EP2020764B1 - Système de communication, avion doté d'un tel système de communication et communication d'un système d'avion avec un partenaire de communication externe - Google Patents

Système de communication, avion doté d'un tel système de communication et communication d'un système d'avion avec un partenaire de communication externe Download PDF

Info

Publication number
EP2020764B1
EP2020764B1 EP08013684.9A EP08013684A EP2020764B1 EP 2020764 B1 EP2020764 B1 EP 2020764B1 EP 08013684 A EP08013684 A EP 08013684A EP 2020764 B1 EP2020764 B1 EP 2020764B1
Authority
EP
European Patent Office
Prior art keywords
data
module
aircraft
flight
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP08013684.9A
Other languages
German (de)
English (en)
Other versions
EP2020764A3 (fr
EP2020764A2 (fr
Inventor
Matthias Brand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MBDA Deutschland GmbH
Original Assignee
MBDA Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MBDA Deutschland GmbH filed Critical MBDA Deutschland GmbH
Publication of EP2020764A2 publication Critical patent/EP2020764A2/fr
Publication of EP2020764A3 publication Critical patent/EP2020764A3/fr
Application granted granted Critical
Publication of EP2020764B1 publication Critical patent/EP2020764B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • H04B7/18508Communications with or from aircraft, i.e. aeronautical mobile service with satellite system used as relay, i.e. aeronautical mobile satellite service
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2206Homing guidance systems using a remote control station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/30Command link guidance systems
    • F41G7/301Details
    • F41G7/306Details for transmitting guidance signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link

