EP2044446A2 - Dispositif de détection de courant et procédé pour détecter le courant - Google Patents

Dispositif de détection de courant et procédé pour détecter le courant

Info

Publication number
EP2044446A2
EP2044446A2 EP07787855A EP07787855A EP2044446A2 EP 2044446 A2 EP2044446 A2 EP 2044446A2 EP 07787855 A EP07787855 A EP 07787855A EP 07787855 A EP07787855 A EP 07787855A EP 2044446 A2 EP2044446 A2 EP 2044446A2
Authority
EP
European Patent Office
Prior art keywords
current
sensor
gmr
compensation
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07787855A
Other languages
German (de)
English (en)
Inventor
Gotthard Rieger
Richard Schmidt
Roland Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2044446A2 publication Critical patent/EP2044446A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Definitions

  • the invention relates to a current detection device having a current sensor functioning as a magnetic field sensor, in particular in an embodiment as a GMR sensor, according to the preamble of claim 1. Furthermore, the dung ⁇ OF INVENTION relates to a corresponding method for current detection.
  • Rogowski coils The potential-separated detection of direct currents, however, is much more expensive.
  • Alternative approaches are based on the use of a flux concentrator Hall current measuring system or conventional AMR / GMR field sensors.
  • a problem with the shunt measurement is the galvanic connection of the measuring points with the potential of the current-carrying line, ie the respective current path in the respective measuring circuit.
  • This requires evaluation electronics which have both a potential-separated power supply and a potential-separated signal path for transmitting the measured values.
  • the shunt resistor is located directly in the current ⁇ path, which may result, for example, circuit problems, but this is accompanied by at least one power loss.
  • the current detection with magnetic field sensors has the advantage of absence of reaction, that is inserted for the Strommes ⁇ solution has no series resistance on the type of shunt into the current path.
  • this object is achieved by the features of claim 1.
  • egg ⁇ ner device for detecting at least one electrical variable in particular the electric current, in a current ⁇ circle with an acting as a current sensor MR sensor, in particular in an embodiment as a GMR / AMR or TMR sensor - summarized below GMR sensor -, provided that the GMR sensor comprises a conductor section of a compensation circuit.
  • the above object is achieved by a korrespondie ⁇ rendes method having the features of claim 8.
  • a signal supplied by the GMR sensor signal is evaluated to lead by means of a Ver ⁇ amplifier a compensation current in the compensation circuit, wherein when the signal from the GMR sensor to ⁇ least substantially disappears, the compensation current as a measure to be detected electrical variable, so the
  • Example the electric current in the respective measuring circuit, is evaluated.
  • the invention is based on the recognition that the above-mentioned dynamic problem can be avoided by utilizing a compensation current.
  • a compensation current For this purpose, an inductance is arranged so that it can generate a magnetic field superimposed at the location of the current sensor with the magnetic field of the MES send ⁇ current. By impressing a compensation current into this inductance, the resulting field is compensated.
  • the current sensor is thus always operated in the range of an output signal zero point.
  • the impressed compensation current then corresponds to the current to be measured or there is a known proportionality between the impressed compensation current and the current to be measured.
  • the GMR sensor acting as a current sensor is designed as a gradient sensor, this emits a signal proportional to a field difference. Influences of possible interference fields are thereby eliminated or reduced.
  • Such a field difference arises in particular when the GMR sensor is associated with a conductor contour in the circuit, which comprises at least two sections - first and second section - and wherein a direction of a current flowing through the first section is opposite to the direction of the current in the second section.
