US20070178811A1 - Dry ice blasting with chemical additives - Google Patents

Dry ice blasting with chemical additives Download PDF

Info

Publication number
US20070178811A1
US20070178811A1 US11/551,057 US55105706A US2007178811A1 US 20070178811 A1 US20070178811 A1 US 20070178811A1 US 55105706 A US55105706 A US 55105706A US 2007178811 A1 US2007178811 A1 US 2007178811A1
Authority
US
United States
Prior art keywords
pellets
additives
methyl
ethyl
combinations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/551,057
Inventor
Meenakshi Sundaram
Pasi Ihatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/551,057 priority Critical patent/US20070178811A1/en
Priority to EP07705469A priority patent/EP1981686A2/en
Priority to JP2008552905A priority patent/JP4975045B2/en
Priority to PCT/IB2007/000178 priority patent/WO2007088437A2/en
Publication of US20070178811A1 publication Critical patent/US20070178811A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • B24C11/005Selection of abrasive materials or additives for abrasive blasts of additives, e.g. anti-corrosive or disinfecting agents in solid, liquid or gaseous form

Definitions

  • Dry ice is generally used for many applications, like cooling and chilling purposes in the food and beverage industries.
  • One of the latest uses is the use of dry ice in blasting applications. Dry ice blasting is similar to sandblasting, high-pressure water blasting, or steam blasting. Dry ice blasting systems may project small rice size pellets of dry ice at a temperature of about ⁇ 78° C. out of a jet nozzle or applicator together with compressed air onto the surface of a target material.
  • the low dry ice temperature causes contaminants on the target material surface to shrink and loose adhesion to the target material.
  • the warmer sub surface of the target material causes the dry ice to sublime into carbon dioxide gas which has about 800 times greater volume than the solid dry ice.
  • the carbon dioxide expands behind the contaminant speeding up contaminant removal from the surface. The contaminant then typically falls to the ground, or into some receptacle. Because the dry ice evaporates, only the contaminant is left for disposal.
  • Embodiments of the invention generally provide for dry ice blasting using dry ice pellets having additives.
  • One embodiment of the invention provides a method for treating a surface of a target item by providing pellets which include solid carbon dioxide and one or more additives, providing a stream of pressurized gas, combining the pellets and the pressurized gas to accelerate the pellets, and exposing the surface of the target item to the accelerated pellets.
  • Another embodiment of the invention provides a method for treating a surface of a target item by providing solid carbon dioxide pellets, providing a stream of pressurized gas, combining the solid carbon dioxide pellets and the stream of pressurized gas, exposing the surface of the target item to the solid carbon dioxide pellets, and using solid carbon dioxide pellets including one or more additives which are selected from at least one of antimicrobial compounds, disinfectants, detergents, odorants, and combinations thereof.
  • Another embodiment of the invention provides pellets for treating surfaces of dry ice blasting target items, including dry ice and one or more additives which are releasable onto the surfaces of the target items.
  • the one or more additives are selected to effect at least one of a cleaning function, a sanitizing function, disinfecting function, anti-microbial function, and an olfactory response in a human being.
  • FIG. 1 is a flow chart of a process for forming a dry ice product containing an additive chemical, according to one embodiment of the invention
  • FIG. 2 is a schematic illustration of one embodiment for forming extruded pellets of dry ice containing an additive chemical
  • FIG. 3 is a flow chart of a process for forming a dry ice product containing an additive chemical, according to one embodiment of the invention.
  • FIG. 4 is a schematic illustration of one embodiment for forming extruded pellets of dry ice containing an additive chemical.
  • the term “antimicrobial” refers to a physical or chemical agent capable of causing greater than 90% reduction (1-log order reduction) in the population of bacteria or spores within 10 seconds at 60° C.
  • the antimicrobial composition used in embodiments of the invention preferably provides greater than a 99% reduction (2-log order reduction), and more preferably greater than a 99.99% (4-log order reduction), and most preferably a 99.999% (5-log order reduction) in such a population preferably within 60 seconds at 60° C., and more preferably within 10 seconds at 60° C.
  • fectant refers to a physical or chemical agent capable of preventing the growth and reproduction of various microorganisms (such as bacteria, fungi, protozoa, and viruses) on surfaces.
  • target item or “target material” refers to equipment, devices, structures, food products, pharmaceutical products, or other items that are in need of surface treatment, sanitation, preserving, or otherwise protecting from or treated for pathogenic microorganisms.
  • Dry ice blasting systems project small sized pellets of dry ice out of a jet nozzle or applicator together with compressed air onto the surface of a target material.
  • Embodiments described herein incorporate additives to the dry ice pellets used in the dry ice blasting process. Dry ice blasting is well known in the art, and it is believed that any system or apparatus suitable for dry ice blasting is capable of use with embodiments of the invention.
  • Dry ice for dry ice blasting may be produced by a controlled expansion of liquid CO 2 into dry ice snow.
  • Additives may be added to the liquid CO 2 before the expansion of the liquid CO 2 into dry ice snow, or the additives may be sprayed onto the surfaces of dry ice snow.
  • Liquid CO 2 is usually maintained at a temperature of about ⁇ 60° C. at a pressure of 5.11 atm, although embodiments of the invention are not limited to particular temperature or pressure values for maintaining liquid CO 2 .
  • the additives used may have freezing points higher, lower, or similar to that of liquid CO 2 .
  • Embodiments of the invention can involve mixing one or more additives with a carrier chemical to a final concentration without affecting the freezing point of the carrier chemical.
  • a combined solution prepared using a carrier chemical and one or more additives should not have a freezing point higher than that of liquid CO 2 .
  • liquid CO 2 combined with a carrier chemical and an additive is fed to an ice press to form dry ice.
  • Yet another embodiment of the invention involves feeding liquid CO 2 and a carrier chemical and an additive to an ice press as separate streams, which then combine in the press to generate dry ice “snow” containing the additives.
  • the additives may be selected from those listed by the U.S. Food and Drug Administration as being GRAS (Generally Recognized as Safe).
  • the additive formulation can essentially contain an alcohol, a terpene, or polyethylene glycol as a carrier chemical in various embodiments.
  • An alcohol is any organic compound in which a hydroxyl group (—OH) is bound to a carbon atom of an alkyl or substituted alkyl group.
  • the general formula for a simple acyclic alcohol is C n H 2n+1 OH.
  • Food grade alcohol, ethanol is a carrier chemical that has a very low freezing point, and can be used in one embodiment of the invention.
  • Terpenes are another large group of chemical compounds found in nature that act as effective carrier chemicals with low freezing points.
  • One such example is d-limonene, present in orange peel and extracted from the orange skin and provides a lemon-orange scent.
  • the freezing point of d-Limonene is suitable for liquid CO 2 storage conditions, and is also considered to be an effective carrier chemical used in formulation preparations.
  • Polyethylene glycol is a non-toxic liquid with low molecular weight, and is a common ingredient of pharmaceuticals.
  • additives listed as GRAS may be dissolved directly into the carrier chemical and then mixed with liquid CO 2 or CO 2 in “snow” form before being extruded as pellets or blocks.
  • Another embodiment of the invention can involve mixing one or more additives with water, and then adding the solution to the carrier chemical to a final concentration without affecting the freezing point of the carrier chemical.
  • GRAS chemical additives may include flavoring agents, flavor enhancers, intensifiers, emulsifiers, binders, fillers, gelling agents, plasticizers, stabilizers, suspending agents, whipping agents, sweetening agents, flavoring agents, colors, enzymes, antioxidants, sequestrants, wetting agents, surfactants, curing and pickling agents, firming agents, fumigants, humectants, leavening agents, processing aids, surface active agents, surface finishing agents, synergists, and texturizers.
  • the dry ice product may be manufactured in the form of pellets, flakes, powders, and other possible forms which may be suitable for dry ice blasting. Pellets of dry ice in the range of 1/16 inch to 1 inch may be formed. In addition, powders such as snow, flakes, or chips may be formed by methods known in the art.
  • the dry ice product is essentially void of water. What is meant by “essentially void of” is that the dry ice product, if it contains water, will comprise less than 5% by weight (wt. %) water, according to one embodiment. Typically, the water content will be less than 1 wt. % in a particular embodiment. Moisture levels of up to 5,000 ppm may be helpful in maintaining the desired shape of the product.
  • the carrier and additives concentrations in the dry ice may vary widely and may depend upon the end use of the product.
  • the additive is incorporated into the carbon dioxide during the dry ice manufacturing process.
  • the traditional first step in making dry ice is to manufacture carbon dioxide liquid. This is done by compressing CO 2 gas and removing any excess heat.
  • the CO 2 is typically liquefied at pressures ranging from 200-300 pounds per square inch and at a temperature of ⁇ 20° F. to 0° F., respectively. It is typically stored in a pressure vessel at lower than ambient temperature.
  • the liquid pressure is then reduced below the triple point pressure of 69.9 psi by sending it through an expansion valve. This can be done in a single step or, in many cases, by reducing the liquid pressure to 100 psi at a temperature of ⁇ 50° F.
  • the liquid CO 2 is expanded inside a dry ice pelletizer to form a mixture of dry ice snow and cold gas.
  • the cold gas is vented or recycled and the remaining dry ice snow is then compacted to form high density pellets.
  • Dry ice is typically compacted to a density of approximately 90 lb/ft 3 .
  • FIG. 1 is a flow diagram of a process 100 used to create a dry ice product, according to one embodiment of the present invention.
  • an additive is combined with liquid carbon dioxide, at step 102 .
  • the additive is combined with liquid carbon dioxide at a pressure above the triple point of CO 2 (70 psi), allowing the additive to fully dissolve in the liquid CO 2 .
  • a carrier chemical may be combined with the additive before the additive is introduced into the liquid CO 2 in step 102 .
  • the additive and the carrier may be combined with liquid carbon dioxide at a pressure above the triple point of CO 2 (70 psi), allowing the additive and the carrier to fully dissolve in the liquid CO 2 .
  • step 104 the mixture of liquid CO 2 , additive, and optional carrier chemical is then allowed to flow into a pelletizer, where the mixture is expanded to generate dry ice snow and compressed into dry ice pellets (step 106 ).
  • FIG. 2 depicts a processing environment used to form dry ice pellets according to process 100 .
  • Liquid CO 2 is stored in tank 2 , typically at pressures of 200 to 300 psi.
  • the additive in the vessel 8 is pumped through high pressure dosage pump 9 to mix with the CO 2 in the liquid CO 2 storage tank 2 .
  • the additive may be co-introduced with a carrier chemical into liquid CO 2 storage tank 2 .
  • the tank 2 contains any variety of mixing means such as agitators, stirrers, etc. to mix the liquid CO 2 with the additive and/or carrier chemical. If the additive and/or carrier are in gas form, then a sparger may be disposed in the tank 2 through which the additive (and carrier, if present) are introduced.
  • the liquid carbon dioxide and additive from storage tank 2 are then passed via line 32 directly to a dry ice pelletizer 34 .
  • Dry ice pelletizers are well known in the art, and it is believed that any dry ice pelletizer is capable of use with this embodiment.
  • the liquid CO 2 is expanded to a pressure (e.g., below 70 psi) allowing the liquid to form a mixture of gas and dry ice snow.
