EP2010831A1 - Procédé et dispositif pour l'utilisation de vapeur souterraine supercritique (sc) en combinaison avec des centrales thermiques et hydrauliques supercritiques - Google Patents

Procédé et dispositif pour l'utilisation de vapeur souterraine supercritique (sc) en combinaison avec des centrales thermiques et hydrauliques supercritiques

Info

Publication number
EP2010831A1
EP2010831A1 EP07724577A EP07724577A EP2010831A1 EP 2010831 A1 EP2010831 A1 EP 2010831A1 EP 07724577 A EP07724577 A EP 07724577A EP 07724577 A EP07724577 A EP 07724577A EP 2010831 A1 EP2010831 A1 EP 2010831A1
Authority
EP
European Patent Office
Prior art keywords
pressure
production
heat exchanger
shafts
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07724577A
Other languages
German (de)
English (en)
Inventor
Werner Foppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2010831A1 publication Critical patent/EP2010831A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/17Interconnecting two or more wells by fracturing or otherwise attacking the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • E21B7/15Drilling by use of heat, e.g. flame drilling of electrically generated heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention relates to a method for creating and / or operating a SC (super-critical) -GeoSteam installation, in particular in combination with a SC thermal power station and a SC pressurized water power plant by means of a plurality of well boreholes, in particular produced by a molten metal drilling method, each having a continuously made from the molten metal medium borehole metal casing of a cast.
  • the invention further relates to an SC GeoSteam system.
  • BESTATlQUNOSKOPfE whereby a decentralized energy supply without complex interconnected network is possible.
  • the HDR (HotDryRock) method which uses hot, dry rock in volcanic areas or fracture zones, in which the hot rock is relatively close (3000-5000 m) below the surface, so that these hot rock regions are just under economic conditions can be developed with conventional drilling technology.
  • the minimum stress of the rock in volcanic regions and fracture zones with high temperature anomalies runs vertically, so that the fracture surfaces produced by hydro-Frac run vertically in the hot rock and the crack surfaces of adjacent boreholes usually do not intersect with each other and heat exchange via pumped-in water in the form of a loop can only be done via additional holes or naturally existing crack surfaces, if available, which leads to the capacity reduction of the project.
  • the object of the invention is to provide an SC geothermal system available and to provide a method with which to make economic use of geothermal heat from very large and previously substantially untapped depths.
  • This die-cast interconnect wellbores are tailored to the inventive method with apparatus for using SC GeoSteam for operating SC thermal power plants in combination with pressurized hydropower plants.
  • Super-well wells of the above-named type ranging in depths of 10-20 km, where the hot rock is very compact and existing cracks or fracture zones are filled with SC fluids, or at that depth pumped water also becomes supercritical under the prevailing temperature and pressure conditions and thus an approximately 10 times higher energy content per m 3 , as for example 250 - 300 0 C hot geothermal steam, as it is currently used in Iceland for electricity generation in geothermal power plants.
  • Super-deep well shafts for SC geosteam production use preferably the majority of the continental crust, in which the Minimal stress of the earth's crust is rather horizontal and thus also the fracture surfaces in the hot rock artificially produced by Hydro-Frac run horizontally and intersect with fracture surfaces of adjacent SuperTief wells.
  • three SuperTief wells are drilled with production-ready diecasting, for example at a clear diameter of 0.5 m in depths where supercritical conditions prevail, especially where the hot rock preferably reaches temperatures of 500 0 C - 600 0 C.
  • the SuperTief holes are guided in such a way that, for example, the wells are located 1000 m apart in the deepest part of the shaft and are connected to one another by, for example, stacked superimposed crack formations serving as heating surfaces.
  • the expansion of the substantially elliptical heating surfaces produced by HydroFrac in the hot rock is proportional to the borehole diameter, but in particular to the generated high water pressure, with which pressure stability of the borehole lining and that of the packer determines the crack area expansion excellently.
  • the invention further relates to devices for generating a super-subsurface subsurface boiler (SSB) and the device itself (SSB) according to the invention over several, for example three SuperTief wells SC-GeoPower production in closed forced circulation and to create large primary heat exchanger surfaces in the hot plunge rock HydroFrac requires neither packers nor expensive external high pressure pumps.
  • SSB super-subsurface subsurface boiler
  • SSB device itself
  • the holding magnets for the structure of the borehole casing from the molten metal set so that at appropriate intervals, in particular radial, predetermined breaking points arise, which break up at a corresponding established in the shaft water pressure and surrounding hot rock under Hydrofrac according to the position of the Predetermined breaking points produce correspondingly large, superimposed crack surfaces and intersect with the adjacent boreholes or their crack surfaces.