  • this conductor contour can also be thought of as a substantially U-shaped contour, in which the two abovementioned sections form the lateral limbs of such a U-shaped conductor course.
  • the conductor contour is also referred to in accordance with Fol ⁇ constricting briefly only as "U-turn".
  • the GMR sensor Porterab- is preferably cut after the manner of a U-turn designed, ie the Porterab cut ⁇ comprises at least two segments - first and second segments -, wherein a direction of a current flowing the compensation current by the Porterab cut ⁇ in the first segment ent ⁇ opposite to the direction of the current in the second segment.
  • the compensation principle can be implemented particularly advantageously. Because of the then possible spatial proximity of the integrated current loop to the GMR sensor only a very small compensation current is required to compensate for large measurement currents. Above all, no inductance in the form of a multi-turn coil is required. It is sufficient a conductor loop, namely the U-turn. As a result, the overall arrangement can be realized very well in a planar monolithically integrable structure.
  • the advantage results from the fact that the field picked up by the GMR sensor decreases by 1 / x 3 .
  • the gradient recorded by the gradient sensor decreases by 1 / x 4 .
  • the distance between the GMR sensor and the measuring circuit can be greater by a power of 4 than the component-internal distance.
  • the measuring current and the compensation current then cause a same magnetic field at the location of the GMR sensor.
  • the compensation current corresponding to the Relati ⁇ ons of the distances to each other will be lower, so that only a comparatively small compensation current to compensate for the magnetic field of the measuring circuit is required.
  • the MR sensor comprises a number of MR elements, that is to say, depending on the design of the MR sensor, as GMR / AMR or TMR sensor GMR / AMR or TMR elements - hereinafter referred to collectively as GMR element -, Each GMR element is individually contactable.
  • an offset voltage can be mirrored in its polarity by cyclically exchanging sensor pairs, that is to say two GMR elements in each case.
  • this measurement error can be compensated.
  • This kind of offset compensation requires a freely accessible working ray-connection of the GMR elements, so taktieriana whose individual con- that consuming and because of the wiring is very sensitive to conventional implementation with several ⁇ ren circuits against coupled noise.
  • the GMR sensors can be applied directly on a silicon surface of a switching ⁇ circle in terms of vertical integration.
  • the electrical connections can as extremely short interconnects are realized (sandwich Anord ⁇ voltage).
  • an amplifier For feeding the compensation current into the compensation circuit, an amplifier is preferably provided whose output signal is based on a signal supplied by the GMR sensor.
  • the GMR sensor detects the operation of both the magnetic field of the actual electric circuit, that is, the measuring current ⁇ circle, and the magnetic field of the Kompensationsstromkrei- ses. As long as the magnetic field does not disappear, ie is not yet compensated by the compensation current, the compensation current must be adjusted in its height. This is done by means of the amplifier.
  • the control of the Verstär ⁇ kers is substantially a control based on the aims to be regulated by varying the height of the compensation current, the ⁇ detected by the GMR sensor magnetic field to zero.
  • FIG. 2 shows a gradient sensor as an example of a special GMR sensor and FIG. 3 shows a component with a gradient sensor.
  • FIG. 1 shows in a schematically simplified form as a device for detecting at least one electrical variable, in particular an electrical current in a circuit 10 (measuring circuit), a component 12 with a function as a current sensor ⁇ ing GMR sensor, wherein the GMR sensor, or .,
  • an amplifier 18 is provided for feeding the compensation current into the Pensationsstrom Vietnamese 16 which receives at least one input 20, a signal of the component 12 and the GMR sensor comprised thereof.
