EP2020595B1 - Method for a vehicle to detect a phenomenon affecting visibility - Google Patents

Method for a vehicle to detect a phenomenon affecting visibility Download PDF

Info

Publication number
EP2020595B1
EP2020595B1 EP08160818.4A EP08160818A EP2020595B1 EP 2020595 B1 EP2020595 B1 EP 2020595B1 EP 08160818 A EP08160818 A EP 08160818A EP 2020595 B1 EP2020595 B1 EP 2020595B1
Authority
EP
European Patent Office
Prior art keywords
vehicle
visibility
camera
image
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08160818.4A
Other languages
German (de)
French (fr)
Other versions
EP2020595A1 (en
Inventor
Caroline Robert
Joël Leleve
David Hue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP2020595A1 publication Critical patent/EP2020595A1/en
Application granted granted Critical
Publication of EP2020595B1 publication Critical patent/EP2020595B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/538Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke for determining atmospheric attenuation and visibility
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1415Dimming circuits
    • B60Q1/1423Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic
    • B60Q1/143Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic combined with another condition, e.g. using vehicle recognition from camera images or activation of wipers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/2603Attenuation of the light according to ambient luminiosity, e.g. for braking or direction indicating lamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0237Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems circuits concerning the atmospheric environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/30Indexing codes relating to the vehicle environment
    • B60Q2300/31Atmospheric conditions
    • B60Q2300/312Adverse weather

Definitions

  • the present invention relates to a method for detecting a visibility disturbing phenomenon, and to a detection device making it possible to implement said method.
  • the document EP 1,715,456 describes a method of detecting night fog in a road scene at the front of the vehicle, comprising the operations of lighting the road scene by the projectors of the vehicle, of acquisition of several successive images of the road scene, extraction in these images of the luminous halo created by the projectors, approximation of the shape of this halo, comparison with the closest approximate elliptical curve, and deduction of the presence or absence of fog.
  • the document EP 1 498 721 describes a method of detecting fog, comprising a digital camera detecting the environment around the vehicle, and an image processing system which compares the brightness of each pixel of the camera with a predetermined minimum value and deduces the presence of fog if none of the pixels have a brightness lower than the predetermined value.
  • the document EP 1,298,481 describes a night vision device, comprising an infrared transmitter, a detector and a display device.
  • the transmitter comprises one or more diodes emitting pulses, being controlled by a driver which simultaneously controls the detector or a camera. This document does not deal with fog.
  • the document EP 1,553,429 describes a system for detecting traffic conditions on a road (weather conditions or obstacle detection), mounted on a motor vehicle, comprising at least one light projector comprising a first light source emitting a visible light beam and at least one source of Modular light, in particular at high frequency, emitting an infrared light beam towards a road scene, and at least one camera for taking images of the road scene.
  • the document EP 1,790,541 describes a device for detecting dirt on a windshield of a motor vehicle, using two cameras and an image processing system.
  • the document FR 2 847 367 describes a method and a passive device for determining the visibility distance in the presence of an element disturbing visibility such as fog, which does not comprise emission of light beam.
  • the object of the present invention is to detect a disturbing phenomenon of visibility.
  • such a method has the advantage of carrying out an analysis of a visibility disturbing phenomenon by means of an image captured by a video camera. No complex electronic device is necessary. In addition, the use of a video camera is not very expensive.
  • a third subject of the invention relates to a computer program product according to claim 5 comprising one or more sequences of instructions executable by an information processing unit, the execution of said sequences of instructions allowing a setting implementing the method according to any one of the preceding characteristics.
  • the method for detecting a disturbance phenomenon of visibility allows such detection and is described in an embodiment not limiting to the Fig. 1 .
  • the detection is done from a detection device on board a vehicle V comprising a video camera described below.
  • a light beam FX is emitted from said vehicle V, the light beam being emitted in the field of vision of the camera CAM of vehicle V.
  • the beam FX is a near infrared beam of wavelength 850 nm. This avoids creating untimely light effects on the rear of the vehicle in the presence of a disturbing phenomenon G, and thus disturbing the following drivers. In addition, this makes it possible to be compatible with the detection spectrum of the CAM camera as we will see below.
  • the beam FX is narrow. In a nonlimiting example, it has an opening of 4 °. This allows not to have a loss of power. There is thus a concentration of the energy in the light beam FX and a detection of a disturbing phenomenon at greater distances.
  • the light beam FX is generated by a DIOD light source described below.
  • the Fig. 2 shows an example of a light beam FX generated by a light source DIOD and emitted in the field of vision CAM_V of the camera CAM of the vehicle V.
  • the light beam FX is emitted at the rear of the vehicle V.
  • two sprays of water G1 and G2 are shown and are illuminated by the light beam FX.
  • the Fig. 3 shows a top view of the Fig. 2 . You can see the location of the DIOD light source in a rear light and the location of the CAM camera between the two rear lights.
  • the generation of the light beam FX is done as soon as the rear lights are triggered. It therefore works continuously as soon as these lights are switched on. This makes it possible to be sure of being able to detect a disturbing phenomenon such as a spray of water as soon as it rains or when the roadway is wet and to adapt the lighting of the rear lights accordingly according to the nature of the disturbing phenomenon.
  • a second step 2) an image I is acquired by the camera of the vehicle V.
  • the video camera CAM being placed, in the example taken, at the rear of the vehicle V, the acquired image I corresponds to the environment of the vehicle V located in the field of the camera CAM and therefore to the rear of vehicle V. We will therefore detect a disturbing phenomenon G located at the rear of vehicle V.
  • the CAM camera is placed near one of the rear lights of vehicle V.
  • the light coming from the light beam FX emitted from one of the rear lights is scattered in the presence of particles of the disturbing phenomenon G suspended in the atmosphere (after the passage of the wheels over a wet surface for example).
  • the wavelength of this light beam being compatible with the analysis spectrum of the CAM camera, and the constituent particles of the disturbing phenomenon G being located in the field of vision of the CAM camera, it is then possible to capture an image integrating the scattered light into the disturbing phenomenon G.
  • this image acquisition step may not be included in the method described, but may be part of another method executed upstream of the method described.
  • first and second stages can be carried out in parallel.
  • a third step 3 the presence and the nature of a visibility disturbing phenomenon G is determined from the image I acquired by the camera CAM.
  • FIG. 4 Two nonlimiting examples of an image I acquired by the CAM camera are represented on the Fig. 4 and Fig. 5 .
  • the white part represents the light scattered at night with the light beam FX, while the hatched part denoted B represents the environment, here at the rear, of the vehicle V in the field of the CAM camera not lit by the light beam FX .
  • the example of the Fig. 4 represents the environment at the rear of the vehicle V in the presence of rain, without obstacle O in the field CAM_V of the camera CAM, the image I showing packets of water P1 and P2 revealing the presence of a phenomenon disruptive G, such as a spray of water, caused by aerodynamic turbulence behind vehicle V.
  • a phenomenon disruptive G such as a spray of water
  • the example of the Fig. 5 represents the environment behind the vehicle V in the presence of fog, with an obstacle O (such as a follower vehicle).
  • an external light source SO appears in the field, to the right of image I. It may be an obstacle O such as a headlight of a following vehicle or such as a stationary source in the landscape.
  • the detection and characterization of this type of light source in the image is easy, using for example methods of tracking image objects (“tracking” in English) based for example on the detection of shadows to put highlight the contours of a follower vehicle. As these methods are well known to those skilled in the art, they are not described here.
  • the information on the presence of the following vehicle may be used for optimal management of the intensity of the signaling functions.
  • the intensity of the position lights for example is characterized at several standard points. According to a European standard (ECE R7), the intensity of these points varies from 0.05cd to 4cd minimum depending on the points. The maximum allowed is 12cd for a single light, 17cd for a set of lights. Thus, if we detect water then we increase the intensity of the lights, but if we detect water and the presence of a nearby following vehicle we increase the intensity of the lights accordingly (this is that is, less than in the absence of this vehicle so as not to be dazzling and less than in the presence of a distant vehicle).
  • the characterization of the nature of the disturbing phenomenon is based on the homogeneity and the particle size of the scattered light. Thanks to these two parameters, we can thus discriminate between water and fog.
  • the advantage of discriminating water and fog is to be able to activate a specific signaling in the event of the presence of fog, i.e. the fog lights, to increase the intensity of the rear lights in the event of presence of a spray of water for example etc.
  • the determination of the homogeneity of the scattered light is known to a person skilled in the art.
  • texture analysis methods such as the co-occurrence matrices and more particularly its homogeneity criterion. Since this method is well known to those skilled in the art, it is therefore not described in detail here.
  • the determination of the particle size (texture attribute) of the scattered light is also known to those skilled in the art. It can in a nonlimiting example be based on an analysis of the texture of an image I using probabilistic approaches such as the co-occurrence matrices and / or frequency approaches such as the Fourier transform, the wavelet decomposition. .etc. As these methods are known to those skilled in the art, they are therefore not described in detail here.
  • the disturbing phenomenon G is illuminated and visible as well as the obstacle O.
  • the light beam FX if on the acquired image I, the light beam FX reveals zones which are not homogeneous and whose texture (given by the particle size) is not smooth, we conclude in the presence of packets water (in the case of a wet roadway with or without rain). At this time, the intensity of the lights can be increased.
  • the light beam FX reveals a homogeneous continuous zone and whose texture (given by the particle size) is smoother, one could conclude in the presence of fog (unless one is in the presence of fine rain without generating a spray of water). At this time the fog lights can be turned on.
  • a disturbing phenomenon G such as fog
  • no movement will be detected on the sequence SQ of acquired images I
  • a disturbing phenomenon such as water
  • This movement follow-up is based on a follow-up (“tracking”) of the illuminated zones on the SQ sequence of images I. Since such movement follow-up is known to those skilled in the art, it is not described here.
  • This movement tracking is particularly useful for discriminating water fog, when there is no spray of generated water (in case of light rain for example) or when the vehicle is traveling at low speed.
  • the acquired image I indeed presents a homogeneous continuous zone.
  • a visibility disturbing phenomenon G is detected and its nature defined, adequate processing CD in real time on the vehicle V can be executed.
  • this fourth step is carried out as the video images are processed by the method described above.
  • the adequate processing CD such as for example the automatic adaptation of the lighting of the rear lights, is executed in real time since it is carried out after each detection of a disturbing phenomenon, a detection being carried out with each acquisition of image I.
  • the method of the invention is implemented by a DISP detection device shown in the Fig. 6 .
  • the control unit UC also makes it possible to control the light source DIOD and the camera CAM and to control (automatic adaptation of the lighting of the lights, automatic lighting of the lights) or carry out (sending of an alert signal ) adequate CD treatment.
  • the detection device DISP can also include the video camera CAM making it possible to acquire an image I as illustrated in the Fig. 6 .
  • the control unit UC can also be located in the video camera CAM.
  • the DIOD light source and the CAM camera are described in more detail below.
  • the DIOD light source The DIOD light source.
  • the DIOD light source is a LED type diode.
  • a vehicle lighting and signaling system in the example taken from a rear light of vehicle V, due to the protection provided by the lens of the light
  • a light beam generator composed of the infrared DIOD light source plus an optical projection system
  • control electronics can be placed in the rear part of a light, which often has available volumes.
  • This camera is for example of the VGA type of definition 640 * 480 (that is to say an acquired image I of 8 bits (per pixel) and of 640 columns and 480 lines) and includes a lens (not shown) for this purpose.
  • the image I thus acquired is in full resolution.
  • the video camera CAM acquires 10 images per second. It will be noted that a sequence of images SQ comprises between twenty images and a hundred images per second depending on the speed at which the vehicle V.
  • the CAM camera being used for detecting the presence of a disturbing phenomenon G, it must be sensitive to the wavelength used for the light beam FX.
  • cameras such as CMOS or CCD conventionally used in automotive applications will therefore be used because they are based on silicon and have a spectral response of 400 nm to 1100 nm approximately (range of wavelengths seen by the camera). This spectral response is therefore compatible with an infrared FX beam.
  • the FX light beam will be seen by the CAM camera because it has a length wavelength (infrared here) included in the wavelength range to which the CAM camera is sensitive.
  • the CAM_V field of the CAM camera cuts the light beam FX fairly close (between 1 and 5 meters) to the light source emitting DIOD of the light beam FX. This makes it possible to obtain precise information concerning the disturbing phenomena G located, in the example taken from the rear of the vehicle, and thus to be sure of detecting the presence of a phenomenon and in particular of a spray of water.
  • the range of the CAM_V field of the camera is determined so as to cover an area where a disturbing phenomenon G can be generated (in the case of a shower of water). In a nonlimiting example, it is of the order 20 meters.
  • the detection device DISP can comprise a computer program product PG comprising one or more sequences of instructions executable by an information processing unit such as a microprocessor, or a processing unit of a microcontroller , an ASIC, a computer, etc., the execution of said sequences of instructions allowing an implementation of the method described.
  • an information processing unit such as a microprocessor, or a processing unit of a microcontroller , an ASIC, a computer, etc.
  • Such a computer program PG can be written in writable non-volatile memory of ROM type or in rewritable non-volatile memory of type EEPROM or FLASH. Said PG computer program can be written into memory at the factory or loaded into memory or downloaded remotely into memory.
  • the sequences of instructions can be sequences of machine instructions, or else sequences of a command language interpreted by the processing unit at the time of their execution.
  • the computer program PG is written in a memory of the control unit UC of the device DISP.
  • the description of the process is not limited to the embodiments and examples described above.
  • the light beam FX emitted can be modulated.
  • n is large (for example displaying 29 images without modulated light and the 30th modulated on a system capturing 30 images / second) it is possible to superimpose the "disturbing phenomenon detection" function on another function such as a parking assistance function, without altering the disturbing phenomenon detection function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Traffic Control Systems (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

