EP2021220A1 - Method for starting an internal combustion engine in a hybrid drive - Google Patents
Method for starting an internal combustion engine in a hybrid driveInfo
- Publication number
- EP2021220A1 EP2021220A1 EP07727696A EP07727696A EP2021220A1 EP 2021220 A1 EP2021220 A1 EP 2021220A1 EP 07727696 A EP07727696 A EP 07727696A EP 07727696 A EP07727696 A EP 07727696A EP 2021220 A1 EP2021220 A1 EP 2021220A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electric drive
- combustion engine
- internal combustion
- speed
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000005540 biological transmission Effects 0.000 claims abstract description 58
- 230000007423 decrease Effects 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/30—Control strategies involving selection of transmission gear ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2054—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/11—Stepped gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18027—Drive off, accelerating from standstill
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
- B60K2006/268—Electric drive motor starts the engine, i.e. used as starter motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/443—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/48—Drive Train control parameters related to transmissions
- B60L2240/486—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/083—Torque
- B60W2510/084—Torque change rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/10—Change speed gearings
- B60W2510/1005—Transmission ratio engaged
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/50—Engine start by use of flywheel kinetic energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the powertrain includes an internal combustion engine associated with an electric machine that generates torque when the internal combustion engine is started. Between the internal combustion engine and a transmission, a clutch is provided, via which a torque generated by the internal combustion engine is transmitted to at least one vehicle drive wheel. Means are provided which actuate the clutch at the start of the internal combustion engine in such a way that a first part of the torque generated by the electric machine when the internal combustion engine is started is transmitted to the at least one vehicle drive wheel and a second part of the electric motor sufficient to start the internal combustion engine Machine generated torque is transmitted to the internal combustion engine.
- the clutch is operated by means of a control device taking into account temperature and / or speed-dependent maps for the drive torque of the internal combustion engine and / or for the starting torque and / or for the clutch engagement mainly dependent on the clutch engagement.
- the motor vehicle can be moved depending on the design of the drive train only with the help of at least one electric drive.
- the at least one electric drive supplies the entire drive energy, whereas the internal combustion engine remains switched off.
- the stationary internal combustion engine can be started by the at least one electric drive, for example by means of the pulse start, wherein the angular momentum of the at least one electric drive in rotation is used to drive the stationary internal combustion engine
- the speed of the at least one electric drive is first increased an electric drive and a vehicle transmission arranged clutch operated torque-controlled and transmits in this phase of the motor vehicle equipped with a hybrid drive the driver's desired torque.
- a clutch located between the at least one electric drive and the internal combustion engine is closed.
- a disadvantage of this approach is the fact that the clutch operated in the slip state between the vehicle transmission and the at least one electric drive can not be permanently operated in this slip condition, which is required on the one hand to maintain a continuous output number, but on the other hand to a mechanical or thermal see Overloading this clutch would result. This precludes permanent operation of this clutch between the at least one electric drive and the transmission of the vehicle equipped with a hybrid drive.
- the present invention has for its object to avoid a fall in speed of the drive at the start of the internal combustion engine within a drive train of a vehicle equipped with a hybrid drive vehicle.
- This object is achieved in that at a speed drop of the at least one electric drive at a pulse start in the internal combustion engine of the hybrid drive, a gear shift operation takes place, which compensates the speed drop of the at least one electric drive at the pulse start of the internal combustion engine.
- the speed drop of the at least one electric drive occurring when starting the internal combustion engine is compensated by a continuously changing transmission ratio of the transmission, so that the output speed of the at least one electric drive can be kept constant and thus the propulsion of the motor vehicle with hybrid drive can be kept constant.
- Gearboxes with which a continuous change of the transmission ratio can take place, for example, automatic transmission or belt transmission.
- the proposed solution according to the invention can be achieved in an advantageous manner that the speed of the at least one electric drive can be increased permanently, so as to start immediately when needed, the internal combustion engine of the hybrid drive. Furthermore, by the proposed solution according to the invention a waiver of the clutch, which is usually provided in hybrid drives between the vehicle transmission and the at least one electric drive, can be achieved. This eliminates the need to operate this clutch torque controlled. Finally, it can be achieved by the inventively proposed solution that the previously required time to increase the speed of the at least one electric drive of the hybrid drive can be omitted, since the at least one electric drive can be operated permanently at a higher speed.
- the vehicle transmission which preferably as an automatic transmission or z. B.
- the speed drop of the at least one electric drive which is caused by the spinning of the crankshaft of the internal combustion engine, compensated by means of a continuous changing the Ü-gear ratio in the vehicle transmission.