  • the dry ice snow is then extruded into pellets, typically ranging from 1/16 inch to 1 inch in diameter.
  • FIG. 3 is a flow diagram of a process 200 used to create a dry ice product, according to another embodiment of the present invention.
  • liquid CO 2 is flowed to a pelletizer at a pressure above the triple point of CO 2 (70 psi) (step 202 ).
  • the liquid CO 2 is expanded in the pelletizer to generate dry ice snow.
  • an additive is flowed to the pelletizer and sprayed onto the dry ice snow, which is then compressed into dry ice pellets (step 208 ).
  • a carrier chemical may be combined with the additive before the additive is introduced into the pelletizer in step 206 .
  • FIG. 4 depicts a processing environment used to form dry ice pellets according to process 200 .
  • the additive from a vessel 8 is pumped through high pressure dosage pump 9 and introduced into dry ice pelletizer 34 via a nozzle 36 .
  • the additive may be co-introduced with a carrier chemical via a nozzle 36 into dry ice pelletizer 34 .
  • High pressure dosage pump 9 may be connected to the pelletizer 34 in a manner such that when the piston of the pelletizer 34 is retracted a measured quantity of additive is distributed on the dry ice snow formed in the pelletizer 34 .
  • Additive is thus adsorbed to the dry ice snow, and as the piston is extended, the dry ice snow with adsorbed additive is pressed into pellets of dry ice and additive.
  • the pellitizer 34 may produce 100 kg/hour pellets.
  • the high pressure dosage pump may be set to deliver an additive flow rate of between about 1 mL/min and between about 10 ml/min.
  • FIG. 4 depicts only one additive source 8 , high pressure dosage pump 9 , and nozzle 36 , it is contemplated that any number of additive sources, high pressure dosage pumps, and nozzles may be used to separately introduce a plurality of additives to the pelletizer. In one embodiment, any number of between two and ten additive sources, high pressure dosage pumps, and nozzles are provided.
  • the additive may be sprayed onto the surface of ready made dry ice snow, pellets or blocks.
  • the additive containing dry ice pellets embodied herein may be used in dry ice blasting systems. Such dry ice blasting systems are well known in the art, and it is believed that the additive containing dry ice may be used with any system or apparatus suitable for dry ice blasting.
  • Typical dry ice blasting systems include dry ice pellet hoppers, air or other gas sources, hoses, and nozzles. Dry ice pellets may be accelerated by compressed air and passed through the hoses and nozzles, striking the target item at high velocities. A compressed air supply of about 80 psi may be used in this process. Both single-hose and dual hose systems may be used.
  • Dual-hose systems flow compressed gas (such as air) through one hose to a blast applicator (or nozzle), and the Venturi effect accelerates the dry ice from a dry ice hopper through a second hose and to the blast applicator.
  • the dry ice particles and compressed gas are then blasted together.
  • single-hose systems there is one hose leading from the hopper to the applicator and a feeder system that feeds the dry ice particles and compressed gas into the hose and to the applicator.
  • the dry ice pellets may crack and additive may be released to the target item.
  • the additive may be released to the target item upon sublimation of the dry ice pellet, leaving additive and any potential carrier chemical.
  • the additive may be an antimicrobial compound. Upon sublimation or cracking of the dry ice, the antimicrobial compound is released to provide an improved cleaning effect of target item. If the target item to be dry ice blasted concerns food industry, both the carrier chemical and the additive may be GRAS qualified.
  • MIRENAT-N manufactured by Vedeqsa Lamirsa Group based in Barcelona, Spain and distributed in the U.S. by A & B Ingredients (Fairfield, N.J.).
  • MIRENAT-N is manufactured from a naturally occurring antimicrobial compound, and its active ingredient is lauric arginate (N-lauroyl-L-Arginine ethyl ester monohydrochloride).
  • lauric arginate N-lauroyl-L-Arginine ethyl ester monohydrochloride
  • the formulation available for sale contains about 10% active lauric arginate and 90% food grade propylene glycol. It is possible to substitute ethanol for propylene glycol as the carrier chemical when using MIRENAT-N.
  • MIRENAT-N Advantages of using MIRENAT-N include: minimal modification of original product, low application use dosage, and well known antimicrobial activity. Based on the manufacturer's specifications, MIRENAT-N can be manufactured to be lower than 11% active in ethanol. MIRENAT, either in propylene glycol, or ethanol, when treated with meat or poultry, can lose its efficacy over time, due to enzymatic reactions. Such problems can be overcome by adding other preservatives or antimicrobials to MIRENAT-N.
  • antimicrobial additives used in embodiments of the invention could include natural lactic acid, ascorbic acid, benzoic acid, lactates, gluconates, and lacititol.
  • the solubility of the following products manufactured by Purac (Lincolnshire, Ill.) was tested: potassium gluconate, ammonium lactate, potassium lactate, sodium lactate, sodium lactate powder, and sodium diacetate. Based on solubility testing, all liquid forms of these additives were found to be ethanol soluble.
  • Other antimicrobial additives could include parabens, a group of chemicals which are derivatives of phenol. Parabens are widely used as preservatives in the cosmetic and pharmaceutical industries, and are also popular in the meat processing industry.
  • Methyl paraben sold by The KIC Group (Vancouver, Wash.), is also soluble in ethanol and not soluble in water. Thus, methyl paraben can be a preservative or antimicrobial added in one embodiment of the composition with ethanol as the carrier chemical.
  • antimicrobials that are not directly soluble in ethanol but soluble in water can be also be used in embodiments of the invention.
  • examples include potassium nitrite and potassium nitrate. These salts can be dissolved in water and further mixed with ethanol.
  • the final composition of ethanol can be adjusted such that it does not freeze under liquid CO 2 storage conditions.
  • the ethanol composition could be adjusted by starting with an amount of high purity ethanol and diluting the ethanol with water containing antimicrobials, such that a final composition is still compatible with liquid CO 2 temperatures.
  • salts of organic acids are preservatives that act by increasing the proton concentration of the cytoplasm of many microbes. Under mild conditions, they are protonated, since they are weak acids. The relative non-polarity of these salts allows the salts to penetrate the cellular membrane of bacteria and other microorganisms. Once inside the cell, these acids dissociate (releasing protons), due to the lower proton concentration of cytoplasm. Microorganisms, to maintain their proton concentration, they must compensate for these acids by discharging protons using ATP synthesis. This in turn disrupts ATP synthesis, and causes the microbes to die. Hence, the addition of these salts can enhance the antimicrobial efficacy of the composition proposed in embodiments of the invention.
  • the additive may be a disinfectant. Upon sublimation or cracking of the dry ice, the disinfectant is released to improve the disinfecting effects of the dry ice blasting of the target item.
  • Suitable disinfectants may be combinations of peroxides, formic acid, performic acid, peroxygen compounds, peracetic acid, perglutaric acid, and perbenzoic acid.
  • the additive may be a detergent, or surfactant.
  • the detergent or surfactant Upon sublimation or cracking of the dry ice, the detergent or surfactant is released so that the dry ice and detergent simultaneously act on the surface of target item to be cleaned.
  • suitable detergents or surfactants are sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, alkyl benzene sulfonate, soaps, or fatty acid salts, cetyl trimethylammonium bromide, cetyl pyridinium chloride, polyethoxylated tallow amine, benzalkonium chloride, dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, alkyl poly(ethylene oxide), octyl glucoside, decyl maltoside, cetyl alcohol, oleyl alcohol, cocamide monoethanol
  • the additive may be an odorant.
  • the odorant Upon sublimation or cracking of the dry ice, the odorant is released to neutralize unpleasant odors or to provide scent producing an olfactory response in a human being.
  • suitable odorants are 1-methoxy-4-(1-propenyl)benzene (licorice), methoxybenzene (anis seed), 2-methoxy-4-(2-propenyl)phenol (clove oil), (R)-2-(4-methylcyclohex-3-enyl)propane-2-thiol (grapefruit), 2,3-benzopyrrole (jasmine), methyl 2-hydroxybenzoate (oil of wintergreen), 2-ethoxynaphthalene (orange flowers), and 3-hydroxy-4,5-dimethylfuran-2(5H)-one (maple syrup, curry, fenugreek).
  • alcohols may also be suitable as odorants, such as cis-3-Hexen-1-ol (fresh cut grass), 2-ethyl-3-hydroxy-pyran-4-one (sugary, cooked fruit), 4-hydroxy-2,5-dimethyl-furan-3-one (strawberry), 5-methyl-2-propan-2-yl-cyclohexan-1-ol (peppermint), and 1-hexanol (herbaceous, woody).
  • aldehydes may also be suitable as odorants, such as benzaldehyde (marzipan, almond), hexanal (green, grassy), cinnamaldehyde (cinnamon), cis-3-hexenal (green tomatoes), (2E)-3,7-dimethylocta-2,6-dienal (lemongrass, lemon oil), furan-2-carbaldehyde (burnt oats), (2Z)-3,7-dimethylocta-2,6-dienal (citrus, lemongrass), and 4-hydroxy-3-methoxy-benzaldehyde (vanilla).
  • benzaldehyde marzipan, almond
  • hexanal green, grassy
  • cinnamaldehyde cinnamon
  • cis-3-hexenal green tomatoes
  • (2E)-3,7-dimethylocta-2,6-dienal lemongrass, lemon oil
  • esters may also be suitable as odorants, such as ethyl acetate (fruity, solvent), ethyl butanoate (fruity), methyl butanoate (apple, fruity) pentyl butanoate (pear, apricot), pentyl pentanoate (apple, pineapple), isoamyl acetate (banana), hexyl acetate (apple, floral, fruity), ethyl hexanoate (sweet, pineapple, fruity), ethyl octanoate (wine, fruity), ethyl decanoate (brandy, fruity), and ethyl 3-methyl-3-phenyl-oxirane-2-carboxylate (strawberry).
  • ethyl acetate fruity, solvent
  • ethyl butanoate fruity
  • pear, apricot pentyl pentanoate
  • isoamyl acetate banan
  • terpenes may also be suitable as odorants, such as 1,7,7-trimethylnorbornan-2-one (camphor), 3,7-dimethyloct-6-en-1-ol (rose), 3,7-dimethylocta-1,6-dien-3-ol (floral, citrus, coriander), (2E)-3,7-dimethylocta-2,6-dien-1-ol (rose), 3,7,11-trimethyl 1,6,10-dodecatrien-3-ol (fresh bark), 2-(4-methyl-1-cyclohex-3-enyl)propan-2-ol (citrus woody), (1S,4R,5R)-4-methyl-1-propan-2-yl-bicyclo[3.1.0]hexan-3-one (juniper, common sage, wormwood), and 5-methyl-2-propan-2-yl-phenol (thyme-like).
  • camphor 1,7,7-trimethylnorbornan-2-one
  • rose
  • the odorant may be d-limonene.
  • D-limonene is a terpene which may be extracted from the rind of citrus fruit and is used in food manufacturing as a flavoring, and added to cleaning products such as hand cleansers to give a lemon-orange fragrance. Because d-limonene has a melting point of ⁇ 95° C. and dissolves in the liquid CO 2 , it is suitable for dry ice production. Thus, d-limonene may also be used as a carrier chemical. While not bound by any theory of operation, if the d-limonene is added before or during CO 2 expansion, the d-limonene is believed to be trapped in the structural lattices of the dry ice. As the dry ice sublimes or cracks d-limonene is released from the structural lattices of the dry ice, and a pleasant citrus scent emanates from the dry ice.
  • the odorous chemical may be vanillin. Both methyl-vanillin and ethyl-vanillin may be used. In one embodiment, the vanillin may be co-introduced to the CO 2 with a carrier chemical such as ethanol or polyethylene glycol. Natural vanilla extract may also be used. As the dry ice sublimes or cracks vanillin is released from the structural lattices of the dry ice, and a pleasant vanilla scent emanates from the dry ice.
  • the odorous chemical may be mint extracts or artificial mint flavoring.
  • the mint flavoring may be co-introduced into the liquid CO 2 with a carrier chemical such as ethanol or polyethylene glycol. As the dry ice sublimes or cracks mint flavor is released from the structural lattices of the dry ice, and a pleasant vanilla scent emanates from the dry ice.
  • the additive may consist of natural or artificial compounds having cherry odors, strawberry odors, coconut odors, chocolate odors, or any other natural of artificial odors possible.
  • carrier chemicals may or may not need to be co-introduced with the additive to the CO 2 , according to different embodiments.
  • the additive may be a combination of antimicrobial compounds, disinfectants, detergents, surfactants, and/or odorants.