Domaine de l'inventionField of the invention

La présente invention concerne un procédé de détection d'un phénomène perturbateur de visibilité, et un dispositif de détection permettant de mettre en oeuvre ledit procédé.The present invention relates to a method for detecting a visibility disturbing phenomenon, and to a detection device making it possible to implement said method.

Elle trouve une application particulière dans le domaine des véhicules automobiles.It finds a particular application in the field of motor vehicles.

État de la techniqueState of the art

Dans le cas d'une application à un véhicule automobile, des procédés de détection d'un obstacle solide tel qu'un véhicule suiveur se trouvant derrière le véhicule sont connus de l'état de la technique et permettent par exemple de prévenir si le véhicule suiveur se rapproche trop. Ils utilisent pour cela par exemple un capteur de recul. S'il existe un tel obstacle et que les feux arrières sont allumés, en cas de route mouillée (qu'il pleuve ou non), la visibilité des feux peut se trouver altérée par un phénomène perturbateur de visibilité tel qu'une gerbe d'eau générée par les roues arrières du véhicule, pour le conducteur du véhicule suiveur, ce qui peut engendrer une certaine insécurité pour ledit conducteur suiveur et pour ledit conducteur suivi. De tels procédés ne permettent pas de détecter de tel phénomène perturbateur de visibilité.In the case of an application to a motor vehicle, methods of detecting a solid obstacle such as a tracking vehicle behind the vehicle are known from the state of the art and allow for example to prevent if the vehicle follower gets too close. They use this for example a reversing sensor. If there is such an obstacle and the rear lights are on, in the event of a wet road (rain or not), the visibility of the lights may be impaired by a disturbance in visibility phenomenon such as a spray of water generated by the rear wheels of the vehicle, for the driver of the following vehicle, which can cause a certain insecurity for said following driver and for said followed driver. Such methods do not make it possible to detect such a disturbing phenomenon of visibility.

On connaît déjà de tels dispositifs de détection. Par exemple le document EP 1 715 456 décrit un procédé de détection de brouillard nocturne dans une scène de route à l'avant du véhicule, comportant les opérations d'éclairage de la scène de route par les projecteurs du véhicule, d'acquisition de plusieurs images successives de la scène de route, d'extraction dans ces images du halo lumineux créé par les projecteurs, d'approximation de la forme de ce halo, de comparaison avec la courbe elliptique la plus approchante, et de déduction de la présence ou de l'absence de brouillard.Such detection devices are already known. For example the document EP 1,715,456 describes a method of detecting night fog in a road scene at the front of the vehicle, comprising the operations of lighting the road scene by the projectors of the vehicle, of acquisition of several successive images of the road scene, extraction in these images of the luminous halo created by the projectors, approximation of the shape of this halo, comparison with the closest approximate elliptical curve, and deduction of the presence or absence of fog.

Le document EP 1 498 721 décrit un procédé de détection du brouillard, comportant une caméra numérique détectant l'environnement autour du véhicule, et un système de traitement d'image qui compare la luminosité de chaque pixel de la caméra avec une valeur prédéterminée minimale et déduit la présence de brouillard si aucun des pixels n'a de luminosité inférieure à la valeur prédéterminée.The document EP 1 498 721 describes a method of detecting fog, comprising a digital camera detecting the environment around the vehicle, and an image processing system which compares the brightness of each pixel of the camera with a predetermined minimum value and deduces the presence of fog if none of the pixels have a brightness lower than the predetermined value.

Le document EP 1 298 481 décrit un dispositif de vision nocturne, comportant un émetteur infrarouge, un détecteur et un dispositif d'affichage. L'émetteur comporte une ou plusieurs diodes émettant des impulsions, en étant commandées par un driver qui pilote simultanément le détecteur ou une caméra. Ce document ne traite pas du brouillard.The document EP 1,298,481 describes a night vision device, comprising an infrared transmitter, a detector and a display device. The transmitter comprises one or more diodes emitting pulses, being controlled by a driver which simultaneously controls the detector or a camera. This document does not deal with fog.

Le document EP 1 553 429 décrit un système de détection de conditions de circulation sur une route (conditions météorologiques ou détection d'obstacles), monté sur un véhicule automobile, comportant au moins un projecteur lumineux comprenant une première source lumineuse émettant un faisceau lumineux visible et au moins une source de lumière modulable, notamment à haute fréquence, émettant un faisceau lumineux infrarouge en direction d'une scène de route, et au moins une caméra de prise d'images de la scène de route.The document EP 1,553,429 describes a system for detecting traffic conditions on a road (weather conditions or obstacle detection), mounted on a motor vehicle, comprising at least one light projector comprising a first light source emitting a visible light beam and at least one source of Modular light, in particular at high frequency, emitting an infrared light beam towards a road scene, and at least one camera for taking images of the road scene.

Le document « Fog lamp automation with visibility sensor, the next step of lighting automation », de J. Lelevé et al., paru dans VDI Berichte N° 1907, 2005 , décrit un système passif de détection de brouillard, à base de caméras et de traitement d'images, qui ne comporte pas d'émission de faisceau lumineux.The document "Fog lamp automation with visibility sensor, the next step of lighting automation", by J. Lelevé et al., Published in VDI Berichte N ° 1907, 2005 , describes a passive fog detection system, based on cameras and image processing, which does not comprise emission of light beam.

Le document OptiVeo : A Vision-Based Platform for Driving Assistance de P. Reilhac et al., du SAE World Congress, 2006 , décrit un système passif de détection de brouillard, à base de caméras et de traitement d'images, qui ne comporte pas d'émission de faisceau lumineux.The document OptiVeo: A Vision-Based Platform for Driving Assistance by P. Reilhac et al., From SAE World Congress, 2006 , describes a passive fog detection system, based on cameras and image processing, which does not involve the emission of a light beam.

Le document EP 1 790 541 décrit un dispositif de détection des salissures sur un pare-brise de véhicule automobile, à l'aide de deux caméras et d'un système de traitement d'images.The document EP 1,790,541 describes a device for detecting dirt on a windshield of a motor vehicle, using two cameras and an image processing system.

Le document FR 2 847 367 décrit un procédé et un dispositif passifs de détermination de la distance de visibilité en présence d'un élément perturbant la visibilité tel que le brouillard, qui ne comporte pas d'émission de faisceau lumineux.The document FR 2 847 367 describes a method and a passive device for determining the visibility distance in the presence of an element disturbing visibility such as fog, which does not comprise emission of light beam.