Definitions

  • the invention relates to a communication system, an aircraft with such a communication system and a method for communicating an aircraft system with an external communication partner.
  • the aircraft may be an aircraft, a missile and in particular a guided missile or a drone.
  • the aircraft may therefore be an unmanned aircraft and in particular a guided missile.
  • the EP 1 798 872 A and the US Pat. No. 6,147,980 AS disclose a communication module for installation in an aircraft or in a ground station for the data transfer between at least the aircraft and a communication partner and in particular another aircraft or a ground station via a satellite connection.
  • the communication module has a receiving module for receiving character strings with commands and / or data via an antenna from the satellite link and a transmitter module for transmitting the character strings via the satellite link.
  • the WO 02/086656 A describes a method for telemetric localization of aircraft using an internet protocol.
  • a communication system for data transmission via a satellite connection between a missile and a ground station is known.
  • This is a bidirectional radio link that can only transmit data when the connection from the sender to the receiver is established via the satellite connection. If this connection is interrupted, for example because the antenna of the missile is shadowed, this must first be detected by the transmitter and then the connection must be rebuilt, which is time-consuming and time-consuming. Furthermore, it is necessary, depending on the situation, to actively align the antenna in the direction of the relay station.
  • the object of the invention is to provide a communication system, an aircraft with such a communication system and a method for communicating an aircraft system with an external communication partner with which in the simplest possible way a robust control and / or the use of an aircraft and its system by a communication partner out is possible.
  • the solution according to the invention can, in particular, use the standardized and standardized short message service (SMS) or derivatives thereof for transmitting data in order to transmit command sequences and / or flight data and / or sensor and evaluation data.
  • SMS short message service
  • a communication system or a data link device is integrated, which is formed by a transmitting / receiving modem and a computing device.
  • the computing device can on the one hand evaluate received messages and execute commands or forward them via the missile data bus.
  • the computer device can filter out and process the data to be sent from the missile data bus and also carry out the SMS-compliant processing of the message for transmission via modem.
  • a mobile phone As a ground station is sufficient as a minimum configuration, a mobile phone, which, however, may be connected to a computer on which a missile control and control software is running.
  • the mobile phone as a minimum configuration allows, for example, that persons who act covertly in military operations influence the trajectory or mission planning of the missile.
  • the communication system according to the invention serves for data transfer between at least one Missile and at least one ground station or between at least two missiles.
  • the invention can also be advantageously used for data transfer in manned missiles of general and military aviation use.
  • the missile has at least one communication device (data link device DLG) for data transmission, which communicates via a satellite connection with at least one transmitting and receiving device assigned to the ground station or the communication device of a further missile.
  • DLG data link device
  • a transmission module is used in each transmission system and in particular in the aircraft system for transmitting the strings via satellites, which is set up such that the character strings are coded and the character strings are sent to the next transmission station until this code or one of this derived code from the next transfer station, eg a satellite or ground station.
  • the forwarding from one to the next transmission station is carried out according to an embodiment with the same transmission protocol. According to a further embodiment, in addition, the forwarding from one to the next transmission station then takes place when it has sent its acknowledgment to the respective previous transmission station.
  • the data transfer between the missile and the ground station or between at least two missiles takes place by means of a standardized satellite infrastructure, for example the Iridium or Globalstar satellite system.
  • the individual satellites are interconnected by intersatellite links (ISLs).
  • ISLs intersatellite links
  • An active connection, or a message in broadcast, is mediated from satellite to satellite until at least one of these satellites is within range of the base station and the missile or, in the case of multiple missiles, at least one within range of each missile.
  • the Iridium Data Link is a cost-effective and reliable data link for data downlink (missile to the ground station), data uplink (ground station to the missile) and for a bidirectional data link (free data transfer between missile and ground station).
  • a simple or bidirectional data connection between two or more missiles using iridium data link is possible.
  • the data transfer can take place in a standardized data protocol.
  • the data protocol is a packet-switching protocol, in particular a short-message data protocol.
  • SMS Short Message Service
  • MMS Multimedia Message Service
  • SBD Short Burst Data
  • the communication device of the missile is connected to at least one control component of the missile, for example an on-board computer (e.g., central weapon computer) via the missile's data bus (e.g., IMBUS).
  • the communication device can be supplied with data for telemetry, which are prepared completely or selectively for the data transmission or are processed by the communication device.
  • the current data record can be converted and sent to a short message data protocol (for example SMS, MMS, SBD) compliant data record (eg Protocol Data Unit - PDU).
  • SMS short message data protocol
  • MMS Mobility Management Entity
  • SBD Session Data Unit
  • the data to be transmitted can be transferred to the communication device in encrypted form or encrypted by it.
  • the data to be transmitted between the missile and the ground station or between at least two missiles by means of a satellite connection preferably contain missile status data and / or missile commands, in particular Flight planning data, destination data, waypoints and / or image data. That is, the communication system allows the transmission of missile status data or commands, including modified flight planning, destination, and image transmission.
  • Image data may be transmitted as still images compressed in the communication device. Furthermore, additional information such as identifiers (points, lines, symbols or texts) can be incorporated into the image. Furthermore, a transmission of film and sound sequences is possible.
