EP2044365B1 - Verfahren für die erzeugung von dampf in einem gasrohr-dampfkessel und gasrohr-dampfkessel - Google Patents

Verfahren für die erzeugung von dampf in einem gasrohr-dampfkessel und gasrohr-dampfkessel Download PDF

Info

Publication number
EP2044365B1
EP2044365B1 EP07764471.4A EP07764471A EP2044365B1 EP 2044365 B1 EP2044365 B1 EP 2044365B1 EP 07764471 A EP07764471 A EP 07764471A EP 2044365 B1 EP2044365 B1 EP 2044365B1
Authority
EP
European Patent Office
Prior art keywords
steam
flow
wall
distance
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07764471.4A
Other languages
English (en)
French (fr)
Other versions
EP2044365A1 (de
Inventor
Bodil Irene Mosekaer Nielsen
Thomas Paarup Pedersen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alfa Laval Aalborg AS
Original Assignee
Alfa Laval Aalborg AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfa Laval Aalborg AS filed Critical Alfa Laval Aalborg AS
Priority to EP07764471.4A priority Critical patent/EP2044365B1/de
Publication of EP2044365A1 publication Critical patent/EP2044365A1/de
Application granted granted Critical
Publication of EP2044365B1 publication Critical patent/EP2044365B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • F28D1/0213Heat exchangers immersed in a large body of liquid for heating or cooling a liquid in a tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1884Hot gas heating tube boilers with one or more heating tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B9/00Steam boilers of fire-tube type, i.e. the flue gas from a combustion chamber outside the boiler body flowing through tubes built-in in the boiler body
    • F22B9/02Steam boilers of fire-tube type, i.e. the flue gas from a combustion chamber outside the boiler body flowing through tubes built-in in the boiler body the boiler body being disposed upright, e.g. above the combustion chamber
    • F22B9/04Steam boilers of fire-tube type, i.e. the flue gas from a combustion chamber outside the boiler body flowing through tubes built-in in the boiler body the boiler body being disposed upright, e.g. above the combustion chamber the fire tubes being in upright arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G3/00Steam superheaters characterised by constructional features; Details of component parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G3/00Steam superheaters characterised by constructional features; Details of component parts thereof
    • F22G3/006Steam superheaters with heating tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • the present invention relates to a method of producing steam in a gas tube steam boiler and a gas tube steam boiler.
  • the primary design parameters are involving the input gas temperature, the exhaust gas temperature and the desired maximum energy output, i.e. feed water temperature, steam pressure, temperature and mass flow.
  • the steam should be dry or even more preferred superheated.
  • GB114222 also shows a gas tube stream boiler.
  • the heat transfer from the gas tubes to the steam in the steam head space is significantly improved, whereby the efficiency of the boiler is increased and at the same time the produced steam has a higher quality by being dried and possibly superheated.
  • said horizontal projection of said flow path is at least two times said distance.
  • the steam outlet is located at a distance from the axis of the wall, preferably proximate to the wall of the head space, thus restricting the steam flow to flow sideways along all of the gas tubes before leaving through the steam outlet.
  • the horizontal projection of the flow path extends from proximate or at a first point on said wall past said axis to proximate or at a second point on said wall opposite said first point and preferably extends back from the second point and at least partways back to said first point.
  • the steam flow is caused to move past all of the gas tubes, preferably at least two times before leaving through the steam outlet steam outlet.
  • the steam flow velocity is lower when flowing from the second point towards the first point than when flowing from proximate said first point towards said second point, providing a relative high velocity, preferably approximately 15-30 m/s, more preferably 15-25 m/s over a part of the distance between the water surface and the steam outlet and to pass the gas tubes at a reduced velocity, preferably approximately 10-15 m/s over a subsequent part of the path from the water surface to the steam outlet, whereby the high velocity provides a turbulent flow around the gas tubes securing a high heat transfer and securing that possible droplets of water in the steam will hit the tubes and evaporate.
  • the hot gasses for the gas tubes are provided from a combustion chamber, combusting a fuel such as oil, carbon dust, natural gas, etc., however, also hot exhaust gasses from a gas turbine or an internal combustion motor and the like may be used.
  • a combustion chamber may be provided in contact with the water in the heat exchange compartment, in order to deliver further heating to the water directly from the combustion chamber.
  • the present invention relates to a gas tube steam boiler according to independent claim 10.
  • the gas tube steam boiler shown in Fig. 1 comprises a heat exchange compartment 2 filled with water, said water forming a water surface 2a, and a steam head space 8 above said water surface and delimited by a cylindrical wall 1 with a substantially vertical axis 10, a top plate 4 and a diameter D.
  • a steam outlet 6 is connected to the steam head space 8 and several gas tubes 3 extend through the heat exchange compartment 2 and the steam head space 8. Heated gas flows through the gas tubes 3 in order to generate a flow of steam from the water surface by heat exchange between the gas tubes 3 and the water in the heat exchange compartment 2.
  • the steam flow from the water surface is caused to flow along a conduit delimited by the baffle plates 7', 7", whereby said steam is made to flow in a direction transverse to the gas tubes 3 and all of the steam in the flow is constrained to flow between the two baffle plates 7', 7" in a horizontal direction and back between the upper baffle plate 7" and the top plate 4 in an opposite horizontal direction and out through the steam outlet 6.
  • the two baffle plates 7', 7" each covers a smaller area than the cross sectional area of the steam head space 5 and the edges of the two baffle plates 7', 7" are connected to vertical plates 9 extending from the top plate 4 down to the lower baffle plate 7' in the vertical direction and in the horizontal direction all the way across between individual positions on the cylindrical wall of the steam head space 5.
  • the gas tubes 3 extend from the bottom of the boiler, possibly from a combustion chamber 14 as shown in Fig. 2 up through the water filled heat exchange compartment 2 and the steam head space 5, where the gas tubes 3 extend through the plates 7', 7" and through holes in the top plate 4, from where the gas leaves through a gas exhaust 11.
  • the water level inside the boiler corresponds to the level measured with different traditional equipment, such as pressure difference between two known levels, water level glasses, etc.
  • the actual water level seen inside the boiler will rise because of the presence of a large amount of steam bubbles inside the water area, and the water level will be fluctuating more or less, dependent on the heat load and the steam pressure.
  • the highest water level will be around the gas tubes 3 and accordingly the gas tubes are wetted by water up to this water level, which typically is about 250 mm above the measured water level, in the following named water surface in cold condition.
  • the total height h of the steam head space 5 is subdivided into the distance h1 between the top plate 4 and the first plate 7", the distance h2 between the first plate 7" and the second plate 7', and finally the distance h3 between the second plate 7' and the water surface in cold condition.
  • the distances h1 and h2 are dimensioned in such a way that the steam velocity between the top plate 4 and the first plate 7" is approximately 10-15 m/s and the steam velocity between the two plates 7' and 7" is approximately 20-30 m/s., i.e. the distance h1 is approximately two times the distance h2. Under all circumstances the distance h3 should be sufficient to secure that during boiling at full load, the actual water level should be approximately 200 mm below the second plate 7'.
  • the flow of the steam perpendicular to the gas tubes 3 is relatively high between the two plates 7', 7", a bit lower between the top plate 4 and the plate 7" and even between the water surface and the plate 7' a certain cross flow relative to the gas tubes 3 will be present.
  • the steam velocity provides a higher heat transfer coefficient from the gas tubes 3 to the steam compared to a traditional situation in which the steam head space 5 transmits steam at a low velocity, substantially parallel to the tubes.
  • the heat transfer is close to the same heat transfer that exists in the water filled heat exchange compartment 2 in which water is in direct contact with the gas tubes 3.
  • the produced steam is not only free of water droplets when it leaves the boiler through the steam outlet 6, but it is actually superheated. This superheating ensures that no salts leave the boiler, resulting in that there will be no deposits in the steam pipe from the boiler to the user.
  • a possible steam outlet valve after the steam outlets can be dimensioned to a higher steam velocity, which means that the size of the valve can be reduced, thus saving both space, weight and costs for said steam outlet valve.
  • the total heating surface can be reduced due to increased heat transfer, which means reduced tube length, number of tubes, boiler height and thus both weight and cost price for the boiler.
  • the direct result of using the present invention is that approximately 40% of the tubes (approximately 240 kg) in the standard boiler design can be saved. Furthermore, the tube length and accordingly the boiler height is shortened by 520 mm, which with a boiler diameter of 1300 and a plate thickness of 12 mm provides a difference in plate weight of approximately 200 kg.
  • the steam flow is restricted to a helically flow path by means of a helically shaped plate positioned between a central tube and the outer wall of the boiler 1, said steam flow path again having a length corresponding to at least the distance between two opposite point of the wall of the boiler 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (17)

  1. Verfahren für die Erzeugung von Dampf, das folgende Schritte umfasst:
    - Bereitstellen eines Gasrohr-Dampfkessels, der Folgendes umfasst:
    - einen Wärmeaustauschraum (2), der mit Wasser gefüllt ist, das eine Wasseroberfläche (2a) bildet,
    - einen Dampfraum (5) über der Wasseroberfläche (2a) und begrenzt durch eine zylindrische Wand (1) mit einer im Wesentlichen senkrechten Achse und einer oberen Platte (4),
    - einen Dampfaustritt (6), der mit dem Dampfraum (5) in Verbindung steht,
    - ein oder mehrere Gasrohre (3), die durch den Wärmeaustauschraum (2) und den Dampfraum (5) verlaufen,
    - einen Dampfstromkanal, der eine erste Platte (7") umfasst, die in einem senkrechten Abstand h1 unter der oberen Platte (4) angeordnet ist und einen ersten spaltbildenden Rand (13) aufweist, der in einem Abstand zu der Wand (1) angeordnet ist, um einen ersten Dampfstromspalt zwischen der ersten Platte (7") und der Wand (1) vorzusehen, der in dem Dampfraum (5) zum Leiten des Dampfstroms von der Wasseroberfläche (2a) zu dem Dampfaustritt (6) angeordnet ist, wobei mindestens eins der Gasrohre (3) quer durch den Kanal verläuft, sodass der Dampfstrom in einer Richtung quer, vorzugsweise im Allgemeinen rechtwinklig, zu den Gasrohren (3) strömt, wobei die Gestaltung des Kanals derart ist, dass mehr als die Hälfte des Dampfs, vorzugsweise im Wesentlichen der gesamte Dampf in dem Strom, gezwungen wird, entlang eines Strömungswegs zu strömen, der bei Projektion auf eine waagerechte Fläche eine Länge aufweist, die mindestens dem kürzesten Abstand zwischen einem ersten Punkt der Wand (1) und einem zweiten Punkt der Wand (1) waagerecht gegenüber dem ersten Punkt entspricht, wobei der Abstand in dem Fall, dass die Wand (1) kreiszylindrisch ist, der Durchmesser der kreiszylindrischen Wand (1) ist;
    - wobei die erste Platte (7") eine kleinere Fläche als die Querschnittsfläche des Dampfraums (5) aufweist und die Ränder der ersten Platte (7"), die jeweils von dem ersten spaltbildenden Rand (13) aus verlaufen, mittels senkrechten Platten (9) miteinander verbunden sind, um ein Rohr zu bilden, wo die senkrechten Platten (9) in der waagerechten Richtung entlang der ganzen Strecke zwischen einzelnen Positionen an der zylindrischen Wand (1) des Dampfraums (5) verlaufen;
    - Zuführen von erwärmtem Gas zu den Gasrohren zum Erzeugen eines Dampfstroms von der Wasseroberfläche durch Wärmeaustausch zwischen den Gasrohren und dem Wasser in dem Wärmeaustauschraum,
    - Bewirken, dass der Dampfstrom durch den Dampfstromkanal in dem Dampfraum von der Wasseroberfläche zu dem Dampfaustritt strömt, sodass mehr als die Hälfte des Dampfs, vorzugsweise im Wesentlichen der gesamte Dampf in dem Strom in dem Dampfraum gezwungen wird, in eine Richtung quer, vorzugsweise im Allgemeinen rechtwinklig, zu den Gasrohren entlang eines Strömungswegs zu strömen, der bei Projektion auf eine waagerechte Fläche eine Länge aufweist, die mindestens dem kürzesten Abstand zwischen einem ersten Punkt der Wand und einem zweiten Punkt der Wand waagerecht gegenüber dem ersten Punkt entspricht, wobei der Abstand in dem Fall, dass die Wand kreiszylindrisch ist, der Durchmesser der kreiszylindrischen Wand ist,
    sodass Restwärme in den Gasrohren auf den Dampfstrom übertragen wird.
  2. Verfahren nach Anspruch 1, wobei die Restwärme in den Gasrohren in dem Maße auf den Dampfstrom übertragen wird, dass der gesamte Dampf, der den Dampfraum durch den Dampfaustritt verlässt, überhitzt wird.
  3. Verfahren nach Anspruch 1 oder 2, wobei die Länge der waagerechten Projektion des Strömungswegs mindestens zweimal der Abstand ist.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei sich der Dampfaustritt in einem Abstand zu der Achse der Wand, vorzugsweise in der Nähe der oder in der Wand, befindet.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die waagerechte Projektion des Strömungswegs von nahe oder an einem ersten Punkt an der Wand an der Achse vorbei bis nahe oder an einem zweiten Punkt an der Wand gegenüber dem ersten Punkt verläuft.
  6. Verfahren nach Anspruch 5, wobei die waagerechte Projektion des Strömungswegs von dem zweiten Punkt aus zurück und zumindest teilweise zurück bis zu dem ersten Punkt verläuft.
  7. Verfahren nach Anspruch 6, wobei die Strömungsgeschwindigkeit des Stroms geringer ist, wenn er von dem zweiten Punkt in Richtung des ersten Punkts strömt, als wenn er von nahe dem ersten Punkt in Richtung des zweiten Punkts strömt.
  8. Verfahren nach Anspruch 7, wobei die Strömungsgeschwindigkeit des Stroms ungefähr 10 bis 15 m/s beträgt, wenn er von dem zweiten Punkt in Richtung des ersten Punkts strömt und vorzugsweise ungefähr 15 bis 30 m/s, bevorzugter 15 bis 25 m/s, wenn er von nahe dem ersten Punkt in Richtung des zweiten Punkts strömt.
  9. Verfahren nach einem der vorhergehenden Ansprüche, wobei das erwärmte Gas von einer der folgenden Quellen zugeführt wird:
    a) ein Verbrennungsraum,
    b) eine Gasturbine,
    c) ein Verbrennungsmotor, und
    d) ein Gas- oder Ölmotor, der z.B. für den Antrieb von Schiffen oder die Stromerzeugung, Heizprozesse, Industrieanlagen und Kraftwerke verwendet wird.
  10. Gasrohr-Dampfkessel, der Folgendes umfasst:
    - einen Wärmeaustauschraum (2), der mit Wasser gefüllt ist, das eine Wasseroberfläche (2a) bildet,
    - einen Dampfraum (5) über der Wasseroberfläche (2a) und begrenzt durch eine kreiszylindrische Wand (1) mit einer im Wesentlichen senkrechten Achse und einer oberen Platte (4),
    - einen Dampfaustritt (6), der mit dem Dampfraum (5) in Verbindung steht,
    - ein oder mehrere Gasrohre (3), die durch den Wärmeaustauschraum (2) und den Dampfraum (5) verlaufen,
    - Mittel zum Zuführen von erwärmtem Gas zu den Gasrohren (3) zum Erzeugen eines Dampfstroms von der Wasseroberfläche (2a) durch Wärmeaustausch zwischen den Gasrohren (3) und dem Wasser in dem Wärmeaustauschraum (2),
    - einen Dampfstromkanal, der in dem Dampfraum (5) zum Leiten des Dampfstroms von der Wasseroberfläche (2a) zu dem Dampfaustritt (6) angeordnet ist und Folgendes umfasst:
    - eine erste im allgemeinen waagerechte Platte (7"), die in einem senkrechten Abstand h1 unter der oberen Platte (4) angeordnet ist und einen ersten spaltbildenden Rand (13) aufweist, der in einem Abstand zu der Wand (1) angeordnet ist, um einen ersten Dampfstromspalt zwischen der ersten Platte (7") und der Wand (1) vorzusehen;
    - dadurch gekennzeichnet, dass die erste Platte (7") eine kleinere Fläche als die Querschnittsfläche des Dampfraums (5) aufweist und die Ränder der ersten Platte (7"), die jeweils von dem ersten spaltbildenden Rand (13) aus verlaufen, mittels senkrechten Platten (9) mit der oberen Platte (4) verbunden sind, um ein Rohr zu bilden, und wo die senkrechten Platten (9) in der waagerechten Richtung entlang der ganzen Strecke zwischen einzelnen Positionen an der zylindrischen Wand (1) des Dampfraums (5) verlaufen.
  11. Gasrohrkessel nach Anspruch 10, wobei der Dampfstromkanal eine zweite im allgemeinen waagerechte Platte (7') umfasst, die in einem senkrechten Abstand h2 unter der ersten Platte (7") angeordnet ist und einen zweiten spaltbildenden Rand (12) aufweist, der in einem Abstand zu der Wand (1) angeordnet ist, um einen zweiten Dampfstromspalt zwischen der zweiten Platte (7') und der Wand (1) vorzusehen.
  12. Gasrohrkessel nach Anspruch 11, wobei der erste Spalt und der zweite Spalt bezogen auf die Achse einander gegenüber angeordnet sind.
  13. Gasrohrkessel nach einem der Ansprüche 10 bis 12, wobei sich der Dampfaustritt (6) in der Nähe der oder in der Wand gegenüber dem ersten Spalt bezogen auf die Achse befindet.
  14. Gasrohrkessel nach einem der Ansprüche 10 bis 13, wobei der Abstand h1 größer ist als der Abstand h2, sodass die Strömungsgeschwindigkeit des Dampfstroms in dem Bereich des Kanals, der zwischen der oberen Platte und der ersten Platte liegt, geringer ist als die Strömungsgeschwindigkeit in dem Bereich des Kanals, der zwischen der ersten und zweiten Platte liegt.
  15. Gasrohrkessel nach einem der Ansprüche 10 bis 14, wobei alle Gasrohre (3) durch die erste (7") und zweite (7') Platte verlaufen.
  16. Gasrohrkessel nach einem der Ansprüche 10 bis 15, wobei sich die Wasseroberfläche im kalten Zustand des Wassers in einem senkrechten Abstand h unter der oberen Platte (4) befindet und der Abstand h1 ungefähr 15 bis 25%, vorzugsweise 18 bis 22% des Abstands h beträgt und der Abstand h2 ungefähr 7 bis 13%, vorzugsweise 8 bis 12% des Abstands h beträgt.
  17. Gasrohrkessel nach einem der Ansprüche 10 bis 16, wobei die erste und zweite Platte (7", 7') eine kleinere Fläche als die Querschnittsfläche des Dampfraums (5) aufweisen und die Ränder der ersten und zweiten Platte, die von dem ersten beziehungsweise zweiten spaltbildenden Rand (13, 12) aus verlaufen, mittels senkrechten Platten (9) miteinander verbunden sind, um ein Rohr zu bilden.
EP07764471.4A 2006-07-05 2007-07-05 Verfahren für die erzeugung von dampf in einem gasrohr-dampfkessel und gasrohr-dampfkessel Not-in-force EP2044365B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07764471.4A EP2044365B1 (de) 2006-07-05 2007-07-05 Verfahren für die erzeugung von dampf in einem gasrohr-dampfkessel und gasrohr-dampfkessel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06388049A EP1876390A1 (de) 2006-07-05 2006-07-05 Verfahren für die Erzeugung von Dampf in einem Gasrohr-Dampfkessel und Gasrohr-Dampfkessel für die Anwendung dieses Verfahrens
EP07764471.4A EP2044365B1 (de) 2006-07-05 2007-07-05 Verfahren für die erzeugung von dampf in einem gasrohr-dampfkessel und gasrohr-dampfkessel
PCT/DK2007/000342 WO2008003322A1 (en) 2006-07-05 2007-07-05 Method of producing steam in a gas tube steam boiler and gas tube steam boiler for implementing said method