Objet de l'inventionSubject of the invention

La présente invention a pour but la détection d'un phénomène perturbateur de visibilité.The object of the present invention is to detect a disturbing phenomenon of visibility.

Selon un premier objet de l'invention, ce but est atteint par un procédé de détection d'un phénomène perturbateur de visibilité selon la revendication 1, comportant les étapes :

  • d'émettre un faisceau lumineux à partir d'un véhicule, le faisceau lumineux étant émis dans le champ de vision d'une caméra du véhicule ; et
  • de déterminer la présence et la nature du phénomène perturbateur de visibilité à partir d'au moins une image acquise par la caméra.
According to a first object of the invention, this object is achieved by a method for detecting a disturbing visibility phenomenon according to claim 1, comprising the steps:
  • emitting a light beam from a vehicle, the light beam being emitted in the field of vision of a vehicle camera; and
  • to determine the presence and the nature of the visibility disturbing phenomenon from at least one image acquired by the camera.

Comme on va le voir en détail par la suite, un tel procédé présente l'avantage d'effectuer une analyse d'un phénomène perturbateur de visibilité au moyen d'une image captée par une caméra vidéo. Aucun dispositif électronique complexe n'est nécessaire. De plus, l'utilisation d'une caméra vidéo n'est pas très coûteuse.As will be seen in detail below, such a method has the advantage of carrying out an analysis of a visibility disturbing phenomenon by means of an image captured by a video camera. No complex electronic device is necessary. In addition, the use of a video camera is not very expensive.

Le procédé selon la revendication 1 présente en outre les caractéristiques suivantes :

  • La détermination de la nature du phénomène perturbateur de visibilité se fait en fonction de l'homogénéité et de la granulométrie du phénomène perturbateur de visibilité sur l'image. Ces deux critères permettent de déterminer si le phénomène perturbateur de visibilité est du brouillard ou une gerbe d'eau par exemple.
The method according to claim 1 also has the following characteristics:
  • The nature of the visibility disturbance phenomenon is determined as a function of the homogeneity and the grain size of the visibility disturbance phenomenon on the image. These two criteria make it possible to determine whether the disturbing phenomenon of visibility is fog or a spray of water for example.

Selon des modes de réalisation non limitatifs, le procédé présente en outre les caractéristiques suivantes:

  • La détermination de la nature du phénomène perturbateur de visibilité se fait en fonction d'un suivi de mouvement dudit phénomène perturbateur. Cela permet de différencier de façon précise du brouillard d'une gerbe d'eau.
  • Le faisceau lumineux est modulé. Cela permet d'avoir une caméra multifonctions comprenant la fonction de détection d'un phénomène perturbateur de visibilité et une autre fonction telle que l'aide au parking.
According to non-limiting embodiments, the method also has the following characteristics:
  • The nature of the visibility disturbance phenomenon is determined as a function of monitoring the movement of said disturbance phenomenon. This makes it possible to differentiate precisely from the fog of a spray of water.
  • The light beam is modulated. This makes it possible to have a multifunction camera comprising the function of detection of a disturbance phenomenon of visibility and another function such as the parking aid.

Selon un deuxième objet de l'invention, elle concerne un dispositif de détection d'un phénomène perturbateur de visibilité selon la revendication 4, comportant :

  • une source lumineuse émettrice d'un faisceau lumineux à partir d'un véhicule, le faisceau lumineux étant émis dans le champ de vision d'une caméra du véhicule ; et
  • une unité de contrôle pour déterminer la présence et la nature d'un phénomène perturbateur de visibilité à partir d'au moins une image acquise par la caméra,
caractérisé en ce que l'unité de contrôle détermine la nature du phénomène perturbateur en fonction de l'homogénéité et de la granulométrie du phénomène perturbateur de visibilité sur l'image.According to a second subject of the invention, it relates to a device for detecting a disturbing visibility phenomenon according to claim 4, comprising:
  • a light source emitting a light beam from a vehicle, the light beam being emitted in the field of vision of a vehicle camera; and
  • a control unit for determining the presence and the nature of a disturbance phenomenon of visibility from at least one image acquired by the camera,
characterized in that the control unit determines the nature of the disturbing phenomenon as a function of the homogeneity and the grain size of the disturbing phenomenon of visibility on the image.

Selon un troisième objet de l'invention, elle concerne un produit programme d'ordinateur selon la revendication 5 omportant une ou plusieurs séquences d'instructions exécutables par une unité de traitement d'information, l'exécution desdites séquences d'instructions permettant une mise en œuvre du procédé selon l'une quelconque des caractéristiques précédentes.According to a third subject of the invention, it relates to a computer program product according to claim 5 comprising one or more sequences of instructions executable by an information processing unit, the execution of said sequences of instructions allowing a setting implementing the method according to any one of the preceding characteristics.

Brève description des figuresBrief description of the figures

D'autres caractéristiques et avantages de la présente invention seront mieux compris à l'aide de la description et des dessins non limitatifs parmi lesquels :

  • la Fig. 1 représente un diagramme d'un mode de réalisation non limitatif du procédé de détection selon l'invention ;
  • la Fig. 2 est une représentation schématique d'un véhicule générant un phénomène perturbateur de visibilité détecté par le procédé selon la Fig. 1 ;
  • la Fig. 3 est une vue de dessus de la Fig. 2 ;
  • la Fig. 4 est un premier exemple d'une image acquise d'un phénomène perturbateur de visibilité détecté par le procédé de la Fig 1 ;
  • la Fig. 5 est un deuxième exemple d'une image acquise d'un phénomène perturbateur de visibilité détecté par le procédé de la Fig 1 ; et
  • la Fig. 6 est un schéma d'un mode de réalisation non limitatif d'un dispositif de détection permettant la mise en oeuvre du procédé de la Fig. 1.
Other features and advantages of the present invention will be better understood with the aid of the description and non-limiting drawings, among which:
  • the Fig. 1 represents a diagram of a nonlimiting embodiment of the detection method according to the invention;
  • the Fig. 2 is a schematic representation of a vehicle generating a visibility disturbing phenomenon detected by the method according to Fig. 1 ;
  • the Fig. 3 is a top view of the Fig. 2 ;
  • the Fig. 4 is a first example of an image acquired from a disturbing visibility phenomenon detected by the Fig 1 ;
  • the Fig. 5 is a second example of an image acquired from a visibility disturbing phenomenon detected by the method of Fig 1 ; and
  • the Fig. 6 is a diagram of a nonlimiting embodiment of a detection device allowing the implementation of the method of Fig. 1 .

Description détaillée de modes de réalisation non limitatifs de l'inventionDetailed description of nonlimiting embodiments of the invention

Sur route mouillée, par temps de pluie ou par temps de brouillard, la vision des feux arrières d'un véhicule automobile (voiture, camion, etc.) par un conducteur suiveur est altérée par un phénomène perturbateur pour la visibilité d'un autre véhicule automobile tel que par exemple une gerbe d'eau projetée à l'arrière du véhicule. Il est donc intéressant d'évaluer la présence et la nature du phénomène perturbateur de visibilité pour, si nécessaire, allumer et/ou augmenter le niveau lumineux d'un système d'éclairage et de signalisation (feux/projecteur) du véhicule et permettre au conducteur suiveur de distinguer plus facilement la signalisation du véhicule qui le précède.On wet roads, in rainy weather or in foggy weather, the vision of the rear lights of a motor vehicle (car, truck, etc.) by a following driver is impaired by a phenomenon which disturbs the visibility of another vehicle. automobile such as for example a spray of water projected at the rear of the vehicle. It is therefore interesting to evaluate the presence and the nature of the visibility disturbing phenomenon in order to, if necessary, switch on and / or increase the light level of a lighting and signaling system (lights / headlamp) of the vehicle and allow the follower driver to more easily distinguish the signaling of the vehicle in front.

Le procédé de détection d'un phénomène perturbateur de visibilité selon l'invention permet une telle détection et est décrit dans un mode de réalisation non limitatif à la Fig. 1.The method for detecting a disturbance phenomenon of visibility according to the invention allows such detection and is described in an embodiment not limiting to the Fig. 1 .

Dans cette application, la détection se fait à partir d'un dispositif de détection embarqué dans un véhicule V comprenant une caméra vidéo décrite plus loin.In this application, the detection is done from a detection device on board a vehicle V comprising a video camera described below.

Le procédé de détection comporte les étapes suivantes telles qu'illustrées à la Fig 1 :

  • émettre un faisceau lumineux FX à partir d'un véhicule V, le faisceau lumineux étant émis dans le champ de vision de la caméra CAM du véhicule V (étape EM(FX) sur la Fig.1) ; et
  • déterminer la présence et la nature d'un phénomène perturbateur G à partir d'au moins une image I acquise par la caméra CAM (étape ANAL_G(I) sur la Fig.1).
The detection process includes the following steps as illustrated in the Fig 1 :
  • emitting a light beam FX from a vehicle V, the light beam being emitted in the field of vision of the camera CAM of vehicle V (step EM (FX) on the Fig.1 ); and
  • determine the presence and the nature of a disturbing phenomenon G from at least one image I acquired by the CAM camera (step ANAL_G (I) on the Fig.1 ).

Il comporte en outre une étape de :

  • capter une image I par la caméra CAM (étape ACQ_SQ(I) sur la Fig.1).
It also includes a step of:
  • capture an image I by the CAM camera (step ACQ_SQ (I) on the Fig.1 ).

Les étapes sont décrites en détail ci-après.The steps are described in detail below.

Dans une première étape 1), on émet un faisceau lumineux FX à partir dudit véhicule V, le faisceau lumineux étant émis dans le champ de vision de la caméra CAM du véhicule V. In a first step 1), a light beam FX is emitted from said vehicle V, the light beam being emitted in the field of vision of the camera CAM of vehicle V.