Abstract

Dry ice blasting using dry ice pellets having additives, such as antimicrobial compounds, disinfectants, surfactants, and odorants. Additives are incorporated into solid carbon dioxide by any variety of processes. The additives are selected on the basis of cleaning or olfactory effects.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit under 35 U.S.C. § 119(e) to provisional application No. 60/764,302, filed Feb. 1, 2006, the entire contents of which are incorporated herein by reference.
  • BACKGROUND
  • Dry ice is generally used for many applications, like cooling and chilling purposes in the food and beverage industries. One of the latest uses is the use of dry ice in blasting applications. Dry ice blasting is similar to sandblasting, high-pressure water blasting, or steam blasting. Dry ice blasting systems may project small rice size pellets of dry ice at a temperature of about −78° C. out of a jet nozzle or applicator together with compressed air onto the surface of a target material. The low dry ice temperature causes contaminants on the target material surface to shrink and loose adhesion to the target material. The warmer sub surface of the target material causes the dry ice to sublime into carbon dioxide gas which has about 800 times greater volume than the solid dry ice. The carbon dioxide expands behind the contaminant speeding up contaminant removal from the surface. The contaminant then typically falls to the ground, or into some receptacle. Because the dry ice evaporates, only the contaminant is left for disposal.
  • Because conventional dry ice blasting provides cleaning based on using pellets of solid carbon dioxide alone, the potential applications, and/or the effectiveness for a given application, are limited. Therefore, the remains a need for improving and/or expanding the uses dry ice blasting using dry ice pellets.
  • SUMMARY
  • Embodiments of the invention generally provide for dry ice blasting using dry ice pellets having additives. One embodiment of the invention provides a method for treating a surface of a target item by providing pellets which include solid carbon dioxide and one or more additives, providing a stream of pressurized gas, combining the pellets and the pressurized gas to accelerate the pellets, and exposing the surface of the target item to the accelerated pellets.
  • Another embodiment of the invention provides a method for treating a surface of a target item by providing solid carbon dioxide pellets, providing a stream of pressurized gas, combining the solid carbon dioxide pellets and the stream of pressurized gas, exposing the surface of the target item to the solid carbon dioxide pellets, and using solid carbon dioxide pellets including one or more additives which are selected from at least one of antimicrobial compounds, disinfectants, detergents, odorants, and combinations thereof.
  • Another embodiment of the invention provides pellets for treating surfaces of dry ice blasting target items, including dry ice and one or more additives which are releasable onto the surfaces of the target items. The one or more additives are selected to effect at least one of a cleaning function, a sanitizing function, disinfecting function, anti-microbial function, and an olfactory response in a human being.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a further understanding of the nature and objects of the present invention, reference should be made to the following detailed description, taken in conjunction with the accompanying drawings, in which like elements are given the same or analogous reference numbers and wherein:
  • FIG. 1 is a flow chart of a process for forming a dry ice product containing an additive chemical, according to one embodiment of the invention;
  • FIG. 2 is a schematic illustration of one embodiment for forming extruded pellets of dry ice containing an additive chemical;
  • FIG. 3 is a flow chart of a process for forming a dry ice product containing an additive chemical, according to one embodiment of the invention; and
  • FIG. 4 is a schematic illustration of one embodiment for forming extruded pellets of dry ice containing an additive chemical.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • The words and phrases used herein should be given their ordinary and customary meaning in the art by one skilled in the art unless otherwise further defined.
  • In the following, reference is made to embodiments of the invention. However, it should be understood that the invention is not limited to specific described embodiments. Instead, any combination of the following features and elements, whether related to different embodiments or not, is contemplated to implement and practice the invention. Furthermore, in various embodiments the invention provides numerous advantages over the prior art. However, although embodiments of the invention may achieve advantages over other possible solutions and/or over the prior art, whether or not a particular advantage is achieved by a given embodiment is not limiting of the invention. Thus, the following aspects, features, embodiments and advantages are merely illustrative and are not considered elements or limitations of the appended claims except where explicitly recited in a claim(s). Likewise, reference to “the invention” shall not be construed as a generalization of any inventive subject matter disclosed herein and shall not be considered to be an element or limitation of the appended claims except where explicitly recited in a claim(s).
  • As used herein, the term “antimicrobial” refers to a physical or chemical agent capable of causing greater than 90% reduction (1-log order reduction) in the population of bacteria or spores within 10 seconds at 60° C. The antimicrobial composition used in embodiments of the invention preferably provides greater than a 99% reduction (2-log order reduction), and more preferably greater than a 99.99% (4-log order reduction), and most preferably a 99.999% (5-log order reduction) in such a population preferably within 60 seconds at 60° C., and more preferably within 10 seconds at 60° C.
  • As used herein, the term “disinfectant” refers to a physical or chemical agent capable of preventing the growth and reproduction of various microorganisms (such as bacteria, fungi, protozoa, and viruses) on surfaces.
  • As used herein, the phrase “target item” or “target material” refers to equipment, devices, structures, food products, pharmaceutical products, or other items that are in need of surface treatment, sanitation, preserving, or otherwise protecting from or treated for pathogenic microorganisms.
  • Dry ice blasting systems project small sized pellets of dry ice out of a jet nozzle or applicator together with compressed air onto the surface of a target material. Embodiments described herein incorporate additives to the dry ice pellets used in the dry ice blasting process. Dry ice blasting is well known in the art, and it is believed that any system or apparatus suitable for dry ice blasting is capable of use with embodiments of the invention.
  • Dry ice for dry ice blasting may be produced by a controlled expansion of liquid CO2 into dry ice snow. Additives may be added to the liquid CO2 before the expansion of the liquid CO2 into dry ice snow, or the additives may be sprayed onto the surfaces of dry ice snow. Liquid CO2 is usually maintained at a temperature of about −60° C. at a pressure of 5.11 atm, although embodiments of the invention are not limited to particular temperature or pressure values for maintaining liquid CO2. In embodiments of the invention, the additives used may have freezing points higher, lower, or similar to that of liquid CO2. Embodiments of the invention can involve mixing one or more additives with a carrier chemical to a final concentration without affecting the freezing point of the carrier chemical. In a particular embodiment, a combined solution prepared using a carrier chemical and one or more additives should not have a freezing point higher than that of liquid CO2. In one embodiment of the invention, liquid CO2 combined with a carrier chemical and an additive is fed to an ice press to form dry ice. Yet another embodiment of the invention involves feeding liquid CO2 and a carrier chemical and an additive to an ice press as separate streams, which then combine in the press to generate dry ice “snow” containing the additives. In embodiments of the invention, the additives may be selected from those listed by the U.S. Food and Drug Administration as being GRAS (Generally Recognized as Safe).
  • In various embodiments, the additive formulation can essentially contain an alcohol, a terpene, or polyethylene glycol as a carrier chemical in various embodiments. An alcohol is any organic compound in which a hydroxyl group (—OH) is bound to a carbon atom of an alkyl or substituted alkyl group. The general formula for a simple acyclic alcohol is CnH2n+1OH. Food grade alcohol, ethanol, is a carrier chemical that has a very low freezing point, and can be used in one embodiment of the invention. Terpenes are another large group of chemical compounds found in nature that act as effective carrier chemicals with low freezing points. One such example is d-limonene, present in orange peel and extracted from the orange skin and provides a lemon-orange scent. The freezing point of d-Limonene is suitable for liquid CO2 storage conditions, and is also considered to be an effective carrier chemical used in formulation preparations. Polyethylene glycol is a non-toxic liquid with low molecular weight, and is a common ingredient of pharmaceuticals.
  • Various additives listed as GRAS may be dissolved directly into the carrier chemical and then mixed with liquid CO2 or CO2 in “snow” form before being extruded as pellets or blocks. Another embodiment of the invention can involve mixing one or more additives with water, and then adding the solution to the carrier chemical to a final concentration without affecting the freezing point of the carrier chemical.
  • GRAS chemical additives may include flavoring agents, flavor enhancers, intensifiers, emulsifiers, binders, fillers, gelling agents, plasticizers, stabilizers, suspending agents, whipping agents, sweetening agents, flavoring agents, colors, enzymes, antioxidants, sequestrants, wetting agents, surfactants, curing and pickling agents, firming agents, fumigants, humectants, leavening agents, processing aids, surface active agents, surface finishing agents, synergists, and texturizers.
  • The dry ice product may be manufactured in the form of pellets, flakes, powders, and other possible forms which may be suitable for dry ice blasting. Pellets of dry ice in the range of 1/16 inch to 1 inch may be formed. In addition, powders such as snow, flakes, or chips may be formed by methods known in the art.
  • The dry ice product is essentially void of water. What is meant by “essentially void of” is that the dry ice product, if it contains water, will comprise less than 5% by weight (wt. %) water, according to one embodiment. Typically, the water content will be less than 1 wt. % in a particular embodiment. Moisture levels of up to 5,000 ppm may be helpful in maintaining the desired shape of the product. The carrier and additives concentrations in the dry ice may vary widely and may depend upon the end use of the product.
  • In one embodiment of the invention, the additive is incorporated into the carbon dioxide during the dry ice manufacturing process. The traditional first step in making dry ice is to manufacture carbon dioxide liquid. This is done by compressing CO2 gas and removing any excess heat. The CO2 is typically liquefied at pressures ranging from 200-300 pounds per square inch and at a temperature of −20° F. to 0° F., respectively. It is typically stored in a pressure vessel at lower than ambient temperature. The liquid pressure is then reduced below the triple point pressure of 69.9 psi by sending it through an expansion valve. This can be done in a single step or, in many cases, by reducing the liquid pressure to 100 psi at a temperature of −50° F. as a first step to allow easy recovery of the flash gases. The liquid CO2 is expanded inside a dry ice pelletizer to form a mixture of dry ice snow and cold gas. The cold gas is vented or recycled and the remaining dry ice snow is then compacted to form high density pellets. Dry ice is typically compacted to a density of approximately 90 lb/ft3.
  • FIG. 1 is a flow diagram of a process 100 used to create a dry ice product, according to one embodiment of the present invention. In general, to manufacture the dry ice product, an additive is combined with liquid carbon dioxide, at step 102. In one embodiment, the additive is combined with liquid carbon dioxide at a pressure above the triple point of CO2 (70 psi), allowing the additive to fully dissolve in the liquid CO2. In certain embodiments, a carrier chemical may be combined with the additive before the additive is introduced into the liquid CO2 in step 102. In this case, the additive and the carrier may be combined with liquid carbon dioxide at a pressure above the triple point of CO2 (70 psi), allowing the additive and the carrier to fully dissolve in the liquid CO2. In step 104 the mixture of liquid CO2, additive, and optional carrier chemical is then allowed to flow into a pelletizer, where the mixture is expanded to generate dry ice snow and compressed into dry ice pellets (step 106).
  • FIG. 2 depicts a processing environment used to form dry ice pellets according to process 100. Liquid CO2 is stored in tank 2, typically at pressures of 200 to 300 psi. The additive in the vessel 8 is pumped through high pressure dosage pump 9 to mix with the CO2 in the liquid CO2 storage tank 2. The additive may be co-introduced with a carrier chemical into liquid CO2 storage tank 2. In one embodiment, the tank 2 contains any variety of mixing means such as agitators, stirrers, etc. to mix the liquid CO2 with the additive and/or carrier chemical. If the additive and/or carrier are in gas form, then a sparger may be disposed in the tank 2 through which the additive (and carrier, if present) are introduced. The liquid carbon dioxide and additive from storage tank 2 are then passed via line 32 directly to a dry ice pelletizer 34. Dry ice pelletizers are well known in the art, and it is believed that any dry ice pelletizer is capable of use with this embodiment. In the pelletizer, the liquid CO2 is expanded to a pressure (e.g., below 70 psi) allowing the liquid to form a mixture of gas and dry ice snow. The dry ice snow is then extruded into pellets, typically ranging from 1/16 inch to 1 inch in diameter.