Publications (2)

Publication Number Publication Date
EP2044365A1 EP2044365A1 (de) 2009-04-08
EP2044365B1 true EP2044365B1 (de) 2013-05-15

Family

ID=38016951

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06388049A Withdrawn EP1876390A1 (de) 2006-07-05 2006-07-05 Verfahren für die Erzeugung von Dampf in einem Gasrohr-Dampfkessel und Gasrohr-Dampfkessel für die Anwendung dieses Verfahrens
EP07764471.4A Not-in-force EP2044365B1 (de) 2006-07-05 2007-07-05 Verfahren für die erzeugung von dampf in einem gasrohr-dampfkessel und gasrohr-dampfkessel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06388049A Withdrawn EP1876390A1 (de) 2006-07-05 2006-07-05 Verfahren für die Erzeugung von Dampf in einem Gasrohr-Dampfkessel und Gasrohr-Dampfkessel für die Anwendung dieses Verfahrens

Country Status (6)

Country Link
EP (2) EP1876390A1 (de)
JP (1) JP2009541705A (de)
KR (1) KR101009212B1 (de)
CN (1) CN101512223B (de)
DK (1) DK2044365T3 (de)
WO (1) WO2008003322A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2789909B1 (de) * 2013-04-12 2017-09-20 RETECH Spólka z o.o. Dampferzeuger
CN109000214B (zh) * 2018-08-28 2024-04-02 新疆桑顿能源科技有限公司 油田专用过热蒸汽发生器及其应用工艺