Dans un mode de réalisation non limitatif, le faisceau FX est un faisceau infrarouge proche de longueur d'onde 850 nm. Cela évite de créer des effets lumineux intempestifs sur l'arrière du véhicule en présence d'un phénomène perturbateur G, et de gêner ainsi les conducteurs suiveurs. De plus, cela permet d'être compatible avec le spectre de détection de la camera CAM comme on va le voir plus loin.In a nonlimiting embodiment, the beam FX is a near infrared beam of wavelength 850 nm. This avoids creating untimely light effects on the rear of the vehicle in the presence of a disturbing phenomenon G, and thus disturbing the following drivers. In addition, this makes it possible to be compatible with the detection spectrum of the CAM camera as we will see below.

Par ailleurs, dans un mode de réalisation non limitatif, le faisceau FX est étroit. Dans un exemple non limitatif, il comporte une ouverture de 4°. Cela permet de ne pas avoir de perte de puissance. On a ainsi une concentration de l'énergie dans le faisceau lumineux FX et une détection d'un phénomène perturbateur à des distances plus grandes.Furthermore, in a nonlimiting embodiment, the beam FX is narrow. In a nonlimiting example, it has an opening of 4 °. This allows not to have a loss of power. There is thus a concentration of the energy in the light beam FX and a detection of a disturbing phenomenon at greater distances.

La génération du faisceau lumineux FX est effectuée par une source lumineuse DIOD décrite plus loin.The light beam FX is generated by a DIOD light source described below.

La Fig. 2 montre un exemple de faisceau lumineux FX généré par une source lumineuse DIOD et émis dans le champ de vision CAM_V de la caméra CAM du véhicule V. dans l'exemple illustré, le faisceau lumineux FX est émis à l'arrière du véhicule V. Par ailleurs deux gerbes d'eau G1 et G2 sont représentées et sont éclairées par le faisceau lumineux FX.The Fig. 2 shows an example of a light beam FX generated by a light source DIOD and emitted in the field of vision CAM_V of the camera CAM of the vehicle V. in the example illustrated, the light beam FX is emitted at the rear of the vehicle V. By elsewhere two sprays of water G1 and G2 are shown and are illuminated by the light beam FX.

La Fig. 3 montre une vue de dessus de la Fig. 2. On peut voir l'emplacement de la source lumineuse DIOD dans un feu arrière et l'emplacement de la caméra CAM entre les deux feux arrière.The Fig. 3 shows a top view of the Fig. 2 . You can see the location of the DIOD light source in a rear light and the location of the CAM camera between the two rear lights.

Dans un mode de réalisation non limitatif, la génération du faisceau lumineux FX se fait dès le déclenchement des feux arrière. Il fonctionne ainsi en permanence dès l'allumage de ces feux. Cela permet d'être sûr de pouvoir détecter un phénomène perturbateur tel qu'une gerbe d'eau dès qu'il pleut ou que la chaussée est mouillée et d'adapter l'éclairage des feux arrières en conséquence selon la nature du phénomène perturbateur.In a nonlimiting embodiment, the generation of the light beam FX is done as soon as the rear lights are triggered. It therefore works continuously as soon as these lights are switched on. This makes it possible to be sure of being able to detect a disturbing phenomenon such as a spray of water as soon as it rains or when the roadway is wet and to adapt the lighting of the rear lights accordingly according to the nature of the disturbing phenomenon.

Dans une deuxième étape 2), on acquiert une image I par la caméra du véhicule V. In a second step 2), an image I is acquired by the camera of the vehicle V.

La caméra vidéo CAM étant placée, dans l'exemple pris, à l'arrière du véhicule V, l'image acquise I correspond à l'environnement du véhicule V se trouvant dans le champ de la caméra CAM et donc à l'arrière du véhicule V. On va donc détecter un phénomène perturbateur G se trouvant à l'arrière du véhicule V. Dans un exemple non limitatif, la caméra CAM est placée près d'un des feux arrière du véhicule V.The video camera CAM being placed, in the example taken, at the rear of the vehicle V, the acquired image I corresponds to the environment of the vehicle V located in the field of the camera CAM and therefore to the rear of vehicle V. We will therefore detect a disturbing phenomenon G located at the rear of vehicle V. In a nonlimiting example, the CAM camera is placed near one of the rear lights of vehicle V.

Ainsi, la lumière issue du faisceau lumineux FX émis depuis un des feux arrière est diffusée en présence de particules du phénomène perturbateur G en suspension dans l'atmosphère (après le passage des roues sur une surface mouillée par exemple). La longueur d'onde de ce faisceau lumineux étant compatible avec le spectre d'analyse de la camera CAM, et les particules constitutives du phénomène perturbateur G se situant dans le champ de vision de la camera CAM, il est alors possible de capter une image intégrant la lumière diffusée dans le phénomène perturbateur G.Thus, the light coming from the light beam FX emitted from one of the rear lights is scattered in the presence of particles of the disturbing phenomenon G suspended in the atmosphere (after the passage of the wheels over a wet surface for example). The wavelength of this light beam being compatible with the analysis spectrum of the CAM camera, and the constituent particles of the disturbing phenomenon G being located in the field of vision of the CAM camera, it is then possible to capture an image integrating the scattered light into the disturbing phenomenon G.

On notera que cette étape d'acquisition d'images peut ne pas être compris dans le procédé décrit, mais peut faire partie d'un autre procédé exécuté en amont du procédé décrit.Note that this image acquisition step may not be included in the method described, but may be part of another method executed upstream of the method described.

On notera également que la première et la deuxième étape peuvent être effectuées en parallèle.It will also be noted that the first and second stages can be carried out in parallel.

Dans une troisième étape 3), on détermine la présence et la nature d'un phénomène perturbateur de visibilité G à partir de l'image I acquise par la caméra CAM. In a third step 3), the presence and the nature of a visibility disturbing phenomenon G is determined from the image I acquired by the camera CAM.

L'analyse de cette image I va ainsi permettre :

  • d'évaluer la présence et la nature du phénomène perturbateur (pluie, brouillard) et d'en déduire l'atténuation de visibilité de la signalisation arrière ou de l'éclairage avant pour ensuite la compenser en augmentant l'intensité des feux concernés ou projecteurs concernés (dans l'exemple où le faisceau éclaire à l'arrière du véhicule, feux de position) ou en allumant les feux de brouillard, ou en commutant des projecteurs de code aux projecteurs de route ; et
  • de déceler la présence d'un obstacle O et notamment d'un véhicule suiveur pour optimiser la consommation d'énergie supplémentaire apportée aux feux (et limiter les incidences sur la durée de vie des lampes à filament).
The analysis of this image I will thus allow:
  • to evaluate the presence and the nature of the disturbing phenomenon (rain, fog) and to deduce the reduction in visibility of the rear signaling or the front lighting and then compensate for it by increasing the intensity of the lights concerned or headlamps concerned (in the example where the beam illuminates at the rear of the vehicle, position lights) or by switching on the fog lights, or by switching code headlamps to the main beam headlamps; and
  • detect the presence of an obstacle O and in particular of a follower vehicle to optimize the additional energy consumption brought to the lights (and limit the effects on the life of the filament lamps).

Deux exemples non limitatifs d'une image I acquise par la caméra CAM sont représentés sur les Fig. 4 et Fig. 5.Two nonlimiting examples of an image I acquired by the CAM camera are represented on the Fig. 4 and Fig. 5 .

Ces images I donnent un aperçu de la lumière diffusée de nuit avec un faisceau lumineux FX étroit. Le faisceau est issu d'une source lumineuse DIOD placée sur la gauche de l'image I et au dessus de la camera CAM.These images I give an overview of the light scattered at night with a narrow FX light beam. The beam comes from a DIOD light source placed on the left of image I and above the CAM camera.

La partie blanche représente la lumière diffusée de nuit avec le faisceau lumineux FX, tandis que la partie hachurée notée B représente l'environnement, ici à l'arrière, du véhicule V dans le champ de la caméra CAM non éclairé par le faisceau lumineux FX.The white part represents the light scattered at night with the light beam FX, while the hatched part denoted B represents the environment, here at the rear, of the vehicle V in the field of the CAM camera not lit by the light beam FX .

L'exemple de la Fig. 4 représente l'environnement à l'arrière du véhicule V en présence de pluie, sans obstacle O dans le champ CAM_V de la caméra CAM, l'image I faisant apparaître des paquets d'eau P1 et P2 révélateurs de la présence d'un phénomène perturbateur G, tel qu'une gerbe d'eau, causé par les turbulences aérodynamique derrière le véhicule V.The example of the Fig. 4 represents the environment at the rear of the vehicle V in the presence of rain, without obstacle O in the field CAM_V of the camera CAM, the image I showing packets of water P1 and P2 revealing the presence of a phenomenon disruptive G, such as a spray of water, caused by aerodynamic turbulence behind vehicle V.

L'exemple de la Fig. 5 représente l'environnement à l'arrière du véhicule V en présence de brouillard, avec un obstacle O (tel qu'un véhicule suiveur).The example of the Fig. 5 represents the environment behind the vehicle V in the presence of fog, with an obstacle O (such as a follower vehicle).

En présence de brouillard PF, plus homogène et moins perturbé qu'en présence de paquets d'eau, le faisceau FX apparaît plus continu. Sur cette même image, une source lumineuse extérieure SO apparaît dans le champ, à droite de l'image I. Il peut s'agir d'un obstacle O tel qu'un projecteur d'un véhicule suiveur ou tel qu'une source fixe dans le paysage. La détection et la caractérisation de ce type de source lumineuse dans l'image est aisée, en utilisant par exemple des méthodes de suivis d'objets d'image (« tracking » en anglais) basées par exemple sur la détection d'ombres pour mettre en évidence les contours d'un véhicule suiveur. Ces méthodes étant bien connues de l'homme du métier, elles ne sont pas décrites ici.In the presence of PF fog, which is more homogeneous and less disturbed than in the presence of water packets, the FX beam appears more continuous. On this same image, an external light source SO appears in the field, to the right of image I. It may be an obstacle O such as a headlight of a following vehicle or such as a stationary source in the landscape. The detection and characterization of this type of light source in the image is easy, using for example methods of tracking image objects (“tracking” in English) based for example on the detection of shadows to put highlight the contours of a follower vehicle. As these methods are well known to those skilled in the art, they are not described here.