  • the predetermined breaking points according to the invention are also to be subsequently generated by means of lasers which are mounted on a magnetic slider.
  • the horizontal pressure in the deep rock must be greater than the vertical pressure or greater than the superimposition pressure of the rock.
  • the crack area expansion can be varied within a wide range by means of a corresponding increase in pressure, which is first conditioned by the thick-walled, highly pressure-resistant die-cast casing.
  • the main compressive forces can be provided according to the invention by the hydrostatic autogenous pressure of the fluid in the injection well, e.g. in the case of a cold-water column in a SuperTief well at a depth of 16 km already have a pressure of about 1600 bar and possibly only by moderate additional pressure of some 100 bar by high-pressure water turbines or pumps for the frac work to be provided ,
  • this additionally required pressure output can be provided via two internal high-pressure water turbines (9), in particular those which reduce the remaining pressure energy in the GeoSteam primary circuit at the printheads of the production shafts of, for example, 1000 bar in the normal course of production.
  • the two generators of the high-pressure water turbines (9) are supplied with power at the printheads of the two production shafts (2), the turbines rotate in the opposite direction on the same drive shaft and become turbine pumps.
  • these turbine pumps can be used expediently for creating the geo-heat exchanger (5), in which they uniformly increase the fluid pressure from the print heads of all (three) super-well wells or for later regeneration and / or re-opening of the geothermal heat exchanger
  • High-pressure valves (10) on the printheads of the production shafts are to be closed and the high-pressure valve (10) of the injection shaft is to be opened.
  • the invention with method and apparatus provides at intervals of, for example, 100 meters between the predetermined breaking points (5b) in all three deep wells in the lower three kilometers a stacking package, e.g. of 3 x 30 crack surfaces with an elliptical area of 1300 x 1000 m each, which communicate with each other.
  • a stacking package e.g. of 3 x 30 crack surfaces with an elliptical area of 1300 x 1000 m each, which communicate with each other.
  • One of the shafts e.g. the middle shaft can conveniently take over the task of the injection or cold water pressure shaft (1) and the other (two) the task of the production shaft (2) with supercritical fluids, the cold water column (3) in the injection shaft (1) is several times heavier than the pressure water columns (4) in the production wells with their supercritical fluid.
  • the volume of this approximately 3 km high, 1 km wide and 3.6 km long stack of 1300 mx 1000 m elliptical crack surfaces is about 10 km 3 .
  • the energy content of this digested, hot rock package with its enormous energy content and considering the heat flow from the earth's mantle enough to operate for about 100 years, a 1000 MW SC power plant, with a reduction in rock temperature, for example, from 700 0 C to 500 0 C. over this production period.
  • the invention has for its object to provide methods and apparatus of the type mentioned, with the everywhere a fuel-free, cost-effective, self-sufficient power supply is to ensure. This solves the problem of all problems, a sustainable 'global energy supply'. Self-sufficient, decentralized, low-cost and fuel-free process steam supply enables fast, environmentally friendly industrialization with citizenship for all countries.
  • SC (super-critical) -GeoSteam 600 ° C / 300bar has 10 times the energy content per m 3 as geothermal steam with 250 ° C / 25bar of a conventional geothermal power plant.
  • SC-GeoSteam is the clean and self-sufficient oilseed energy for the new millennium with even greater value creation potential than the cheap, sweet oil 'for the 20th century. Oil was the cheap and convenient lubricant for the industrialized countries, from which the mass welfare of the automobile companies was drawn up so far.
  • the invention provides the technical instrument for a "global, fuel-free industrialization” based on SC-GeoSteam and is the solution for a global prosperity society without war in harmony with nature.
  • both closed fluid circuits can be operated with water or other fluids.
  • the used in the demonstration example fluids water and CO2 have the advantage that they can be used as a liquid and the hot area as a supercritical fluid in the cold area and bar is reached at 600 0 C / 300 Working pressure and temperature, an efficiency of about 50%.
  • CO2 is the greater density compared to water and the fact that the entire CO2 cycle for power generation with heat absorption and heat dissipation supercritical and thus build turbines, heat exchangers and cooling almost one order of magnitude smaller than the water-steam cycle and is correspondingly less expensive and the compressor work of the CO2 cycle is correspondingly reduced.
  • Another advantage is the lower material wear of supercritical and inert CO2 and the ability to integrate according to the invention the smaller heat exchanger in the pressure stable production shafts (boiler pressure shaft (6) of the geocirculation, which above ground, costly boiler plants are to save, which for the high operating pressures of high Significance and allows an additional pressure increase in the secondary circuit with a corresponding increase in efficiency.