- the vehicle transmission switches at the pulse start of the internal combustion engine of the hybrid drive continuously from a first gear ratio to a second ratio such as from a second gear to a first gear in the case of an automatic transmission, the second gear ratio is higher than the first gear ratio, since the input speed of the vehicle transmission due to the speed drop of the at least one electric drive at pulse start drops.
- the transmission ratio i is given by ( ⁇ Ant ⁇ eb / ⁇ output- If the output speed ⁇ A bt ⁇ eb remains constant and decreases the drive speed (öAnt ⁇ eb, applied by the at least one electric drive due to the pulse start of the internal combustion engine, so the transmission ratio i decreases.
- FIG. 1 shows the components of a hybrid drive of a vehicle with a coupling between the at least one electric drive and the internal combustion engine and a further coupling between the at least one electric drive and the vehicle transmission
- FIG. 2 shows a speed diagram of the rotational speeds of the at least one electric drive and the internal combustion engine to be started during the starting phase, plotted over time
- Figure 4 shows the speed diagram of the at least one electric drive at the desired higher speed of the electric drive
- Figure 5 is a taking place within the vehicle transmission gear ratio change.
- FIG. 1 shows the components of a hybrid drive with an internal combustion engine, at least one electric drive, a clutch arranged between them and with a further clutch between the at least one electric drive and a vehicle transmission.
- a drive train 10 of a motor vehicle equipped with a hybrid drive 12 comprises an internal combustion engine 14.
- the internal combustion engine 14 can be coupled by means of a first clutch 16 to at least one electric drive 20, which represents a further component of the hybrid drive 12 shown in FIG.
- An output shaft 22 of the at least one electric drive 20 can be coupled via a further, second clutch 24 to a vehicle transmission 26.
- the internal combustion engine 14 can be started out of the operating mode "electric driving.” This is generally done by means of a pulse start to set in rotation and to start. For this purpose, however, the increase in the rotational speed of the at least one electric drive 20 is required.
- the further, second clutch 24 is operated in the configuration shown in FIG. 1 in the slip state.
- a disadvantage of this starting process in the context of a pulse start of the internal combustion engine 14 is the fact that the further, second clutch 24 can not be operated permanently in the slip state, since this would otherwise be mechanically or thermally overloaded.
- FIGS. 2 and 3 show rotational speed and torque diagrams, wherein the rotational speed or the torque of the at least one electric drive are respectively plotted over the time axis.
- the at least one electric drive 20 is operated at an output speed ⁇ > o.
- an increase in torque of the at least one electric drive 20 operated in the "electric driving" operating state is desired according to the driver's request 38, compare the driver's desired torque 38 in FIG. 3.
- the rotational speed of the at least an electrical drive 20 as shown in Figure 2 continuously increased until the at least one electric drive 20 has assumed an increased speed ⁇ > i.
- the internal combustion engine is running at its rotational speed ⁇ 2.
- the configuration of the hybrid drive 12 shown in FIG. 1 requires that the further, second clutch 24 be operated in the slip state, furthermore the pulse starting operation of the internal combustion engine 14 to be started lasts longer, since first the at least one electric drive 20 has to be accelerated from its output rotational speed ⁇ > o to the increased rotational speed ⁇ > i and only then can a coupling process take place.
- a complex control of this further, second clutch 24 is required as a torque-controlled clutch.
- FIG. 4 shows the configuration of the drive train proposed according to the invention.
- the further, second clutch 24 is dispensed with.
- the internal combustion engine 14 of the drive train 10 shown in FIG. 4 is connected via its output shaft 18 to the still existing first clutch 16, which in turn is coupled to the at least one electric drive 20.
- the output shaft 22 of the at least one electric drive 20 is connected to the vehicle transmission 26.
- FIGS. 5 and 6 show the speed diagram of the at least one electric drive and at least one drive wheel over time and the course of the gear ratio plotted over time during a pulse start.
- FIGS. 5 and 6 relate to the drive train 10 illustrated in FIG.
- the rotational speed of the at least one electric drive 20 increases from ⁇ > o to ⁇ > i.
- the change of the transmission ratio in the transmission ratio of the vehicle transmission 26 from the gear ratio ⁇ l to the gear ratio ii it is downshifted, for example, from a second gear in a first gear.
- the at least one electric drive 20 see from the outset with increased Speed ⁇ > i are operated.
- the vehicle transmission 26 is operated with the transmission ratio ii.
