EP2005094B1 - Procédé et appareil permettant de préchauffer un gaz naturel liquéfié d'évaporation à la température ambiante avant sa compression dans un système de reliquéfaction - Google Patents

Procédé et appareil permettant de préchauffer un gaz naturel liquéfié d'évaporation à la température ambiante avant sa compression dans un système de reliquéfaction Download PDF

Info

Publication number
EP2005094B1
EP2005094B1 EP07747584.6A EP07747584A EP2005094B1 EP 2005094 B1 EP2005094 B1 EP 2005094B1 EP 07747584 A EP07747584 A EP 07747584A EP 2005094 B1 EP2005094 B1 EP 2005094B1
Authority
EP
European Patent Office
Prior art keywords
bog
coolant
heat exchanger
cold box
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07747584.6A
Other languages
German (de)
English (en)
Other versions
EP2005094A4 (fr
EP2005094A1 (fr
Inventor
Bjørn HAUKEDAL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waertsilae Gas Solutions Norway As
Original Assignee
Wartsila Gas Solutions Norway As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wartsila Gas Solutions Norway As filed Critical Wartsila Gas Solutions Norway As
Publication of EP2005094A1 publication Critical patent/EP2005094A1/fr
Publication of EP2005094A4 publication Critical patent/EP2005094A4/fr
Application granted granted Critical
Publication of EP2005094B1 publication Critical patent/EP2005094B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0267Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using flash gas as heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the invention relates to the field of re-liquefaction of boil-off gases from liquid natural gas (LNG). More specifically, the invention relates to a method and an apparatus for cooling an LNG boil-off gas (BOG) stream in a reliquefaction plant according to the preamble of claims 1 and 3 respectively. Such a method respectively apparatus is known from US2003/0182947 A .
  • LNG RS LNG reliquefaction systems
  • BOG boil off gases
  • the new LNG RS opened the possibility to collect, cool down and reliquefy all BOG and hence preserve the total cargo volume throughout the laden and ballast voyages.
  • US 2003/182947 A discloses a process for converting a boil-off stream comprising methane to a liquid having a preselected bubble point temperature.
  • the boil-off stream is pressurized, then cooled, and then expanded to further cool and at least partially liquefy the boil-off stream.
  • the preselected bubble point temperature of the resulting pressurized liquid is obtained by performing at least one of the following steps: before, during, or after the process of liquefying the boil-off stream, removing from the boil-off stream a predetermined amount of one or more components, such as nitrogen, having a vapor pressure greater than the vapor pressure of methane, and before, during, or after the process of liquefying the boil-off stream, adding to the boil-off stream one or more additives having a molecular weight heavier than the molecular weight of methane and having a vapor pressure less than the vapor pressure of methane.
  • WO 03/081154 A1 relates to a method and apparatus for production of pressurized liquefied gas.
  • a gas stream is cooled and expanded to liquefy the gas stream.
  • the liquefied gas stream is then withdrawn as pressurized gas product and a portion is recycled through the heat exchanger to provide at least a part of the cooling and is returned to the stream. Recycling the pressurized liquefied gas product helps keep the cooling and compression of the gas stream in the supercritical region of the phase diagram.
  • J-T valves in parallel with the expander permits running the system until the stream is in the supercritical region of its phase diagram and the hydraulic expander can operate.
  • the process is suitable for natural gas streams containing methane to form a pressurized liquefied natural gas (PLNG) product.
  • PLNG pressurized liquefied natural gas
  • a method for cooling an LNG boil-off gas (BOG) stream in a reliquefaction plant comprising compressing the BOG; heat exchanging the compressed BOG against a coolant in a cold box; flowing substantially re-liquefied BOG from the cold box to the reservoir, characterized by prior to the compression step, pre-heating the BOG to substantially ambient temperatures, by heat exchanging the BOG with said coolant in a first heat exchanger, said coolant prior to the heat exchange having a higher temperature than the BOG, wherein the necessary duty to heat the BOG prior to compression is transferred from the coolant stream, downstream of a coolant compander aftercooler but upstream of the cold box, and wherein a portion of the coolant stream to the BOG pre-heater, at a point between the coolant compander and the pre-heater, is routed into a dedicated flow path in the cold-box before it is mixed with the coolant stream flowing from the pre-heater.
  • BOG LNG boil-off gas
  • the pressure of the reliquefied BOG between the cold box and the reservoir is controlled independently of the BOG compressor discharge pressure and the reservoir pressure, and the amount of vent gas generated and the vent gas composition thus may be controlled.