  • the signal present at the input 20 of the amplifier 18 corresponds to the resulting magnetic field strength of the magnetic field generated by the current flowing through the measuring circuit 10 and the field strength resulting from the compensating current 16 due to the compensation current.
  • the head portion 14 of the Kompensa ⁇ tion circuit 16 includes at least two segments 22, 24 - first and second segments 22, 24 -, wherein a direction of a current flowing through the conductor part 14 compensation current in the first segment 22 opposite to the direction of the current in the second segment 24 is.
  • the conductor section 14 presents itself overall as a "U-shaped" conductor section 14 and is accordingly also referred to below as a "U-turn".
  • the component 12 and / or the GMR sensor encompassed by the component 12 is assigned to a conductor contour 26 corresponding to the conductor section 14 in the measuring circuit 10.
  • the conductor con ⁇ tur 26 comprises, analogous to the conductor section 14 in Kompensa ⁇ tion circuit 16, at least two sections 28, 30 - first and second sections 28, 30 -, wherein a direction of a current flowing through the first section 28, ie the measuring current, opposite to the direction of the measuring current in the second section 30.
  • the conductor section 14 of the compensation circuit 16 and the conductor contour 26 of the measuring circuit 10 an inductance, wherein in the conductor-free region between the two segments 22, 24, or the two sections 28, 30, a gradient field adjusts, that of the component 12 and / or the GMR sensor included therein is detected in its preferred embodiment as a gradient sensor.
  • FIG. 2 shows, in a schematically simplified form, a representation of a gradient sensor 32 as a GMR sensor, as it is, for example, a component of the component 12 (FIG. 1).
  • Entspre ⁇ accordingly the representation of the gradient sensor 32 four GMR elements 34, 36, 38, 40, the GMR elements 34-40, respectively in pairs to the head portion 14 of the compensation circuit 16 (FIG 1) are assigned.
  • the gradient field is formed, in FIG ⁇ marked with "Hx" ⁇ , which is detected by the gradient sensor 32.
  • FIG. 3 shows a simplified representation in turn
  • Section through the component 12 (see FIG. 1), wherein a layer of the component 12 recognizable only as the uppermost layer 42 in the represented cross section is represented by the U-shaped conductor section 14 (compare also FIG. 1 and FIG. 2). Between the uppermost layer 42 and inside the component 12 arranged GMR elements 34, 36 can be seen as a further layer 44 passivation. Underneath this further layer 44 is an ASIC, shown only as a third layer 46, for processing provided by the GMR elements 34-40.
  • the component 12 may be assigned to the respective conductor contour 26 (FIG. 1) of a measuring circuit 10 (FIG. 1) in total (not shown).
  • the distance between the compensation circuit 16, ie in particular the conductor ⁇ portion 14 and the GMR elements 34-40 is essentially overall ringer than the distance of these GMR elements 34-40 to the conductor ⁇ contour 26 of the measuring circuit 10. So even a ver ⁇ comparatively lower compensation current in the compensation circuit 16 is sufficient to compensate for the magnetic field of the measuring circuit 10.
  • the signal of the Gradien ⁇ least sensor 32 disappears, the compensation current then lying on ⁇ does not directly correspond to the current flowing in the measuring circuit 10 current but ality only on the basis of the correlated with the above intervals propor-.
  • a current detection device and a method for its operation is specified, which is based on that is provided as a current sensor, a GMR sensor in an embodiment as a gradient sensor 32 and that the gradient sensor 32, or a Component 12, which includes this gradient sensor 32, in turn, a conductor portion 14 of a com ⁇ pensationsstromnikes 16 includes, so that the current in the measuring circuit is compensated by a current in the compensation circuit 16 and the compensation current as a measure of the electrical variable to be detected in relation to the measuring current ⁇ circle 10 can be evaluated.