Ainsi, grâce aux images acquises par la caméra CAM, on peut détecter :

  • la présence et la nature d'un obstacle O ;
  • la présence et la nature d'un phénomène perturbateur.
Thus, thanks to the images acquired by the CAM camera, we can detect:
  • the presence and nature of an obstacle O;
  • the presence and nature of a disturbing phenomenon.

En ce qui concerne la détection d'un obstacle O, l'information de présence de véhicule suiveur peut-être utilisée pour une gestion optimale de l'intensité des fonctions de signalisation. Ainsi, on peut régler l'intensité des feux arrière en fonction de la présence ou non d'un véhicule suiveur proche (pour ne pas être éblouissant). Cela permet ainsi d'avoir plus de sécurité pour le conducteur du véhicule suiveur et le conducteur du véhicule suivi.With regard to the detection of an obstacle O, the information on the presence of the following vehicle may be used for optimal management of the intensity of the signaling functions. Thus, one can adjust the intensity of the rear lights according to the presence or not of a nearby follower vehicle (so as not to be dazzling). This thus provides more security for the driver of the following vehicle and the driver of the vehicle being followed.

On notera qu'à l'arrière du véhicule l'intensité des feux de positions par exemple est caractérisée en plusieurs points de norme. Selon une norme européenne (ECE R7), l'intensité de ces points varie de 0.05cd à 4cd minimum suivant les points. Le maximum permis est lui de 12cd pour un feu simple, de 17cd pour un ensemble de feux. Ainsi, si l'on détecte de l'eau alors on augmente l'intensité des feux, mais si on détecte de l'eau et la présence d'un véhicule suiveur proche on augmente l'intensité des feux en conséquence (c'est-à-dire moins qu'en l'absence de ce véhicule pour ne pas être éblouissant et moins qu'en présence d'un véhicule éloigné).It will be noted that at the rear of the vehicle the intensity of the position lights for example is characterized at several standard points. According to a European standard (ECE R7), the intensity of these points varies from 0.05cd to 4cd minimum depending on the points. The maximum allowed is 12cd for a single light, 17cd for a set of lights. Thus, if we detect water then we increase the intensity of the lights, but if we detect water and the presence of a nearby following vehicle we increase the intensity of the lights accordingly (this is that is, less than in the absence of this vehicle so as not to be dazzling and less than in the presence of a distant vehicle).

En ce qui concerne la détection d'un phénomène perturbateur de visibilité G, la caractérisation de la nature du phénomène perturbateur repose sur l'homogénéité et la granulométrie de la lumière diffusée. Grâce à ces deux paramètres, on peut ainsi discriminer l'eau et le brouillard.With regard to the detection of a disturbing phenomenon of visibility G, the characterization of the nature of the disturbing phenomenon is based on the homogeneity and the particle size of the scattered light. Thanks to these two parameters, we can thus discriminate between water and fog.

L'intérêt de discriminer l'eau et le brouillard est de pouvoir activer une signalisation particulière en cas de présence de brouillard, c'est-à-dire les feux de brouillard, d'augmenter l'intensité des feux arrières en cas de présence d'une gerbe d'eau par exemple etc.The advantage of discriminating water and fog is to be able to activate a specific signaling in the event of the presence of fog, i.e. the fog lights, to increase the intensity of the rear lights in the event of presence of a spray of water for example etc.

On notera que dans le cas où l'on voudrait déterminer si on est en présence d'une gerbe d'eau et de la pluie, on peut utiliser un capteur de pluie en complément. Ce capteur permettra de confirmer qu'il pleut également.Note that if you want to determine if you are in the presence of a spray of water and rain, you can use a rain sensor in addition. This sensor will confirm that it is also raining.

La détermination de l'homogénéité de la lumière diffusée est connue de l'homme du métier. Dans un exemple non limitatif, on peut utiliser des méthodes d'analyse de texture telles que les matrices de cooccurrences et plus particulièrement son critère d'homogénéité. Cette méthode étant bien connue de l'homme du métier, elle n'est donc pas décrite en détail ici.The determination of the homogeneity of the scattered light is known to a person skilled in the art. In a nonlimiting example, it is possible to use texture analysis methods such as the co-occurrence matrices and more particularly its homogeneity criterion. Since this method is well known to those skilled in the art, it is therefore not described in detail here.

La détermination de la granulométrie (attribut de la texture) de la lumière diffusée est également connue de l'homme du métier. Elle peut dans un exemple non limitatif être basée sur une analyse de la texture d'une image I en utilisant des approches probabilistes telles que les matrices de cooccurrence et/ou des approches fréquentielles telles que la transformée de Fourier, la décomposition en ondelettes ...etc. Ces méthodes étant connues de l'homme du métier, elles ne sont donc pas décrites en détail ici.The determination of the particle size (texture attribute) of the scattered light is also known to those skilled in the art. It can in a nonlimiting example be based on an analysis of the texture of an image I using probabilistic approaches such as the co-occurrence matrices and / or frequency approaches such as the Fourier transform, the wavelet decomposition. .etc. As these methods are known to those skilled in the art, they are therefore not described in detail here.

Ainsi, si sur l'image acquise I, il n'existe ni phénomène perturbateur G, ni obstacle O, on ne voit pas le faisceau FX sur l'image. Si sur l'image acquise I, il n'existe pas de phénomène perturbateur G mais qu'il existe un obstacle O, l'obstacle est éclairé et caractérisable facilement.Thus, if on the acquired image I, there is neither disturbing phenomenon G, nor obstacle O, we do not see the beam FX on the image. If on the acquired image I, there is no disturbing phenomenon G but there is an obstacle O, the obstacle is illuminated and easily characterizable.

Si sur l'image acquise I, il existe un phénomène perturbateur G mais qu'il n'existe pas d'obstacle O, le phénomène perturbateur G est éclairé et visible.If on the acquired image I, there is a disturbing phenomenon G but there is no obstacle O, the disturbing phenomenon G is illuminated and visible.

Si sur l'image acquise I, il existe un phénomène perturbateur G et qu'il existe un obstacle O, le phénomène perturbateur G est éclairé et visible ainsi que l'obstacle O.If on the acquired image I, there is a disturbing phenomenon G and there is an obstacle O, the disturbing phenomenon G is illuminated and visible as well as the obstacle O.

En cas de présence d'un phénomène perturbateur G, si sur l'image acquise I, le faisceau lumineux FX fait apparaître des zones non homogènes et dont la texture (donnée par la granulométrie) est non lisse, on conclue en la présence de paquets d'eau (cas d'une chaussée mouillée avec ou sans pluie). A ce moment, l'intensité des feux peut être augmenté.In the event of the presence of a disturbing phenomenon G, if on the acquired image I, the light beam FX reveals zones which are not homogeneous and whose texture (given by the particle size) is not smooth, we conclude in the presence of packets water (in the case of a wet roadway with or without rain). At this time, the intensity of the lights can be increased.

Si sur l'image acquise I, le faisceau lumineux FX fait apparaître une zone continue homogène et dont la texture (donnée par la granulométrie) est plus lisse, on pourrait conclure en la présence de brouillard (à moins que l'on soit en présence de pluie fine sans génération de gerbe d'eau). A ce moment les feux de brouillard peuvent être allumés.If on the acquired image I, the light beam FX reveals a homogeneous continuous zone and whose texture (given by the particle size) is smoother, one could conclude in the presence of fog (unless one is in the presence of fine rain without generating a spray of water). At this time the fog lights can be turned on.

Dans un mode de réalisation non limitatif, on peut également faire un suivi de mouvement du phénomène perturbateur G sur une séquence SQ d'images acquises I afin d'aider également à la caractérisation de la nature du phénomène. Ainsi, dans le cas d'un phénomène perturbateur G tel que du brouillard, aucun mouvement ne sera détecté sur la séquence SQ d'images acquises I, tandis que dans le cas d'un phénomène perturbateur tel que de l'eau, un mouvement sera détecté. Ce suivi de mouvement se base sur un suivi («tracking») des zones éclairées sur la séquence SQ d'images I. Un tel suivi de mouvement étant connu de l'homme d métier, il n'est pas décrit ici.In a nonlimiting embodiment, it is also possible to monitor the movement of the disturbing phenomenon G on a sequence SQ of acquired images I in order also to help characterize the nature of the phenomenon. Thus, in the case of a disturbing phenomenon G such as fog, no movement will be detected on the sequence SQ of acquired images I, while in the case of a disturbing phenomenon such as water, a movement will be detected. This movement follow-up is based on a follow-up (“tracking”) of the illuminated zones on the SQ sequence of images I. Since such movement follow-up is known to those skilled in the art, it is not described here.

Ce suivi de mouvement est particulièrement utile pour discriminer le brouillard de l'eau, lorsqu'il n'existe pas de gerbe d'eau générée (en cas de pluie fine par exemple) ou lorsque le véhicule roule à basse vitesse. L'image acquise I présente en effet une zone continue homogène.This movement tracking is particularly useful for discriminating water fog, when there is no spray of generated water (in case of light rain for example) or when the vehicle is traveling at low speed. The acquired image I indeed presents a homogeneous continuous zone.

Dans une quatrième étape 4), après qu'un phénomène perturbateur de visibilité G est détecté et sa nature définie, un traitement adéquate CD en temps réel sur le véhicule V peut être exécuté. In a fourth step 4), after a visibility disturbing phenomenon G is detected and its nature defined, adequate processing CD in real time on the vehicle V can be executed.

Dans des exemples non limitatifs, il peut s'agir :

  • d'adapter automatiquement l'éclairage des feux du véhicule V en fonction des indications sur la nature du phénomène perturbateur G en augmentant l'intensité des feux ou en allumant les feux de brouillard. En complément on prendra en compte la présence d'obstacle O tel que vu précédemment ; ou
  • d'envoyer un signal d'alerte au conducteur du véhicule V de manière à ce qu'il augmente lui-même l'intensité des feux par exemple s'il peut le faire pour éclairer plus ou qu'il allume lui-même les feux de brouillard ; ou
  • d'allumer automatiquement les feux (dans l'exemple pris, les feux arrière de signalisation, c'est-à-dire les veilleuses et/ou feux de brouillard).
In nonlimiting examples, it can be:
  • to automatically adapt the lighting of the vehicle lights V according to the indications on the nature of the disturbing phenomenon G by increasing the intensity of the lights or by switching on the fog lights. In addition, the presence of obstacle O as seen above will be taken into account; or
  • send an alert signal to the driver of vehicle V so that he himself increases the intensity of the lights, for example if he can do so to illuminate more or that he turns on the lights himself resourceful ; or
  • automatically turn on the lights (in the example taken, the rear signal lights, i.e. the pilot lights and / or fog lights).