  • FIG. 3 is a flow diagram of a process 200 used to create a dry ice product, according to another embodiment of the present invention. In general, to manufacture the dry ice product, liquid CO2 is flowed to a pelletizer at a pressure above the triple point of CO2 (70 psi) (step 202). In step 204, the liquid CO2 is expanded in the pelletizer to generate dry ice snow. In step 206, an additive is flowed to the pelletizer and sprayed onto the dry ice snow, which is then compressed into dry ice pellets (step 208). In certain embodiments, a carrier chemical may be combined with the additive before the additive is introduced into the pelletizer in step 206.
  • FIG. 4 depicts a processing environment used to form dry ice pellets according to process 200. In FIG. 4, the additive from a vessel 8 is pumped through high pressure dosage pump 9 and introduced into dry ice pelletizer 34 via a nozzle 36. The additive may be co-introduced with a carrier chemical via a nozzle 36 into dry ice pelletizer 34. High pressure dosage pump 9 may be connected to the pelletizer 34 in a manner such that when the piston of the pelletizer 34 is retracted a measured quantity of additive is distributed on the dry ice snow formed in the pelletizer 34. Additive is thus adsorbed to the dry ice snow, and as the piston is extended, the dry ice snow with adsorbed additive is pressed into pellets of dry ice and additive. In one embodiment, the pellitizer 34 may produce 100 kg/hour pellets. In this embodiment, the high pressure dosage pump may be set to deliver an additive flow rate of between about 1 mL/min and between about 10 ml/min.
  • Although FIG. 4 depicts only one additive source 8, high pressure dosage pump 9, and nozzle 36, it is contemplated that any number of additive sources, high pressure dosage pumps, and nozzles may be used to separately introduce a plurality of additives to the pelletizer. In one embodiment, any number of between two and ten additive sources, high pressure dosage pumps, and nozzles are provided.
  • In another embodiment of the invention the additive may be sprayed onto the surface of ready made dry ice snow, pellets or blocks.
  • The additive containing dry ice pellets embodied herein may be used in dry ice blasting systems. Such dry ice blasting systems are well known in the art, and it is believed that the additive containing dry ice may be used with any system or apparatus suitable for dry ice blasting. Typical dry ice blasting systems include dry ice pellet hoppers, air or other gas sources, hoses, and nozzles. Dry ice pellets may be accelerated by compressed air and passed through the hoses and nozzles, striking the target item at high velocities. A compressed air supply of about 80 psi may be used in this process. Both single-hose and dual hose systems may be used. Dual-hose systems flow compressed gas (such as air) through one hose to a blast applicator (or nozzle), and the Venturi effect accelerates the dry ice from a dry ice hopper through a second hose and to the blast applicator. The dry ice particles and compressed gas are then blasted together. In single-hose systems there is one hose leading from the hopper to the applicator and a feeder system that feeds the dry ice particles and compressed gas into the hose and to the applicator. Upon impact with the target item the dry ice pellets may crack and additive may be released to the target item. Alternatively, the additive may be released to the target item upon sublimation of the dry ice pellet, leaving additive and any potential carrier chemical.
  • EXAMPLES
  • In one embodiment of the invention, the additive may be an antimicrobial compound. Upon sublimation or cracking of the dry ice, the antimicrobial compound is released to provide an improved cleaning effect of target item. If the target item to be dry ice blasted concerns food industry, both the carrier chemical and the additive may be GRAS qualified.
  • One embodiment of the invention involves the addition of the food additive MIRENAT-N, manufactured by Vedeqsa Lamirsa Group based in Barcelona, Spain and distributed in the U.S. by A & B Ingredients (Fairfield, N.J.). MIRENAT-N is manufactured from a naturally occurring antimicrobial compound, and its active ingredient is lauric arginate (N-lauroyl-L-Arginine ethyl ester monohydrochloride). The formulation available for sale contains about 10% active lauric arginate and 90% food grade propylene glycol. It is possible to substitute ethanol for propylene glycol as the carrier chemical when using MIRENAT-N. Advantages of using MIRENAT-N include: minimal modification of original product, low application use dosage, and well known antimicrobial activity. Based on the manufacturer's specifications, MIRENAT-N can be manufactured to be lower than 11% active in ethanol. MIRENAT, either in propylene glycol, or ethanol, when treated with meat or poultry, can lose its efficacy over time, due to enzymatic reactions. Such problems can be overcome by adding other preservatives or antimicrobials to MIRENAT-N.
  • Other antimicrobial additives used in embodiments of the invention could include natural lactic acid, ascorbic acid, benzoic acid, lactates, gluconates, and lacititol. The solubility of the following products manufactured by Purac (Lincolnshire, Ill.) was tested: potassium gluconate, ammonium lactate, potassium lactate, sodium lactate, sodium lactate powder, and sodium diacetate. Based on solubility testing, all liquid forms of these additives were found to be ethanol soluble. Other antimicrobial additives could include parabens, a group of chemicals which are derivatives of phenol. Parabens are widely used as preservatives in the cosmetic and pharmaceutical industries, and are also popular in the meat processing industry. Methyl paraben, sold by The KIC Group (Vancouver, Wash.), is also soluble in ethanol and not soluble in water. Thus, methyl paraben can be a preservative or antimicrobial added in one embodiment of the composition with ethanol as the carrier chemical.
  • Other antimicrobials that are not directly soluble in ethanol but soluble in water can be also be used in embodiments of the invention. Examples include potassium nitrite and potassium nitrate. These salts can be dissolved in water and further mixed with ethanol. The final composition of ethanol can be adjusted such that it does not freeze under liquid CO2 storage conditions. The ethanol composition could be adjusted by starting with an amount of high purity ethanol and diluting the ethanol with water containing antimicrobials, such that a final composition is still compatible with liquid CO2 temperatures.
  • In general, salts of organic acids (propinates, sorbates, benzoates and lactate) are preservatives that act by increasing the proton concentration of the cytoplasm of many microbes. Under mild conditions, they are protonated, since they are weak acids. The relative non-polarity of these salts allows the salts to penetrate the cellular membrane of bacteria and other microorganisms. Once inside the cell, these acids dissociate (releasing protons), due to the lower proton concentration of cytoplasm. Microorganisms, to maintain their proton concentration, they must compensate for these acids by discharging protons using ATP synthesis. This in turn disrupts ATP synthesis, and causes the microbes to die. Hence, the addition of these salts can enhance the antimicrobial efficacy of the composition proposed in embodiments of the invention.
  • In one embodiment of the invention, the additive may be a disinfectant. Upon sublimation or cracking of the dry ice, the disinfectant is released to improve the disinfecting effects of the dry ice blasting of the target item. Suitable disinfectants may be combinations of peroxides, formic acid, performic acid, peroxygen compounds, peracetic acid, perglutaric acid, and perbenzoic acid.
  • In one embodiment of the invention, the additive may be a detergent, or surfactant. Upon sublimation or cracking of the dry ice, the detergent or surfactant is released so that the dry ice and detergent simultaneously act on the surface of target item to be cleaned. Examples of suitable detergents or surfactants are sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, alkyl benzene sulfonate, soaps, or fatty acid salts, cetyl trimethylammonium bromide, cetyl pyridinium chloride, polyethoxylated tallow amine, benzalkonium chloride, dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, alkyl poly(ethylene oxide), octyl glucoside, decyl maltoside, cetyl alcohol, oleyl alcohol, cocamide monoethanolamine, cocamide diethanolamine, and cocamide triethanolamine.
  • In one embodiment of the invention, the additive may be an odorant. Upon sublimation or cracking of the dry ice, the odorant is released to neutralize unpleasant odors or to provide scent producing an olfactory response in a human being. Examples of suitable odorants are 1-methoxy-4-(1-propenyl)benzene (licorice), methoxybenzene (anis seed), 2-methoxy-4-(2-propenyl)phenol (clove oil), (R)-2-(4-methylcyclohex-3-enyl)propane-2-thiol (grapefruit), 2,3-benzopyrrole (jasmine), methyl 2-hydroxybenzoate (oil of wintergreen), 2-ethoxynaphthalene (orange flowers), and 3-hydroxy-4,5-dimethylfuran-2(5H)-one (maple syrup, curry, fenugreek).
  • Several alcohols may also be suitable as odorants, such as cis-3-Hexen-1-ol (fresh cut grass), 2-ethyl-3-hydroxy-pyran-4-one (sugary, cooked fruit), 4-hydroxy-2,5-dimethyl-furan-3-one (strawberry), 5-methyl-2-propan-2-yl-cyclohexan-1-ol (peppermint), and 1-hexanol (herbaceous, woody).
  • Several aldehydes may also be suitable as odorants, such as benzaldehyde (marzipan, almond), hexanal (green, grassy), cinnamaldehyde (cinnamon), cis-3-hexenal (green tomatoes), (2E)-3,7-dimethylocta-2,6-dienal (lemongrass, lemon oil), furan-2-carbaldehyde (burnt oats), (2Z)-3,7-dimethylocta-2,6-dienal (citrus, lemongrass), and 4-hydroxy-3-methoxy-benzaldehyde (vanilla).
  • Several esters may also be suitable as odorants, such as ethyl acetate (fruity, solvent), ethyl butanoate (fruity), methyl butanoate (apple, fruity) pentyl butanoate (pear, apricot), pentyl pentanoate (apple, pineapple), isoamyl acetate (banana), hexyl acetate (apple, floral, fruity), ethyl hexanoate (sweet, pineapple, fruity), ethyl octanoate (wine, fruity), ethyl decanoate (brandy, fruity), and ethyl 3-methyl-3-phenyl-oxirane-2-carboxylate (strawberry).
  • Several terpenes may also be suitable as odorants, such as 1,7,7-trimethylnorbornan-2-one (camphor), 3,7-dimethyloct-6-en-1-ol (rose), 3,7-dimethylocta-1,6-dien-3-ol (floral, citrus, coriander), (2E)-3,7-dimethylocta-2,6-dien-1-ol (rose), 3,7,11-trimethyl 1,6,10-dodecatrien-3-ol (fresh bark), 2-(4-methyl-1-cyclohex-3-enyl)propan-2-ol (citrus woody), (1S,4R,5R)-4-methyl-1-propan-2-yl-bicyclo[3.1.0]hexan-3-one (juniper, common sage, wormwood), and 5-methyl-2-propan-2-yl-phenol (thyme-like).
  • In one embodiment the odorant may be d-limonene. D-limonene is a terpene which may be extracted from the rind of citrus fruit and is used in food manufacturing as a flavoring, and added to cleaning products such as hand cleansers to give a lemon-orange fragrance. Because d-limonene has a melting point of −95° C. and dissolves in the liquid CO2, it is suitable for dry ice production. Thus, d-limonene may also be used as a carrier chemical. While not bound by any theory of operation, if the d-limonene is added before or during CO2 expansion, the d-limonene is believed to be trapped in the structural lattices of the dry ice. As the dry ice sublimes or cracks d-limonene is released from the structural lattices of the dry ice, and a pleasant citrus scent emanates from the dry ice.
  • In one embodiment of the invention the odorous chemical may be vanillin. Both methyl-vanillin and ethyl-vanillin may be used. In one embodiment, the vanillin may be co-introduced to the CO2 with a carrier chemical such as ethanol or polyethylene glycol. Natural vanilla extract may also be used. As the dry ice sublimes or cracks vanillin is released from the structural lattices of the dry ice, and a pleasant vanilla scent emanates from the dry ice.
  • In one embodiment of the invention the odorous chemical may be mint extracts or artificial mint flavoring. In one embodiment, the mint flavoring may be co-introduced into the liquid CO2 with a carrier chemical such as ethanol or polyethylene glycol. As the dry ice sublimes or cracks mint flavor is released from the structural lattices of the dry ice, and a pleasant vanilla scent emanates from the dry ice.
  • In other embodiments, the additive may consist of natural or artificial compounds having cherry odors, strawberry odors, coconut odors, chocolate odors, or any other natural of artificial odors possible. Depending on the solubility of the selected additive in liquid CO2, carrier chemicals may or may not need to be co-introduced with the additive to the CO2, according to different embodiments.
  • In one embodiment, the additive may be a combination of antimicrobial compounds, disinfectants, detergents, surfactants, and/or odorants.
  • Preferred processes and apparatus for practicing the present invention have been described. It will be understood and readily apparent to the skilled artisan that many changes and modifications may be made to the above-described embodiments without departing from the spirit and the scope of the present invention. The foregoing is illustrative only and that other embodiments of the integrated processes and apparatus may be employed without departing from the true scope of the invention defined in the following claims.