  • modules or functions are referred to as being connected or interconnected, meaning that they are functionally connected via a signal line or a data line which may be implemented in different technologies.
  • the signal lines can generally also be data or bus lines.
  • the flight data output module may have a function that sends a current set of flight data to the formatting module in response to a flight data output command received by the analysis module.
  • the mission data may include information about objects located on the ground.
  • control and mission system or the aircraft system may have a flight data updating function which generates a current flight data by means of a sensor on a received from the data bus command for generating current flight data and current flight data in a predetermined sequence in the data bus, so each current flight data is received by the flight data output module and sent to the formatting module.
  • the flight data may include the position of the aircraft and / or attitude information of the aircraft.
  • the control and mission system or aircraft system may include an autopilot function having an interface to the data bus that generates a desired trajectory and control commands based on trajectory constraints that control the aircraft along the desired trajectory and that due to a desired trajectory Change commands from the data bus receives trajectory defaults and the control commands generated due to these received trajectory presets control commands due to the changed target trajectory.
  • an aircraft with a communication system is also provided.
  • the control and mission system can in particular have a mission data updating function that generates current mission data by means of a sensor system on a command received by the data bus for generation of current mission data and feeds current mission data into the data bus in a predetermined sequence.
  • the data filter communicates with the formatting module associated with the mission data output module, so that each current flight data from the flight data output module are received and sent to the formatting module.
  • the mission data may provide reconnaissance data of the aircraft and thereby sensor data such as e.g. Radar data or data of an optical sensor.
  • it can be provided on receipt of a command for changing the desired path of the aircraft, a transmission of this command and flight path specifications via the data bus to a control and mission system and overwriting the previously stored flight path specifications.
  • the method can alternatively or additionally provide: upon receipt of a command for generating and transmitting sensor data by the aircraft system, transmitting this command via the data bus to a sensor system, generating sensor data, sending the generated sensor data via the data bus to a mission data output module and transmitting the sensor data via the transmission module and via satellites to external communication partners.
  • the FIG. 1 shows an arrangement 1 of an aircraft 2, a ground station 3, a satellite telephone device 4, the communication partner in the inventive Communication methods can be.
  • the aircraft may be an aircraft, a missile and in particular a guided missile or a drone.
  • the aircraft may therefore be an unmanned aircraft and in particular a guided missile.
  • the communication system according to the invention is integrated in an aircraft 2 as an onboard system.
  • the shows FIG. 1 symbolically a satellite constellation 10 from a first satellite 11 and a second satellite 12, since the communication method according to the invention takes place via satellites.
  • the communication or the data transfer can take place in particular by means of a standardized satellite infrastructure, preferably an iridium or global star satellite system.
  • the aircraft 2 has a communication module or system 20 which serves as a communication device for receiving and transmitting strings or data from and to an external satellite communication partner.
  • the communication system 20 has a transceiver antenna 21, to which a receiving module 22 is coupled via a connecting line 22a and a transmitting module 23 via a connecting line 23a.
  • the communication system 20 has interfaces 26, 30 to a data bus or aircraft system bus B, via which the communication system 20 is functionally connected to a control and mission system or an avionics system of the aircraft 2.
  • the identification function for identifying commands and data of the analysis module 25 recognizes certain types of commands, i. at which point these must be passed on. Furthermore, the identification function may be such that it can also recognize types of data to be transmitted to a module or the control and mission system or a function or a sensor system of the same.
  • the identification function of the data analysis module 25 is therefore able to identify commands and / or data with regard to their addressee and the output function the commands and / or data depending on the identified addressee to the data bus interface 26, the flight data output module 27 or Confirmation module 28 to send.
  • the data streams to be transmitted via the transmission module are converted into character strings according to a predetermined protocol and optionally also encrypted.
  • the transmission protocol or the data protocol can be a PDU protocol or a packet-switching protocol.
  • the data transfer can take place in a standardized data protocol.
  • the transmission module 23 may comprise a satellite modem for data transmission via satellites by means of a modem connection.
  • the communication system according to the invention can communicate, in particular, from a ground station 3 with a mobile radio system or in particular a mobile telephone 4 via a satellite connection. In this way, the aircraft 2 can be controlled and commanded so that it transmits predetermined types of data to an external communication partner and in particular such a ground station.
  • the transmission module 23 transmits via a satellite to an external communication partner, which may be a ground station or other aircraft or aircraft, and which has requested data or to which data is to be transmitted according to a default of the communication system. This also applies vice versa.
  • the transmission process to the satellite includes a confirmation message that the transmission module 23 receives from the satellite when it has received the transmitted data string. This is done via a "handshake". This can be designed such that each satellite received from a combination of numbers determines a cross number and transmits them to the original sending aircraft, or generally to the original sending communication partner.
  • the respective transmitting communication partner is set up such that it repeats the sending of a data string until it has received the received message or the acknowledgment from the respective receiving satellite.
