm-white light-emitting diodes, the color temperature of the light emitted by the light can be varied steplessly.

Vorzugsweise werden die Farbtemperatur und die Helligkeit des von der Leuchte gemäß dem ersten Ausführungsbeispiel emittierten Lichts automatisch mit Hilfe des Farb- und Lichtsensors 91, 92 in Abhängigkeit von dem natürlichen Umgebungslicht durch eine externe zentrale Steuervorrichtung geregelt, an die eine Vielzahl von erfindungsgemäßen Leuchten anschließbar bzw. angeschlossen sind. Die zentrale Steuervorrichtung kommuniziert über bidirektionale Steuerleitungen mit den Betriebsschaltungen der erfindungsgemäßen Leuchten sowie ggf. weiterer, herkömmlicher Leuchten, die zu der Beleuchtungsanlage gehören. Über diese Steuerleitungen werden Steuerbefehle an die Betriebsschaltungen übermittelt und Betriebszustände der einzelnen Leuchten abgefragt. Die Kommunikation zwischen der zentralen Steuervorrichtung und den Betriebsschaltungen der einzelnen Leuchten der Beleuchtungsanlage erfolgt nach dem DALI-Standard (DALI steht für Digitally Adressable Lighting Interface). Mittels der zentralen Steuervorrichtung und der Farb- und Helligkeitssensoren 91, 92 sowie der Kommunikation gemäß dem DALI-Standard kann eine automatische Regelung der erfindungsgemäßen Leuchten in Abhängigkeit von dem Umgebungslicht gewährleistet werden, ohne dass eine nennenswerte Farbstreuung bei dem von mehreren erfindungsgemäßen Leuchten emittierten Licht auftritt.Preferably, the color temperature and the brightness of the light emitted by the luminaire according to the first embodiment are automatically controlled with the aid of the color and light sensor 91, 92 as a function of the natural ambient light by an external central control device to which a plurality of luminaires according to the invention can be connected or connected are connected. The central control device communicates via bidirectional control lines with the operating circuits of the lights according to the invention and optionally further, conventional lights that belong to the lighting system. Control commands are transmitted to the operating circuits via these control lines and operating states of the individual lights are queried. The communication between the central control device and the operating circuits of the individual lights of the lighting system is carried out according to the DALI standard (DALI stands for Digitally Addressable Lighting Interface). By means of the central control device and the color and brightness sensors 91, 92 and the communication according to the DALI standard, an automatic control of the lights according to the invention can be ensured as a function of the ambient light, without a significant color dispersion occurs in the light emitted by several lights according to the invention ,

In den Figuren 4 und 5 ist ein zweites Ausführungsbeispiel der erfindungsgemäßen Leuchte schematisch dargestellt. Dieses zweite Ausführungsbeispiel unterscheidet sich von dem ersten Ausführungsbeispiel nur dadurch, dass anstelle der zweiseitig gesockelten Leuchtstofflampe 2 gemäß dem ersten Ausführungsbeispiel eine einseitig gesockelte Leuchtstofflampe 2' verwendet wird und die Leuchte dementsprechend nur an einer Stirnseite des Reflektors 1 herausragende elektrische Anschlüsse 9' für die Leuchtstofflampe 2' und die Leuchtdiodenanordnungen 4, 5 aufweist. In allen anderen Details stimmen das erste und zweite Ausführungsbeispiel überein. Daher wurden in den Figuren 1 bis 3 und 4 bis 5 für identische Komponenten dieselben Bezugszeichen verwendet.In the FIGS. 4 and 5 a second embodiment of the luminaire according to the invention is shown schematically. This second embodiment differs from the first embodiment only in that instead of the two-sided fluorescent lamp 2 according to the first embodiment, a single-capped fluorescent lamp 2 'is used and the lamp accordingly only at one end of the reflector 1 outstanding electrical connections 9' for the fluorescent lamp 2 'and the light-emitting diode arrangements 4, 5. In all other details, the first and second embodiments are the same. Therefore, in the FIGS. 1 to 3 and 4 to 5 for identical components the same reference numerals.