Abstract

L'invention concerne un dispositif de détection de courant et un procédé pour faire fonctionner ce dispositif, caractérisé en ce qu'en guise de détecteur de courant, on prévoit un détecteur GMR sous la forme d'un détecteur à gradients (32) et que ledit détecteur à gradients (32), ou un composant (12) comprenant ce détecteur à gradients (32), comprend, de son côté, une section de conducteur (14) d'un circuit de compensation (16) de manière à ce que le courant dans le circuit de mesure puisse être compensé par un courant dans le circuit de compensation (16) et que le courant de compensation puisse être interprété comme mesure pour détecter la valeur électrique par rapport au circuit de mesure (10).
EP07787855A 2006-07-26 2007-07-24 Dispositif de détection de courant et procédé pour détecter le courant Withdrawn EP2044446A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006034579A DE102006034579A1 (de) 2006-07-26 2006-07-26 Stromerfassungsvorrichtung und Verfahren zur Stromerfassung
PCT/EP2007/057620 WO2008012309A2 (fr) 2006-07-26 2007-07-24 Dispositif de détection de courant et procédé pour détecter le courant

Publications (1)

Publication Number Publication Date
EP2044446A2 true EP2044446A2 (fr) 2009-04-08

Family

ID=38859300

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07787855A Withdrawn EP2044446A2 (fr) 2006-07-26 2007-07-24 Dispositif de détection de courant et procédé pour détecter le courant

Country Status (5)

Country Link
US (1) US20090289694A1 (fr)
EP (1) EP2044446A2 (fr)
CN (1) CN101495874A (fr)
DE (1) DE102006034579A1 (fr)
WO (1) WO2008012309A2 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930994B1 (fr) 2008-05-07 2010-06-18 Commissariat Energie Atomique Structure et procede de fabrication d'un capteur de gradient de champ magnetique en technologie integree
US8193818B2 (en) * 2009-01-15 2012-06-05 Hamilton Sundstrand Corporation Partial corona discharge detection
JP5964299B2 (ja) * 2010-07-30 2016-08-03 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 磁気抵抗に基づき電圧又は電流を測定する集積化センサ
US8761987B2 (en) * 2010-10-05 2014-06-24 Checkpoint Llc Automatic guided vehicle sensor system and method of using same
CN102043083B (zh) * 2010-11-23 2012-07-04 中国科学院电工研究所 一种巨磁阻阵列电流传感器
US8975889B2 (en) * 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
US8680845B2 (en) 2011-02-09 2014-03-25 International Business Machines Corporation Non-contact current and voltage sensor
US9063184B2 (en) * 2011-02-09 2015-06-23 International Business Machines Corporation Non-contact current-sensing and voltage-sensing clamp
FR2979707B1 (fr) * 2011-09-07 2014-04-25 Sagemcom Energy & Telecom Sas Dispositif de mesure comportant un shunt et un compteur electrique comportant un tel dispositif de mesure
CN102590587A (zh) * 2012-02-22 2012-07-18 西安交通大学 中压大电流直流断路器短路电流识别装置及其识别方法
CN103323643B (zh) * 2012-03-20 2016-06-29 美新半导体(无锡)有限公司 单芯片电流传感器及其制造方法
CN102890175B (zh) * 2012-10-24 2015-07-01 无锡乐尔科技有限公司 用于电流传感器的磁电阻集成芯片
DE102013210298A1 (de) * 2013-06-04 2014-12-04 Robert Bosch Gmbh Anordnung zur Ermittlung von Kenngrößen eines elektrochemischen Energiespeichers
DE102013112760A1 (de) * 2013-11-19 2015-05-21 Danfoss Silicon Power Gmbh Leistungsmodul mit integrierter Strommessung
US9529060B2 (en) 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
DE102015205794A1 (de) * 2015-03-31 2016-10-06 Siemens Aktiengesellschaft Strommessvorrichtung und Verfahren zur Bestimmung eines elektrischen Stroms
WO2016196157A1 (fr) 2015-06-05 2016-12-08 Allegro Microsystems, Llc Élément de magnétorésistance à vanne de spin à réponse améliorée aux champs magnétiques
DE102016124167A1 (de) * 2016-12-13 2018-06-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rogowski-Stromsensor mit aktiver Kapazitätskompensation
EP3376238A1 (fr) * 2017-03-16 2018-09-19 LEM Intellectual Property SA Transducteur de courant électrique avec capteur de gradient de champ magnétique
US11022661B2 (en) 2017-05-19 2021-06-01 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
WO2019072421A1 (fr) * 2017-10-12 2019-04-18 Sensitec Gmbh Dispositif de détection de courant
DE102018113005B4 (de) 2018-05-30 2024-02-01 Infineon Technologies Austria Ag Magnetischer stromsensor
US11719771B1 (en) 2022-06-02 2023-08-08 Allegro Microsystems, Llc Magnetoresistive sensor having seed layer hysteresis suppression