  • a data analysis module 25 for analyzing the data stream received by the reception module 22 and the data strings or character strings contained therein is connected to the reception module 22.
  • the data analysis module 25 is connected to the central system or data bus B via a connection line 26a.
  • the connection line 26a may be coupled to a data bus interface 26, in which the commands sent by the analysis module 25 and / or data provided for this purpose are brought into a format corresponding to the protocol of the data bus D and with which these in the Data bus D are fed.
  • the analysis module 25 is connected to a position data output or processing module 27 via a connection line 27a and to a confirmation module 28 via a connection line 28a.
  • the confirmation module 28 is connected to a data conditioning module 30 via a connection or signal line 29a.
  • a formatting function of this module its input data is formatted into a predetermined protocol and converted into a character string or data string intended for transmission by means of the transmission module 23.
  • the formatting module 29 furthermore has an output function with which the character strings created in the formatting function of the data preparation module 29 are sent via the connection or signal line 23a to the transmission module 23, by means of which the transmission thereof is effected by means of the antenna 21.
  • the flight data output module 27 receives flight data, such as data, from the system bus B via a link or signal line 27a. Position data and / or position data of the aircraft as input data.
  • the flight data of the aircraft is identified in a data filter 30 and transmitted via the connection or signal line 27a to the flight data processing module 27.
  • the control and mission system has a function that generates on receipt of a command flight data at predetermined intervals and sends them via the system bus B to the flight data output module 27.
  • the regular intervals can be time intervals that can be consistent or dependent on the flight phase.
  • the distances may be through successive routes that are predetermined for a flight phase or a flight path.
  • this command arrives at the control and mission system, which then determines this flight data by a sensor and the flight data recorded at the predetermined intervals via the system bus B to the flight data Output module 27 transmitted. Then they are sent via the transmission module 23 and satellites to external communication partners.
  • the flight data may be position data, ie, geographic altitude and width, and optionally altitude, and attitude data describing the current attitude of the aircraft 2.
  • the attitude data may in particular be the angle of inclination about the transverse axis and / or the roll angle.
  • the communication system 20 may include a mission data processing module 31 communicating with the data filter 30 via a connection or signal line 31a.
  • the flight data processing module 27 and the mission data processing module 31 communicate with a link or signal line 29b and 29c, respectively.
  • the avionics system of the aircraft may include a control module and a mission fulfillment module or mission module.
  • the control module and the mission module are associated with a sensor system or a sensor system (not shown) from which the control module and the mission module or the control and mission system receives sensor data.
  • the sensor data may be flight data or other sensor data that contributes to mission performance.
  • Sensor data contributing to mission fulfillment may be reconnaissance data, e.g. be determined by a radar or an infrared sensor.
  • the control and mission system control module communicates with and is able to control actuators.
  • the actuators are in particular actuators for actuating butterfly valves of the missile.
  • the control module can control the drive of the missile to change the drive thrust.
  • Upon receipt of a command to control the aircraft, ie to carry out control movements of the control flaps of the aircraft 2, these types of commands are recognized by the analysis module 25 and sent via the data bus B to a control module, these commands in unmodified or systemically modified form to a Actuatorik of the aircraft transmitted to exercise the commanded control movements.
  • the commands may include desired directions or desired accelerations of the aircraft 2 in the three space coordinates.
  • the commands are transmitted directly to the actuators of the aircraft to exercise the commanded control movements, if the actuator is eg with a control device, suitable to receive the commands directly in the form of desired positions and process.
  • control of the aircraft can be made on the basis of control commands, which can be predetermined and stored in the control function or can be transmitted with the data bus interface 26 to the control function.
  • the actuators for the control of the aircraft can be controlled for their actuation via the data bus or can be controlled via separate signal lines that connect the actuators and a corresponding control module.
  • control commands via the antenna 21 and the receiving module 22 get into the data analysis module 25, which are identified there as control commands for the aircraft by means of an identification code or a keyword and then via the data bus interface 26 to the control module for forwarding the actuators or directly to the actuators are sent to their actuation.
  • control commands can be transmitted to the control function or via the data bus directly to the actuators in order to actuate them and thereby control the aircraft.
  • the aircraft can be controlled by the transmission via the antenna 21.
  • corresponding commands which are recognized by the analysis module 25 in their way, can be transmitted via the data bus B to a mission module or the control and mission system, wherein the commands are provided for controlling sensors.
  • the mission module or the control and mission system controls the appropriate sensors with these commands.
  • the mission module or the control and mission system also selects the sensors that generates the data that are requested according to the respective commands.
  • sensor commands are also sent directly to the corresponding sensors and these are controlled directly via the commands, if the sensors a having corresponding adjusting device. This can be provided in particular, for example, for controlling the alignment of a camera or another sensor directly from a communication partner such as a ground station.
  • control and mission system can be set up so that it can process a command for switching on or off a sensor or an actuator, so that the sensor or the actuator can be switched on or off.
  • a reconnaissance sensor such as a radar
  • the nude author may be a self-destruct device for destroying the aircraft 2, which may be controlled by the mission module or directly via the data bus B and destroys the aircraft if the analysis module 25 recognizes such a command in its nature and over the data bus B sends a corresponding command to the self-destruct device and receives the self-destruct command.