- the vehicle transmission 26 is preferably designed as an automatically shifting transmission or designed as a belt transmission (CVT transmission). This ensures that during the pulse start of the internal combustion engine 14, the propulsion of the vehicle is continuously maintained.
- the variant of the drive train 10 proposed according to the invention also makes it possible to operate the at least one electric drive 20 at an increased rotational speed ⁇ > i, so that the "pulling-up phase" of the at least one electric drive 20 required within the time span 46 can be dispensed with.
- the solution proposed according to the invention eliminates the second additional coupling 24 required in FIG. 1 and its time-consuming torque control.
- it is possible to achieve "winding" of the at least one electric drive 20, ie to increase its rotational speed, whereby the transmission ratio in the vehicle transmission 26 is continuously increased, which is brought about by a downshift Pulse start of the internal combustion engine 14, which is connected to a speed decrease at least one electric drive 20, the output speed ⁇ A bt ⁇ eb the vehicle transmission 26 are kept constant, since the gear ratio i (öAbt ⁇ eb / ⁇ drive drops, thus an upshift within the vehicle transmission 26 takes place.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Transmission Device (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006022395.0A DE102006022395B4 (en) | 2006-05-12 | 2006-05-12 | Method for starting an internal combustion engine in a hybrid drive |
PCT/EP2007/053225 WO2007131838A1 (en) | 2006-05-12 | 2007-04-03 | Method for starting an internal combustion engine in a hybrid drive |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2021220A1 true EP2021220A1 (en) | 2009-02-11 |
Family
ID=38254937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07727696A Ceased EP2021220A1 (en) | 2006-05-12 | 2007-04-03 | Method for starting an internal combustion engine in a hybrid drive |
Country Status (7)
Country | Link |
---|---|
US (1) | US20090308673A1 (en) |
EP (1) | EP2021220A1 (en) |
JP (1) | JP2009536897A (en) |
KR (1) | KR101092710B1 (en) |
CN (1) | CN101443219B (en) |
DE (1) | DE102006022395B4 (en) |
WO (1) | WO2007131838A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007026354A1 (en) * | 2007-06-06 | 2008-12-11 | Bayerische Motoren Werke Aktiengesellschaft | Method for controlling a pushing operation of a motor vehicle, control device for carrying out the method and motor vehicle |
WO2009086995A1 (en) * | 2007-12-17 | 2009-07-16 | Zf Friedrichshafen Ag | Method and device for controlling a creep operation of a vehicle with a hybrid drive |
DE102007055831A1 (en) * | 2007-12-17 | 2009-06-18 | Zf Friedrichshafen Ag | Method and device for operating a hybrid drive of a vehicle |
DE102007055826A1 (en) * | 2007-12-17 | 2009-06-18 | Zf Friedrichshafen Ag | Method and device for operating a hybrid drive of a vehicle |
DE102007055828A1 (en) * | 2007-12-17 | 2009-06-18 | Zf Friedrichshafen Ag | Method and device for operating a hybrid vehicle |
DE102008027658A1 (en) | 2008-06-10 | 2009-12-17 | Bayerische Motoren Werke Aktiengesellschaft | Method for starting internal combustion engine of hybrid vehicle, involves starting internal combustion engine from drove operation mode, in which internal combustion engine is deactivated and is decoupled by coupling device |
DE102008042685A1 (en) * | 2008-10-08 | 2010-04-15 | Robert Bosch Gmbh | Method for adapting a separating clutch in a drive train arrangement of a vehicle and drive train arrangement |
JP5391719B2 (en) * | 2009-02-19 | 2014-01-15 | 日産自動車株式会社 | Hybrid vehicle |
ITBO20090261A1 (en) | 2009-04-28 | 2010-10-29 | Ferrari Spa | METHOD OF STARTING A THERMAL ENGINE OF A HYBRID VEHICLE |
JP5039098B2 (en) * | 2009-07-24 | 2012-10-03 | 日産自動車株式会社 | Control device for hybrid vehicle |
IT1395448B1 (en) | 2009-09-03 | 2012-09-21 | Ferrari Spa | METHOD OF STARTING A THERMAL ENGINE OF A VEHICLE WITH A HYBRID PROPULSION |
DE102011078670A1 (en) * | 2011-07-05 | 2013-01-10 | Zf Friedrichshafen Ag | A method of operating a hybrid powertrain of a vehicle |