Claims (35)

1. A method treating a surface of a target item, comprising:
a) providing pellets, the pellets comprising:
i) solid carbon dioxide; and
ii) one or more additives;
b) providing a stream of pressurized gas;
c) combining the pellets and the pressurized gas to accelerate the pellets; and
d) exposing the surface of the target item to the accelerated pellets.
2. The method of claim 1, wherein the one or more additives is selected from at least one of antimicrobial compounds, disinfectants, surfactants, detergents, odorants, and combinations thereof.
3. The method of claim 2, wherein the one or more additives is an antimicrobial compound.
4. The method of claim 3, wherein the antimicrobial compound is selected from the group consisting of lauric arginate, natural lactic acid, ascorbic acid, benzoic acid, lactates, lacititol, gluconate, ammonium lactate, potassium lactate, sodium lactate, sodium lactate powder, sodium diacetate, methyl paraben, potassium nitrite, potassium nitrate, propinates, sorbates, benzoates, and combinations thereof.
5. The method of claim 2, wherein the one or more additives is a disinfectant.
6. The method of claim 5, wherein the disinfectant is selected from the group consisting of peroxides, formic acid, performic acid, peroxygen compounds, peracetic acid, perglutaric acid, perbenzoic acid, and combinations thereof.
7. The method of claim 2, wherein the one or more additives is a surfactant.
8. The method of claim 7, wherein the surfactant is selected from the group consisting of sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, alkyl benzene sulfonate, soaps, or fatty acid salts, cetyl trimethylammonium bromide, cetyl pyridinium chloride, polyethoxylated tallow amine, benzalkonium chloride, dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, alkyl poly(ethylene oxide), octyl glucoside, decyl maltoside, cetyl alcohol, oleyl alcohol, cocamide monoethanolamine, cocamide diethanolamine, cocamide triethanolamine, and combinations thereof.
9. The method of claim 2, wherein the one or more additives is an odorant.
10. The method of claim 9, wherein the odorant is selected from the group consisting of 1-methoxy-4-(1-propenyl)benzene methoxybenzene, 2-methoxy-4-(2-propenyl)phenol, (R)-2-(4-methylcyclohex-3-enyl)propane-2-thiol, 2,3-benzopyrrole, methyl 2-hydroxybenzoate, 2-ethoxynaphthalene, and 3-Hydroxy-4,5-dimethylfuran-2(5H)-one, cis-3-Hexen-1-ol, 2-ethyl-3-hydroxy-pyran-4-one, 4-hydroxy-2,5-dimethyl-furan-3-one, 5-methyl-2-propan-2-yl-cyclohexan-1-ol (peppermint), 1-hexanol, benzaldehyde, hexanal, cinnamaldehyde, cis-3-hexenal, (2E)-3,7-dimethylocta-2,6-dienal, furan-2-carbaldehyde, (2Z)-3,7-dimethylocta-2,6-dienal, 4-hydroxy-3-methoxy-benzaldehyde, ethyl acetate, ethyl butanoate, methyl butanoate, pentyl butanoate, pentyl pentanoate, isoamyl acetate, hexyl acetate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl 3-methyl-3-phenyl-oxirane-2-carboxylate, 1,7,7-trimethylnorbornan-2-one, 3,7-dimethyloct-6-en-1-ol), 3,7-dimethylocta-1,6-dien-3-ol, (2E)-3,7-dimethylocta-2,6-dien-1-ol, 3,7,11-trimethyl1,6,10-dodecatrien-3-ol, 2-(4-methyl-1-cyclohex-3-enyl)propan-2-ol, (1S,4R,5R)-4-methyl-1-propan-2-yl-bicyclo[3.1.0]hexan-3-one, 5-methyl-2-propan-2-yl-phenol, and combinations thereof.
11. The method of claim 1, wherein the pellets further comprise a carrier chemical for suspending the one or more additives in the solid carbon dioxide.
12. The method of claim 11, wherein the carrier chemical is selected from the group consisting of ethanol, propylene glycol, and d-limonene, and combinations thereof.
13. A method for treating a surface of a target item, comprising:
a) providing solid carbon dioxide pellets, wherein the solid carbon dioxide pellets comprise one or more additives selected from at least one of antimicrobial compounds, disinfectants, detergents, surfactants, odorants, and combinations thereof;
b) providing a stream of pressurized gas;
c) combining the solid carbon dioxide pellets and the stream of pressurized gas to accelerate the solid carbon dioxide pellets; and
d) exposing the surface of the target item to the accelerated solid carbon dioxide pellets.
14. The method of claim 13, wherein the one or more additives is an antimicrobial compound.
15. The method of claim 14, wherein the antimicrobial compound is selected from the group consisting of lauric arginate, natural lactic acid, ascorbic acid, benzoic acid, lactates, lacititol, gluconate, ammonium lactate, potassium lactate, sodium lactate, sodium lactate powder, sodium diacetate, methyl paraben, potassium nitrite, potassium nitrate, propinates, sorbates, benzoates, and combinations thereof.
16. The method of claim 13, wherein the one or more additives is a disinfectant.
17. The method of claim 16, wherein the disinfectant is selected from the group consisting of peroxides, formic acid, performic acid, peroxygen compounds, peracetic acid, perglutaric acid, perbenzoic acid, and combinations thereof.
18. The method of claim 13, wherein the one or more additives is a surfactant.
19. The method of claim 18, wherein the surfactant is selected from the group consisting of sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, alkyl benzene sulfonate, soaps, or fatty acid salts, cetyl trimethylammonium bromide, cetyl pyridinium chloride, polyethoxylated tallow amine, benzalkonium chloride, dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, alkyl poly(ethylene oxide), octyl glucoside, decyl maltoside, cetyl alcohol, oleyl alcohol, cocamide monoethanolamine, cocamide diethanolamine, cocamide triethanolamine, and combinations thereof.
20. The method of claim 13, wherein the one or more additives is an odorant.
21. The method of claim 20, wherein the odorant is selected from the group consisting of 1-methoxy-4-(1-propenyl)benzene methoxybenzene, 2-methoxy-4-(2-propenyl)phenol, (R)-2-(4-methylcyclohex-3-enyl)propane-2-thiol, 2,3-benzopyrrole, methyl 2-hydroxybenzoate, 2-ethoxynaphthalene, and 3-Hydroxy-4,5-dimethylfuran-2(5H)-one, cis-3-Hexen-1-ol, 2-ethyl-3-hydroxy-pyran-4-one, 4-hydroxy-2,5-dimethyl-furan-3-one, 5-methyl-2-propan-2-yl-cyclohexan-1-ol (peppermint), 1-hexanol, benzaldehyde, hexanal, cinnamaldehyde, cis-3-hexenal, (2E)-3,7-dimethylocta-2,6-dienal, furan-2-carbaldehyde, (2Z)-3,7-dimethylocta-2,6-dienal, 4-hydroxy-3-methoxy-benzaldehyde, ethyl acetate, ethyl butanoate, methyl butanoate, pentyl butanoate, pentyl pentanoate, isoamyl acetate, hexyl acetate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl 3-methyl-3-phenyl-oxirane-2-carboxylate, 1,7,7-trimethylnorbornan-2-one, 3,7-dimethyloct-6-en-1-ol), 3,7-dimethylocta-1,6-dien-3-ol, (2E)-3,7-dimethylocta-2,6-dien-1-ol, 3,7,11-trimethyl1,6,10-dodecatrien-3-ol, 2-(4-methyl-1-cyclohex-3-enyl)propan-2-ol, (1S,4R,5R)-4-methyl-1-propan-2-yl-bicyclo[3.1.0]hexan-3-one, 5-methyl-2-propan-2-yl-phenol, and combinations thereof.
22. The method of claim 13, wherein the pellets further comprise a carrier chemical for suspending the one or more additives in the solid carbon dioxide.
23. The method of claim 22, wherein the carrier chemical is selected from the group consisting of ethanol, propylene glycol, and d-limonene, and combinations thereof.
24. Pellets for treating surfaces of dry ice blasting target items, comprising;
a) dry ice; and
b) one or more additives, wherein the one or additives are releasable onto the surfaces of the dry ice blasting target items, wherein the one or more additives are selected to effect at least one of a cleaning function, a sanitizing function, disinfecting function, anti-microbial function, and an olfactory response in a human being.
25. The pellets of claim 24, wherein the one or more additives is selected from the group consisting of antimicrobial compounds, disinfectants, surfactants, detergents, odorants, and combinations thereof.
26. The pellets of claim 25, wherein the one or more additives is an antimicrobial compound.
27. The pellets of claim 26, wherein the antimicrobial compound is selected from the group consisting of lauric arginate, natural lactic acid, ascorbic acid, benzoic acid, lactates, lacititol, gluconate, ammonium lactate, potassium lactate, sodium lactate, sodium lactate powder, sodium diacetate, methyl paraben, potassium nitrite, potassium nitrate, propinates, sorbates, benzoates, and combinations thereof.
28. The pellets of claim 25, wherein the one or more additives is a disinfectant.