  • the analysis module 25 is set up in such a way that various different commands are identified in it, in particular by means of respectively one identification code or one keyword, and are used selectively over one of three lines.
  • a group of commands is sent to the data bus, which forwards commands to the flight control or mission module for further processing by the actuators or actuators or sensors. Alternatively, with all or individual commands can be provided that they are sent directly to actuators or actuators.
  • Commands sent to the data bus interface include turning on and off the function to generate regular flight data information. These can provide position and time and optional attitude information at regular intervals. Alternatively, position and time and optional attitude information may be provided at predetermined waypoints or flown sections. When this feature is turned on, delivers these are in the given regularity this flight information sent over the data bus B, identified in the data filter 30 and then sent via the flight data output module 27 to the data preparation module 29 to a communication partner.
  • the analysis module 25 recognizes in keywords whether the content of the received data string has commands and / or contents to be sent to the data bus D and to the control and mission system. It can be provided that the data strings are sent to the control and mission system or a central computer of this system or directly to the sensors or actuators.
  • commands are detected which represent flight data information and are transmitted via the data bus B, and branches or reads these data from the respective data chain.
  • data is sent from the receiving module 22 to the data analysis module 25 requesting position information and / or attitude information immediately, this is detected in a corresponding keyword of that command or the data string entering the analysis module 25.
  • the command is sent directly to the flight data output module 27, which upon receiving the data already passed through the data filter 30 in the flight data output module 27 or alternatively the next time in the flight data output module data passing to the formatting module 29 for sending by transmits the transmission module 23.
  • the commands received by the analysis module 25 for the transmission of flight data are transmitted in a direct manner to transmit this flight data to an external communication partner.
  • the data analysis module 25 is further configured to identify commands of received data strings, according to which a confirmation message is to be sent to the respective other communication partner.
  • the acknowledgment module 28 then generates a keyword. It can be provided that this keyword is generated in an encryption process. Alternatively or additionally, it can be provided that the keyword contains time information or even a code with which the received data string can be identified, one or more of these confirmation messages is sent to the Command, which is sent from the analysis module 25 to the confirmation module 28, the confirmation module 28 to the formatting module 29, which then sends the confirmation message via the transmission module 23.
  • this command is recognized in the analysis module 25 and sent to the control module and a mission fulfillment module, which then generates and sends this data over the data bus 30.
  • the data filter 30 recognizes this signal or these data strings and associates them with the mission data output module 31, which prepares these data in a predetermined manner and is sent to the transmission module 23 for transmission via the satellite.
  • An exemplary embodiment of a ground station 3 has a transmitting and receiving device and in particular a transmitting / receiving modem 7 for establishing the satellite connection to the aircraft 2. Furthermore, the ground station may have an input and display device 8 for displaying received data of the missile 2 and mission data.
  • the input and display device 8 may be designed in particular such that on a digital map, the desired trajectory of the aircraft 2, for example, can be displayed in the form of desired waypoints, a modified desired trajectory are entered and together with a command to change the Target trajectory can be transmitted to the aircraft.
  • the input and display device 8 may be configured such that, with this, optionally in conjunction with a displayed digital map, commands for carrying out control movements can be transmitted to the communication system of the aircraft 2, so that these commands are transmitted via the reception module 22, the analysis module 25 and the data bus B can be transmitted to an actuator of the aircraft for exercising the commanded control movements.
  • commands for carrying out control movements can be transmitted to the communication system of the aircraft 2, so that these commands are transmitted via the reception module 22, the analysis module 25 and the data bus B can be transmitted to an actuator of the aircraft for exercising the commanded control movements.
  • These embodiments may be provided in particular in an aircraft in which a navigation system with integrated with a GPS and / or a digital map, provided that the aircraft and the ground station use the same digital map.
  • the ground station and / or the control and mission system may have trajectory optimization so that they can generate new target trajectories.
  • the ground station 3 has a satellite telephone 26. This may e.g. be operated from the ground or from aircraft to control with this a communication system according to the invention, command and retrieve sensor data.
  • the data transfer between the aircraft 2 and a ground station 3 can take place by means of a standardized satellite infrastructure 10, which is symbolically represented by two satellites 11, 12.
  • This may be a satellite attachment and e.g. to an iridium satellite system, in which the individual satellites 11, 12 with each other, as indicated in the figure by an arrow indicated by a dashed line, are connected by Intersatellitenlinks (ISLs).
  • ISLs Intersatellitenlinks
  • An active connection is switched from satellite to satellite until one of these satellites is within range of the ground station 6, 8 and a satellite is within range of the aircraft 2.
  • the distance between missile 2 and ground station 6, 8 is not relevant.
  • the iridium data link is a low-cost data link for data downlink, in particular between aircraft 2 and ground station 3, a data uplink between ground station 3 and missile 2 and for a bidirectional data connection between ground station 3 and missile 2.
  • the data transmission takes place, in particular, in a standardized, packet-switching data protocol, in particular a PDU data protocol by means of Short Message Service (SMS), Multimedia Message Service (MMS) or Short Burst Data (SBD) service, wherein the data packets are sent until they reach the recipient arrive so that a high reliability of the data transmission is achieved.
  • SMS Short Message Service
  • MMS Multimedia Message Service
  • SBD Short Burst Data