JP6077674B2 (en) | 2012-12-07 | 2017-02-08 | ボルボトラックコーポレーション | Method for starting internal combustion engine in hybrid vehicle |
US20170246948A1 (en) * | 2014-11-28 | 2017-08-31 | Schaeffler Technologies AG & Co. KG | Method for starting an internal combustion engine of a hybrid vehicle |
DE102015219902B4 (en) * | 2015-10-14 | 2017-06-08 | Ford Global Technologies, Llc | Method and device for starting and stopping an internal combustion engine of a motor vehicle and motor vehicle |
DE102016207333A1 (en) | 2016-04-29 | 2017-11-02 | Volkswagen Aktiengesellschaft | Method and device for controlling an electric machine during a pulse start of an internal combustion engine |
SE541413C2 (en) * | 2016-06-15 | 2019-09-24 | Scania Cv Ab | Starting an Internal Combustion Engine in a Parallel Hybrid Powertrain |
KR102331759B1 (en) * | 2017-04-05 | 2021-11-26 | 현대자동차주식회사 | Apparatus and method for controlling drive-train in vehicle |
DE102017209394A1 (en) * | 2017-06-02 | 2018-12-06 | Zf Friedrichshafen Ag | Method for operating a drive train and control device therefor |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1018266B (en) * | 1953-04-01 | 1957-10-24 | Inertia Starter Developments L | Inertia starter for internal combustion engines |
US3580372A (en) * | 1969-05-26 | 1971-05-25 | Schiefer Mfg Co | Clutch with adjustable centrifugal pressure assist levers |
US3675509A (en) * | 1970-08-05 | 1972-07-11 | Nl Steenkolenmijnen Willen Sop | Steplessly variable speed changer |
US3802293A (en) * | 1972-08-28 | 1974-04-09 | Eaton Corp | Power shift |
US3793910A (en) * | 1972-10-02 | 1974-02-26 | A Nasvytis | Variable speed friction drive |
US3793610A (en) * | 1973-02-01 | 1974-02-19 | Itt | Axially mating positive locking connector |
US4103564A (en) * | 1976-12-17 | 1978-08-01 | Caterpillar Tractor Co. | Limited slip differential |
DE2943554A1 (en) * | 1979-10-27 | 1981-05-07 | Volkswagenwerk Ag | HYBRID DRIVE FOR A VEHICLE, IN PARTICULAR MOTOR VEHICLE |
JPS6095263A (en) * | 1983-10-29 | 1985-05-28 | Mazda Motor Corp | Control device of continuously variable transmission |
US4665773A (en) * | 1984-03-13 | 1987-05-19 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Continuously variable transmission apparatus for automobile |
US4576263A (en) * | 1984-03-23 | 1986-03-18 | Eaton Corporation | Clutch control |
JP3454133B2 (en) * | 1998-01-16 | 2003-10-06 | トヨタ自動車株式会社 | Drive control device for hybrid vehicle |
WO2000013927A2 (en) * | 1998-09-09 | 2000-03-16 | Luk Lamellen Und Kupplungsbau Gmbh | Interaction between a drive train and an electric machine with several self-adjusting speed increasing ratios |
BR9914241A (en) * | 1998-10-02 | 2001-06-19 | Luk Lamellen Und Kupplungtsbau | Transmission with at least two axles and an electric machine or an automatic disc clutch |
JP3541874B2 (en) * | 1999-01-19 | 2004-07-14 | 三菱自動車工業株式会社 | Vehicle engine starter |
JP2000255285A (en) * | 1999-03-09 | 2000-09-19 | Mitsubishi Motors Corp | Hybrid vehicle |
DE10018926A1 (en) * | 1999-04-26 | 2000-11-02 | Luk Lamellen & Kupplungsbau | Drive train, especially for motor vehicle, has at least one gearbox component that implements transmission function mounted radially within rotor |
JP2002544033A (en) * | 1999-05-10 | 2002-12-24 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Power train device for automobile and method of controlling operation of the power train device |
JP3649058B2 (en) * | 1999-10-08 | 2005-05-18 | トヨタ自動車株式会社 | Vehicle control apparatus having a plurality of prime movers |
JP4460813B2 (en) * | 2000-02-22 | 2010-05-12 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Driving force transmission train for automobiles |
DE10165096B3 (en) * | 2000-07-18 | 2015-08-13 | Schaeffler Technologies AG & Co. KG | transmission |
DE10209514B4 (en) * | 2001-03-30 | 2016-06-09 | Schaeffler Technologies AG & Co. KG | powertrain |
JP3617475B2 (en) * | 2001-07-18 | 2005-02-02 | 日産自動車株式会社 | Control device for hybrid vehicle |
US20030183467A1 (en) * | 2002-03-28 | 2003-10-02 | Ford Global Technologies, Inc. | Placement of an auxilliary mass damper to eliminate torsional resonances in driving range in a parallel-series hybrid system |