On notera que cette quatrième étape se fait au fur et à mesure du traitement des images vidéo par le procédé décrit ci-dessus. Ainsi, le traitement adéquat CD, tel que par exemple l'adaptation automatique de l'éclairage des feux arrières, est exécuté en temps réel puisqu'il est effectué après chaque détection d'un phénomène perturbateur, une détection étant effectuée à chaque acquisition d'image I.Note that this fourth step is carried out as the video images are processed by the method described above. Thus, the adequate processing CD, such as for example the automatic adaptation of the lighting of the rear lights, is executed in real time since it is carried out after each detection of a disturbing phenomenon, a detection being carried out with each acquisition of image I.

Le procédé de l'invention est mis en oeuvre par un dispositif DISP de détection représenté à la Fig. 6.The method of the invention is implemented by a DISP detection device shown in the Fig. 6 .

Ce dispositif DISP comporte notamment :

  • une source lumineuse émettrice DIOD d'un faisceau lumineux FX à partir d'un véhicule V, le faisceau lumineux étant émis dans le champ de vision d'une caméra CAM du véhicule V ; et
  • une unité de contrôle UC pour de déterminer la présence et la nature d'un phénomène perturbateur de visibilité G à partir d'au moins une image I acquise par la caméra CAM.
This DISP device includes in particular:
  • a light source DIOD emitting a light beam FX from a vehicle V, the light beam being emitted in the field of vision of a camera CAM of the vehicle V; and
  • a control unit UC for determining the presence and the nature of a disturbance phenomenon of visibility G from at least one image I acquired by the camera CAM.

L'unité de contrôle UC permet en outre de commander la source lumineuse DIOD et la caméra CAM et de commander (adaptation automatique de l'éclairage des feux, allumage automatique des feux) ou d'effectuer (envoi d'un signal d'alerte) le traitement adéquat CD.The control unit UC also makes it possible to control the light source DIOD and the camera CAM and to control (automatic adaptation of the lighting of the lights, automatic lighting of the lights) or carry out (sending of an alert signal ) adequate CD treatment.

Dans un mode de réalisation non limitatif, le dispositif de détection DISP peut en outre comporter la caméra vidéo CAM permettant d'acquérir une image I telle qu'illustrée à la Fig. 6. On notera que dans ce cas, l'unité de contrôle UC peut également se trouver dans la caméra vidéo CAM.In a nonlimiting embodiment, the detection device DISP can also include the video camera CAM making it possible to acquire an image I as illustrated in the Fig. 6 . Note that in this case, the control unit UC can also be located in the video camera CAM.

La source lumineuse DIOD et la caméra CAM sont décrites plus en détail ci-après.The DIOD light source and the CAM camera are described in more detail below.

La source lumineuse DIOD.The DIOD light source.

La source lumineuse DIOD est une diode de type LED. Dans d'autres modes non limitatifs, on peut avoir des diodes laser, OLED, lampe halogène avec concentrateur de lumière, etc., toute source capable d'émettre un faisceau compatible avec la caméra CAM comme on va le voir ci-après.The DIOD light source is a LED type diode. In other nonlimiting modes, it is possible to have laser diodes, OLEDs, halogen lamps with light concentrators, etc., any source capable of emitting a beam compatible with the CAM camera as will be seen below.

Dans un exemple non limitatif, elle est placée dans un système d'éclairage et de signalisation du véhicule (dans l'exemple pris un feu arrière du véhicule V, en raison de la protection procurée par la glace du feu), ou sur le véhicule dans la région de l'éclairage de la plaque de police par exemple ou du haillon etc., ces endroits permettant d'évaluer la présence d'un phénomène perturbateur G, par exemple généré par une des roues arrières. En effet, de par sa taille (de l'ordre du cm3), un générateur de faisceau lumineux, composé de la source lumineuse DIOD infrarouge plus d'un système de projection optique, est facile à intégrer dans le système d'éclairage et de signalisation du véhicule, dans l'exemple pris un feu arrière. Par ailleurs, une électronique de commande (pilotage de la source lumineuse DIOD et de la caméra CAM) peut se placer dans la partie arrière d'un feu, qui présente souvent des volumes disponibles.In a nonlimiting example, it is placed in a vehicle lighting and signaling system (in the example taken from a rear light of vehicle V, due to the protection provided by the lens of the light), or on the vehicle in the region of the lighting of the police plate for example or of the rag etc., these places making it possible to evaluate the presence of a disturbing phenomenon G, for example generated by one of the rear wheels. Indeed, due to its size (of the order of cm 3 ), a light beam generator, composed of the infrared DIOD light source plus an optical projection system, is easy to integrate into the lighting system and vehicle signaling, in the example taken a rear light. In addition, control electronics (control of the DIOD light source and the CAM camera) can be placed in the rear part of a light, which often has available volumes.

La caméra CAMThe CAM camera

Cette caméra est par exemple du type VGA de définition 640*480 (soit une image acquise I de 8 bits (par pixel) et de 640 colonnes et 480 lignes) et comporte une lentille (non représentée) à cet effet. L'image I ainsi acquise est en pleine résolution.This camera is for example of the VGA type of definition 640 * 480 (that is to say an acquired image I of 8 bits (per pixel) and of 640 columns and 480 lines) and includes a lens (not shown) for this purpose. The image I thus acquired is in full resolution.

Dans un exemple non limitatif, la caméra vidéo CAM acquiert 10 images par seconde. On notera qu'une séquence d'images SQ comprend entre vingt images et une centaine d'images par seconde selon la vitesse à laquelle roule le véhicule V.In a nonlimiting example, the video camera CAM acquires 10 images per second. It will be noted that a sequence of images SQ comprises between twenty images and a hundred images per second depending on the speed at which the vehicle V.

Bien entendu, une caméra de type différent et avec une résolution différente peut être utilisée.Of course, a camera of a different type and with a different resolution can be used.

On notera que la caméra CAM étant utilisée pour la détection de présence d'un phénomène perturbateur G, elle doit être sensible à la longueur d'onde utilisée pour le faisceau lumineux FX. On utilisera ainsi dans un exemple non limitatif, des caméras type CMOS ou CCD classiquement utilisée dans les applications automobiles car elles sont à base de silicium et ont une réponse spectrale de 400 nm à 1100 nm environ (plage de longueurs d'onde que voit la caméra). Cette réponse spectrale est donc compatible avec un faisceau FX infrarouge. Ainsi, le faisceau lumineux FX sera vu par la caméra CAM car il a une longueur d'onde (infrarouge ici) compris dans la plage de longueurs d'onde à laquelle est sensible la caméra CAM.Note that the CAM camera being used for detecting the presence of a disturbing phenomenon G, it must be sensitive to the wavelength used for the light beam FX. In a non-limiting example, cameras such as CMOS or CCD conventionally used in automotive applications will therefore be used because they are based on silicon and have a spectral response of 400 nm to 1100 nm approximately (range of wavelengths seen by the camera). This spectral response is therefore compatible with an infrared FX beam. Thus, the FX light beam will be seen by the CAM camera because it has a length wavelength (infrared here) included in the wavelength range to which the CAM camera is sensitive.

Par ailleurs, le champ CAM_V de la caméra CAM coupe le faisceau lumineux FX assez proche (entre 1 et 5 mètres) de la source lumineuse émettrice DIOD du faisceau lumineux FX. Cela permet d'obtenir des informations précises concernant les phénomènes perturbateurs G se situant, dans l'exemple pris à l'arrière du véhicule, et ainsi d'être sûr de détecter la présence d'un phénomène et notamment d'une gerbe d'eau. De plus, la portée du champ CAM_V de la caméra est déterminée de sorte à couvrir une zone où peut être généré (cas d'une gerbe d'eau) un phénomène perturbateur G. Dans un exemple non limitatif, elle est de l'ordre de 20 mètres.Furthermore, the CAM_V field of the CAM camera cuts the light beam FX fairly close (between 1 and 5 meters) to the light source emitting DIOD of the light beam FX. This makes it possible to obtain precise information concerning the disturbing phenomena G located, in the example taken from the rear of the vehicle, and thus to be sure of detecting the presence of a phenomenon and in particular of a spray of water. In addition, the range of the CAM_V field of the camera is determined so as to cover an area where a disturbing phenomenon G can be generated (in the case of a shower of water). In a nonlimiting example, it is of the order 20 meters.

On notera que toutes les étapes du procédé décrit ci-dessus sont effectuées pour une ou plusieurs (séquence SQ) images acquises I par la caméra vidéo CAM et ce en temps réel. C'est-à-dire que l'ensemble des étapes ne prend pas plus de 1/10 seconde dans l'exemple d'une séquence de 10 images par seconde acquises par la caméra CAM.It will be noted that all the steps of the method described above are carried out for one or more (sequence SQ) images acquired I by the video camera CAM and this in real time. That is to say that all of the steps take no more than 1/10 second in the example of a sequence of 10 images per second acquired by the CAM camera.

On notera que la mise en œuvre du procédé de détection exposé ci-dessus peut être effectuée au moyen d'un dispositif micro programmé « software », d'une logique câblée ou de composants électroniques « hardware ».It will be noted that the implementation of the detection method described above can be carried out by means of a micro device programmed "software", wired logic or electronic components "hardware".

Ainsi, le dispositif de détection DISP peut comporter un produit programme d'ordinateur PG comportant une ou plusieurs séquences d'instructions exécutables par une unité de traitement d'information telle qu'un microprocesseur, ou d'une unité de traitement d'un microcontrôleur, d'un ASIC, d'un ordinateur etc., l'exécution desdites séquences d'instructions permettant une mise en œuvre du procédé décrit.Thus, the detection device DISP can comprise a computer program product PG comprising one or more sequences of instructions executable by an information processing unit such as a microprocessor, or a processing unit of a microcontroller , an ASIC, a computer, etc., the execution of said sequences of instructions allowing an implementation of the method described.