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Astronomy & Astrophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Claims (15)

  1. Système de communication d'un aéronef (2) destiné à transférer des données de chaînes de caractères au moyen de commandes entre au moins l'aéronef (2) et un autre partenaire de communication externe (3, 4) par l'intermédiaire de satellites, comprenant :
    • un module de réception (22) destiné à recevoir au moyen d'une antenne une chaîne de caractères (21),
    • un module d'analyse de données (22) connecté au module de réception (25) comportant une fonction d'identification destinée à identifier des commandes en ce qui concerne leurs destinataires et comportant une fonction de sortie destinée à émettre les commandes en fonction de leurs destinataires identifiés à un bus de données (26) ou à un module de confirmation et (28), dans lequel l'interface de bus de données (26) destinée au couplage du module d'analyse de données (25) à un bus de données (B), fait passer les commandes émises par le module d'analyse (25) à un format correspondant au protocole de bus de données du bus de données (B) et les applique au bus de données (B),
    dans lequel le module de confirmation (28) connecté au module d'analyse de données (25) est conçu de manière que, après la réception d'une commande, un message de confirmation confirmant la fourniture en entrée d'une chaîne de caractères soit envoyé à l'autre partenaire de communication respectif et un mot clé est généré, celui-ci contenant un code au moyen duquel une chaîne de caractères reçue par le module de réception peut être identifiée,
    • un module de formatage (29) qui est connecté au module de confirmation (28) et est conçu pour convertir en des chaînes de caractères les flux de données devant être émis par l'intermédiaire d'un module d'émission (23) selon un protocole de transmission,
    dans lequel le module d'émission (23) destiné à envoyer les chaînes de caractères par l'intermédiaire de satellites, est conçu de telle sorte que les chaînes de caractères soient munies du code, et que les chaînes de caractères soient envoyées jusqu'à ce que ce code renvoyé par le satellite ou un code dérivé de celui-ci soit reçu et identifié par le module de réception (22).
  2. Système de communication selon la revendication 1, caractérisé en ce que le module de réception (22) et le module d'émission (23) sont chacun conçus de manière à ce que le module de communication (20) puisse recevoir et émettre les chaînes de caractères avec un protocole à commutation de paquets, notamment un protocole de données de messages courts.
  3. Système de communication selon la revendication 1 ou 2, caractérisé en ce qu'un module de sortie de données de vol (27) connecté au module d'analyse de données (25) présente une fonction consistant à envoyer un ensemble courant de données de vol au module de formatage (29) lors d'une commande de sortie de données de vol reçue du module d'analyse de données (25).
  4. Système de communication selon l'une quelconque des revendications précédentes, caractérisé en ce que le module d'analyse de données (25) est conçu de manière à identifier l'une des commandes et/ou des données suivantes et l'envoie au bus de données (B) :
    • une commande destinée à activer ou désactiver un système de capteurs pour détecter des données de mission,
    • une commande destinée à activer une fonction d'actualisation de données de vol pour générer des donnes de vol courantes au moyen d'un système de capteurs,
    • une commande destinée à modifier la trajectoire nominale et des données de vol destinées à définir des consignes de trajectoire de vol,
    • une commande d'autodestruction de l'aéronef.
  5. Système de communication selon la revendication 4, caractérisé en ce que les données de mission comprennent des informations relatives à des objets situés au sol.
  6. Aéronef comportant un système de communication (20) selon l'une des revendications précédentes, comportant un système de commande et de mission et comportant un bus de données (B), caractérisé en ce que le système de commande et de mission comprend une fonction d'actualisation des données de vol qui génère des données de vol courantes lors d'une commande reçue du bus de données (B) destinée à générer des données de vol courantes au moyen d'un système de capteur et applique des données de vol courantes selon une séquence prédéterminée au bus de données (B), de manière à ce que des données de vol courantes soient respectivement reçues du module de sortie de données de vol et envoyées au module de formatage (29).
  7. Aéronef comportant un système de communication (20) selon la revendication 6, caractérisé en ce que les données de vol comprennent la position de l'aéronef et/ou des informations d'attitude de l'aéronef.
  8. Aéronef comportant un système de communication (20) selon l'une des revendications 6 ou 7 précédentes, caractérisé en ce qu'il comprend une fonction de pilotage automatique comportant une interface avec le bus de données (B) qui génère une trajectoire de vol nominale et des commandes de pilotage sur la base de consignes de trajectoire de vol au moyen desquelles l'aéronef est piloté le long de la trajectoire de vol nominale, et qui reçoit du bus de données (B) des consignes de trajectoire de vol sur la base d'une commande de modification de trajectoire de vol nominale et qui génère sur la base de la trajectoire de vol nominale modifiée des commandes de pilotage sur la base de ces consignes de trajectoire de vol reçues.