29. The pellets of claim 28, wherein the disinfectant is selected from the group consisting of peroxides, formic acid, performic acid, peroxygen compounds, peracetic acid, perglutaric acid, perbenzoic acid, and combinations thereof.
30. The pellets of claim 25, wherein the one or more additives is a surfactant.
31. The pellets of claim 30, wherein the surfactant is selected from the group consisting of sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, alkyl benzene sulfonate, soaps, or fatty acid salts, cetyl trimethylammonium bromide, cetyl pyridinium chloride, polyethoxylated tallow amine, benzalkonium chloride, dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, alkyl poly(ethylene oxide), octyl glucoside, decyl maltoside, cetyl alcohol, oleyl alcohol, cocamide monoethanolamine, cocamide diethanolamine, cocamide triethanolamine, and combinations thereof.
32. The pellets of claim 25, wherein the one or more additives is an odorant.
33. The pellets of claim 32, wherein the odorant is selected from the group consisting of 1-methoxy-4-(1-propenyl)benzene methoxybenzene, 2-methoxy-4-(2-propenyl)phenol, (R)-2-(4-methylcyclohex-3-enyl)propane-2-thiol, 2,3-benzopyrrole, methyl 2-hydroxybenzoate, 2-ethoxynaphthalene, and 3-Hydroxy-4,5-dimethylfuran-2(5H)-one, cis-3-Hexen-1-ol, 2-ethyl-3-hydroxy-pyran-4-one, 4-hydroxy-2,5-dimethyl-furan-3-one, 5-methyl-2-propan-2-yl-cyclohexan-1-ol (peppermint), 1-hexanol, benzaldehyde, hexanal, cinnamaldehyde, cis-3-hexenal, (2E)-3,7-dimethylocta-2,6-dienal, furan-2-carbaldehyde, (2Z)-3,7-dimethylocta-2,6-dienal, 4-hydroxy-3-methoxy-benzaldehyde, ethyl acetate, ethyl butanoate, methyl butanoate, pentyl butanoate, pentyl pentanoate, isoamyl acetate, hexyl acetate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl 3-methyl-3-phenyl-oxirane-2-carboxylate, 1,7,7-trimethylnorbornan-2-one, 3,7-dimethyloct-6-en-1-ol), 3,7-dimethylocta-1,6-dien-3-ol, (2E)-3,7-dimethylocta-2,6-dien-1-ol, 3,7,11-trimethyl1,6,10-dodecatrien-3-ol, 2-(4-methyl-1-cyclohex-3-enyl)propan-2-ol, (1S,4R,5R)-4-methyl-1-propan-2-yl-bicyclo[3.1.0]hexan-3-one, 5-methyl-2-propan-2-yl-phenol, and combinations thereof.
34. The pellets of claim 24, wherein the pellets further comprise a carrier chemical for suspending the one or more additives in the solid carbon dioxide.
35. The pellets of claim 34, wherein the carrier chemical is selected from the group consisting of ethanol, propylene glycol, and d-limonene, and combinations thereof.
US11/551,057 2006-02-01 2006-10-19 Dry ice blasting with chemical additives Abandoned US20070178811A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/551,057 US20070178811A1 (en) 2006-02-01 2006-10-19 Dry ice blasting with chemical additives
EP07705469A EP1981686A2 (en) 2006-02-01 2007-01-25 Dry ice blasting with chemical additives
JP2008552905A JP4975045B2 (en) 2006-02-01 2007-01-25 Dry ice blast with chemical additives
PCT/IB2007/000178 WO2007088437A2 (en) 2006-02-01 2007-01-25 Dry ice blasting with chemical additives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US76430206P 2006-02-01 2006-02-01
US11/551,057 US20070178811A1 (en) 2006-02-01 2006-10-19 Dry ice blasting with chemical additives

Publications (1)

Publication Number Publication Date
US20070178811A1 true US20070178811A1 (en) 2007-08-02

Family

ID=38227736

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/551,057 Abandoned US20070178811A1 (en) 2006-02-01 2006-10-19 Dry ice blasting with chemical additives

Country Status (4)

Country Link
US (1) US20070178811A1 (en)
EP (1) EP1981686A2 (en)
JP (1) JP4975045B2 (en)
WO (1) WO2007088437A2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070261436A1 (en) * 2006-02-03 2007-11-15 Meenakshi Sundaram Dry ice products and method of making same
EP2008770A1 (en) * 2007-06-27 2008-12-31 Linde AG Device and process for cleaning moulds with dry ice
US20100024619A1 (en) * 2006-06-23 2010-02-04 Universitat Innsbruck Device and method for machining a solid material using a water jet
US20100031973A1 (en) * 2008-08-08 2010-02-11 Philip Bear Industrial cleaning system and methods related thereto
US20100111833A1 (en) * 2008-10-31 2010-05-06 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Compositions and methods for surface abrasion with frozen particles
US20100324137A1 (en) * 2009-06-22 2010-12-23 Diversey, Inc. Lauric arginate as a contact antimicrobial
US20120066841A1 (en) * 2010-03-24 2012-03-22 University Of South Carolina Methods And Compositions For Dislodging Debris Particles From A Substrate
WO2012159679A1 (en) * 2011-05-26 2012-11-29 Ecolab Usa Inc. Method for applying laundry finishing agent to laundry articles using solid carbon dioxide as carrier
US8409376B2 (en) 2008-10-31 2013-04-02 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8414356B2 (en) 2008-10-31 2013-04-09 The Invention Science Fund I, Llc Systems, devices, and methods for making or administering frozen particles
US20130105561A1 (en) * 2011-11-01 2013-05-02 Amee Bay, Llc Dry ice cleaning of metal surfaces to improve welding characteristics
US8545856B2 (en) 2008-10-31 2013-10-01 The Invention Science Fund I, Llc Compositions and methods for delivery of frozen particle adhesives
US8545806B2 (en) 2008-10-31 2013-10-01 The Invention Science Fund I, Llc Compositions and methods for biological remodeling with frozen particle compositions
US8545855B2 (en) 2008-10-31 2013-10-01 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8545857B2 (en) 2008-10-31 2013-10-01 The Invention Science Fund I, Llc Compositions and methods for administering compartmentalized frozen particles
US8551505B2 (en) 2008-10-31 2013-10-08 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8551506B2 (en) 2008-10-31 2013-10-08 The Invention Science Fund I, Llc Compositions and methods for administering compartmentalized frozen particles
US8568363B2 (en) 2008-10-31 2013-10-29 The Invention Science Fund I, Llc Frozen compositions and methods for piercing a substrate
US8603495B2 (en) 2008-10-31 2013-12-10 The Invention Science Fund I, Llc Compositions and methods for biological remodeling with frozen particle compositions
US8722068B2 (en) 2008-10-31 2014-05-13 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8721583B2 (en) 2008-10-31 2014-05-13 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8725420B2 (en) 2008-10-31 2014-05-13 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8731840B2 (en) 2008-10-31 2014-05-20 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8731841B2 (en) 2008-10-31 2014-05-20 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8762067B2 (en) 2008-10-31 2014-06-24 The Invention Science Fund I, Llc Methods and systems for ablation or abrasion with frozen particles and comparing tissue surface ablation or abrasion data to clinical outcome data
US8788211B2 (en) 2008-10-31 2014-07-22 The Invention Science Fund I, Llc Method and system for comparing tissue ablation or abrasion data to data related to administration of a frozen particle composition
US8793075B2 (en) 2008-10-31 2014-07-29 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
WO2015061035A1 (en) * 2013-10-22 2015-04-30 Tosoh Smd, Inc. Optimized textured surfaces and methods of optimizing
US9050317B2 (en) 2008-10-31 2015-06-09 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US9050070B2 (en) 2008-10-31 2015-06-09 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US9060926B2 (en) 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US9060931B2 (en) 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for delivery of frozen particle adhesives
US9072688B2 (en) 2008-10-31 2015-07-07 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US9072799B2 (en) 2008-10-31 2015-07-07 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US9388330B2 (en) 2012-12-17 2016-07-12 Fuji Engineering Co., Ltd. Bag containing blasting material
US20170137634A1 (en) * 2015-11-12 2017-05-18 Ecolab Usa Inc. Identification and characterization of novel corrosion inhibitor molecules
WO2018178398A1 (en) * 2017-03-31 2018-10-04 Fm Marketing Gmbh Reconditioning with dry ice blasting, remote control, and device for insertion during the reconditioning of the remote control
WO2020025435A1 (en) * 2018-08-02 2020-02-06 CRYOTEC Anlagenbau GmbH Method for modifying solid carbon dioxide, coated dry ice blocks, and device for modifying dry ice
EP3854421A1 (en) * 2020-01-27 2021-07-28 Linde GmbH Dry ice pellets with disinfectant effect
US11252971B2 (en) 2017-07-19 2022-02-22 Cryovac, Llc Antimicrobial packaging films