In den Figuren 7 und 8 ist ein drittes Ausführungsbeispiel einer erfindungsgemäßen Leuchte schematisch dargestellt, das vornehmlich zum Einsatz in Privaträumen und im Wohnbereich vorgesehen ist. Diese Leuchte besitzt einen haubenartigen, insbesondere trichterförmigen Reflektor 100, eine kompakte Leuchtstofflampe 200 als erste Lichtquelle und eine Leuchtdiodenanordnung 300 als zweite Lichtquelle sowie eine lichtdurchlässige, lichtstreuende Abdeckscheibe 500 für die Lichtaustrittsöffnung des Reflektors 100 und eine Kühlvorrichtung 400 zur Kühlung der Leuchtdiodenanordnung. Der Reflektor 100 ist mit seiner engen Öffnung am Sockel 201 der kompakten Leuchtstofflampen 200, so dass die elektrischen Anschlüsse 203 der Leuchtstofflampe bzw. der Leuchte aus dem Reflektor 100 herausragen. Der Reflektor 100 besteht beispielsweise aus einem Kunststoffspritzgussteil. Die Innenseite 101 des trichterförmigen, rotationssymmetrischen Reflektors 100 ist lichtreflektierend ausgebildet. Zu diesem Zweck ist die Innenseite 101 vorzugsweise metallisiert, beispielsweise mit einer Aluminiumschicht versehen. Die Leuchtstofflampe 200 ist in der Rotationsachse des Reflektors 100 angeordnet, so dass die Schenkel der U-förmigen Abschnitte 202 des Lampengefäßes parallel zur Rotationsachse des Reflektors 100 verlaufen. Die Leuchtdiodenanordnung 300 ist an der Innenseite 101 des Reflektors 100, ringförmig um die Lampengefäßabschnitte 201 herum angeordnet. Sie besteht aus einer Kombination rot, grün und blau leuchtenden Leuchtdioden, die jeweils in gleicher Anzahl vorhanden sind. Die Leuchtstoffbeschichtung der Leuchtstofflampe 200 ist so ausgebildet, dass die Leuchtstofflampe 200 im Betrieb kaltweißes Licht, das heißt, weißes Licht mit einer Farbtemperatur von ca. 4000 Kelvin, generiert. Die Kühlvorrichtung 400 ist an der Außenseite des Reflektors 100 auf der Höhe der Leuchtdiodenanordnung 300 angeordnet. Beispielsweise handelt es sich bei der Kühlvorrichtung 400 um einen ringförmigen Aluminiumkörper, auf dessen Oberfläche die Leuchtdioden der Leuchtdiodenanordnung 300 montiert sind, so dass die Leuchtdioden durch Durchbrüche im Reflektor 100 in den Innenraum des Reflektors 100 hineinragen. Die Betriebschaltung für die Leuchtstofflampe 200 und die Leuchtdiodenanordnung 300 ist beispielsweise in dem Innenraum des Lampensockels 201 untergebracht. Die elektrische Verbindung zwischen der Leuchtdiodenanordnung 300 und ihrer Betriebsschaltung kann beispielsweise über elektrische Leitungen, die als Leiterbahnen im Kunststoffmaterial des Reflektors 100 eingebettet oder entlang des Reflektors 100 zum Lampensockel 201 geführt sind, erreicht werden. Beispielsweise kann der Reflektor 100 mittels einer metallischen Rast- oder Schnappverbindung am Sockel 201 fixiert werden, die gleichzeitig auch die elektrische Verbindung zwischen der im Sockel untergebrachten Betriebsschaltung und der Leuchtdiodenanordnung 300 herstellt.In the FIGS. 7 and 8 a third embodiment of a lamp according to the invention is shown schematically, which is intended primarily for use in private rooms and in the living area. This lamp has a hood-like, in particular funnel-shaped reflector 100, a compact fluorescent lamp 200 as a first light source and a light-emitting diode array 300 as a second light source and a translucent, light-scattering cover 500 for the light exit opening of the reflector 100 and a cooling device 400 for cooling the light emitting diode array. The reflector 100 is with its narrow opening at the base 201 of the compact fluorescent lamps 200, so that the electrical connections 203 of the fluorescent lamp and the lamp protrude from the reflector 100. The reflector 100 consists for example of a plastic injection molded part. The inner side 101 of the funnel-shaped, rotationally symmetrical reflector 100 is designed to be light-reflecting. For this purpose, the inside 101 is preferably metallized, for example, provided with an aluminum layer. The fluorescent lamp 200 is disposed in the axis of rotation of the reflector 100 so that the legs of the U-shaped portions 202 of the lamp vessel are parallel to the axis of rotation of the reflector 100. The light emitting diode array 300 is disposed on the inner side 101 of the reflector 100, annularly around the lamp vessel portions 201 around. It consists of a combination of red, green and blue light-emitting diodes, each of which is present in the same number. The phosphor coating of the fluorescent lamp 200 is configured so that the fluorescent lamp 200 in operation generates cold white light, that is, white light having a color temperature of about 4000 Kelvin. The cooling device 400 is arranged on the outside of the reflector 100 at the level of the light-emitting diode arrangement 300. For example, the cooling device 400 is an annular aluminum body, on the surface of which the light-emitting diodes of the light-emitting diode arrangement 300 are mounted, so that the light-emitting diodes protrude through openings in the reflector 100 into the interior of the reflector 100. The operation circuit for the fluorescent lamp 200 and the light-emitting diode array 300 is housed, for example, in the interior of the lamp cap 201. The electrical connection between the light-emitting diode arrangement 300 and its operating circuit can be achieved, for example, via electrical lines which are embedded as conductor tracks in the plastic material of the reflector 100 or guided along the reflector 100 to the lamp base 201. For example, the reflector 100 can be fixed to the base 201 by means of a metallic latching or snap connection, which at the same time also establishes the electrical connection between the operating circuit accommodated in the base and the light-emitting diode arrangement 300.

Während des Betriebs erzeugt die Leuchtstofflampe weißes Licht mit einer Farbtemperatur von ca. 4000 Kelvin, das mittels des Reflektors 100 und der lichtstreuenden Abdeckscheibe 500 mit dem Licht der Leuchtdioden 300 homogen gemischt wird, so dass die Leuchte Licht mit einer Farbtemperatur im Bereich von ca. 2700 Kelvin bis 4000 Kelvin emittieren kann. Vorzugsweise ist an der Leuchte neben dem Einschaltkopf ein weiterer Schalter vorgesehen, mit dem mehrere, beispielsweise zwei oder drei, vorbestimmte unterschiedliche Farbtemperaturen für das von der Leuchte emittierte weiße Licht ausgewählt werden können. Zusätzlich kann an der Außenseite des Reflektors 100 ein Farb- und Helligkeitssensor 600 angebracht sein, der eine automatische und stufenlose Farb- und Helligkeitsregelung des von der Leuchte emittierten weißen Lichts in Abhängigkeit von dem Umgebungslicht ermöglicht, wie es bei den vorherigen Ausführungsbeispielen bereits beschrieben wurde. Weiterhin kann zwecks Erzeugung farbigen Lichts ein manuell zu betätigender Regler vorgesehen sein, der eine stufenlose manuelle Helligkeitsregelung der roten, grünen und blauen Leuchtdioden unabhängig voneinander ermöglicht, um den Farbort und die Farbe des von der Leuchte ausgesandten Lichts in dem in Figur 6 durch die Punkte L1, L2 und L3 begrenzten Dreieck, auch außerhalb des Planckschen Kurvenzugs P, zu variieren.During operation, the fluorescent lamp generates white light having a color temperature of about 4000 Kelvin, which is homogeneously mixed by means of the reflector 100 and the light-scattering cover 500 with the light of the LEDs 300, so that the light light with a color temperature in the range of about. 2700 Kelvin to 4000 Kelvin can emit. Preferably, a further switch is provided on the lamp next to the switch-on with which a plurality, for example two or three, predetermined different color temperatures for the white light emitted by the lamp can be selected. In addition, on the outside of the reflector 100, a color and brightness sensor 600 may be mounted, which allows an automatic and continuous color and brightness control of the white light emitted by the lamp in dependence on the ambient light, as has already been described in the previous embodiments. Furthermore, for the purpose of generating colored light, a manually operated controller can be provided be independently of each other allows a continuous manual brightness control of the red, green and blue LEDs to the color locus and the color of the light emitted by the light in the light in the FIG. 6 through the points L1, L2 and L3 limited triangle, even outside the Planckian curve P to vary.

In Figur 9 ist schematisch ein viertes Ausführungsbeispiel einer erfindungsgemäßen Leuchte abgebildet. Dieses vierte Ausführungsbeispiel ist weitgehend identisch zu dem ersten Ausführungsbeispiel. Daher werden in den Figuren 1 und 3 für identische Komponenten dieselben Bezugszeichen verwendet. Das vierte Ausfühmngsbeispiel unterscheidet sich von dem ersten Ausführungsbeispiel nur durch den Reflektor 1' und die Kühlvorrichtung 6' für die Leuchtdioden 41, 42, 51, 52 der Leuchtdiodenanordnungen 4, 5. Der Reflektor 1' besitzt dieselbe Gestalt wie der Reflektor 1 gemäß dem ersten Ausführungsbeispiel. Allerdings besteht der Reflektor 1' aus einem Kunststoffstrangpressprofil und nicht aus Aluminiumblech wie der Reflektor 1 des ersten Ausführungsbeispiels. Die Innenseite des rinnenfömigen Reflektors 1' wird von einer Aluminiumschicht 10' gebildet, die einen hohen Lichtreflexionsgrad besitzt. Die Kühlvorrichtung 6' besteht aus einem Metallblech, beispielsweise einem Aluminiumblech, das sich über die gesamte Länge der Leuchte und des rinnenförmigen Reflektors 1' erstreckt. Die abgewinkelten Randabschnitte 11', 12' des rinnenförmigen Reflektors 1' sind mit Durchbrüchen versehen, durch welche die Leuchtdioden 41, 42 bzw. 51, 52 hindurchragen, so dass ihr Licht in Richtung der Innenseite 10' des Reflektors 1' abgestrahlt wird. Das Kühlblech 6' umgibt den Reflektor 1' haubenartig, so dass von dem Reflektor 1' und dem Kühlblech 6' ein Zwischenraum 93 gebildet wird, in dem vorzugsweise ein Betriebsgerät oder eine Betriebsschaltung für die Leuchtstofflampe 2 und die Leuchtdioden 41, 42, 51, 52 der Leuchtdiodenanordnungen 4, 5 angeordnet ist. Das Kühlblech 6' liegt an der Außenseite der abgewinkelten, zurück gebogenen Randabschnitten 11' 12' des Reflektors 1' an und ist daran befestigt. Die Leuchtdioden 41, 42, 51, 52 sind auf der dem Reflektor 1' zugewandten Oberfläche 61' des Kühlblechs 6' montiert, so dass die Leuchtdioden 41, 42 der ersten Leuchtdiodenanordnung 4 durch Durchbrüche in dem ersten abgewinkelten Reflektorabschnitt 11' hindurchragen und die Leuchtdioden 51, 52 der zweiten Leuchtdiodenanordnung 5 durch Durchbrüche in dem zweiten abgewinkelten, zurück gebogenen Reflektorabschnitt 12' hindurchragen. Das Kunststoffmaterial des Reflektors 1' wirkt hier als thermische Isolationsschicht zwischen dem Kühlblech 6' und der Innenseite 10' bzw. dem Innenraum des Reflektors 1'. Die Lichtaustiittsöffnung des Reflektors 1', die von den beiden abgewinkelten Reflektorabschnitten 11', 12' und dem Kühlblech 6' begrenzt wird, ist mit einer lichtdurchlässigen, Licht streuende Abdeckung 3 versehen. In allen anderen Details stimmt das vierte Ausführungsbeispiel mit dem ersten Ausführungsbeispiel überein.In FIG. 9 is schematically illustrated a fourth embodiment of a lamp according to the invention. This fourth embodiment is largely identical to the first embodiment. Therefore, in the FIGS. 1 and 3 for identical components the same reference numerals. The fourth embodiment differs from the first embodiment only by the reflector 1 'and the cooling device 6' for the LEDs 41, 42, 51, 52 of the LED assemblies 4, 5. The reflector 1 'has the same shape as the reflector 1 according to the first embodiment. However, the reflector 1 'consists of a plastic extruded profile and not of aluminum sheet as the reflector 1 of the first embodiment. The inside of the trough-shaped reflector 1 'is formed by an aluminum layer 10', which has a high degree of light reflection. The cooling device 6 'consists of a metal sheet, for example an aluminum sheet, which extends over the entire length of the lamp and the channel-shaped reflector 1'. The angled edge portions 11 ', 12' of the channel-shaped reflector 1 'are provided with openings through which the light-emitting diodes 41, 42 and 51, 52 protrude so that their light is emitted in the direction of the inner side 10' of the reflector 1 '. The cooling plate 6 'surrounds the reflector 1' like a hood, so that a gap 93 is formed by the reflector 1 'and the cooling plate 6', in which preferably an operating device or an operating circuit for the fluorescent lamp 2 and the light-emitting diodes 41, 42, 51, 52 of the light emitting diode assemblies 4, 5 is arranged. The cooling plate 6 'is located on the outside of the angled, bent back edge portions 11' 12 'of the reflector 1' and is attached thereto. The light-emitting diodes 41, 42, 51, 52 are mounted on the surface 61 'of the cooling plate 6' facing the reflector 1 ', so that the light-emitting diodes 41, 42 of the first light-emitting diode arrangement 4 project through apertures in the first angled reflector section 11' and the light-emitting diodes 51, 52 of the second Light emitting diode array 5 through openings in the second angled, bent back reflector portion 12 'protrude. The plastic material of the reflector 1 'acts here as a thermal insulation layer between the cooling plate 6' and the inner side 10 'and the interior of the reflector 1'. The Lichtaustiittsöffnung the reflector 1 ', which is bounded by the two angled reflector sections 11', 12 'and the cooling plate 6' is provided with a translucent, light-scattering cover 3. In all other details, the fourth embodiment is consistent with the first embodiment.

Claims (27)

  1. Luminaire having a first light source, which generates white light and comprises at least one fluorescent lamp (2; 2'; 200) or one incandescent lamp, and having a second light source, which comprises at least one light-emitting diode arrangement (4, 5; 300), and having a reflector (1; 1'; 100) for the light emitted by the light sources, a cooling device (6, 7; 6'; 400) for the at least one light-emitting diode arrangement (4, 5; 300) being provided that is thermally coupled to the at least one light-emitting diode arrangement (4, 5; 300) and is arranged on the reflector (1; 1'; 100), the at least one light-emitting diode arrangement (4, 5; 300) being mounted on a surface (61, 61') of the cooling device (6, 7; 6'; 400), and the luminaire comprising a transparent, light-scattering means (3; 500) that is arranged in the beam path of the light emitted by the luminaire,
    characterized in that
    the surface (61, 61') of the cooling device (6, 7; 6'; 400) that is provided with the at least one light-emitting diode arrangement (4, 5; 300) faces an outer side, averted from the light-sources, of the reflector (1; 1'; 100), and the at least one light-emitting diode arrangement (4, 5; 300) projects through cutouts in the reflector (1; 1'; 100).
  2. Luminaire according to Claim 1, in which the reflector (1; 1'; 100) has an inner side (10; 10'; 101) that faces the light sources and is designed to reflect light and the cooling device (6, 7; 6'; 400) is arranged on the outer side of the reflector (1; 1'; 100).
  3. Luminaire according to Claim 1 or 2, in which the cooling device is fastened on the reflector (1; 1'; 100).
  4. Luminaire according to one or more of Claims 1 to 3, in which the cooling device is arranged at the edge of a light exit opening of the reflector.
  5. Luminaire according to one or more of Claims 1 to 4, in which the at least one light-emitting diode arrangement (4, 5; 300) is arranged on the inner side (10; 10'; 101) of the reflector (1; 1'; 100).
  6. Luminaire according to Claim 1, in which a thermal insulation layer (8) is arranged between the outer side of the reflector (1; 100) and the surface (61) of the cooling device (6, 7; 400) provided with the at least one light-emitting diode arrangement (4, 5; 300).
  7. Luminaire according to one or more of Claims 1 to 6, in which the cooling device (6, 7) has cooling ribs (60, 70) that are arranged and aligned in such a way that they lie outside the beam path of the light emitted by the luminaire.
  8. Luminaire according to one or more of Claims 1 to 6, in which the cooling device is designed as a cooling plate (6') that is arranged and shaped in such a way that it lies outside the beam path of the light emitted by the luminaire.
  9. Luminaire according to Claim 8, in which the cooling plate (6') and the reflector (1') form a cavity or interspace (93).
  10. Luminaire according to one or more of Claims 1 to 9, in which the at least one light-emitting diode arrangement (4, 5) comprises a combination of red or orange shining light-emitting diodes (41, 51) with green shining light-emitting diodes (42, 52), and the first light source comprises one or more fluorescent lamps (2, 2').
  11. Luminaire according to one or more of Claims 1 to 9, in which the at least one light-emitting diode arrangement comprises light-emitting diodes that emit warm white light during their operation, and the first light source comprises one or more fluorescent lamps.
  12. Luminaire according to Claim 10 or 11, in which the at least one fluorescent lamp (2, 2') is designed in such a way that it emits daylight-like light during its operation.
  13. Luminaire according to one or more of Claims 1 to 9, in which the at least one light-emitting diode arrangement (300) comprises a combination of red, green and blue shining light-emitting diodes.
  14. Luminaire according to Claim 13, in which the first light source comprises one or more fluorescent lamps (2, 2', 200).
  15. Luminaire according to one or more of Claims 1 to 14, in which the transparent, light-scattering means is designed as a cover pane (3; 500) for a light exit opening of the reflector (1; 1'; 100).
  16. Luminaire according to one or more of Claims 1 to 15, in which a color sensor (91) that serves to control the color temperature or the color of the light emitted by the luminaire is coupled to the luminaire.
  17. Luminaire according to one or more of Claims 1 to 16, in which a brightness sensor (92) that serves to control the brightness of the light emitted by the luminaire is coupled to the luminaire.
  18. Luminaire according to one or more of Claims 1 to 17, in which the reflector (1, 1') is of trough-like design, the first light source (2, 2') is aligned parallel to the longitudinal extent of the trough-like reflector (1, 1'), and the second light source is formed by two light-emitting diode arrangements (4, 5) that are arranged on both sides of the first light source (2, 2') and respectively extend in a fashion parallel to the longitudinal extent of the reflector (1, 1').
  19. Luminaire according to Claim 18, in which the cooling devices (6, 7) of the two light-emitting diode arrangements (4, 5) are respectively arranged along a reflector edge running parallel to the longitudinal extent of the trough-like reflector (1, 1').
  20. Luminaire according to Claim 18 or 19, in which the two light-emitting diode arrangements (4, 5) are respectively arranged along a reflector section (11, 12, 11', 12') bent back in the direction of the inside trough bottom, such that, before leaving the luminaire, the light emitted by the light-emitting diode arrangements (4, 5) is reflected at least once on the inner side (10; 10'), designed to reflect light, of the reflector (1; 1').
  21. Luminaire according to one or more of Claims 18 to 20, in which the cooling devices (6, 7) of the two light-emitting diode arrangements (4, 5) extend along the outer sides of the bent-back reflector sections (11, 12; 11', 12').
  22. Luminaire according to one or more of Claims 18 to 21, in which the light exit opening of the reflector (1; 1') is arranged between the bent-back reflector sections (11, 12; 11', 12').
  23. Luminaire according to one or more of Claims 1 to 17, in which the reflector (100) is of hood-like and substantially rotationally symmetrical design, and the first light source (200) is arranged along the rotation axis of the reflector (100), and the second light source comprises at least one annular or annular segment light-emitting diode arrangement (300) that is arranged on the inner side (101) and coaxially with the rotation axis of the reflector (100).
  24. Luminaire according to Claim 23, in which the cooling device (400) for the at least one annular or annular segment light-emitting diode arrangement (300) is arranged on the outer side of the reflector (100), at the level of the light-emitting diode arrangement (300).
  25. Luminaire according to either of Claims 23 and 24, in which the first light source is a fluorescent lamp (200) with a base at one end and whose axis of longitudinal extent is aligned parallel to the rotation axis of the reflector (100).
  26. Luminaire according to Claim 25, in which the fluorescent lamp with a base at one end is designed as a compact fluorescent lamp (200) with an operating device arranged in the base.
  27. Luminaire according to either of Claims 25 and 26, in which the reflector (100) is fixed on the base (201) of the fluorescent lamp (200).
EP07788239A 2006-08-09 2007-08-06 Lamp Not-in-force EP2049835B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006037376A DE102006037376A1 (en) 2006-08-09 2006-08-09 lamp
PCT/EP2007/058118 WO2008017652A1 (en) 2006-08-09 2007-08-06 Lamp