  9. Aéronef comportant un système de communication (20) selon l'une des revendications 6 à 8 précédentes, caractérisé en ce que le système de commande et de mission comprend une fonction d'actualisation des données de mission qui génère des données de mission courantes au moyen d'un système de capteurs lors d'une commande destinée à générer des données de mission courantes reçue du bus de données (B) et applique des données de mission courantes selon une séquence prédéterminée au bus de données (B), en ce qu'un module de sortie de données de mission (31) connecté au module de formatage (29) est relié au filtre de données (3), de manière à ce que des données de vol courantes soient respectivement reçues du module de sortie de données de vol et envoyées au module de formatage (29).
  10. Aéronef comportant un système de communication (20) selon la revendication 9, caractérisé en ce que les données de mission comprennent des données de reconnaissance de l'aéronef.
  11. Procédé de transfert de données de chaînes de caractères au moyen de commandes entre au moins l'aéronef (2) et un autre partenaire de communication externe (3, 4) par l'intermédiaire de satellites, dans lequel :
    • un module de réception (22) reçoit par l'intermédiaire d'une antenne des chaînes de caractères (21),
    • un module d'analyse de données (25) connecté au module de réception (22) comporte une fonction d'identification qui identifie des commandes en ce qui concerne leurs destinataires, et comporte une fonction de sortie qui envoie des commandes en fonction de leurs destinataires identifiés à une interface de bus de données (26) ou à un module de confirmation (28),
    dans lequel l'interface de bus de données (26) destinée à coupler le module d'analyse de données (25) à un bus de données (B), qui fait passer les commandes émises par le module d'analyse (25) à un format correspondant au protocole de bus de données du bus de données (B) de l'aéronef et les applique au bus de données (B),
    dans lequel le module de confirmation (28) connecté au module d'analyse de données (25), après réception d'une commande, de manière à ce qu'un message de confirmation confirmant la fourniture en entrée d'une chaîne de caractères soit envoyé à l'autre partenaire de communication respectif, génère un mot clé qui contient un code au moyen duquel une chaîne de caractères reçue par le module de réception peut être identifiée,
    • un module de formatage (29) connecté au module de confirmation (28) convertit les flux de données devant être émis par l'intermédiaire d'un module d'émission (23) conformément à un protocole de transmission en des chaînes de caractères,
    dans lequel le module d'émission (23) destiné à envoyer les chaînes de caractères par l'intermédiaire de satellites fait en sorte que les chaînes de caractères soient munies du code et que les chaînes de caractères soient émises au moyen du module d'émission (23) jusqu'à ce code renvoyé par le satellite ou un code dérivé de celui-ci soit reçu et identifié par le module de réception (22).
  12. Procédé selon la revendication 11, caractérisé par l'émission et la réception des chaînes de caractères avec un protocole à commutation de paquets, notamment un protocole de données de messages courts, au moyen du module de réception (22) et du module d'émission (23) du module de communication (20).
  13. Procédé selon la revendication 11 ou 12, caractérisé par : lors de la réception d'une commande d'exécution de mouvements de commande de l'aéronef (2), la transmission de cette commande par l'intermédiaire du bus de données (B) à un système d'actionneurs de l'aéronef pour mettre en oeuvre les mouvements de commande ordonnés.
  14. Procédé selon la revendication 11, 12 ou 13, caractérisé par : lors de la réception d'une commande de modification de la trajectoire de consigne de l'aéronef (2), la transmission de cette commande et de consignes de trajectoire de vol par l'intermédiaire du bus de données (B) à un système de commande et de mission et l'écrasement des consignes de trajectoire de vol précédemment stockées.
  15. Procédé selon l'une des revendications 11 à 14, caractérisé par : lors de la réception d'une commande destinée à générer et transmettre des données de capteurs par l'intermédiaire du système de l'aéronef (2), la transmission de cette commande par l'intermédiaire du bus de données (B) à un système de capteurs, la génération de données de capteurs, l'émission des données de capteurs générées par l'intermédiaire du bus de données (B) à un module de sortie de données de mission (31) et la transmission des données de capteurs par l'intermédiaire du module d'émission (23) et par l'intermédiaire de satellites à des partenaires de communication externes.
EP08013684.9A 2007-07-30 2008-07-30 Système de communication, avion doté d'un tel système de communication et communication d'un système d'avion avec un partenaire de communication externe Expired - Fee Related EP2020764B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007035678A DE102007035678A1 (de) 2007-07-30 2007-07-30 Kommunikationssystem und Verfahren zum Datentransfer