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490674B2 (en) * 2010-12-10 2014-05-14 株式会社フジエンジニアリング Blasting material and blasting method
JP2013242154A (en) * 2012-05-17 2013-12-05 Toyo Union:Kk Decontamination method and decontamination apparatus
ITMI20131477A1 (en) 2013-09-09 2015-03-10 Sol Spa PROCEDURE AND EQUIPMENT FOR CLEANING THE SURFACE OF FOOD PRODUCTS.
JP2015110262A (en) * 2013-11-06 2015-06-18 株式会社東洋ユニオン Dry ice pellet for blasting, and production method thereof
DE102016011808A1 (en) 2016-09-30 2018-04-05 Messer Group Gmbh Method for treating a surface with a blasting medium

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1875164A (en) * 1931-06-12 1932-08-30 American Thermos Bottle Co Manufacture of carbon dioxide ice
US1937832A (en) * 1930-03-07 1933-12-05 Ralph H Mckee Deodorization of carbon dioxide
US2464089A (en) * 1944-10-11 1949-03-08 Internat Carbonic Engineering Method and apparatus for producing composite solid carbon dioxide
US2590542A (en) * 1947-05-12 1952-03-25 Internat Carbonic Engineering Composite solid carbon dioxide
US4617064A (en) * 1984-07-31 1986-10-14 Cryoblast, Inc. Cleaning method and apparatus
US5011699A (en) * 1989-09-07 1991-04-30 Japan Food Industry Association Inc. Process for sterilizing food stuffs
US6086833A (en) * 1997-09-08 2000-07-11 Air Liquide America Corporation Process and equipment for sanitizing and packaging food using ozone
US20020068511A1 (en) * 2000-12-05 2002-06-06 Masaki Okazawa Dry ice cleaning method, dry ice cleaning apparatus, and part or unit cleaned by dry ice
US20030064665A1 (en) * 2001-09-28 2003-04-03 Opel Alan E. Apparatus to provide dry ice in different particle sizes to an airstream for cleaning of surfaces
US6589480B1 (en) * 2000-04-27 2003-07-08 L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for sanitizing a food processing environment
US6669902B1 (en) * 2000-11-08 2003-12-30 L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Ozonated foam medium and production system and method for sanitizing a food processing environment
US20040005848A1 (en) * 2000-06-22 2004-01-08 Eikichi Yamaharu Dry-ice blast device
US20040011378A1 (en) * 2001-08-23 2004-01-22 Jackson David P Surface cleaning and modification processes, methods and apparatus using physicochemically modified dense fluid sprays
US20040033269A1 (en) * 2002-08-06 2004-02-19 Ecolab Inc. Critical fluid antimicrobial compositions and their use and generation
US20040035146A1 (en) * 2000-09-05 2004-02-26 Christian Dannings Pellet press for dry ice
US20040093895A1 (en) * 2002-08-20 2004-05-20 Schreiber John E. Method of improving the biocidal efficacy of dry ice
US20050003741A1 (en) * 2003-07-03 2005-01-06 Carroll Robert Andrew Injecting an air stream with sublimable particles
US20050106268A1 (en) * 2003-03-11 2005-05-19 Armstrong Jay T. Mold and microbial remediation using dry ice blasting
US20050176009A1 (en) * 2002-04-23 2005-08-11 Doron Lancet Polymorphic olfactory receptor genes and arrays, kits and methods utilizing information derived therefrom for genetic typing of individuals
US20050268646A1 (en) * 2002-08-20 2005-12-08 Yuan James T Novel biological treating agent
US20070059201A1 (en) * 2005-09-15 2007-03-15 Meenakshi Sundaram Dry ice product containing antimicrobial formulation prepared using carrier chemicals
US20070114488A1 (en) * 2004-12-13 2007-05-24 Cool Clean Technologies, Inc. Cryogenic fluid composition
US20070261436A1 (en) * 2006-02-03 2007-11-15 Meenakshi Sundaram Dry ice products and method of making same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230291A (en) * 1975-09-02 1977-03-07 Showa Tansan Kk Perfumed dry ice and method for its production
JPH0669884B2 (en) * 1983-12-29 1994-09-07 石川島播磨重工業株式会社 High hardness dry ice manufacturing method
AU666415B2 (en) * 1993-01-27 1996-02-08 Dsm Ip Assets B.V. A fungicide composition to prevent the growth of mould on foodstuff and agricultural products
JP4137200B2 (en) * 1997-10-08 2008-08-20 三菱化学フーズ株式会社 Dry ice containing allyl isothiocyanate and method for producing the same
US6171551B1 (en) * 1998-02-06 2001-01-09 Steris Corporation Electrolytic synthesis of peracetic acid and other oxidants
CA2402520A1 (en) * 2000-03-13 2001-09-20 Kenneth Beckman Biocidal methods and compositions
JP2002177828A (en) * 2000-12-12 2002-06-25 Canon Inc Cleaning method, apparatus therefor, object cleaned therewith, and hopper
FR2837122A1 (en) * 2002-03-15 2003-09-19 Aero Strip Cleaning aircraft engine and control surfaces of grease, and the like, uses a compressed air stream containing dry ice particles together with added synthetic/mineral particles

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1937832A (en) * 1930-03-07 1933-12-05 Ralph H Mckee Deodorization of carbon dioxide
US1875164A (en) * 1931-06-12 1932-08-30 American Thermos Bottle Co Manufacture of carbon dioxide ice
US2464089A (en) * 1944-10-11 1949-03-08 Internat Carbonic Engineering Method and apparatus for producing composite solid carbon dioxide
US2590542A (en) * 1947-05-12 1952-03-25 Internat Carbonic Engineering Composite solid carbon dioxide
US4617064A (en) * 1984-07-31 1986-10-14 Cryoblast, Inc. Cleaning method and apparatus
US5011699A (en) * 1989-09-07 1991-04-30 Japan Food Industry Association Inc. Process for sterilizing food stuffs
US6086833A (en) * 1997-09-08 2000-07-11 Air Liquide America Corporation Process and equipment for sanitizing and packaging food using ozone
US6589480B1 (en) * 2000-04-27 2003-07-08 L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for sanitizing a food processing environment
US6890246B2 (en) * 2000-06-22 2005-05-10 Eikichi Yamaharu Dry-ice blast device
US20040005848A1 (en) * 2000-06-22 2004-01-08 Eikichi Yamaharu Dry-ice blast device
US20040035146A1 (en) * 2000-09-05 2004-02-26 Christian Dannings Pellet press for dry ice
US6669902B1 (en) * 2000-11-08 2003-12-30 L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Ozonated foam medium and production system and method for sanitizing a food processing environment
US20020068511A1 (en) * 2000-12-05 2002-06-06 Masaki Okazawa Dry ice cleaning method, dry ice cleaning apparatus, and part or unit cleaned by dry ice
US20040011378A1 (en) * 2001-08-23 2004-01-22 Jackson David P Surface cleaning and modification processes, methods and apparatus using physicochemically modified dense fluid sprays
US20030064665A1 (en) * 2001-09-28 2003-04-03 Opel Alan E. Apparatus to provide dry ice in different particle sizes to an airstream for cleaning of surfaces
US20050176009A1 (en) * 2002-04-23 2005-08-11 Doron Lancet Polymorphic olfactory receptor genes and arrays, kits and methods utilizing information derived therefrom for genetic typing of individuals
US20040033269A1 (en) * 2002-08-06 2004-02-19 Ecolab Inc. Critical fluid antimicrobial compositions and their use and generation
US20040093895A1 (en) * 2002-08-20 2004-05-20 Schreiber John E. Method of improving the biocidal efficacy of dry ice
US20050268646A1 (en) * 2002-08-20 2005-12-08 Yuan James T Novel biological treating agent
US20050276889A1 (en) * 2002-08-20 2005-12-15 Yuan James T Novel method of sanitizing food products and other target items
US7174744B2 (en) * 2002-08-20 2007-02-13 American Air Liquide, Inc. Method of improving the biocidal efficacy of dry ice
US20050106268A1 (en) * 2003-03-11 2005-05-19 Armstrong Jay T. Mold and microbial remediation using dry ice blasting
US20050003741A1 (en) * 2003-07-03 2005-01-06 Carroll Robert Andrew Injecting an air stream with sublimable particles
US20070114488A1 (en) * 2004-12-13 2007-05-24 Cool Clean Technologies, Inc. Cryogenic fluid composition
US20070059201A1 (en) * 2005-09-15 2007-03-15 Meenakshi Sundaram Dry ice product containing antimicrobial formulation prepared using carrier chemicals
US20070261436A1 (en) * 2006-02-03 2007-11-15 Meenakshi Sundaram Dry ice products and method of making same