Publications (2)

Publication Number Publication Date
EP2049835A1 EP2049835A1 (en) 2009-04-22
EP2049835B1 true EP2049835B1 (en) 2011-06-29

Family

ID=38599733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07788239A Not-in-force EP2049835B1 (en) 2006-08-09 2007-08-06 Lamp

Country Status (8)

Country Link
US (1) US7874697B2 (en)
EP (1) EP2049835B1 (en)
JP (1) JP4861478B2 (en)
CN (1) CN101501394B (en)
AT (1) ATE514901T1 (en)
DE (1) DE102006037376A1 (en)
HK (1) HK1132787A1 (en)
WO (1) WO2008017652A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA010087B1 (en) * 2006-12-28 2008-06-30 Виктор Васильевич Качкин Illumination-information gear
DE102007056199A1 (en) * 2007-11-21 2009-05-28 Trilux Gmbh & Co. Kg Lamp i.e. long field lamp, for non-dazzling lighting of visual working area, in e.g. office buildings, has secondary lamp unit designed as LED-lamp unit, and primary lamp unit partly functioning as reflector and cover for secondary unit
DE102008014317A1 (en) * 2008-03-14 2009-09-17 Zumtobel Lighting Gmbh Luminaire with separate bulbs for direct lighting and indirect lighting
DE102008017271B4 (en) 2008-04-04 2018-09-13 Osram Gmbh Luminaire with two light sources in a recess of an at least partially photoconductive support, use of this lamp as a pendant, wall or floor lamp and lighting device for such a lamp
EP2288847B1 (en) * 2008-06-10 2018-11-14 Philips Lighting Holding B.V. Light output device and method
JP5418103B2 (en) 2008-09-30 2014-02-19 東芝ライテック株式会社 lighting equipment
FR2942527B1 (en) * 2009-02-25 2011-04-22 Cooper Securite Sas DOMESTIC LIGHTING DEVICE
US8186852B2 (en) * 2009-06-24 2012-05-29 Elumigen Llc Opto-thermal solution for multi-utility solid state lighting device using conic section geometries
TWM377524U (en) * 2009-08-14 2010-04-01 Great Top Technology Co Ltd LED (light emitting diode) lamp
US20110051403A1 (en) * 2009-09-02 2011-03-03 Industrial Light & Energy, Inc. Fluorescent lighting fixture
EP2320128B1 (en) * 2009-11-09 2015-02-25 LG Innotek Co., Ltd. Lighting device
CN102192451A (en) * 2010-03-11 2011-09-21 上海三思电子工程有限公司 Anti-dazzle LED (light emitting diode) downlight with high luminous efficiency
CN201803227U (en) * 2010-06-28 2011-04-20 通力盛达能源设备(北京)有限公司 LED lamp adopting lenses to achieve approximately parallel light array distribution way
DE102010046382A1 (en) * 2010-09-24 2012-03-29 Great Top Technology Co., Ltd. Illumination device for street light, has control element which is electrically connected with semiconductor light source for controlling switching ON and switching OFF of the semiconductor light source mounted in lamp support
US9395057B2 (en) * 2011-02-07 2016-07-19 Cree, Inc. Lighting device with flexibly coupled heatsinks
CN102734642B (en) * 2011-03-31 2015-04-29 浙江思朗照明有限公司 Surface light source lamp
KR101325142B1 (en) 2011-05-20 2013-11-20 주식회사 케이엠더블유 LED lighting device capable of arbitrary light-distribution
CN102954450B (en) * 2011-06-28 2014-04-23 鸿富锦精密工业(深圳)有限公司 Lamp tube switching device
MX2012011741A (en) 2011-10-10 2013-04-24 Rab Lighting Inc Light fixture with peripheral cooling channels.
JP2013229171A (en) * 2012-04-25 2013-11-07 Toshiba Lighting & Technology Corp Light-emitting device and luminaire
US9335041B2 (en) 2012-05-07 2016-05-10 Abl Ip Holding Llc LED light fixture
US8985816B2 (en) 2012-06-01 2015-03-24 RAB Lighting Inc. Light fixture with central lighting housing and peripheral cooling housing
US20140071673A1 (en) 2012-09-11 2014-03-13 Abl Ip Holding Llc Recessed Luminaire
US20140177219A1 (en) * 2012-12-20 2014-06-26 Ecolite Manufacturing Co. Low Profile Light Fixture
US11035527B1 (en) 2020-07-23 2021-06-15 Ideal Industries Lighting Llc Troffer light fixture
US10508794B2 (en) * 2017-09-21 2019-12-17 Ideal Industries Lighting Llc LED troffer fixture having a wide lens
US11079079B2 (en) 2017-09-21 2021-08-03 Ideal Industries Lighting, LLC Troffer light fixture
USD696449S1 (en) 2013-03-14 2013-12-24 Lsi Industries, Inc. Lighting
US9127826B2 (en) * 2013-03-14 2015-09-08 Lsi Industries, Inc. Indirect lighting luminaire
JP2013225518A (en) * 2013-05-30 2013-10-31 Kyocera Corp Lighting fixture
CN111174183A (en) * 2013-08-13 2020-05-19 伊顿智能动力有限公司 Explosion-proof lamp
US10228096B2 (en) * 2014-05-02 2019-03-12 Southpac Trust International Inc., Trustee of the LDH Trust Lens assembly with light engine and flexible luminaires having elongated heat sink with truss retention member configured to retain edges of lens formed of optical film
US9534741B2 (en) 2014-07-23 2017-01-03 Cree, Inc. Lighting devices with illumination regions having different gamut properties
CN106855205A (en) * 2015-12-08 2017-06-16 欧普照明股份有限公司 A kind of reflection type lamp
US10619844B1 (en) 2018-10-30 2020-04-14 Broan-Nutone Llc Ventilation and illumination system
US10928020B1 (en) * 2019-08-22 2021-02-23 Usg Interiors, Llc Light bar for suspended ceiling
US11781732B2 (en) 2021-12-22 2023-10-10 Ideal Industries Lighting Llc Lighting fixture with lens assembly for reduced glare