Publications (3)

Publication Number Publication Date
EP2020764A2 EP2020764A2 (fr) 2009-02-04
EP2020764A3 EP2020764A3 (fr) 2009-08-05
EP2020764B1 true EP2020764B1 (fr) 2014-04-30

Family

ID=40020251

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08013684.9A Expired - Fee Related EP2020764B1 (fr) 2007-07-30 2008-07-30 Système de communication, avion doté d'un tel système de communication et communication d'un système d'avion avec un partenaire de communication externe

Country Status (3)

Country Link
EP (1) EP2020764B1 (fr)
DE (1) DE102007035678A1 (fr)
ES (1) ES2476597T3 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022673B4 (de) 2010-06-04 2015-10-08 Airbus Operations Gmbh Partikelsensor für in-situ Atmosphärenmessungen
CN102332949B (zh) * 2011-09-30 2015-01-28 福建星海通信科技有限公司 北斗外置式通话器、北斗语音通信系统和方法
WO2021108577A1 (fr) * 2019-11-27 2021-06-03 Appareo Systems, Llc Module passerelle de connectivité d'aviation pour connectivité cellulaire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7107062B2 (en) * 1992-03-06 2006-09-12 Aircell, Inc. System for managing call handoffs between an aircraft and multiple cell sites
US6147980A (en) 1997-11-28 2000-11-14 Motorola, Inc. Avionics satellite based data message routing and delivery system
US6385513B1 (en) * 1998-12-08 2002-05-07 Honeywell International, Inc. Satellite emergency voice/data downlink
FR2787587B1 (fr) 1998-12-18 2001-10-05 Sextant Avionique Procede pour l'elaboration en temps reel de trajectoires pour un aeronef
US7035585B2 (en) * 2000-12-11 2006-04-25 Lockheed Martin Corporation System and method for interfacing satellite communications with aircraft
WO2002086658A2 (fr) * 2001-04-20 2002-10-31 The United States Of America, As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Systeme de protocole internet base dans l'espace permettant la localisation de vehicules, le controle et la commande de systemes
JP2007517466A (ja) * 2003-12-29 2007-06-28 ピアザト・エルエルシー 衛星間クロスリンク通信システム、装置、方法およびコンピュータプログラム製品
US7519014B2 (en) 2005-12-16 2009-04-14 The Boeing Company Multi-network aircraft communication systems and methods

Also Published As

Publication number Publication date
EP2020764A3 (fr) 2009-08-05
EP2020764A2 (fr) 2009-02-04
DE102007035678A1 (de) 2009-02-05
ES2476597T3 (es) 2014-07-15

Similar Documents

Publication Publication Date Title
DE60318540T2 (de) Luftbetankungssystem für ein unbemanntes Fluggerät
US20070244608A1 (en) Ground control station for UAV
CN205121341U (zh) 一种无人机地面指挥系统
DE10050224A1 (de) Verfahren und Einrichtung zum Überwachen und/oder Steuern von beweglichen Objekten
EP2955475B1 (fr) Procédé de fonctionnement d'un système de défense aérienne basé à terre
EP2020764B1 (fr) Système de communication, avion doté d'un tel système de communication et communication d'un système d'avion avec un partenaire de communication externe
DE102018105045A1 (de) Luftlageinformations- und Verkehrsmanagementsystem für unbemannte und bemannte Luftfahrzeuge
EP1381879B1 (fr) Procede de reconnaissance et d'identification d'objets
EP0650027B1 (fr) Interface pour le transfert de données entre un avion et un missile
WO2017025274A1 (fr) Procédé de communication ip bidirectionnelle entre un terminal au sol et un terminal radioélectrique d'un satellite avec interposition d'un système internet spatial
DE102006007142B4 (de) Verfahren zur Positionsbestimmung eines von einem Luftfahrzeug abkoppelbaren unbemannten Flugkörpers
DE102008022130A1 (de) Übertragung von Informationen an ein Luftfahrzeug
EP3499175B1 (fr) Procédé de commande d'un système de défense contre les véhicules aériens sans pilote
DE102008026415A1 (de) System zur Überwachung von Bewegungen von Flugkörpern im Luftraum
EP2302481B1 (fr) Procédé de commande pour un véhicule pouvant être dirigé à l'aide d'une unité de commande et système de commande pour un tel véhicule
CN108195237B (zh) 一种弹上综合控制系统
EP2511894A1 (fr) Procédé de surveillance d'un espace aérien autour d'un aéronef
EP2485402B1 (fr) Procédé de suppression de la distorsion de signaux radio
EP2133648B1 (fr) Missile sans equipage et procédé de conduite de vol
EP2080981B1 (fr) Missile sans équipage
EP3862718A1 (fr) Procédé de détermination des informations de position pour un effecteur, effecteur, unité de calcul et système d'arme
WO2021078337A1 (fr) Procédé et appareil pour empêcher des situations de trafic critiques pour la sécurité entre véhicules
DE10020179A1 (de) Steuereinheit für ein Gleitschirm-System für den bemannten Gleitschirm-Flug sowie zugehörige Missionsplanungsstation
DE3008700C2 (de) System zur optischen Informationsübertragung zwischen einer Bodenstation und einem Luftfahrzeug
EP1391681B1 (fr) Procédé et dispositif pour la reconnaissance du terrain en temps réel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080730

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100302

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MBDA DEUTSCHLAND GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008011670

Country of ref document: DE

Effective date: 20140612

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2476597

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140715

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011670

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

26N No opposition filed

Effective date: 20150202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011670

Country of ref document: DE

Effective date: 20150202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160720

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502008011670

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20180718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200922

Year of fee payment: 13

Ref country code: FR

Payment date: 20200722

Year of fee payment: 13

Ref country code: GB

Payment date: 20200727

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210730

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008011670

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201