Un tel programme d'ordinateur PG peut être inscrit en mémoire non volatile inscriptible de type ROM ou en mémoire non volatile réinscriptible de type EEPROM ou FLASH. Ledit programme d'ordinateur PG peut être inscrit en mémoire en usine ou encore chargé en mémoire ou téléchargé à distance en mémoire. Les séquences d'instructions peuvent être des séquences d'instructions machine, ou encore des séquences d'un langage de commande interprétées par l'unité de traitement au moment de leur exécution.Such a computer program PG can be written in writable non-volatile memory of ROM type or in rewritable non-volatile memory of type EEPROM or FLASH. Said PG computer program can be written into memory at the factory or loaded into memory or downloaded remotely into memory. The sequences of instructions can be sequences of machine instructions, or else sequences of a command language interpreted by the processing unit at the time of their execution.

Dans l'exemple non limitatif de la Fig. 6, le programme d'ordinateur PG est inscrit dans une mémoire de l'unité de contrôle UC du dispositif DISP.In the nonlimiting example of the Fig. 6 , the computer program PG is written in a memory of the control unit UC of the device DISP.

Bien entendu, la description du procédé n'est pas limitée aux modes de réalisation et exemples décrits ci-dessus. Ainsi, dans un mode de réalisation non limitatif, le faisceau lumineux FX émis peut être modulé. Par exemple, on peut en effet envisager d'émettre la lumière toutes les "n" images captées par la camera CAM et de procéder à des comparaisons ou des soustractions (opérations simples en traitement d'image) entre les images avec et sans lumière modulée. Grâce à ces comparaisons/soustractions, il est facile de discriminer ainsi le faisceau lumineux FX de manière à étudier les phénomènes perturbateurs G rendus visibles comme décrit précédemment. Dans la mesure où n est grand (par exemple afficher 29 images sans lumière modulée et la 30ème modulée sur un système captant 30 images/seconde) il est possible de superposer la fonction "détection de phénomène perturbateur" à une autre fonction telle qu'une fonction d'aide au parking, sans altérer la fonction détection de phénomène perturbateur.Of course, the description of the process is not limited to the embodiments and examples described above. Thus, in a nonlimiting embodiment, the light beam FX emitted can be modulated. For example, we can indeed consider emitting light all "n" images captured by the CAM camera and making comparisons or subtractions (simple operations in image processing) between images with and without modulated light . Thanks to these comparisons / subtractions, it is easy to thus discriminate the light beam FX so as to study the disturbing phenomena G made visible as described previously. Since n is large (for example displaying 29 images without modulated light and the 30th modulated on a system capturing 30 images / second) it is possible to superimpose the "disturbing phenomenon detection" function on another function such as a parking assistance function, without altering the disturbing phenomenon detection function.

Bien entendu, ce qui a été décrit précédemment pour l'exemple d'un faisceau lumineux FX émis pour éclairer à l'arrière d'un véhicule et pour détecter un phénomène perturbateur de visibilité à l'arrière du véhicule V s'applique également pour un faisceau lumineux FX pour éclairer à l'avant du véhicule V et pour détecter un phénomène perturbateur de visibilité à l'avant du véhicule V. A ce moment, le véhicule V est muni d'une caméra CAM située à l'avant.Of course, what has been described above for the example of a light beam FX emitted to illuminate at the rear of a vehicle and to detect a disturbing phenomenon of visibility at the rear of the vehicle V also applies to a light beam FX for lighting at the front of the vehicle V and for detecting a phenomenon visibility disturbance at the front of vehicle V. At this time, vehicle V is fitted with a CAM camera located at the front.

Dans ce cas, après la détection d'un phénomène perturbateur de visibilité G à l'avant du véhicule V, dans des exemples non limitatifs, le traitement adéquate CD suivant en temps réel sur le véhicule V peut être exécuté :

  • adapter automatiquement l'intensité des projecteurs avants du véhicule V en fonction des indications sur la nature du phénomène perturbateur G en augmentant l'intensité des projecteurs (code ou route) et/ou en allumant les feux de brouillard. En complément on prendra en compte la présence d'obstacle O tel que vu précédemment ; ou
  • commuter automatiquement des projecteurs de code aux projecteurs de route ; ou
  • envoyer un signal d'alerte au conducteur du véhicule V de manière à ce qu'il augmente lui-même l'intensité des projecteurs avants par exemple s'il peut le faire pour éclairer plus ou qu'il allume lui-même les feux de brouillard.
In this case, after the detection of a disturbance phenomenon of visibility G at the front of the vehicle V, in nonlimiting examples, the following appropriate processing CD in real time on the vehicle V can be executed:
  • automatically adapt the intensity of the front headlights of vehicle V according to the indications on the nature of the disturbing phenomenon G by increasing the intensity of the headlights (code or road) and / or turning on the fog lights. In addition, the presence of obstacle O as seen above will be taken into account; or
  • automatically switch code searchlights to high beams; or
  • send an alert signal to the driver of vehicle V so that he himself increases the intensity of the front headlamps, for example if he can do so to illuminate more or that he switches on the tail lights himself fog.

De plus, on peut prévoir que le traitement adéquate CD comprend en outre également une transmission de l'information de détection à d'autres systèmes du véhicule V, tel que par exemple une caméra avant qui fait un suivi de lignes blanches de la route. Cela permet de prévenir cette caméra que la route est mouillée et le cas échéant d'augmenter l'intensité des projecteurs pour mieux visualiser les lignes blanches de la route.In addition, provision can be made for the appropriate processing CD also to include transmission of the detection information to other systems of vehicle V, such as for example a front camera which tracks white lines of the road. This allows this camera to be warned that the road is wet and, if necessary, to increase the intensity of the spotlights to better visualize the white lines of the road.

Ainsi, l'invention présente notamment les avantages suivants :

  • Elle permet de détecter la présence d'une gerbe d'eau de manière à adapter les feux arrière de façon adéquate ;
  • Elle permet de déterminer la nature d'un phénomène perturbateur. Ainsi, en cas de brouillard, les feux anti-brouillard sont allumés, tandis qu'en cas de gerbe d'eau, l'intensité des feux arrière est adaptée ;
  • Elle permet ainsi de détecter un phénomène perturbateur de visibilité qui peut être généré par les roues arrière d'un véhicule, tel qu'une gerbe d'eau. Elle peut faire la différence entre une gerbe d'eau (phénomène généré par le véhicule) et du brouillard (phénomène non généré par le véhicule) ;
  • Elle permet de déterminer la présence d'un obstacle tel qu'un véhicule suiveur et sa nature :
  • Dans le cas où il n'existe pas d'obstacle, le niveau des feux arrières est augmenté (s'il y a détection d'un phénomène perturbateur) ;
  • Dans le cas où il existe un obstacle, le niveau des feux est augmenté de façon adaptée de sorte que le véhicule suiveur ne soit pas ébloui ou puisse voir correctement le véhicule devant lui. Cela permet également de consommer moins et donc d'économiser de l'énergie ;
  • Elle permet de ne pas confondre un phénomène perturbateur avec un obstacle tel qu'un véhicule suiveur ;
  • Elle permet d'éviter d'utiliser deux caméras, une pour la fonction de détection d'un phénomène perturbateur et une pour la fonction d'aide au parking. On regroupe ainsi deux fonctions dans une seule caméra qui est multifonctions. C'est une invention économique car le surcoût de la fonction détection d'un phénomène perturbateur se limite au générateur de lumière et au traitement d'image, ce dernier pouvant utiliser le même support hardware que celui de l'aide au parking ; et
  • Elle est facilement intégrable dans un système d'éclairage et de signalisation tel qu'un feu ou un projecteur (générateur de lumière, caméra) sans implantation contraignante sur la carrosserie d'un véhicule.
Thus, the invention has in particular the following advantages:
  • It makes it possible to detect the presence of a spray of water so as to adapt the tail lights adequately;
  • It makes it possible to determine the nature of a disturbing phenomenon. Thus, in the event of fog, the fog lights are switched on, while in the event of a spray of water, the intensity of the rear lights is adapted;
  • It thus makes it possible to detect a disturbing phenomenon of visibility which can be generated by the rear wheels of a vehicle, such as a spray of water. It can make the difference between a spray of water (phenomenon generated by the vehicle) and fog (phenomenon not generated by the vehicle);
  • It makes it possible to determine the presence of an obstacle such as a follower vehicle and its nature:
  • If there is no obstacle, the level of the rear lights is increased (if a disturbing phenomenon is detected);
  • In the event of an obstacle, the level of the lights is appropriately increased so that the following vehicle is not dazzled or can correctly see the vehicle in front of it. This also makes it possible to consume less and therefore to save energy;
  • It allows not to confuse a disturbing phenomenon with an obstacle such as a following vehicle;
  • It avoids the use of two cameras, one for the detection of a disturbing phenomenon and one for the parking assistance function. Two functions are thus combined in a single camera which is multifunctional. It is an economical invention because the additional cost of the detection of a disturbing phenomenon is limited to the light generator and image processing, the latter being able to use the same hardware support as that of the parking aid; and
  • It is easily integrated into a lighting and signaling system such as a light or a projector (light generator, camera) without restricting installation on the body of a vehicle.