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1546665A (en) * 1921-06-18 1925-07-21 Frank F Landis Steam boiler
FR809123A (fr) * 1935-11-19 1937-02-24 Chaudière à vapeur
NL6600254A (de) * 1965-02-12 1966-08-15
US3437077A (en) * 1966-01-21 1969-04-08 Babcock & Wilcox Co Once-through vapor generator
CN2044684U (zh) * 1989-02-17 1989-09-20 孙继忠 蒸汽净化罐
US4991408A (en) * 1989-09-29 1991-02-12 John Liszka Adiabatic separator
JP3126487B2 (ja) 1992-04-28 2001-01-22 東京エレクトロン株式会社 酸化処理装置
US5653282A (en) * 1995-07-19 1997-08-05 The M. W. Kellogg Company Shell and tube heat exchanger with impingement distributor
JP2000088478A (ja) * 1998-09-14 2000-03-31 Osaka Gas Co Ltd 熱交換器
CN2385220Y (zh) * 1999-06-25 2000-06-28 刘强 常压立式蒸汽锅炉
DE10237681B4 (de) * 2002-08-16 2005-06-23 Ritter Energie- Und Umwelttechnik Gmbh & Co. Kg Plattenwärmetauscher für Schwerkraftumwälzung in Wärmespeichern
JP4313605B2 (ja) * 2003-05-06 2009-08-12 株式会社神戸製鋼所 流体冷却器
KR100530265B1 (ko) * 2005-05-17 2005-11-22 김도연 스팀 발생 장치

Also Published As

Publication number Publication date
KR20090031606A (ko) 2009-03-26
DK2044365T3 (da) 2013-08-12
EP2044365A1 (de) 2009-04-08
CN101512223A (zh) 2009-08-19
CN101512223B (zh) 2011-12-07
JP2009541705A (ja) 2009-11-26
KR101009212B1 (ko) 2011-01-19
EP1876390A1 (de) 2008-01-09
WO2008003322A1 (en) 2008-01-10

Similar Documents

Publication Publication Date Title
US8904790B2 (en) M-type pulverized coal boiler suitable for ultrahigh steam temperature
CA2595071C (en) Compact high-efficiency boiler and method for producing steam
EP2044365B1 (de) Verfahren für die erzeugung von dampf in einem gasrohr-dampfkessel und gasrohr-dampfkessel
CN108591986B (zh) 一种蒸汽发生器
US6148908A (en) Heat exchanger for cooling a hot process gas
CN102992265B (zh) 具有集成式蒸汽产生管束的产氢换热器反应器
JP2007024441A (ja) ボイラ
US8555820B2 (en) Boiler
JP5812844B2 (ja) 舶用ボイラ
CN203980642U (zh) 冷凝换热热水机组中的水流增速装置
JP2008144716A (ja) 湿分分離器
CN105318309B (zh) 一种双锅筒喷淋脱硝沉降分离角管锅炉
JP2012519831A (ja) 貫流蒸発器とその設計方法
JP5287856B2 (ja) ボイラ
JPH01203801A (ja) 垂直伝熱管を有した流動床ボイラおよび該ボイラを用いた流動床温水ボイラ
JP7019407B2 (ja) ボイラ
RU2256127C1 (ru) Водогрейный котел
RU115051U1 (ru) Водогрейный котел
RU2110730C1 (ru) Цилиндрический котел
JPH0429217Y2 (de)
RU2194925C2 (ru) Вертикальный водогрейный котел
RU2250412C2 (ru) Котельная установка, прямоточный паровой котел и теплообменник активной зоны котла
IE48624B1 (en) Improvements in and relating to boilers
RU2265770C2 (ru) Водогазотрубный котел wgbs
JP2023552273A (ja) 循環流動床ボイラ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALFA LAVAL AALBORG A/S

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F22G 3/00 20060101ALI20121107BHEP

Ipc: F28F 9/22 20060101ALI20121107BHEP

Ipc: F28D 7/16 20060101ALI20121107BHEP

Ipc: F22B 9/04 20060101ALI20121107BHEP

Ipc: F28F 13/08 20060101ALI20121107BHEP

Ipc: F28D 1/02 20060101ALI20121107BHEP

Ipc: F22B 1/18 20060101AFI20121107BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 612356

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007030472

Country of ref document: DE

Effective date: 20130711

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 612356

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130826

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130916

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130915

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130816

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140218

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007030472

Country of ref document: DE

Effective date: 20140218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130705

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210609

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20210712

Year of fee payment: 15

Ref country code: DE

Payment date: 20210608

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007030472

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20220731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220705

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731