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10006410A1 (en) * 2000-02-14 2001-08-16 Zumtobel Staff Gmbh Recessed ceiling light fitting has concave reflector and light diffuser cooperating to provide divergent light chambers on either side of tubular gas discharge lamp
DE3916997C2 (en) * 1988-06-16 1994-04-14 Tetsuhiro Kano Lighting device
DE29620583U1 (en) * 1996-11-27 1997-02-13 Kundisch Microtech Gmbh & Co K Lighting fixture with continuously adjustable color change of the light and the light cone
US6992718B1 (en) * 1998-08-31 2006-01-31 Matsushita Electric Industrial Co., Ltd. Illuminating apparatus, display panel, view finder, video display apparatus, and video camera mounting the elements
US6149283A (en) * 1998-12-09 2000-11-21 Rensselaer Polytechnic Institute (Rpi) LED lamp with reflector and multicolor adjuster
DE19917401A1 (en) * 1999-04-16 2000-10-26 Hauke Haller Lighting body has board between two plates, of which at least one has openings corresponding. to LEDs on board; board with LEDs and plates are joined together to form panel
DE19922176C2 (en) 1999-05-12 2001-11-15 Osram Opto Semiconductors Gmbh Surface-mounted LED multiple arrangement and its use in a lighting device
DE20007134U1 (en) * 2000-04-18 2000-08-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Luminaire with adjustable color location
JP2003007115A (en) * 2001-06-25 2003-01-10 Nireco Corp Light scattering box
FI110636B (en) * 2001-06-29 2003-02-28 Teknoware Oy Arrangements in connection with a lighting fixture and a lighting fixture
DE20204352U1 (en) * 2002-03-19 2002-06-20 Alfred Pracht Lichttechnik Gmb lamp
DE10216645B4 (en) * 2002-04-15 2011-05-12 Siteco Beleuchtungstechnik Gmbh Luminaire with variable light color
JP2003330424A (en) * 2002-05-10 2003-11-19 Hitachi Ltd Liquid crystal display device
DE10233768A1 (en) * 2002-07-25 2004-02-12 Philips Intellectual Property & Standards Gmbh Lamp system with green-blue gas discharge lamp and yellow-red LED
US20040218387A1 (en) * 2003-03-18 2004-11-04 Robert Gerlach LED lighting arrays, fixtures and systems and method for determining human color perception
US7052157B1 (en) 2003-04-26 2006-05-30 Lau Kenneth H Multi-function luminaire
US6864513B2 (en) * 2003-05-07 2005-03-08 Kaylu Industrial Corporation Light emitting diode bulb having high heat dissipating efficiency
US7318659B2 (en) * 2004-03-03 2008-01-15 S. C. Johnson & Son, Inc. Combination white light and colored LED light device with active ingredient emission
JP4093476B2 (en) * 2003-07-25 2008-06-04 株式会社ナナオ Surface light source device, backlight for liquid crystal display device, and liquid crystal display device
US6982518B2 (en) * 2003-10-01 2006-01-03 Enertron, Inc. Methods and apparatus for an LED light
CN100492685C (en) * 2003-12-05 2009-05-27 三菱电机株式会社 Light emitting device and illumination instrument using the same
JP2005251724A (en) * 2004-02-05 2005-09-15 Matsushita Electric Works Ltd Lighting device
JP2006012542A (en) * 2004-06-24 2006-01-12 Toshiba Lighting & Technology Corp Fluorescent lamp and illumination apparatus
JP2006100055A (en) * 2004-09-29 2006-04-13 Matsushita Electric Works Ltd Luminaire
DE112006000964A5 (en) 2005-02-18 2008-01-24 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Color adaptive lighting system
EP1878317B1 (en) * 2005-04-21 2015-12-23 Radiant Research Limited Illumination control system for light emitters