Claims (5)

  1. Method for detecting a visibility-disrupting effect (G), comprising the following steps:
    - emitting a light beam (FX) from a vehicle (V), the light beam being emitted in the field of view of a camera (CAM) of the vehicle (V); and
    - determining the presence and the nature of a visibility-disrupting effect (G) from at least one image (I) acquired by the camera (CAM)
    characterized in that the nature of the visibility-disrupting effect (G) is determined depending on the uniformity and on the granulometry of the visibility-disrupting effect (G) in the image (I).
  2. Detecting method according to one of the preceding claims, characterized in that the nature of the visibility-disrupting effect (G) is determined depending on a tracked movement of said disrupting effect (G).
  3. Detecting method according to one of the preceding claims, characterized in that the light beam (FX) is modulated.
  4. Device (DISP) for detecting a visibility-disrupting effect (G), comprising:
    - a light source (DIOD) for emitting a light beam (FX) from a vehicle (V), the light beam being emitted in the field of view of a camera (CAM) of the vehicle (V); and
    - a control unit (UC) for determining the presence and the nature of a visibility-disrupting effect (G) from at least one image (I) acquired by the camera (CAM),
    characterized in that the control unit (UC) determines the nature of the visibility-disrupting effect (G) depending on the uniformity and on the granulometry of the visibility-disrupting effect (G) in the image (I).
  5. Computer-program product (PG) comprising one or more sequences of instructions that that are executable by an information-processing unit, the execution of said sequences of instructions, characterized in that it allows the method according to any one of Claims 1 to 3 above to be implemented.
EP08160818.4A 2007-08-03 2008-07-21 Method for a vehicle to detect a phenomenon affecting visibility Active EP2020595B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0705715A FR2919727B1 (en) 2007-08-03 2007-08-03 METHOD FOR DETECTION BY A VEHICLE OF A VISIBILITY DISPERSING PHENOMENON

Publications (2)

Publication Number Publication Date
EP2020595A1 EP2020595A1 (en) 2009-02-04
EP2020595B1 true EP2020595B1 (en) 2020-01-08

Family

ID=39166954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08160818.4A Active EP2020595B1 (en) 2007-08-03 2008-07-21 Method for a vehicle to detect a phenomenon affecting visibility

Country Status (4)

Country Link
US (1) US7920250B2 (en)
EP (1) EP2020595B1 (en)
JP (1) JP5356746B2 (en)
FR (1) FR2919727B1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8121361B2 (en) 2006-05-19 2012-02-21 The Queen's Medical Center Motion tracking system for real time adaptive imaging and spectroscopy
EP3975138A1 (en) 2008-10-06 2022-03-30 Mobileye Vision Technologies Ltd. Bundling of driver assistance systems
US9459515B2 (en) 2008-12-05 2016-10-04 Mobileye Vision Technologies Ltd. Adjustable camera mount for a vehicle windshield
FR2953602B1 (en) * 2009-12-04 2012-07-27 Valeo Vision OBSTACLE DETECTION SYSTEM FOR VEHICLE
DE102010002488A1 (en) 2010-03-02 2011-09-08 Robert Bosch Gmbh Method and device for detecting fog by means of spectroscopy
DE102010063017A1 (en) 2010-12-14 2012-06-14 Robert Bosch Gmbh Method in a driver assistance system for detecting wetness on a road
EP2747641A4 (en) 2011-08-26 2015-04-01 Kineticor Inc Methods, systems, and devices for intra-scan motion correction
US9305365B2 (en) 2013-01-24 2016-04-05 Kineticor, Inc. Systems, devices, and methods for tracking moving targets
US10327708B2 (en) 2013-01-24 2019-06-25 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
US9717461B2 (en) 2013-01-24 2017-08-01 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
CN109008972A (en) 2013-02-01 2018-12-18 凯内蒂科尔股份有限公司 The motion tracking system of real-time adaptive motion compensation in biomedical imaging
JP6189523B2 (en) * 2013-04-11 2017-08-30 グーグル インコーポレイテッド Method and system for detecting weather conditions using in-vehicle sensors
CN106572810A (en) 2014-03-24 2017-04-19 凯内蒂科尔股份有限公司 Systems, methods, and devices for removing prospective motion correction from medical imaging scans
EP3188660A4 (en) 2014-07-23 2018-05-16 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
US9943247B2 (en) 2015-07-28 2018-04-17 The University Of Hawai'i Systems, devices, and methods for detecting false movements for motion correction during a medical imaging scan
JP6536372B2 (en) * 2015-11-16 2019-07-03 株式会社デンソーウェーブ Mud dirt judgment method for laser radar device, mud dirt judgment device, mud dirt judgment program
WO2017091479A1 (en) 2015-11-23 2017-06-01 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
FR3058690B1 (en) * 2016-11-16 2019-11-01 Peugeot Citroen Automobiles Sa ASSISTED LIGHTING SYSTEM FOR VEHICLE AND METHOD FOR FORMING HYBRID IMAGE
US10246003B2 (en) 2017-03-22 2019-04-02 International Business Machines Corporation Determination and setting of optimal intensity
EP3477548B1 (en) 2017-10-24 2020-02-19 Axis AB Method and image capturing device for detecting fog in a scene
JP7252755B2 (en) * 2018-12-27 2023-04-05 株式会社小糸製作所 Active sensors, object identification systems, vehicles, vehicle lighting
DE102020200601A1 (en) 2020-01-20 2021-07-22 Ford Global Technologies, Llc Method for regulating the distance between vehicles
CN111516587A (en) * 2020-04-13 2020-08-11 奇瑞汽车股份有限公司 Automobile intelligent fog lamp system and control method thereof
US11766938B1 (en) * 2022-03-23 2023-09-26 GM Global Technology Operations LLC Augmented reality head-up display for overlaying a notification symbol over a visually imperceptible object

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8060308B2 (en) * 1997-10-22 2011-11-15 Intelligent Technologies International, Inc. Weather monitoring techniques
JP2001166065A (en) * 1999-12-13 2001-06-22 Meisei Electric Co Ltd Current weather meter and judging method for current weather
DE10146959A1 (en) * 2001-09-24 2003-04-30 Hella Kg Hueck & Co Night vision device for vehicles
FR2847367B1 (en) * 2002-11-19 2005-01-14 Valeo Vision METHOD AND DEVICE FOR DETERMINING THE VISIBILITY DISTANCE OF THE DRIVER OF A VEHICLE
US6969183B2 (en) * 2002-12-27 2005-11-29 Ichikoh Industries, Ltd. Digital lighting apparatus for vehicle, controller for digital lighting apparatus, and control program for digital lighting apparatus
US8045760B2 (en) * 2003-02-21 2011-10-25 Gentex Corporation Automatic vehicle exterior light control systems
EP1498721A1 (en) * 2003-07-15 2005-01-19 ELMOS Semiconductor AG Device for recognition of fog, especially for a vehicle
FR2864932B1 (en) 2004-01-09 2007-03-16 Valeo Vision SYSTEM AND METHOD FOR DETECTING CIRCULATION CONDITIONS FOR A MOTOR VEHICLE
FR2884637B1 (en) 2005-04-19 2007-06-29 Valeo Vision Sa METHOD OF DETECTING NIGHT MIST AND SYSTEM FOR IMPLEMENTING SAID METHOD
US8553088B2 (en) * 2005-11-23 2013-10-08 Mobileye Technologies Limited Systems and methods for detecting obstructions in a camera field of view

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US7920250B2 (en) 2011-04-05
JP5356746B2 (en) 2013-12-04
EP2020595A1 (en) 2009-02-04
JP2009073476A (en) 2009-04-09
FR2919727B1 (en) 2010-07-30
US20090046894A1 (en) 2009-02-19
FR2919727A1 (en) 2009-02-06

Similar Documents

Publication Publication Date Title
EP2020595B1 (en) Method for a vehicle to detect a phenomenon affecting visibility
EP2056093B1 (en) Method for detection of a phenomenon perturbating the visibility for a vehicule
EP2061006B1 (en) Method of detecting a phenomenon that can reduce visibility for a vehicle
FR2903493A1 (en) Visibility condition determining device for vehicle, has image processing electronic control unit determining visibility condition outside of vehicle based on brightness of non-irradiated area in image that is picked up by camera
EP1832471B1 (en) Method of controlling the automatic switching of a vehicle headlamp
US9527429B2 (en) Method and device for controlling a light emission of at least one headlight of a vehicle
JP5077184B2 (en) Vehicle detection device
EP2199152B1 (en) Method for switching automobile headlight lighting mode
US20150220792A1 (en) Method for Evaluating Image Data of a Vehicle Camera Taking Into Account Information About Rain
EP2495127B1 (en) A driver assistance system and method for a motor vehicle
EP1422663B1 (en) Method and apparatus for determining the distance of visibility of the driver of a vehicle
EP4077047A1 (en) Method for controlling a motor vehicle lighting system
FR2910408A1 (en) Infrared illuminator controlling method for e.g. car, involves detecting presence of object or person in detecting zone in carrying zone of illuminator using presence sensor, where detection zone has ophthalmic risk zone
FR2988052A1 (en) Method for adapting e.g. brightness of illuminating or signaling light source of car, involves determining brightness value of light source, and adjusting brightness value in order to reach value of determined characteristic brightness
FR3114287A1 (en) Vehicle driving assistance system
WO2006048559A1 (en) Motor vehicle low-beam headlight system
FR3055267A1 (en) DEVICE FOR CONTROLLING A LIGHT PROJECTOR OF A VEHICLE, LIGHTING DEVICE AND ASSOCIATED METHOD
WO2020126264A1 (en) Method for obtaining an image of an object to be classified and associated system
FR3090073A1 (en) Motor vehicle light module
FR3104087A1 (en) Method and control system of a motor vehicle lighting system capable of controlling the high beam according to driving conditions
EP1965353A2 (en) Method of detecting a turn, method of controlling the lights of a vehicle when a turn is detected and system for implementing these methods
FR2947493A1 (en) Device for detecting lighting object for system to control utilization of headlight and/or taillight of e.g. car, has processing unit delivering message requiring ignition of headlight and/or taillight, if object is at level of vehicle
FR3094941A1 (en) Method and system for managing transmission of an alert regarding improper use of fog lights of a remote vehicle
FR3079614A1 (en) METHOD AND DEVICE FOR MEASURING VISIBILITY CONDITIONS
FR3005139A1 (en) METHOD FOR CONTROLLING AN ADJUSTABLE LIGHTING SYSTEM FOR A BEARING VEHICLE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090727

17Q First examination report despatched

Effective date: 20090821

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190730

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008061958

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1223310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200531

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200409

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008061958

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1223310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200108

26N No opposition filed

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240712

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240729

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240725

Year of fee payment: 17