JP3574120B2 (en) * | 2002-05-23 | 2004-10-06 | 本田技研工業株式会社 | Hybrid vehicle |
DE102004002061A1 (en) | 2004-01-15 | 2005-08-04 | Zf Friedrichshafen Ag | Method for controlling and regulating a drive train of a hybrid vehicle and drive train of a hybrid vehicle |
JP2006341831A (en) * | 2005-06-10 | 2006-12-21 | Nissan Motor Co Ltd | Mode transition controller and mode transition control method for hybrid car |
-
2006
- 2006-05-12 DE DE102006022395.0A patent/DE102006022395B4/en not_active Expired - Fee Related
-
2007
- 2007-04-03 WO PCT/EP2007/053225 patent/WO2007131838A1/en active Application Filing
- 2007-04-03 KR KR1020087027554A patent/KR101092710B1/en active IP Right Grant
- 2007-04-03 US US12/227,260 patent/US20090308673A1/en not_active Abandoned
- 2007-04-03 EP EP07727696A patent/EP2021220A1/en not_active Ceased
- 2007-04-03 CN CN2007800173456A patent/CN101443219B/en not_active Expired - Fee Related
- 2007-04-03 JP JP2009510379A patent/JP2009536897A/en active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2007131838A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE102006022395B4 (en) | 2015-03-05 |
KR20090007586A (en) | 2009-01-19 |
WO2007131838A1 (en) | 2007-11-22 |
DE102006022395A1 (en) | 2007-11-15 |
KR101092710B1 (en) | 2011-12-09 |
CN101443219B (en) | 2012-08-08 |
US20090308673A1 (en) | 2009-12-17 |
CN101443219A (en) | 2009-05-27 |
JP2009536897A (en) | 2009-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006022395B4 (en) | Method for starting an internal combustion engine in a hybrid drive | |
DE102011089467B4 (en) | Hybrid drive of a motor vehicle and method for operating the same | |
EP2920013B1 (en) | Method for operating a drive unit for a hybrid vehicle | |
DE102004023673B4 (en) | Method for controlling the drive train of a hybrid vehicle | |
EP2524155B1 (en) | Method for operating a vehicle drive train having a driving machine and having a transmission apparatus having a plurality of shift elements | |
EP1855929B1 (en) | Drivetrain of a motor vehicle and method for operation of the drivetrain | |
EP2190709B1 (en) | Method for operating a drive train | |
EP1610038B1 (en) | Double clutch transmission and control method of a double clutch transmission | |
EP2462365B1 (en) | Method for operating a transmission device of a vehicle drivetrain | |
EP3668737B1 (en) | Hybrid drive transmission unit and method for operating a vehicle with a hybrid drive | |
WO2001083249A2 (en) | Hybrid transmission, particularly for motor vehicles | |
EP1559603A1 (en) | Method for upshifting a gearbox with two input shafts | |
DE102006054405B4 (en) | Electrodynamic starting element and method for controlling an electrodynamic starting element | |
WO1999050572A1 (en) | Drive train for a motor vehicle | |
WO2010081820A1 (en) | Method for the operation of a transmission device of a vehicle drive train | |
WO2008031389A1 (en) | Method for the operation of a hybrid drive train in a motor vehicle | |
WO2009021912A1 (en) | Method for starting the combustion engine during a load shift in parallel hybrid vehicles | |
EP2794317B1 (en) | Hybrid drive of a motor vehicle and method for operating same | |
DE102011084930B4 (en) | Method for operating a drive train of a hybrid vehicle | |
WO2008098824A1 (en) | Method for operating a drivetrain of a vehicle | |
DE19849156A1 (en) | Drive train for a motor vehicle | |
WO2017108303A1 (en) | Gearbox of a motor vehicle and method for operating a motor vehicle | |
WO2017076899A1 (en) | Gearbox for a hybrid vehicle, drivetrain having a gearbox of said type, and method for operating the same | |
DE102015221498A1 (en) | Drive arrangement for a hybrid vehicle and drive train with such a drive arrangement | |
DE102012218121A1 (en) | Hybrid drive for motor car, has frictional or positive clutch switched between combustion engine and partial gear box, and another frictional clutch switched between electric machine and partial gear box |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081212 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20101015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20151218 |