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070261436A1 (en) * 2006-02-03 2007-11-15 Meenakshi Sundaram Dry ice products and method of making same
US20100024619A1 (en) * 2006-06-23 2010-02-04 Universitat Innsbruck Device and method for machining a solid material using a water jet
EP2008770A1 (en) * 2007-06-27 2008-12-31 Linde AG Device and process for cleaning moulds with dry ice
US8313581B2 (en) 2008-08-08 2012-11-20 Philip Bear Industrial cleaning system and methods related thereto
US20100031973A1 (en) * 2008-08-08 2010-02-11 Philip Bear Industrial cleaning system and methods related thereto
US8747568B2 (en) 2008-08-08 2014-06-10 North American Industrial Services Inc. Industrial cleaning system and methods related thereto
US8731841B2 (en) 2008-10-31 2014-05-20 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8788211B2 (en) 2008-10-31 2014-07-22 The Invention Science Fund I, Llc Method and system for comparing tissue ablation or abrasion data to data related to administration of a frozen particle composition
US8762067B2 (en) 2008-10-31 2014-06-24 The Invention Science Fund I, Llc Methods and systems for ablation or abrasion with frozen particles and comparing tissue surface ablation or abrasion data to clinical outcome data
US8409376B2 (en) 2008-10-31 2013-04-02 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8784384B2 (en) 2008-10-31 2014-07-22 The Invention Science Fund I, Llc Frozen compositions and array devices thereof
US9072799B2 (en) 2008-10-31 2015-07-07 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8485861B2 (en) 2008-10-31 2013-07-16 The Invention Science Fund I, Llc Systems, devices, and methods for making or administering frozen particles
US8518031B2 (en) 2008-10-31 2013-08-27 The Invention Science Fund I, Llc Systems, devices and methods for making or administering frozen particles
US8545856B2 (en) 2008-10-31 2013-10-01 The Invention Science Fund I, Llc Compositions and methods for delivery of frozen particle adhesives
US8545806B2 (en) 2008-10-31 2013-10-01 The Invention Science Fund I, Llc Compositions and methods for biological remodeling with frozen particle compositions
US8545855B2 (en) 2008-10-31 2013-10-01 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8545857B2 (en) 2008-10-31 2013-10-01 The Invention Science Fund I, Llc Compositions and methods for administering compartmentalized frozen particles
US8551505B2 (en) 2008-10-31 2013-10-08 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8551506B2 (en) 2008-10-31 2013-10-08 The Invention Science Fund I, Llc Compositions and methods for administering compartmentalized frozen particles
US8563012B2 (en) 2008-10-31 2013-10-22 The Invention Science Fund I, Llc Compositions and methods for administering compartmentalized frozen particles
US8568363B2 (en) 2008-10-31 2013-10-29 The Invention Science Fund I, Llc Frozen compositions and methods for piercing a substrate
US8603496B2 (en) 2008-10-31 2013-12-10 The Invention Science Fund I, Llc Compositions and methods for biological remodeling with frozen particle compositions
US8603495B2 (en) 2008-10-31 2013-12-10 The Invention Science Fund I, Llc Compositions and methods for biological remodeling with frozen particle compositions
US8603494B2 (en) 2008-10-31 2013-12-10 The Invention Science Fund I, Llc Compositions and methods for administering compartmentalized frozen particles
US8613937B2 (en) 2008-10-31 2013-12-24 The Invention Science Fund I, Llc Compositions and methods for biological remodeling with frozen particle compositions
US9072688B2 (en) 2008-10-31 2015-07-07 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8722068B2 (en) 2008-10-31 2014-05-13 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8721583B2 (en) 2008-10-31 2014-05-13 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8725420B2 (en) 2008-10-31 2014-05-13 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8731840B2 (en) 2008-10-31 2014-05-20 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US9060934B2 (en) * 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8731842B2 (en) 2008-10-31 2014-05-20 The Invention Science Fund I, Llc Compositions and methods for biological remodeling with frozen particle compositions
US20100111833A1 (en) * 2008-10-31 2010-05-06 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Compositions and methods for surface abrasion with frozen particles
US9060931B2 (en) 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for delivery of frozen particle adhesives
US8414356B2 (en) 2008-10-31 2013-04-09 The Invention Science Fund I, Llc Systems, devices, and methods for making or administering frozen particles
US9060926B2 (en) 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8784385B2 (en) 2008-10-31 2014-07-22 The Invention Science Fund I, Llc Frozen piercing implements and methods for piercing a substrate
US8788212B2 (en) 2008-10-31 2014-07-22 The Invention Science Fund I, Llc Compositions and methods for biological remodeling with frozen particle compositions
US8793075B2 (en) 2008-10-31 2014-07-29 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8798932B2 (en) 2008-10-31 2014-08-05 The Invention Science Fund I, Llc Frozen compositions and methods for piercing a substrate
US8798933B2 (en) 2008-10-31 2014-08-05 The Invention Science Fund I, Llc Frozen compositions and methods for piercing a substrate
US8858912B2 (en) 2008-10-31 2014-10-14 The Invention Science Fund I, Llc Frozen compositions and methods for piercing a substrate
US9056047B2 (en) 2008-10-31 2015-06-16 The Invention Science Fund I, Llc Compositions and methods for delivery of frozen particle adhesives
US9040087B2 (en) 2008-10-31 2015-05-26 The Invention Science Fund I, Llc Frozen compositions and methods for piercing a substrate
US9050251B2 (en) 2008-10-31 2015-06-09 The Invention Science Fund I, Llc Compositions and methods for delivery of frozen particle adhesives
US9050317B2 (en) 2008-10-31 2015-06-09 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US9050070B2 (en) 2008-10-31 2015-06-09 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US20100324137A1 (en) * 2009-06-22 2010-12-23 Diversey, Inc. Lauric arginate as a contact antimicrobial
US8709164B2 (en) * 2010-03-24 2014-04-29 University Of South Carolina Methods and compositions for dislodging debris particles from a substrate
US20120066841A1 (en) * 2010-03-24 2012-03-22 University Of South Carolina Methods And Compositions For Dislodging Debris Particles From A Substrate
WO2012159679A1 (en) * 2011-05-26 2012-11-29 Ecolab Usa Inc. Method for applying laundry finishing agent to laundry articles using solid carbon dioxide as carrier
US20130105561A1 (en) * 2011-11-01 2013-05-02 Amee Bay, Llc Dry ice cleaning of metal surfaces to improve welding characteristics
US9388330B2 (en) 2012-12-17 2016-07-12 Fuji Engineering Co., Ltd. Bag containing blasting material
WO2015061035A1 (en) * 2013-10-22 2015-04-30 Tosoh Smd, Inc. Optimized textured surfaces and methods of optimizing
US10792788B2 (en) 2013-10-22 2020-10-06 Tosoh Smd, Inc. Optimized textured surfaces and methods of optimizing
US20240002675A1 (en) * 2015-11-12 2024-01-04 Ecolab Usa Inc. Identification and characterization of novel corrosion inhibitor molecules
US10590282B2 (en) * 2015-11-12 2020-03-17 Ecolab Usa Inc. Identification and characterization of novel corrosion inhibitor molecules
US20220267612A1 (en) * 2015-11-12 2022-08-25 Ecolab Usa Inc. Identification and characterization of novel corrosion inhibitor molecules
US11352507B2 (en) * 2015-11-12 2022-06-07 Ecolab Usa Inc. Identification and characterization of novel corrosion inhibitor molecules
US20170137634A1 (en) * 2015-11-12 2017-05-18 Ecolab Usa Inc. Identification and characterization of novel corrosion inhibitor molecules
US11732143B2 (en) * 2015-11-12 2023-08-22 Ecolab Usa Inc. Identification and characterization of novel corrosion inhibitor molecules
WO2018178398A1 (en) * 2017-03-31 2018-10-04 Fm Marketing Gmbh Reconditioning with dry ice blasting, remote control, and device for insertion during the reconditioning of the remote control
US11252971B2 (en) 2017-07-19 2022-02-22 Cryovac, Llc Antimicrobial packaging films
WO2020025435A1 (en) * 2018-08-02 2020-02-06 CRYOTEC Anlagenbau GmbH Method for modifying solid carbon dioxide, coated dry ice blocks, and device for modifying dry ice
EP3854421A1 (en) * 2020-01-27 2021-07-28 Linde GmbH Dry ice pellets with disinfectant effect

Also Published As

Publication number Publication date
JP2009525172A (en) 2009-07-09
WO2007088437A3 (en) 2008-01-17
WO2007088437A2 (en) 2007-08-09
JP4975045B2 (en) 2012-07-11
EP1981686A2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
US20070178811A1 (en) Dry ice blasting with chemical additives
WO2007088442A1 (en) Dry ice products and method of making same
US9034407B2 (en) Method and system for treating food items with an additive and solid carbon dioxide
US20070107463A1 (en) Method of Improving Biocidal Efficacy of Dry Ice
US8470383B2 (en) Method and system for treating food items with an additive and liquid nitrogen
CN104263551A (en) Fruit/vegetable cleaning salt
CN106880304A (en) Domestic ozone microbubble vegetables and fruits cleaning machine
CN110423654A (en) Clean piece of the mosquito-proof laundry of one kind and preparation method thereof
KR101825512B1 (en) An effervescent table composition used for cosmetics
US6669902B1 (en) Ozonated foam medium and production system and method for sanitizing a food processing environment
US20070059201A1 (en) Dry ice product containing antimicrobial formulation prepared using carrier chemicals
RU2683681C2 (en) Method for treatment of tubers from germination with the use the reduced amount of cipc
CN101378879A (en) Dry ice blasting with chemical additives
CA2495875A1 (en) Process for producing metered dose inhaler formulations
CN104560470A (en) Effervescent tablet for cleaning fruits and vegetables
WO2001058267A1 (en) Antibacterial agents and method for keeping freshness
CN102599155A (en) Disorientating agent for disturbing mating of Grapholitha molesta imagoes
CN111758724A (en) Chlorine dioxide disinfection spray with fruity flavor and preparation method thereof
US20070059415A1 (en) Co2 containing antimicrobial formulations to treat food products during processing steps
KR20130048640A (en) Exfoliating method of gastropods by controlling ph
KR20220087930A (en) Waste extinguisher powder treatment method
CN101810183B (en) Smoke disinfectant for preventing and treating penicillium and preparation method thereof
KR100238456B1 (en) A method for long-term storage of kimchi
JP2829230B2 (en) Citrus fruit floating inhibitor
CN102047948A (en) Banana multi-effect antistaling agent

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION