EP2032309B1 - Device and method for machining a solid material using a water jet - Google Patents

Device and method for machining a solid material using a water jet Download PDF

Info

Publication number
EP2032309B1
EP2032309B1 EP20070763719 EP07763719A EP2032309B1 EP 2032309 B1 EP2032309 B1 EP 2032309B1 EP 20070763719 EP20070763719 EP 20070763719 EP 07763719 A EP07763719 A EP 07763719A EP 2032309 B1 EP2032309 B1 EP 2032309B1
Authority
EP
European Patent Office
Prior art keywords
water
gaseous medium
nozzle
pressure
ice crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20070763719
Other languages
German (de)
French (fr)
Other versions
EP2032309A2 (en
Inventor
Thomas Loerting
Bertel Erminald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitaet Innsbruck
Original Assignee
Universitaet Innsbruck
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitaet Innsbruck filed Critical Universitaet Innsbruck
Publication of EP2032309A2 publication Critical patent/EP2032309A2/en
Application granted granted Critical
Publication of EP2032309B1 publication Critical patent/EP2032309B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0007Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0084Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a mixture of liquid and gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/364By fluid blast and/or suction

Definitions

  • the invention relates to a device and a method for processing a solid material with a water jet emerging from a nozzle, which contains ice crystals and impinges on the solid material.
  • Water or air jets are used in a variety of ways to process various materials.
  • the jet is usually expanded through a narrow die to normal pressure and used for surface removal such as e.g. Rough cleaning, polishing, burring / deburring, removal of coatings / decoating, paint cleaning etc. or used for cutting or drilling materials or workpieces.
  • surface removal such as e.g. Rough cleaning, polishing, burring / deburring, removal of coatings / decoating, paint cleaning etc. or used for cutting or drilling materials or workpieces.
  • artistic activities such as "negative graffiti", ie drawing by deliberate detachment of color through the thin stream of water or air, are possible.
  • Examples of known devices for material processing go, for example, from DE 198 49 814 A1 as well as from the DE 198 49 813 A1 under supply of an abrasive material.
  • From the DE 10 2004 046 030 A1 a method and an apparatus according to the preamble of claims 1 and 5 for cutting a web is known, wherein ice crystals are formed in the water jet.
  • the formation of the ice crystals can be assisted by adding carbon dioxide to the water in the high-pressure area in front of the nozzle, which evaporates after it leaves, whereby the heat of vaporization of the carbon dioxide extracts energy from the water.
  • the known methods and devices for cutting or drilling material processing are only suitable for the processing of soft materials.
  • Hard materials such as steel can only be abraded, that is, the jet of water must contain solid particles such as sand, corundum or similar abrasives.
  • the workpieces can be contaminated by the abrasive material when, for example, sand remains on the surface or in cracks and laboriously needs to be removed again.
  • ice crystals in an air or in a water jet wherein the ice crystals replace the sand or other abrasive materials in the air jet or in the water jet.
  • a pre-cooling of the water by a cryogenic liquid for the production of ice crystals in the water jet is, for example, from the US 5,341,608 out.
  • a disadvantage of this method is that the ice crystals are already formed in front of the nozzle and it often comes about that the nozzle is eroded or clogged or overheated by the increased friction and thereby melt the ice crystals again.
  • the object of the invention is thus to provide a method and an apparatus for processing a solid material with a water jet, which offers a simple and cost-effective way to form ice crystals in the water jet after the exit of the water jet from the nozzle.
  • a gaseous medium under standard conditions at a pressure of 1-150 bar, preferably in a mixing stage dissolved in water.
  • a high pressure stage e.g. a commercial water jet cutting machine, compressed to 1000-4500 bar and pressed through a nozzle under conditions that cause segregation of the water and the dissolved medium after leaving the nozzle, the heat of the solution is removed from the water and ice crystals are formed.
  • the dissolution of the gaseous medium in the water in a simple and cost-effective manner in the mixing stage by passing the gaseous medium from gas cylinders or pressure cartridges under pressure through the water.
  • a further advantage is that a tuning of the solution concentration of the gaseous medium and a pre-cooling of the water controls the particle fraction and the particle size of the ice crystals formed in the water jet, as this allows a simple adaptation of the physical properties of the water jet to the material to be processed.
  • the gaseous medium is carbon dioxide, since this is easy and inexpensive to produce and especially useful in the food industry.
  • a preferred embodiment of a device for processing a solid material with a water jet emerging from a nozzle, which contains ice crystals and impinges on the solid material a supply line with an inlet valve and a pump for water in a mixing area, in which a pressure of 1 -150 bar prevails, connected to the mixing area via a high-pressure pump high-pressure tank and a nozzle connected to the container, wherein in the fed via the supply line in the mixing area water in the mixing area, a gaseous medium under pressure can be supplied and dissolved in the water, since this embodiment is a simple and inexpensive way to dissolve a gas in water.
  • the gaseous medium can be introduced into the water via a shower device arranged in the mixing area, wherein the shower device is designed in particular in the form of a shower head with a plurality of outlet openings, since this enables a uniform distribution of the gaseous medium over a large volume ,
  • An advantageous embodiment variant provides that the water is supplied by atomization, as this allows a very homogeneous mixing.
  • gaseous medium can be introduced into the water via dry ice pellets containing the gaseous medium and the gaseous medium can be released under pressure in the water, as this avoids tank devices and feed lines for the gaseous medium can.
  • gaseous medium is fed to a mixing stage for mixing with the water in a medium pressure range (1-150 bar). This is what it is in easy way possible to use commercially available storage containers for gaseous media, in particular in the form of a gas cylinder or gas cartridge.
  • the mixing area is connected to a return line, via which excess gaseous medium can be fed back into the supply line, as this allows excess gaseous medium to be recycled.
  • abrasive material to the jet of water is necessary for working solid materials, if harder materials or surfaces are to be processed, whereby preferably sand is used, which, however, has a number of disadvantages.
  • Sand and other solid abrasive materials remain on the treated material and must be removed.
  • a major advantage of using ice crystals instead of sand as abrasive material is the prevention of contamination. The ice crystals melt after processing, and the remaining water can be removed, for example, by simple drying, whereby the treated material remains clean throughout the process.
  • the use represents an environmental advantage, since there is no sand waste, which must be eliminated or recycled.
  • a staggered with ice crystals as Abrasivmaterial water jet can therefore be used without hesitation in the industries of electronics, (bio) medicine, food, car paints, space, etc. Also, the costs are lower, because ice unlike others Abrasive materials such as sand need not be delivered and stored, but can be made, for example, from the tap water by using electricity.
  • nucleators can be added in principle. These are solid organic or inorganic substances that are nuclei for ice crystal growth.
  • nucleators which must be continuously fed through an intake manifold, again brings the problem of poor environmental compatibility with it, whereby a use in the food industry is no longer possible.
  • the cooling of the water and thus the production of ice particles in the water jet can be achieved by dissolving a gaseous medium, for example carbon dioxide, at a pressure of 1-150 bar in a mixing device in the water and then Mixture is fed by means of a high-pressure pump to a nozzle. Due to the pressure drop after the nozzle segregation occurs. The release of the gaseous medium extracts from the water, in addition to the cooling by expansion, the heat of solution of the gaseous medium, so that it comes after the nozzle to spontaneous cooling and the formation of ice crystals in the water jet.
  • the cooling thus achieved is in the range of several degrees Celsius, so that a much lower cost must be invested in the cooling system of the device.
  • CO 2 carbon dioxide
  • Fig. 1 shows in a highly schematic view of an embodiment of an apparatus 1 for processing solid materials by means of a water jet 2, preferably a high pressure water jet, which contains a gas admixture.
  • the device 1 essentially comprises a mixing region 3 in which the water and a gaseous medium, in the exemplary embodiment carbon dioxide, are mixed with one another.
  • the water is introduced under low pressure (ie, for example, operating pressure of the water supply network) via a supply line 4 with an inlet valve 5 and a pump 6 in the mixing region 3.
  • the carbon dioxide is introduced, for example, via a shower device 7 from a tank 8, for example a gas cylinder, via a feed line 9 into the mixing area 3.
  • the shower device 7 is formed, for example, in the form of a shower head with a plurality of outflow openings, through which the gaseous medium flows into the water located in the mixing region 3.
  • a return line 10 with a further pump 6 allows the return of excess gaseous medium in the supply line 9.
  • the pressure in the mixing region 3 is approximately 200 bar, which is referred to below as the medium pressure.
  • the formation of the ice crystals takes place only after the nozzle 13.
  • the crystallization is excited by the expansion or by the atomization of the water jet 2, which leads to a sudden bubbling to release the dissolved carbon dioxide from the now supersaturated water-gas solution.
  • a solution heat amount of -20.54 kJ / mol is thereby removed from the water.
  • problems such as clogging, wear or overheating of the nozzle 13 can be prevented.
  • An appropriate vote of CO 2 solution concentration and precooling allows control of the particle fraction and the particle size in the water jet 2, so that it can be adapted to the particular requirements of the material to be processed 14, for example, with many large ice crystals for fast, rather coarse cleaning large areas or with many small ice crystals for polishing a surface. Even hard materials 14 can be processed cleanly.
  • the admixture of the carbon dioxide in the mixing zone 3 can, as in the Fig. 2A to 2D shown schematically in part, take place directly in the mixing area 3, as already in Fig. 1 represented and in Fig. 2A shown enlarged.
  • Fig. 2D shown schematically to submit water in the mixing zone 3, dry ice pellets 16 or frozen carbon dioxide pellets 16 at a temperature of about -78 ° C in the mixing area 3 introduces and then applies pressure.
  • the pellets 16 melt immediately with strong bubbling, the carbon dioxide goes into solution by the pressure.
  • the water also cools down, which is advantageous in view of the formation of ice crystals in the further course.
  • the water is first mixed with carbon dioxide by dissolving the CO 2 in the water, for example by passing CO 2 from the tank 8, which is in the in Fig. 1 illustrated embodiment is designed as a gas cylinder.
  • the process of dissolving carbon dioxide in water can be controlled by monitoring the pH via a suitable sensor, since due to the reaction equilibrium of CO 2 / H 2 O with HCO 3 - / H + saturated solutions with CO 2 are acidic; For example, at 298 K, a pH of 3.9 is present.
  • the temperature of the device 1 rises slightly by the heat of dissolution of the carbon dioxide, so that a heat dissipation in the mixing region 3 is indicated for example by a water cooling.
  • the water jet 2 is produced by the water-carbon dioxide mixture pumped by the pump 11, which must be designed high pressure suitable, in the container 12 and then forwarded to the nozzle 13 and is pressed through it.
  • the pump 11 and nozzles 13 can be used without further technical modifications. There must be no additional materials supplied from the outside, so it is no additional intake manifold necessary.
  • n CO2 / n total the mole fraction of carbon dioxide n CO2 / n total , ie the proportion of CO 2 molecules dissolved in the water, can be expressed linearly with the CO 2 partial pressure via the Henry law.
  • the cooling results in a linear relationship in p CO2 with a proportionality constant of ⁇ H / (cp H2O k CO2 ), which yields a proportionality constant of 0.165 K / s when known values are used. bar results.
  • ⁇ H / (cp H2O k CO2 ) a proportionality constant of 0.165 K / s when known values are used.
  • the released carbon dioxide can be recycled or extracted if necessary. However, it must be ensured that the addition of carbon dioxide to the ambient air is not too high, otherwise there is danger of suffocation, such as through ventilation or correspondingly large spaces.
  • the invention is not limited to the illustrated embodiment, but for example, with other gaseous media feasible.

Abstract

A method of machining a solid material using a water jet discharging from a nozzle is specified, wherein the water jet contains ice crystals and impacts on the solid material. In this case, a medium which is gaseous under standard conditions is dissolved in water at a mixing stage under pressure (1-150 bar) and is then compressed to 1000-4500 bar and pressed through a nozzle, under conditions which allow the dissolved gaseous medium to bubble out after leaving the nozzle, whereupon the heat of solution is withdrawn from the water and the ice crystals are formed.

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Bearbeiten eines festen Werkstoffs mit einem aus einer Düse austretenden Wasserstrahl, welcher Eiskristalle enthält und auf den festen Werkstoff auftrifft.The invention relates to a device and a method for processing a solid material with a water jet emerging from a nozzle, which contains ice crystals and impinges on the solid material.

Wasser- oder Luftstrahlen insbesondere unter hohem Druck werden in vielfältiger Art zur Bearbeitung von verschiedenen Materialien angewendet. Der Strahl wird üblicherweise durch eine schmale Düse auf Normaldruck expandiert und zur Oberflächenabtragung wie z.B. Grobreinigung, Polieren, Abgraten/Deburring, Entfernung von Beschichtungen/Decoating, Lackreinigung etc. oder zum Schneiden bzw. Bohren von Materialien bzw. Werkstücken verwendet. Auch künstlerische Tätigkeiten wie "negative graffiti", also Zeichnen durch gezieltes Ablösen von Farbe durch den dünnen Wasser- oder Luftstrahl, sind möglich.Water or air jets, especially under high pressure, are used in a variety of ways to process various materials. The jet is usually expanded through a narrow die to normal pressure and used for surface removal such as e.g. Rough cleaning, polishing, burring / deburring, removal of coatings / decoating, paint cleaning etc. or used for cutting or drilling materials or workpieces. Also artistic activities such as "negative graffiti", ie drawing by deliberate detachment of color through the thin stream of water or air, are possible.

Beispiele für bekannte Vorrichtungen zur Materialbearbeitung gehen beispielsweise aus der DE 198 49 814 A1 sowie aus der DE 198 49 813 A1 unter Zuführung eines Abrasivmaterials hervor. Aus der DE 10 2004 046 030 A1 ist ein Verfahren und eine Vorrichtung gemäß dem Oberbegriff der Ansprüche 1 und 5 zum Schneiden einer Bahn bekannt, wobei im Wasserstrahl Eiskristalle gebildet werden. Die Bildung der Eiskristalle kann dadurch unterstützt werden, dass dem Wasser im Hochdruckbereich vor der Düse Kohlendioxid beigemischt wird, das nach dem Austritt verdampft, wobei die Verdampfungswärme des Kohlendioxids dem Wasser Energie entzieht.Examples of known devices for material processing go, for example, from DE 198 49 814 A1 as well as from the DE 198 49 813 A1 under supply of an abrasive material. From the DE 10 2004 046 030 A1 a method and an apparatus according to the preamble of claims 1 and 5 for cutting a web is known, wherein ice crystals are formed in the water jet. The formation of the ice crystals can be assisted by adding carbon dioxide to the water in the high-pressure area in front of the nozzle, which evaporates after it leaves, whereby the heat of vaporization of the carbon dioxide extracts energy from the water.

Die bekannten Verfahren und Vorrichtungen zur schneidenden oder bohrenden Materialbearbeitung eignen sich jedoch nur für die Bearbeitung weicher Materialien. Harte Materialien wie Stahl können nur abrasiv bearbeitet werden, d.h., der Wasserstrahl muss feste Partikel wie beispielsweise Sand, Korund oder ähnliche Schleifmittel enthalten. Dabei ist insbesondere von Nachteil, dass die Werkstücke durch das Abrasivmaterial verschmutzt werden können, wenn beispielsweise Sand an der Oberfläche oder in Ritzen verbleibt und aufwändig wieder entfernt werden muss.However, the known methods and devices for cutting or drilling material processing are only suitable for the processing of soft materials. Hard materials such as steel can only be abraded, that is, the jet of water must contain solid particles such as sand, corundum or similar abrasives. It is particularly disadvantageous that the workpieces can be contaminated by the abrasive material when, for example, sand remains on the surface or in cracks and laboriously needs to be removed again.