  • the two different fluids in the primary and secondary circuits also offer a better contrast of the inventive use of processed after heat extraction pressurized water of the two production shafts in the upper part of .Kessel'-pressure shafts on two high pressure water turbines (9) as an absolute novelty.
  • the SC GeoSteam project according to the invention offers the possibility of using an energy source both for operating a thermal power plant and at the same time for operating a pressurized-water power plant.
  • Supercritical water (SCW) in the primary circuit as used in apparatuses of the invention, has excellent properties, as shown in the schematized state diagram of water in Fig. 2:
  • the hydrocarbon solubility schematically shows the diagram d). Hydrocarbons hardly occur in the super-deep range and are not discussed here. More important in the process according to the invention is the fact that the solubility of inorganic substances - shown schematically in diagram e) goes above zero above the critical point.
  • the high solubility of salts in the subcritical range as a serious corrosion problem with conventional geothermal energy recovery is eliminated above the critical point in one go. There are no longer dissolved salts from the rock and existing salts in the fluid are precipitated, so that there is a virtually salt-free fluids. Production shafts (2) and plant inventory are not attacked or affected by salts.
  • SC-CO2 supercritical CO2
  • SC-CO2 reduces the compressor work and does not require any elaborate treatment like with water for the secondary circuit.
  • water treatment plants such as those required in a secondary circulation with water, can be omitted with CO2 as a secondary fluid.
  • SC-CO2 Cycle In contrast to SC steam power plants, the SC-CO2 Cycle already has over 15 years of material experience at 65O 0 C / 200 bar for all components involved, from heat exchangers to turbines and compressor components.
  • Fig. 1 shows a schematic demonstration example of the method according to the invention with devices for SC GeoPower production via a SC-CO2 thermal power plant with two eg 500 MWel turbines (12) and a Pressurized hydropower plant for two high-pressure water turbines (9) with eg about 50 MWeI power at maximum overpressure reduction of 1000 bar in the GeoFluid, which is at the two printheads of the production shafts (2) after the GeoFluide of the primary circuit via the secondary heat exchanger (7).
  • Kessel'-pressure shaft (6) has delivered to the SC-CO2 fluids in the secondary circuit.
  • the primary circuit with water as fluids is indicated by an arrow at the back and the secondary circuit by CO2 as fluids by a closed arrow at the back.
  • the secondary heat exchanger can consist of a column of heat exchangers, as indicated in the right 'boiler' pressure shaft by the letters A - E, which interlock by a simple closure technique and can be correspondingly easily disassembled for cleaning and repair.
  • the primary circuit according to the invention comprises a closed natural forced circulation, which is driven by gravity due to the heavy cold water column (3) in the injection shaft (1) and the lighter hot water column (4) in the two production wells (2).
  • the inventive SC-CO2 secondary circuit in combination with two heat exchangers (7) integrated in two .Kessel'-pressure shafts (6) consists of two forced circuits, which can be driven by two compressors (14), in particular those with, for example 40 0 C / 300 bar, heated in the secondary heat exchangers (7) to 600 0 C and processed via turbines to power or force.
  • the o.g. (Metal Melting Drilling) Magnetic Super Tief Drilling creates ready-to-produce SuperTief wells with pressure-stable cast-in-place casings as needed to meet the high intrinsic cold water column pressure (3) of 1600 bar in the lower part of the injection well (1) and high production pressure of For example, 1000 bar in the upper part of the production shafts (2) withstands.
  • the e.g. 3 km in the demonstration example e.g. 16 km deep injection and production shafts (1, 2) is provided with radially applied predetermined breaking points, which lie one above the other, for example, at a distance of 100 m. These predetermined breaking points are generated, for example, directly in the production of the well casing, or created by melting a ring zone subsequently via a magnetic slider unit with melter.
  • the three deep wells connected at the surface via a high-pressure line to a closed system are filled with pressurized water via the two pressurized-water turbines (9), which operate as high-pressure pumps for this purpose, until the pressure at the predetermined breaking points is greater than that prevailing there in the deep rock horizontal minimum voltage. Since the shearing forces of the rock are about a factor of 10 smaller than the pressure forces of the rock and the shearing forces from a temperature around 300 0 C, especially in the presence of water dramatically decrease, it can be assumed that the hydro-Frac at the lowest predetermined breaking point with the highest rock overlay pressure already under hydrostatic pressure, which amounts to 1600 bar at a depth of 16,000 m. With an additional pumping pressure of 300 bar, the pressure at the lowest predetermined breaking point would amount to 1900 bar and be at least 1600 bar at the highest predetermined breaking point.
  • Fig. 2 shows the changes of important properties of water in the transition to the supercritical area

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Hydrology & Water Resources (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Un procédé et un dispositif pour l'utilisation de la vapeur souterraine supercritique (SC) en combinaison avec des centrales thermiques et hydrauliques supercritiques avec un rendement de 50% utilisent la technologie de forage super-profond en bain métallique fondu, le procédé HydroFrac, et les propriétés particulières de la vapeur souterraine supercritique, telles que l'augmentation drastique de la capacité thermique, la réduction de la viscosité et la solubilité inorganique. L'utilisation multifonctionnelle de ces technologies et des propriétés physiques de la vapeur souterraine supercritique dans le procédé selon l'invention permet la mise en exploitation rapide et économique d'un échangeur de chaleur à vapeur souterraine SC à grande profondeur, tout en rendant possible la production d'électricité, d'énergie, de vapeur de traitement et de chaleur, presque partout, avec réduction des coûts d'un dixième par rapport aux coûts des technologies conventionnelles au fuel, dans des conditions de dépense comparables. La vapeur de traitement supercritique obtenue au moyen d'un circuit forcé fermé "géo-nature" souterrain est utilisée dans des centrales supercritiques, en ayant recours à des technologies classiques de pointe de turbines à vapeur, cependant que la pression restante dans le fluide souterrain est utilisée pour la production directe d'énergie et/ou de courant électrique après dissipation de chaleur par les turbines hydrauliques.
EP07724577A 2006-04-25 2007-04-25 Procédé et dispositif pour l'utilisation de vapeur souterraine supercritique (sc) en combinaison avec des centrales thermiques et hydrauliques supercritiques Withdrawn EP2010831A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006018215A DE102006018215A1 (de) 2006-04-25 2006-04-25 Verfahren und Vorrichtung zur Nutzung von SC-GeoSteam in Kombination mit SC-Wärme- und Druckwasser-Kraftwerke
PCT/EP2007/003647 WO2007122003A1 (fr) 2006-04-25 2007-04-25 Procédé et dispositif pour l'utilisation de vapeur souterraine supercritique (sc) en combinaison avec des centrales thermiques et hydrauliques supercritiques

Publications (1)

Publication Number Publication Date
EP2010831A1 true EP2010831A1 (fr) 2009-01-07

Family

ID=38480600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07724577A Withdrawn EP2010831A1 (fr) 2006-04-25 2007-04-25 Procédé et dispositif pour l'utilisation de vapeur souterraine supercritique (sc) en combinaison avec des centrales thermiques et hydrauliques supercritiques

Country Status (4)

Country Link
US (1) US7975482B2 (fr)
EP (1) EP2010831A1 (fr)
DE (1) DE102006018215A1 (fr)
WO (1) WO2007122003A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006021330A1 (de) 2006-05-16 2007-11-22 Werner Foppe Verfahren und Vorrichtung zur optimalen Nutzung von Kohlenstoff-Ressourcen wie Ölfelder, Ölschiefer, Ölsande, Kohle und CO2 durch Einsatz von SC(super-critical)-GeoSteam
DE102008049943A1 (de) * 2008-10-02 2010-04-08 Werner Foppe Verfahren und Vorrichtung zum Schmelzbohren
SK288264B6 (sk) * 2009-02-05 2015-05-05 Ga Drilling, A. S. Zariadenie na vykonávanie hĺbkových vrtov a spôsob vykonávania hĺbkových vrtov
US8991510B2 (en) 2009-03-13 2015-03-31 Regents Of The University Of Minnesota Carbon dioxide-based geothermal energy generation systems and methods related thereto
US8316955B2 (en) 2009-03-13 2012-11-27 Regents Of The University Of Minnesota Carbon dioxide-based geothermal energy generation systems and methods related thereto
CN101586870B (zh) * 2009-06-22 2011-05-11 程超 四位一体多功能家用电器
AU2010206101C1 (en) * 2010-08-03 2013-04-11 Ignatious Isaakidis Isaakidis high temperature engineered geothermal systems (EGS)
EP2649311B1 (fr) 2010-12-10 2018-04-18 Schwarck Structure, LLC Extraction de chaleur passive et production d'énergie
DE102011009317A1 (de) 2011-01-25 2012-07-26 Werner Foppe Verfahren und Vorrichtung zur Nutzung von Hochtemperatur-Hybridspeicher
US9593563B2 (en) * 2011-10-05 2017-03-14 Statoil Petroleum As Method and apparatus for generating steam for the recovery of hydrocarbon
US8610303B2 (en) 2012-01-04 2013-12-17 John R. Yocum, JR. System and method for downhole geothermal electrical power generation
KR101240395B1 (ko) * 2012-10-17 2013-03-11 한국지질자원연구원 작동유체와 용융염의 열 교환을 이용한 지열 발전 시스템 및 방법
US9869167B2 (en) 2012-11-12 2018-01-16 Terracoh Inc. Carbon dioxide-based geothermal energy generation systems and methods related thereto
US11242735B2 (en) * 2013-02-08 2022-02-08 Chevron U.S.A. Inc. System and process for recovering hydrocarbons using a supercritical fluid
US10907455B2 (en) * 2013-02-08 2021-02-02 Chevron U.S.A. Inc. System and process for recovering hydrocarbons using a supercritical fluid
NL2011040C2 (en) * 2013-06-26 2015-01-05 Source Geothermal B V Geothermal method.
CN104675360B (zh) * 2014-12-22 2017-03-29 中国石油大学(华东) 注超临界co2开采干热岩地热的预防渗漏工艺
RU2621440C1 (ru) * 2015-12-15 2017-06-06 Левон Мурадович Мурадян Устройство для превращения геотермальной энергии в электрическую энергию
CN105863568A (zh) * 2016-04-14 2016-08-17 中国石油大学(华东) 一种利用地下热虹吸自循环开采干热岩地热方法
CN105840146A (zh) * 2016-04-14 2016-08-10 中国石油大学(华东) 一种分支井体积压裂自循环开采干热岩地热方法
CN105909214A (zh) * 2016-04-14 2016-08-31 中国石油大学(华东) 一种利用长水平井自循环开采致密干热岩地热能的方法
CN110043235A (zh) * 2019-05-23 2019-07-23 西南石油大学 一种利用井下超临界水燃烧的稠油注蒸汽方法
CN117307121B (zh) * 2023-09-26 2024-05-24 中国矿业大学 超临界co2闭环开采完整储层干热岩及碳封存的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817038A (en) * 1972-09-01 1974-06-18 Texaco Development Corp Method for heating a fluid
US3986362A (en) * 1975-06-13 1976-10-19 Petru Baciu Geothermal power plant with intermediate superheating and simultaneous generation of thermal and electrical energy
US4200152A (en) * 1979-01-12 1980-04-29 Foster John W Method for enhancing simultaneous fracturing in the creation of a geothermal reservoir
US4326581A (en) * 1979-12-27 1982-04-27 The United States Of America As Represented By The United States Department Of Energy Direct contact, binary fluid geothermal boiler
US4358930A (en) * 1980-06-23 1982-11-16 The United States Of America As Represented By The United States Department Of Energy Method of optimizing performance of Rankine cycle power plants
US4982568A (en) * 1989-01-11 1991-01-08 Kalina Alexander Ifaevich Method and apparatus for converting heat from geothermal fluid to electric power
CA2005376C (fr) * 1989-12-13 1996-11-19 James Russell Baird Methode d'elimination des dechets dans la zone de subduction
US6216783B1 (en) * 1998-11-17 2001-04-17 Golder Sierra, Llc Azimuth control of hydraulic vertical fractures in unconsolidated and weakly cemented soils and sediments
DE19909836A1 (de) * 1999-03-05 2000-09-07 Werner Foppe Metallschmelze-Bohrverfahren
US6668554B1 (en) * 1999-09-10 2003-12-30 The Regents Of The University Of California Geothermal energy production with supercritical fluids
US7753122B2 (en) * 2004-06-23 2010-07-13 Terrawatt Holdings Corporation Method of developing and producing deep geothermal reservoirs
US7472548B2 (en) * 2004-09-08 2009-01-06 Sovani Meksvanh Solar augmented geothermal energy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007122003A1 *

Also Published As

Publication number Publication date
US7975482B2 (en) 2011-07-12
WO2007122003A1 (fr) 2007-11-01
DE102006018215A1 (de) 2007-11-22
US20100031653A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
EP2010831A1 (fr) Procédé et dispositif pour l'utilisation de vapeur souterraine supercritique (sc) en combinaison avec des centrales thermiques et hydrauliques supercritiques
EP1327111B1 (fr) Procede et installation pour echanger de l'energie terrestre entre un corps terrestre et un echangeur d'energie, notamment pour produire du courant
EP2773866B1 (fr) Dispositifs et procédés d'accumulation d'énergie
DE2113341A1 (de) Verfahren und Vorrichtung zur Ausbeutung von Erdwaerme-Energiequellen
DE102006021330A1 (de) Verfahren und Vorrichtung zur optimalen Nutzung von Kohlenstoff-Ressourcen wie Ölfelder, Ölschiefer, Ölsande, Kohle und CO2 durch Einsatz von SC(super-critical)-GeoSteam
DE102010010701A1 (de) Energiespeichersystem
EP2682689B1 (fr) Production d'énergie électrique à partir de la géothermie
DE102009021160B4 (de) Verfahren zur Wärmegewinnung aus georthermischer Energie
DE102010017154B4 (de) Verfahren zur Herstellung eines Geothermie-Systems sowie Geothermiesystem
DE102008057943A1 (de) Verfahren und/oder Anlage zur Nutzung regenerativer geothermischer Energie
DE102005036472B3 (de) Verfahren zum Erstellen eines untertägig geschlossenen geothermischen Wärmetauschers und Einrichtung zur Nutzung der Erdwärme aus großen Tiefen in einem geschlossenen Rohrsystem
DE4115431C2 (fr)
DE102014107034A1 (de) Verfahren und Vorrichtung zur Stromerzeugung
EP2529163A2 (fr) Système et procédé d'extraction d'énergie géothermique à partir d'au moins deux réservoirs
DE102019129308A1 (de) Erdsondensystem
EP0444170B1 (fr) Procede pour l'utilisation generale de la chaleur terrestre et l'extraction de mineraux dans la zone dite de faiblesse (a des profondeurs de 13 a 30 km)
WO2016027149A1 (fr) Production d'énergie à partir d'un forage de puits double
DE202017105632U1 (de) Geothermische Anlage unter Verwendung einer Risszone in Heißtrockengestein
EP3115712A1 (fr) Procede et dispositif de recuperation d'energie a partir de l'energie geothermique
DE102010061846A1 (de) Geothermieanlage und Verfahren zur Energiegewinnung aus Erdwärme
WO2005073508A1 (fr) Procede pour realiser des forages profonds dans des structures geologiques
WO2009068292A2 (fr) Installation de production d'énergie géothermique et son procédé de fonctionnement
DE3813014A1 (de) Verfahren zur fluidextraktion fossiler kohlenwasserstoffe aus erdoellagerstaetten, oel- und teersanden mit nebenanspruechen zur nutzung geothermischer und solarer energie in verbindung mit und durch umsetzung ueber warmluftmotoren
DE102021001153A1 (de) Verfahren und System zur Entnahme von Wärmeenergie aus geologischen Formationen
DE19846042C1 (de) Vorrichtung zur Nutzung geothermischer Energie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160304

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171103