Also Published As

Publication number Publication date
HK1132787A1 (en) 2010-03-05
CN101501394B (en) 2011-03-30
JP2010500706A (en) 2010-01-07
WO2008017652A1 (en) 2008-02-14
US7874697B2 (en) 2011-01-25
DE102006037376A1 (en) 2008-02-14
EP2049835A1 (en) 2009-04-22
US20090243455A1 (en) 2009-10-01
CN101501394A (en) 2009-08-05
JP4861478B2 (en) 2012-01-25
ATE514901T1 (en) 2011-07-15

Similar Documents

Publication Publication Date Title
EP2049835B1 (en) Lamp
DE102007030186B4 (en) Linear LED lamp and lighting system with the same
DE69937993T2 (en) LIGHTING ARRANGEMENT
EP2556286B1 (en) Led module having a double diffuser
DE102004036157A1 (en) Electromagnetic radiation emitting optoelectronic component and light module
WO2006086967A1 (en) Color adaptive lighting system
DE102010062454A1 (en) Light output assembly for lighting medium, comprises cell grid element equipped with multiple successively arranged cup-shaped reflectors, where each reflector has light entry opening and light exit opening
EP2612068A1 (en) Standard lamp or desk lamp
DE102011076128A1 (en) Support system for light module e.g. LED module used in office, has light module that is mounted over support portion and contact with electric wires of support portion
DE112009001774B4 (en) Light source with LED, emergency route lighting and method for evenly illuminating an area
DE112015002580T5 (en) OPTICAL COMPONENTS FOR LUMINAIRES
EP2273185A1 (en) LED light element with light diverter
EP2470825B1 (en) Lamp for general lighting
EP2494264A2 (en) Led module for spotlights
DE102008022834A1 (en) Illumination device for use on wall and table, has LEDs emitting light with intensities during operation and with warm-white light impressions, and light emitting component with optical element jointly downstream to LEDs
WO2012022662A1 (en) Light source
EP2848859B1 (en) Light emitting device
DE19919080A1 (en) Lighting device for illuminating surfaces and spaces incorporates light-emitting semiconductor elements acting as sources of light supplied with a power source and controlled by electronic components.
DE102011003418A1 (en) Lamp i.e. gas discharge lamp, has electric contacts formed as sliding contacts at respective outer and inner control units of side wall of cabinet of electronic operation apparatus, where sliding contacts are arranged one above other
EP2529259B1 (en) Lighting fixture comprising a light source and an optical diffuser
DE102012205465A1 (en) Lighting device, particularly filament bulb-retrofit lamp, has semiconductor light source for generating color component of light of lighting device, where movable element is provided for changing color component
EP2051004B1 (en) Light, especially for display windows or exhibition cases
DE10211620B4 (en) Illuminant module with integrated light source
DE202013102582U1 (en) lamp
EP2966338A1 (en) Spotlight including light source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20091008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007007567

Country of ref document: DE

Effective date: 20110825

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111029

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007007567

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111214

BERE Be: lapsed

Owner name: OSRAM G.M.B.H.

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

26N No opposition filed

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007007567

Country of ref document: DE

Effective date: 20120330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007007567

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 514901

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007007567

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170822

Year of fee payment: 11

Ref country code: FR

Payment date: 20170822

Year of fee payment: 11

Ref country code: DE

Payment date: 20170822

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007007567

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180806