Weiterhin ist die Erzeugung von Eiskristallen in einem Luft- bzw. in einem Wasserstrahl bekannt, wobei die Eiskristalle den Sand oder andere Abrasivmaterialien im Luftstrahl bzw. im Wasserstrahl ersetzen. Eine Vorkühlung des Wassers durch eine Kryoflüssigkeit zur Erzeugung von Eiskristallen im Wasserstrahl geht dabei beispielsweise aus der US 5,341,608 hervor.Furthermore, the production of ice crystals in an air or in a water jet is known, wherein the ice crystals replace the sand or other abrasive materials in the air jet or in the water jet. A pre-cooling of the water by a cryogenic liquid for the production of ice crystals in the water jet is, for example, from the US 5,341,608 out.

Nachteilig an diesem Verfahren ist jedoch, dass die Eiskristalle bereits vor der Düse gebildet werden und es dadurch häufig dazu kommt, dass die Düse erodiert wird bzw. verstopft oder durch die erhöhte Reibung überhitzt und die Eiskristalle dadurch wieder schmelzen.A disadvantage of this method, however, is that the ice crystals are already formed in front of the nozzle and it often comes about that the nozzle is eroded or clogged or overheated by the increased friction and thereby melt the ice crystals again.

Aufgabe der Erfindung ist es somit, ein Verfahren und eine Vorrichtung zur Bearbeitung eines festen Werkstoffs mit einem Wasserstrahl anzugeben, welches eine einfache und kostengünstige Möglichkeit zur Bildung von Eiskristallen im Wasserstrahl nach dem Austritt des Wasserstrahls aus der Düse offeriert.The object of the invention is thus to provide a method and an apparatus for processing a solid material with a water jet, which offers a simple and cost-effective way to form ice crystals in the water jet after the exit of the water jet from the nozzle.

Erfindungsgemäß ist dabei vorgesehen, dass bei dem Verfahren zum Bearbeiten eines festen Werkstoffs mit einem aus einer Düse austretenden Wasserstrahl, welcher Eiskristalle enthält und auf den festen Werkstoff auftrifft, ein unter Standardbedingungen gasförmiges Medium bei einem Druck von 1-150 bar, vorzugsweise in einer Mischstufe, im Wasser gelöst wird. Danach wird die Lösung in einer Hochdruckstufe, z.B. einer kommerziellen Wasserstrahl-Schneidemaschine, auf 1000-4500 bar komprimiert und durch eine Düse gepresst unter Bedingungen, die ein Entmischen des Wassers und des gelösten Mediums nach Verlassen der Düse bewirken, wobei dem Wasser die Lösungswärme entzogen wird und Eiskristalle gebildet werden.According to the invention it is provided that in the method for processing a solid material with a water jet emerging from a nozzle containing ice crystals and impinging on the solid material, a gaseous medium under standard conditions at a pressure of 1-150 bar, preferably in a mixing stage , dissolved in water. Thereafter, the solution in a high pressure stage, e.g. a commercial water jet cutting machine, compressed to 1000-4500 bar and pressed through a nozzle under conditions that cause segregation of the water and the dissolved medium after leaving the nozzle, the heat of the solution is removed from the water and ice crystals are formed.

Dies ist vorteilhaft, weil dadurch die Eiskristalle einerseits mit wenig Aufwand und andererseits nach dem Durchströmen der Düse gebildet werden und somit eine Abnutzung der Düse, das Verstopfen der Düse durch die gebildeten Eiskristalle und ein Erwärmen der Düse durch die hohe Reibung und ein nachfolgendes Schmelzen der Eiskristalle unterbunden werden kann.This is advantageous because thereby the ice crystals are formed on the one hand with little effort and on the other hand after flowing through the nozzle and thus wear of the nozzle, the clogging of the nozzle by the ice crystals formed and a heating of the nozzle by the high friction and subsequent melting of the Ice crystals can be prevented.

Weitere vorteilhafte Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.Further advantageous developments of the invention will become apparent from the dependent claims.

Vorteilhafterweise erfolgt das Lösen des gasförmigen Mediums im Wasser in einfacher und kostengünstiger Weise in der Mischstufe durch Durchleiten des gasförmigen Mediums aus Gasflaschen oder Druckpatronen unter Druck durch das Wasser.Advantageously, the dissolution of the gaseous medium in the water in a simple and cost-effective manner in the mixing stage by passing the gaseous medium from gas cylinders or pressure cartridges under pressure through the water.

Von Vorteil ist weiterhin, dass ein Abstimmen der Lösungskonzentration des gasförmigen Mediums und einer Vorkühlung des Wassers den Partikelanteil und die Partikelgröße der im Wasserstrahl gebildeten Eiskristalle steuert, da hierdurch eine einfache Anpassung der physikalischen Eigenschaften des Wasserstrahls an das zu bearbeitende Material ermöglicht wird.A further advantage is that a tuning of the solution concentration of the gaseous medium and a pre-cooling of the water controls the particle fraction and the particle size of the ice crystals formed in the water jet, as this allows a simple adaptation of the physical properties of the water jet to the material to be processed.

Besonders vorteilhaft ist, dass das gasförmige Medium Kohlendioxid ist, da dieses einfach und kostengünstig herstellbar und vor allem in der Lebensmittelindustrie verwendbar ist.It is particularly advantageous that the gaseous medium is carbon dioxide, since this is easy and inexpensive to produce and especially useful in the food industry.

Vorteilhafterweise umfasst eine bevorzugte Ausführungsform einer Vorrichtung zum Bearbeiten eines festen Werkstoffs mit einem aus einer Düse austretenden Wasserstrahl, welcher Eiskristalle enthält und auf den festen Werkstoff auftrifft, eine Zuleitung mit einem Einlassventil und einer Pumpe für Wasser in einen Mischbereich, in dem ein Druck von 1-150 bar herrscht, einen mit dem Mischbereich über eine Hochdruck-Pumpe verbundenen hochdruckfesten Behälter und eine an den Behälter angeschlossene Düse, wobei in dem über die Zuleitung in den Mischbereich eingespeisten Wasser im Mischbereich ein gasförmiges Medium unter Druck zuführbar und im Wasser lösbar ist, da diese Ausführungsform eine einfache und kostengünstige Möglichkeit zum Lösen eines Gases in Wasser ist.Advantageously, a preferred embodiment of a device for processing a solid material with a water jet emerging from a nozzle, which contains ice crystals and impinges on the solid material, a supply line with an inlet valve and a pump for water in a mixing area, in which a pressure of 1 -150 bar prevails, connected to the mixing area via a high-pressure pump high-pressure tank and a nozzle connected to the container, wherein in the fed via the supply line in the mixing area water in the mixing area, a gaseous medium under pressure can be supplied and dissolved in the water, since this embodiment is a simple and inexpensive way to dissolve a gas in water.

Weiterhin ist vorteilhaft, dass das gasförmige Medium über eine in dem Mischbereich angeordnete Duschvorrichtung in das Wasser einbringbar ist, wobei die Duschvorrichtung insbesondere in Form eines Duschkopfes mit einer Vielzahl von Austrittsöffnungen ausgebildet ist, da dies eine gleichmäßige Verteilung des gasförmigen Mediums über ein großes Volumen ermöglicht.It is furthermore advantageous that the gaseous medium can be introduced into the water via a shower device arranged in the mixing area, wherein the shower device is designed in particular in the form of a shower head with a plurality of outlet openings, since this enables a uniform distribution of the gaseous medium over a large volume ,

Eine vorteilhafte Ausgestaltungsvariante sieht vor, dass das Wasser durch Zerstäubung zugeführt wird, da dies eine sehr homogene Vermischung ermöglicht.An advantageous embodiment variant provides that the water is supplied by atomization, as this allows a very homogeneous mixing.

Eine ebenfalls sehr vorteilhafte Ausgestaltungsmöglichkeit sieht vor, dass das gasförmige Medium über Trockeneis-Pellets, die das gasförmige Medium enthalten, in das Wasser einbringbar und das gasförmige Medium unter Druck in dem Wasser lösbar ist, da hierdurch Tankvorrichtungen und Zuleitungen für das gasförmige Medium vermieden werden können.A likewise very advantageous embodiment possibility provides that the gaseous medium can be introduced into the water via dry ice pellets containing the gaseous medium and the gaseous medium can be released under pressure in the water, as this avoids tank devices and feed lines for the gaseous medium can.

Weiter ist von Vorteil, dass das gasförmige Medium einer Mischstufe zur Mischung mit dem Wasser in einem mittleren Druckbereich (1-150 bar) zugeführt wird. Dadurch ist es in einfacher Weise möglich, handelsübliche Vorratsbehälter für gasförmige Medien insbesondere in Form einer Gasflasche oder Gaskartusche zu verwenden.It is also advantageous that the gaseous medium is fed to a mixing stage for mixing with the water in a medium pressure range (1-150 bar). This is what it is in easy way possible to use commercially available storage containers for gaseous media, in particular in the form of a gas cylinder or gas cartridge.

Zudem ist von Vorteil, dass der Mischbereich mit einer Rücklaufleitung verbunden ist, über welche überschüssiges gasförmiges Medium in die Zuleitung rückspeisbar ist, da hierdurch überschüssiges gasförmiges Medium recyclebar ist.In addition, it is advantageous that the mixing area is connected to a return line, via which excess gaseous medium can be fed back into the supply line, as this allows excess gaseous medium to be recycled.

Da das Wasser unter einem Druck von 1000-4500 bar durch die Düse gepresst wird, ermöglicht dies bei Expansion des Wasserstrahls auf Normaldruck einen großen Temperatursprung und dadurch die zuverlässige Bildung von Eiskristallen.Since the water is forced through the nozzle under a pressure of 1000-4500 bar, this allows a large jump in temperature upon expansion of the water jet to normal pressure and thus the reliable formation of ice crystals.

Nachfolgend wird ein bevorzugtes Ausführungsbeispiel für eine zur Ausführung des erfindungsgemäßen Verfahrens zur Bearbeitung eines festen Werkstoffs mit einem Wasserstrahl geeignete Vorrichtung anhand der Figuren näher beschrieben. In der Zeichnung zeigen:

Fig. 1
eine stark schematisierte Ansicht eines bevorzugten Ausführungsbeispiels einer erfindungsgemäß ausgeführten Vorrichtung zur Bearbeitung eines festen Werkstoffs mit einem Wasserstrahl, und
Fig. 2A-D
vier Ausführungsbeispiele für Mischbereiche der erfindungsgemäßen Vorrichtung gemäß Fig. 1.
Hereinafter, a preferred embodiment of a device suitable for carrying out the method according to the invention for processing a solid material with a water jet apparatus will be described with reference to the figures. In the drawing show:
Fig. 1
a highly schematic view of a preferred embodiment of an inventive device for processing a solid material with a water jet, and
Fig. 2A-D
four embodiments for mixing areas of the device according to the invention according to Fig. 1 ,

Wie bereits weiter oben erwähnt, ist die Beimischung von Abrasivmaterial zum Wasserstrahl zur Bearbeitung fester Werkstoffe notwendig, wenn härtere Materialien oder Oberflächen bearbeitet werden sollen, wobei vorzugsweise Sand zur Anwendung kommt, welcher jedoch eine Reihe von Nachteilen aufweist. Sand und andere feststoffliche Abrasivmaterialien bleiben am behandelten Material liegen und müssen wieder entfernt werden. Ein Hauptvorteil des Einsatzes von Eiskristallen statt Sand als Abrasivmaterial ist die Verhinderung von Verschmutzung. Die Eiskristalle schmelzen nach der Bearbeitung, und das zurückbleibende Wasser kann z.B. durch einfaches Trocknen entfernt werden, wodurch das behandelte Material während des ganzen Prozesses sauber bleibt. Zusätzlich stellt der Einsatz einen Umweltvorteil dar, da auch kein Sand-Abfall anfällt, der beseitigt bzw. recycled werden muss. Ein mit Eiskristallen als Abrasivmaterial versetzter Wasserstrahl kann daher etwa bedenkenlos in den Branchen Elektronik, (Bio-)Medizin, Lebensmittel, Autolacke, Raumfahrt etc. eingesetzt werden. Auch die Kosten sind geringer, da Eis im Gegensatz zu anderen Abrasivmaterialien wie Sand nicht geliefert und gelagert werden muss, sondern z.B. aus dem Leitungswasser durch Einsatz von Elektrizität hergestellt werden kann.As already mentioned above, the admixture of abrasive material to the jet of water is necessary for working solid materials, if harder materials or surfaces are to be processed, whereby preferably sand is used, which, however, has a number of disadvantages. Sand and other solid abrasive materials remain on the treated material and must be removed. A major advantage of using ice crystals instead of sand as abrasive material is the prevention of contamination. The ice crystals melt after processing, and the remaining water can be removed, for example, by simple drying, whereby the treated material remains clean throughout the process. In addition, the use represents an environmental advantage, since there is no sand waste, which must be eliminated or recycled. A staggered with ice crystals as Abrasivmaterial water jet can therefore be used without hesitation in the industries of electronics, (bio) medicine, food, car paints, space, etc. Also, the costs are lower, because ice unlike others Abrasive materials such as sand need not be delivered and stored, but can be made, for example, from the tap water by using electricity.

Bekannte Maßnahmen zur Beimengung von Eis in den Wasserstrahl sind jedoch mit einer Reihe von Nachteilen behaftet. Insbesondere die Bildung der Eiskristalle in Strömungsrichtung vor der Düse führt dazu, dass die Düse erodiert wird bzw. verstopft oder durch die erhöhte Reibung so heiß wird, dass die Eiskristalle wieder schmelzen. Aufgrund dieser sog. ex-situ Mischprozedur wird ein Minimaldurchmesser des Wasserstrahls benötigt, der letztlich dazu führt, dass der Maximaldruck und die Energieeffizienz limitiert sind. Die hohen Kosten für die Produktion der Eiskristalle bzw. der technische Aufwand und der Platzbedarf sind weitere Nachteile dieser Methode.Known measures for adding ice into the water jet, however, have a number of disadvantages. In particular, the formation of the ice crystals in the flow direction in front of the nozzle causes the nozzle to be eroded or clogged or so hot due to the increased friction that the ice crystals melt again. Due to this so-called ex-situ mixing procedure, a minimum diameter of the water jet is required, which ultimately leads to limited maximum pressure and energy efficiency. The high costs for the production of ice crystals or the technical complexity and space requirements are further disadvantages of this method.

Um die Eiskristalle in situ zu erzeugen, ist es hingegen nötig, bei Temperaturen von 243 K oder tiefer zu arbeiten, da Wasser z.B. bei einem Druck von 200 MPa erst bei 253 K friert (also um 20 K tiefer als bei Atmosphärendruck) und zusätzlich noch die Tendenz zeigt, zu unterkühlen. Weiters wird das Sintern der Eisteilchen erst unterhalb von 243 K effektiv unterbunden, da oberhalb von 243 K ein dünner Flüssigkeitsfilm (in der Größenordnung von Nanometern) an der Eisoberfläche zum Sintern führt. Um das Unterkühlen zu unterbinden, kann man im Prinzip Nukleatoren zusetzen. Dies sind feste organische oder anorganische Stoffe, die Keime für das Eiskristallwachstum darstellen. Allerdings bringt der Einsatz von Nukleatoren, die kontinuierlich über einen Ansaugstutzen zugeführt werden müssen, wieder das Problem der schlechten Umweltverträglichkeit mit sich, wodurch ein Einsatz in der Lebensmittelindustrie nicht mehr möglich ist.In order to generate the ice crystals in situ, however, it is necessary to operate at temperatures of 243 K or lower, since water, e.g. at a pressure of 200 MPa freezes only at 253 K (ie 20 K lower than at atmospheric pressure) and additionally shows the tendency to overcool. Furthermore, the sintering of the ice particles is effectively prevented only below 243 K, because above 243 K, a thin liquid film (of the order of nanometers) on the ice surface leads to sintering. In order to suppress the supercooling, nucleators can be added in principle. These are solid organic or inorganic substances that are nuclei for ice crystal growth. However, the use of nucleators, which must be continuously fed through an intake manifold, again brings the problem of poor environmental compatibility with it, whereby a use in the food industry is no longer possible.

Erfindungsgemäß ist zur Vermeidung der genannten Nachteile vorgesehen, die Abkühlung des Wassers und damit die Erzeugung von Eispartikeln im Wasserstrahl dadurch zu erzielen, dass ein gasförmiges Medium, beispielsweise Kohlendioxid, bei einem Druck von 1-150 bar in einer Mischvorrichtung im Wasser gelöst und dann die Mischung mittels einer Hochdruckpumpe einer Düse zugeführt wird. Aufgrund des Druckabfalles nach der Düse erfolgt eine Entmischung. Das Freisetzen des gasförmigen Mediums entzieht dem Wasser zusätzlich zu der Abkühlung durch Expansion die Lösungswärme des gasförmigen Mediums, so dass es nach der Düse zu einer spontanen Abkühlung und zur Bildung von Eiskristallen im Wasserstrahl kommt. Die so erreichte Abkühlung liegt im Bereich mehrerer Grad Celsius, so dass ein wesentlich geringerer Aufwand in die Kühlführung der Vorrichtung investiert werden muss. Auch die Probleme der Abnutzung der Düse sowie deren Verstopfung können dadurch umgangen werden. Der beschriebene Lösungsansatz ist prinzipiell mit einer Vielzahl von gasförmigen Medien möglich, da viele Gase in Wasser sehr gut löslich sind. Aufgrund der Möglichkeit des Einsatzes von Kohlendioxid (CO2) in der Trinkwasserindustrie bzw. wegen des umfassenden Kenntnisstands bezüglich der physikalischen und chemischen Eigenschaften wie Löslichkeit in Wasser und Lösewärme wird die Erfindung im Folgenden am Beispiel von CO2 näher beschrieben.According to the invention, to avoid the disadvantages mentioned, the cooling of the water and thus the production of ice particles in the water jet can be achieved by dissolving a gaseous medium, for example carbon dioxide, at a pressure of 1-150 bar in a mixing device in the water and then Mixture is fed by means of a high-pressure pump to a nozzle. Due to the pressure drop after the nozzle segregation occurs. The release of the gaseous medium extracts from the water, in addition to the cooling by expansion, the heat of solution of the gaseous medium, so that it comes after the nozzle to spontaneous cooling and the formation of ice crystals in the water jet. The cooling thus achieved is in the range of several degrees Celsius, so that a much lower cost must be invested in the cooling system of the device. Also, the problems of wear of the nozzle and its constipation can be bypassed. The described approach is possible in principle with a variety of gaseous media, since many gases are very soluble in water. by virtue of the possibility of using carbon dioxide (CO 2 ) in the drinking water industry or because of the comprehensive knowledge of the physical and chemical properties such as solubility in water and heat of dissolution, the invention is described in more detail below using the example of CO 2 .

Fig. 1 zeigt in einer stark schematisierten Ansicht ein Ausführungsbeispiel einer Vorrichtung 1 zur Bearbeitung von festen Werkstoffen mittels eines Wasserstrahls 2, vorzugsweise eines Hochdruckwasserstrahls, welcher eine Gasbeimischung enthält. Die Vorrichtung 1 umfasst dabei im Wesentlichen einen Mischbereich 3, in welchem das Wasser und ein gasförmiges Medium, im Ausführungsbeispiel Kohlendioxid, miteinander vermischt werden. Das Wasser wird dabei unter Niederdruck (i.e. beispielsweise Betriebsdruck des Wasserleitungsnetzes) über eine Zuleitung 4 mit einem Einlassventil 5 und einer Pumpe 6 in den Mischbereich 3 eingeleitet. Das Kohlendioxid wird beispielsweise über eine Duschvorrichtung 7 aus einem Tank 8, beispielsweise einer Gasflasche, über eine Zuleitung 9 in den Mischbereich 3 eingebracht. Die Duschvorrichtung 7 ist dabei beispielsweise in Form eines Duschkopfes mit einer Vielzahl von Ausströmöffnungen ausgebildet, durch welchen das gasförmige Medium in das im Mischbereich 3 befindliche Wasser einströmt. Eine Rücklaufleitung 10 mit einer weiteren Pumpe 6 erlaubt die Rückspeisung von überschüssigem gasförmigen Medium in die Zuleitung 9. Der Druck im Mischbereich 3 beträgt dabei ungefähr 200 bar, was im Folgenden als Mitteldruck bezeichnet wird. Fig. 1 shows in a highly schematic view of an embodiment of an apparatus 1 for processing solid materials by means of a water jet 2, preferably a high pressure water jet, which contains a gas admixture. The device 1 essentially comprises a mixing region 3 in which the water and a gaseous medium, in the exemplary embodiment carbon dioxide, are mixed with one another. The water is introduced under low pressure (ie, for example, operating pressure of the water supply network) via a supply line 4 with an inlet valve 5 and a pump 6 in the mixing region 3. The carbon dioxide is introduced, for example, via a shower device 7 from a tank 8, for example a gas cylinder, via a feed line 9 into the mixing area 3. The shower device 7 is formed, for example, in the form of a shower head with a plurality of outflow openings, through which the gaseous medium flows into the water located in the mixing region 3. A return line 10 with a further pump 6 allows the return of excess gaseous medium in the supply line 9. The pressure in the mixing region 3 is approximately 200 bar, which is referred to below as the medium pressure.

Nach dem Lösen des gasförmigen Mediums im Wasser wird dieses durch eine Pumpe 11 auf einen Druck von ca. 4000 bar gebracht, welcher im Folgenden als Hochdruck bezeichnet wird, und in einen Behälter 12 weitergeleitet, um von dort aus zu einer Düse 13 zu strömen. Mit dem dort austretenden Wasserstrahl 2, welcher unter Hochdruck durch die Düse 13 gepresst wird, wird der Werkstoff 14 bearbeitet. Die Kontrolle des Drucks und der Durchflussmenge des Wassers erfolgt mit geeigneten Messgeräten 15, welche an verschiedenen geeigneten Stellen der Vorrichtung 1 angeordnet sein können.After dissolving the gaseous medium in the water this is brought by a pump 11 to a pressure of about 4000 bar, which is referred to below as high pressure, and forwarded to a container 12 to flow from there to a nozzle 13. With the water jet 2 emerging there, which is pressed under high pressure through the nozzle 13, the material 14 is processed. The control of the pressure and the flow rate of the water takes place with suitable measuring devices 15, which can be arranged at various suitable locations of the device 1.

Die Bildung der Eiskristalle erfolgt erfindungsgemäß erst nach der Düse 13. Die Kristallbildung wird durch die Expansion bzw. durch die Zerstäubung des Wasserstrahls 2 angeregt, die zu einem plötzlichen Ausperlen unter Freisetzung des gelösten Kohlendioxids aus der nun übersättigten Wasser-Gas-Lösung führt. Eine Lösungswärmemenge von -20.54 kJ/mol wird dabei dem Wasser entzogen. Dies führt abhängig vom Ausgangsdruck des Wassers zu einer augenblicklichen, sehr starken Abkühlung und der spontanen Bildung von Eiskristallen im expandierten Wasserstrahl 2. Somit können Probleme wie Verstopfung, Abnutzung oder Überhitzung der Düse 13 verhindert werden. Eine geeignete Abstimmung von CO2-Lösungskonzentration und Vorkühlung erlaubt dabei eine Steuerung des Partikelanteils und der Partikelgröße im Wasserstrahl 2, so dass dieser auf die jeweiligen Anforderungen des zu bearbeitenden Werkstoffs 14 abgestimmt werden kann, beispielsweise mit vielen großen Eiskristallen zur schnellen, eher groben Reinigung großer Flächen oder mit vielen kleinen Eiskristallen zum Polieren einer Oberfläche. Auch harte Werkstoffe 14 können sauber bearbeitet werden.According to the invention, the formation of the ice crystals takes place only after the nozzle 13. The crystallization is excited by the expansion or by the atomization of the water jet 2, which leads to a sudden bubbling to release the dissolved carbon dioxide from the now supersaturated water-gas solution. A solution heat amount of -20.54 kJ / mol is thereby removed from the water. This results in an instantaneous, very strong cooling and the spontaneous formation of ice crystals in the expanded water jet 2, depending on the output pressure of the water. Thus, problems such as clogging, wear or overheating of the nozzle 13 can be prevented. An appropriate vote of CO 2 solution concentration and precooling allows control of the particle fraction and the particle size in the water jet 2, so that it can be adapted to the particular requirements of the material to be processed 14, for example, with many large ice crystals for fast, rather coarse cleaning large areas or with many small ice crystals for polishing a surface. Even hard materials 14 can be processed cleanly.

Die Beimischung des Kohlendioxids im Mischbereich 3 kann, wie in den Fig. 2A bis 2D schematisch ausschnittsweise dargestellt, direkt in dem Mischbereich 3 erfolgen, wie bereits in Fig. 1 dargestellt und in Fig. 2A vergrößert gezeigt.The admixture of the carbon dioxide in the mixing zone 3 can, as in the Fig. 2A to 2D shown schematically in part, take place directly in the mixing area 3, as already in Fig. 1 represented and in Fig. 2A shown enlarged.

Auch indem man im Mischbereich 3 ein auf ca. 200 bar komprimiertes gasförmiges Medium vorlegt und dann Wassertröpfchen zerstäubt in dieses System einbringt, wie in Fig. 2C dargestellt, ist es möglich, eine effektive Vermischung und Lösung des Gases zu erzielen.Also by presenting in the mixing zone 3 a compressed to about 200 bar gaseous medium and then atomized water droplets introduced into this system, as in Fig. 2C As shown, it is possible to achieve effective mixing and solution of the gas.

Weiterhin ist es möglich, wie in Fig. 2D schematisch dargestellt, Wasser im Mischbereich 3 vorzulegen, Trockeneis-Pellets 16 bzw. gefrorene Kohlendioxid-Pellets 16 mit einer Temperatur von ca. -78°C in den Mischbereich 3 einbringt und anschließend Druck anlegt. In dem im Vergleich zu den Pellets 16 relativ warmen Wasser schmelzen die Pellets 16 sofort unter starker Bläschenbildung, wobei das Kohlendioxid durch den Druck in Lösung geht. Nebenbei kühlt sich auch noch das Wasser dabei ab, was in Hinblick auf die Eiskristallbildung im weiteren Verlauf vorteilhaft ist.Furthermore, it is possible, as in Fig. 2D shown schematically to submit water in the mixing zone 3, dry ice pellets 16 or frozen carbon dioxide pellets 16 at a temperature of about -78 ° C in the mixing area 3 introduces and then applies pressure. In the relatively warm compared to the pellets 16 water, the pellets 16 melt immediately with strong bubbling, the carbon dioxide goes into solution by the pressure. Incidentally, the water also cools down, which is advantageous in view of the formation of ice crystals in the further course.

In allen Fällen verlässt ein gesättigtes Gemisch aus Wasser und Kohlendioxid den Mischbereich 3 in Richtung auf den Behälter 12.In all cases, a saturated mixture of water and carbon dioxide leaves the mixing zone 3 in the direction of the container 12.

Im Mischbereich 3 wird zunächst das Wasser mit Kohlendioxid durch Lösen des CO2 im Wasser versetzt, z.B. durch Durchleiten von CO2 aus dem Tank 8, der in dem in Fig. 1 dargestellten Ausführungsbeispiel als Gasflasche ausgebildet ist. Auch die Verwendung von Druckpatronen, wie sie für Mineralwasser bekannt sind, ist möglich. Der Prozess des Lösens von Kohlendioxid in Wasser kann durch die Überwachung des pH-Wertes über einen geeigneten Sensor kontrolliert werden, da aufgrund des Reaktionsgleichgewichts von CO2/H2O mit HCO3 -/H+ gesättigte Lösungen mit CO2 sauer sind; z.B. liegt bei 298 K ein pH-Wert von 3,9 vor. Die Temperatur der Vorrichtung 1 steigt durch die Lösewärme des Kohlendioxids leicht an, so dass eine Wärmeabfuhr im Mischbereich 3 beispielsweise durch eine Wasserkühlung angezeigt ist.In the mixing zone 3, the water is first mixed with carbon dioxide by dissolving the CO 2 in the water, for example by passing CO 2 from the tank 8, which is in the in Fig. 1 illustrated embodiment is designed as a gas cylinder. The use of print cartridges, as they are known for mineral water, is possible. The process of dissolving carbon dioxide in water can be controlled by monitoring the pH via a suitable sensor, since due to the reaction equilibrium of CO 2 / H 2 O with HCO 3 - / H + saturated solutions with CO 2 are acidic; For example, at 298 K, a pH of 3.9 is present. The temperature of the device 1 rises slightly by the heat of dissolution of the carbon dioxide, so that a heat dissipation in the mixing region 3 is indicated for example by a water cooling.

Der Wasserstrahl 2 wird erzeugt, indem das Wasser-Kohlendioxid-Gemisch durch die Pumpe 11, welche hochdruckgeeignet ausgestaltet sein muss, in den Behälter 12 gepumpt und dann zur Düse 13 weitergeleitet und durch diese durchgepresst wird. Dafür können vorhandene Pumpen 11 und Düsen 13 ohne weitere technische Modifikationen verwendet werden. Es müssen auch keinerlei weitere Materialien von außen zugeführt werden, es ist also kein zusätzlicher Ansaugstutzen notwendig.The water jet 2 is produced by the water-carbon dioxide mixture pumped by the pump 11, which must be designed high pressure suitable, in the container 12 and then forwarded to the nozzle 13 and is pressed through it. For existing pumps 11 and nozzles 13 can be used without further technical modifications. There must be no additional materials supplied from the outside, so it is no additional intake manifold necessary.

Als Anhaltspunkt, wie groß die erzielbare Abkühlung ist, kann die im Folgenden angegebene Abschätzung dienen. Der erzielbare Temperaturunterschied errechnet sich über die Stoffmenge des gelösten Kohlendioxids (ncO2), die Stoffmenge des Wassers (nH2O), die isobare Wärmekapazität von flüssigem Wasser (cpH2O=75,3 J/(K mol)) sowie die Lösungsenthalpie von Kohlendioxid in Wasser (ΔH=-20,54 kJ/mol). Bis zu einem Druck von ca. 300 bar CO2 lässt sich der Molenbruch von Kohlendioxid nCO2/ntotal, also der Anteil der im Wasser gelösten CO2-Moleküle, über das Henry-Gesetz linear mit dem CO2-Partialdruck ausdrücken. Die Proportionalitätskonstante des Henry-Gesetz ist für CO2 kCO2=1650 bar. Solange der CO2-Partialdruck pCO2 viel kleiner als kCO2 ist, ergibt sich für die Abkühlung eine in pCO2 lineare Beziehung mit einer Proportionalitätskonstante von ΔH/(cpH2O kCO2), was bei Einsetzen bekannter Werte eine Proportionalitätskonstante von 0,165 K/bar ergibt. Pro bar gelöstem CO2 sinkt die Temperatur also um 0,165 K, bei 100 bar demnach bereits um 16,5 K.As an indication of how large the achievable cooling is, the following estimate can serve. The achievable temperature difference is calculated by the amount of dissolved carbon dioxide (n cO2 ), the amount of water (n H2O ), the isobaric heat capacity of liquid water (cp H2O = 75.3 J / (K mol)) and the enthalpy of solution of carbon dioxide in water (ΔH = -20.54 kJ / mol). Up to a pressure of approx. 300 bar CO 2 , the mole fraction of carbon dioxide n CO2 / n total , ie the proportion of CO 2 molecules dissolved in the water, can be expressed linearly with the CO 2 partial pressure via the Henry law. The proportionality constant of Henry's Law is CO 2 k CO2 = 1650 bar. As long as the CO 2 partial pressure p CO2 is much smaller than k CO2 , the cooling results in a linear relationship in p CO2 with a proportionality constant of ΔH / (cp H2O k CO2 ), which yields a proportionality constant of 0.165 K / s when known values are used. bar results. Thus, per bar of dissolved CO 2 , the temperature drops by 0.165 K, at 100 bar, therefore, by 16.5 K.

Beginnt man bei kaltem Leitungswasser von ca. 10°C, so würde ein Entweichen von bei 100 bar gelöstem CO2 bereits ausreichen, um Temperaturen unter dem Gefrierpunkt zu erreichen. Dabei ist die Abkühlung durch die Expansion des Wasserstrahls 2 vom Behälter 12 bei 4000 bar auf 1 bar nach der Düse 13 noch nicht berücksichtigt. Bei Normaldruck sind bei 273K 3,4g bzw. bei 298K 1,5g CO2 in einem Liter Wasser löslich. Das entspricht 1,93 bzw. 0,85 Litern CO2 (0,077 mol bzw. 0,034 mol) pro Liter Wasser. Bei erhöhtem Druck, z.B. in mit Kohlensäure versetztem Mineralwasser, sind erheblich größere Mengen löslich.If you start with cold tap water of about 10 ° C, then an escape of dissolved at 100 bar CO 2 would be sufficient to reach temperatures below freezing. The cooling by the expansion of the water jet 2 from the container 12 at 4000 bar to 1 bar after the nozzle 13 is not considered. At atmospheric pressure, 3.4g at 273K or 1.5g CO 2 at 298K are soluble in one liter of water. This corresponds to 1.93 or 0.85 liters of CO 2 (0.077 mol or 0.034 mol) per liter of water. At elevated pressure, for example in carbonated mineral water, significantly larger amounts are soluble.

Das freigesetzte Kohlendioxid kann bei Bedarf recycled oder abgesaugt werden. Es muss jedoch dafür gesorgt werden, dass die Beimischung von Kohlendioxid zur Umgebungsluft nicht zu hoch wird, da sonst Erstickungsgefahr besteht, etwa durch Lüften oder entsprechend große Räume.The released carbon dioxide can be recycled or extracted if necessary. However, it must be ensured that the addition of carbon dioxide to the ambient air is not too high, otherwise there is danger of suffocation, such as through ventilation or correspondingly large spaces.

Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt, sondern beispielsweise auch mit anderen gasförmigen Medien durchführbar.The invention is not limited to the illustrated embodiment, but for example, with other gaseous media feasible.

Claims (12)

  1. Method for machining a solid material using a water jet discharging from a nozzle, said water jet containing ice crystals and impacting on the solid material, wherein a medium which is gaseous under standard conditions is introduced and pressed through a nozzle under conditions which allow the dissolved gaseous medium to bubble out after leaving the nozzle, whereupon the heat of solution is withdrawn from the water and ice crystals are formed, characterized in that the medium which is gaseous under standard conditions is dissolved in the water at a pressure of 1-150 bar and subsequently compressed to 1000-4500 bar.
  2. Method according to claim 1, characterized in that the dissolving of the gaseous medium in the water is carried out at a mixing stage by passing the gaseous medium from gas cylinders or pressure cartridges through the water at a pressure of 1-150 bar or by inserting dry ice pellets into the water, said pellets containing the gaseous medium.
  3. Method according to claim 1 or 2, characterized in that a modulation of the concentration of the gaseous medium in solution and of the temperature of the water governs the particle fraction and the particle size of the ice crystals formed in the water jet.
  4. Method according to any of claims 1 to 3, characterized in that the gaseous medium is carbon dioxide.
  5. Device for machining a solid material (14) using a water jet (2) discharging from a nozzle (13), said water jet (2) containing ice crystals and impacting on the solid material (14), comprising a feed pipe (4) with an inlet valve (5) and a first pump (6) for pumping water into a mixing section (3), a vessel (12) connected with the mixing section (3) via a second pump (11) and a nozzle (13) connected with the vessel (12), wherein in operation a gaseous medium is fed under pressure into the water which is introduced into the mixing section (3) via the feed pipe (4) before or in the mixing section (3) and wherein it is dissolved in the water, characterized in that the device is designed so that in operation the water used as an operating fluid is compressed in two steps, namely in a first step with a pressure of 1-150 bar, at which pressure the medium which is gaseous under standard conditions is dissolved in water, and subsequently, in a second step, at 1000-4500 bar, so that by pressing through the nozzle (13) a bubbling-out of the dissolved gaseous medium occurs, whereupon the heat of solution is withdrawn from the water and the ice crystals are formed.
  6. Device according to claim 5, characterized in that the gaseous medium is introducible into the water via a douche gadget (7) arranged in the mixing section (3), said douche gadget (7) in particular being designed in the form of a shower head with a multiplicity of outlets.
  7. Device according to claim 5, characterized in that in operation the gaseous medium is introduced into the water upstream with respect to the mixing section (3).
  8. Device according to claim 5, characterized in that in operation the water is fed in by means of nebulization.
  9. Device according to claim 5, characterized in that the gaseous medium is introducible into the water via dry ice pellets (16), which contain said gaseous medium, and that the gaseous medium is soluble in the water under pressure.
  10. Device according to any of claims 5 to 8, characterized in that the gaseous medium is provided in a tank (8) which in particular is designed in the form of a gas cylinder or a gas cartridge and from which said gaseous medium can be supplied to the device (1) via a feed pipe (9).
  11. Device according to claim 10, characterized in that the mixing section (3) is connected with a return pipe (10), through which excessive gaseous medium can be fed back into the feed pipe (9).
  12. Device according to any of claims 5 to 11, characterized in that the gaseous medium is carbon dioxide.
EP20070763719 2006-06-23 2007-06-22 Device and method for machining a solid material using a water jet Not-in-force EP2032309B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1066/2006A AT503825B1 (en) 2006-06-23 2006-06-23 DEVICE AND METHOD FOR MACHINING A SOLID MATERIAL WITH A WATER SPRAY
PCT/AT2007/000307 WO2007147192A2 (en) 2006-06-23 2007-06-22 Device and method for machining a solid material using a water jet

Publications (2)

Publication Number Publication Date
EP2032309A2 EP2032309A2 (en) 2009-03-11
EP2032309B1 true EP2032309B1 (en) 2010-10-20

Family

ID=38434853

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070763719 Not-in-force EP2032309B1 (en) 2006-06-23 2007-06-22 Device and method for machining a solid material using a water jet

Country Status (6)

Country Link
US (1) US20100024619A1 (en)
EP (1) EP2032309B1 (en)
JP (1) JP2009541067A (en)
AT (2) AT503825B1 (en)
DE (1) DE502007005423D1 (en)
WO (1) WO2007147192A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116038578A (en) * 2023-03-31 2023-05-02 北京科技大学 Surface treatment device and surface treatment method

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2809817A (en) * 1953-07-13 1957-10-15 Munters Carl Georg Apparatus for effecting physical interaction between a gaseous and a liquid medium
US3552417A (en) * 1968-11-13 1971-01-05 Casper M Goff Pump construction
DE1809677A1 (en) * 1968-11-19 1970-05-21 Woma Appbau W Maasberg & Co Gm Jet nozzle for high pressure jet devices
US4341530A (en) * 1979-12-05 1982-07-27 The United States Of America As Represented By The Department Of Energy Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure
US4829859A (en) * 1986-08-29 1989-05-16 Ulticon Systems, Inc. Method of high speed machining
US4877500A (en) * 1988-06-30 1989-10-31 Joseph Callerame Process for the production of chlorine dioxide
US5018667A (en) * 1989-02-08 1991-05-28 Cold Jet, Inc. Phase change injection nozzle
US5009240A (en) * 1989-07-07 1991-04-23 United States Of America Wafer cleaning method
US5184427A (en) * 1990-09-27 1993-02-09 James R. Becker Blast cleaning system
US5365699A (en) * 1990-09-27 1994-11-22 Jay Armstrong Blast cleaning system
US5599223A (en) * 1991-04-10 1997-02-04 Mains Jr.; Gilbert L. Method for material removal
US5222332A (en) * 1991-04-10 1993-06-29 Mains Jr Gilbert L Method for material removal
EP0539055B1 (en) * 1991-10-09 1997-03-12 Toyota Jidosha Kabushiki Kaisha Method and apparatus for working on a workpiece, using foamed working liquid in area of contact between the workpiece and working tool
US5445553A (en) * 1993-01-22 1995-08-29 The Corporation Of Mercer University Method and system for cleaning a surface with CO2 pellets that are delivered through a temperature controlled conduit
DE4320410A1 (en) * 1993-06-21 1994-12-22 Ghibli Hochdruck Ag Process and apparatus for cleaning surfaces
US5514024A (en) * 1993-11-08 1996-05-07 Ford Motor Company Nozzle for enhanced mixing in CO2 cleaning system
US5405283A (en) * 1993-11-08 1995-04-11 Ford Motor Company CO2 cleaning system and method
US5390450A (en) * 1993-11-08 1995-02-21 Ford Motor Company Supersonic exhaust nozzle having reduced noise levels for CO2 cleaning system
US5785581A (en) * 1995-10-19 1998-07-28 The Penn State Research Foundation Supersonic abrasive iceblasting apparatus
US6082631A (en) * 1997-03-21 2000-07-04 Graffiti Gone Inc. Trailer mounted graffiti removal system
US6892961B1 (en) * 1999-09-16 2005-05-17 Graco Minnesota Inc. Plural component material mixer
SE515491C2 (en) * 1999-12-27 2001-08-13 Electrolux Ab Process and apparatus for cleaning porous materials by carbon dioxide
US6203623B1 (en) * 1999-12-28 2001-03-20 Ball Semiconductor, Inc. Aerosol assisted chemical cleaning method
US6273345B1 (en) * 2000-02-11 2001-08-14 United States Gypsum Company High performance slurry spray machine
US6719613B2 (en) * 2000-08-10 2004-04-13 Nanoclean Technologies, Inc. Methods for cleaning surfaces substantially free of contaminants utilizing filtered carbon dioxide
US7451941B2 (en) * 2001-03-13 2008-11-18 Jackson David P Dense fluid spray cleaning process and apparatus
JP3753422B2 (en) * 2001-03-27 2006-03-08 日本パーカライジング株式会社 Powder coating material supply apparatus and method
CA2444686A1 (en) * 2001-04-19 2002-10-31 Snow Factories Pty Ltd Snow making method and apparatus
RU2356653C2 (en) * 2003-04-11 2009-05-27 Грейт Стафф, Инк. System to control air/liquid flows
FI20031365A (en) * 2003-09-22 2005-03-23 Metso Paper Inc Procedure and plant for cutting web
US7040962B2 (en) * 2003-11-19 2006-05-09 Fuji Seiki Machine Works, Ltd. Ice blasting apparatus and trimming method for film insert molding
WO2006065725A1 (en) * 2004-12-13 2006-06-22 Cool Clean Technologies, Inc. Carbon dioxide snow apparatus
DE102005005638B3 (en) * 2005-02-05 2006-02-09 Cryosnow Gmbh Method for cleaning, activating or treating workpieces using carbon dioxide snow streams comprises adding a carbon dioxide mixture via a nozzle opening of a mixing chamber into which a central gas stream and further processing
US20070178811A1 (en) * 2006-02-01 2007-08-02 Meenakshi Sundaram Dry ice blasting with chemical additives

Also Published As

Publication number Publication date
AT503825A1 (en) 2008-01-15
ATE485130T1 (en) 2010-11-15
EP2032309A2 (en) 2009-03-11
WO2007147192A2 (en) 2007-12-27
JP2009541067A (en) 2009-11-26
WO2007147192A3 (en) 2008-04-17
DE502007005423D1 (en) 2010-12-02
AT503825B1 (en) 2012-04-15
US20100024619A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
DE1949315A1 (en) Method and apparatus for cooling a cutting tool by mist
EP1749629B1 (en) Method and device for cooling of cement or cementitious powders
DE2402043B2 (en)
EP0586913A2 (en) Spray apparatus
WO2006034748A1 (en) Method and device for compressing a gaseous medium
EP2151300B1 (en) Device and method for cleaning objects using dry snow
DE102006002653A1 (en) Dry ice-water-mixture blasting method involves adding blasting water containing dry ice particles in mixing ratio which is changeable/constant during blasting procedure, where addition of water takes place under usage of injector principle
EP0131120B1 (en) Method and apparatus for spraying suspensions very finely
EP2032309B1 (en) Device and method for machining a solid material using a water jet
DE102007052390B4 (en) Method and device for cleaning surfaces
DE102010064406A1 (en) Apparatus and method for particle blasting using frozen gas particles
WO2000024501A9 (en) Method and device for introducing a gas into a liquid
EP1577262A1 (en) Method and apparatus for preparing solid particles of carbon dioxide
DE102004018133B3 (en) Dry ice beam arrangement e.g. for cleaning of surfaces, has source for liquid CO2, nozzle jet with nozzle exit opening for dry ice particle jet as well as line for transfer of CO2 of source to nozzle jet
EP1034890A2 (en) Method and device for blasting with different types of blasting medium
DD230798A1 (en) DEVICE WITH A HEAD AND CONTROL DEVICE FOR SHARING
DE10160902A1 (en) Highpressure cleaning by deepcooled gas has gas source and highpressure pump and iced particles admixer and cleaning and directing nozzle to spray jet effectively onto metal glass plastics or ceramics objects.
WO2015144420A1 (en) Apparatus for the application and suction-extraction of operating fluids in the inlet of cold rolling installations
EP3180163B1 (en) Jet cutting device and jet cutting method
DE10351834B4 (en) Process for the preparation of clathrates and device for carrying out the process
DE102021005135B4 (en) Method for reducing the temperature and/or maintaining low temperatures of an object using a liquid gas, in particular using liquid carbon dioxide, and a device suitable for this
EP2730344A1 (en) Method and apparatus for removing a contaminant from a surface
WO2018033255A1 (en) Method, apparatus and system for separating water from an ionic liquid
DE10010192A1 (en) Method to clean surfaces using particulate flow; involves cooling solid particles to required temperature, by bringing them into thermal contact with cooling device and delivering with flow device
EP3106217A1 (en) Device and method for cooling and atomizing liquid or paste-like substances

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090519

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007005423

Country of ref document: DE

Date of ref document: 20101202

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101020

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110221

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110131

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

26N No opposition filed

Effective date: 20110721

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007005423

Country of ref document: DE

Effective date: 20110721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

BERE Be: lapsed

Owner name: UNIVERSITAT INNSBRUCK

Effective date: 20110630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110622

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007005423

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110622

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 485130

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120622