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4300605C2 (de) * 1993-01-13 1994-12-15 Lust Electronic Systeme Gmbh Sensorchip
EP0640840B1 (fr) * 1993-08-25 2002-10-30 Nippon Telegraph And Telephone Corporation Procédé et dispositif de détection de champ magnétique
FR2725029A1 (fr) * 1994-09-26 1996-03-29 Crouzet Automatismes Capteur de courant a magnetoresistance
US7204013B2 (en) * 2003-07-29 2007-04-17 Seagate Technology Llc Method of manufacturing a magnetoresistive sensor
US6995315B2 (en) * 2003-08-26 2006-02-07 Allegro Microsystems, Inc. Current sensor
JP4105142B2 (ja) * 2004-10-28 2008-06-25 Tdk株式会社 電流センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008012309A2 *

Also Published As

Publication number Publication date
US20090289694A1 (en) 2009-11-26
WO2008012309A3 (fr) 2008-03-27
CN101495874A (zh) 2009-07-29
WO2008012309A2 (fr) 2008-01-31
DE102006034579A1 (de) 2008-01-31

Similar Documents

Publication Publication Date Title
WO2008012309A2 (fr) Dispositif de détection de courant et procédé pour détecter le courant
EP2156448B1 (fr) Transformateur électrique avec compensation du flux continu
DE102008061067B4 (de) Integrierte Schaltung, System und Verfahren, die magnetfeldempfindliche Elemente und Spulen umfassen und verwenden
DE102008030411A1 (de) Integrierter Hybrid-Stromsensor
DE112010000890T5 (de) Magnetfeld-Erfassungsvorrichtung
DE102015109009A1 (de) Stromsensorchip mit Magnetfeldsensor
EP1873543B1 (fr) Système de compensation de champ magnétique avec largeur de bande accrue
EP2044447A1 (fr) Dispositif de mesure
WO2010040767A1 (fr) Procédé et dispositif de détection de courts-circuits dans des machines électriques, dans un empilage de tôles d'un stator
EP2031412B1 (fr) Dispositif de mesure galvanique séparée de la réception de puissance électrique d'un bipôle
EP1567878B1 (fr) Element de detection magnetoresistif et procede pour diminuer le defaut d'alignement angulaire d'un element de detection magnetoresistif
DE102011086773A1 (de) Metallsensor
DE102017130033B4 (de) Detektionsvorrichtung und Verfahren zur Detektion von magnetischen Partikeln in Schmierstoffen
EP0329652A1 (fr) Dispositif pour mesurer un champ magnetique constant ou variable dans le temps.
EP3069150A1 (fr) Dispositif, agencement et procédé permettant de mesurer l'intensité d'un courant dans un conducteur primaire parcouru par un courant
DE102008061014A1 (de) Verfahren zur Unterdrückung von externen Störfeldern in einer Brückenanordnung aus Magnetfeldsensoren und zugehörige Vorrichtung
EP1882953A1 (fr) Dispositif d'enregistrement du courant
DE102007032300A1 (de) Stromsensor zur Gleich- oder Wechselstrommessung
DE102013205474A1 (de) Strommesssensor
EP3314274B1 (fr) Ensemble de circuit pour détecter au moins deux augmentations de courant
DE102013205511A1 (de) Spannungsmesssensor
WO2005090927A2 (fr) Dispositif destine a mesurer et/ou surveiller le debit d'un milieu de mesure
WO2024052155A1 (fr) Agencement et procédé de détection d'un courant d'un premier conducteur d'un circuit qui est en particulier au moins partiellement monté sur une carte de circuit imprimé
DE102006034580A1 (de) Vorrichtung und Verfahren zur Erfassung mindestens einer elektrischen Größe
EP2126596A1 (fr) Procédé de fonctionnement d'un capteur de champ magnétique sur la base de l'effet de magnétorésistance tunnel et dispositif associé permettant la mise en oeuvre du procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081212

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100811