  • an apparatus for cooling an LNG boil-off gas (BOG) in a reliquefaction system comprising a closed-loop coolant circuit for heat exchange between a coolant and the BOG; a BOG compressor having an inlet side fluidly connected to an LNG reservoir; a cold box having a BOG flowpath with a BOG inlet fluidly connected to the BOG compressor outlet side; said BOG flowpath having outlet for substantially re-liquefied BOG, fluidly connected to the reservoir; said cold box further comprising coolant flowpaths for heat exchange between the BOG and the coolant; characterized by a first heat exchanger in the fluid connection between the reservoir and the BOG compressor inlet side, said first heat exchanger having a coolant path fluidly connected to the closed-loop coolant circuit, at a point downstream of the coolant circuit's compander aftercooler but upstream of the coolant flow paths in the cold box, whereby the BOG compressor receives BOG with temperatures near or at the system ambient temperatures a selector valve in the coolant
  • the invention provides a separator in fluid connection with the cold box outlet and with the reservoir, a first valve in the cold box outlet line and a second valve in a line connected to the reservoir, said separator also comprising a vent line, whereby the pressure in the separator may be controlled, and the amount of vent gas and the vent gas composition thus may be adjusted.
  • the figure shows schematic a cargo tank 74, holding a volume of LNG 72.
  • BOG evaporating from the LNG, enters a line 1 which is connected to a first heat exchanger H10. In this heat exchanger, the BOG is heated up to near-ambient temperatures, as will be described later.
  • the BOG enters the first stage BOG compressor C11 via line 2.
  • the BOG compressor is shown as a three-stage centrifugal compressor C11, C12, C13, interconnected via lines 3 - 7 via intercoolers H11, H12 and aftercooler H13 as shown in the figure, but other compressor types may be equally applicable.
  • the pre-heating ensures that the heat generated by the compression may be rejected through cooling water in the intercoolers H11, H12 and the aftercooler H13.
  • Pressurized BOG is then, via a line 8, fed into a second heat exchanger (or "cold box") H20 where it is heat exchanged against a coolant, as will be described later.
  • the coolant is preferably nitrogen (N 2 ).
  • substantially reliquefied BOG exits the cold box H20 via a lines 9, 10 connected to a separator F10.
  • the separator is provided with a vent line 11.
  • a throttling valve V10 is arranged in the lines 9, 10 between the cold box and the separator, for expanding the reliquefied BOG.
  • reliquefied BOG is fed into the LNG 72 in the cargo tank 74 via lines 12, 13, as shown in figure 1 .
  • a valve V11 is arranged in the lines between the separator F10 and the tank 74, the purpose of which will be described later.
  • the closed N 2 -Brayton cooling cycle is here represented by a 3-stage compressor C21, C22, C23 with intercoolers H21, H22, aftercooler H23, interconnected via lines 51 - 55 as shown in the figure, and a single expander stage E20.
  • Pressurized coolant (N 2 ) exits the compressor and the aftercooler H23 via a line 56 connected to a three-way valve V12.
  • the three-way valve V12 is controllable to selectively split the high-pressure N 2 stream flowing in the line 56 into two different streams in respective lines 57, 59, as further detailed below.
  • a first outlet of the three-way valve V12 is connected to a coolant inlet in the first heat exchanger H10 via a line 59.
  • a line 60 connects the coolant outlet of the first heat exchanger H10 with the second heat exchanger's H20 middle section, via line 61, as shown in figure 1 .
  • a line 57 connects a second outlet of the three-way valve V12 to the inlet of a first coolant passage 82 in the second heat exchanger H20 upper section.
  • the first coolant passage 82 outlet is connected via a line 58 to an entry point on the line 60 described above.
  • a line 61 connects this entry point to the inlet of a second coolant passage 84 in the cold box, in the vicinity of the cold box' middle section, as illustrated by figure 1 .
  • Coolant flows through the second coolant passage 84 and into an expander E20 via a line 62.
  • the expanded coolant enters the second heat exchanger (cold box) H20 lower section via a line 63 connected to the inlet of a third coolant passage 86 before it exits the heat exchanger and flows back to the compressor C21, C22, C23 via the line 50.
  • the flow split here described as a three-way valve V12 can equally be performed by other flow control configurations, such as normal single line control valves, orifices, etc.
  • the important aspect is that the flow split can be controlled in order to cope with varying BOG flow conditions.
  • the heat exchanger H10 upstream the BOG compressor C11, C12, C13 is installed to preserve the low-temperature duty in the BOG coming from the tanks 74, within the system.
  • the BOG temperature should be allowed to increase up to near-ambient temperatures.
  • the duty must be absorbed by another stream in the reliquefaction system, originating at a higher temperature than the BOG stream.
  • This other stream will typically be a fraction of the warm high-pressure N 2 -stream 59 as shown in figure 1 .
  • Other alternatives such as using the entire N 2 -stream (not only a part of it), or the BOG-stream from downstream the BOG compressor's aftercooler are also possible.
  • the process of figure 1 will probably be the most beneficial, given the limitations and characteristics of commonly employed equipment for such processes. Consequently, only the process of figure 1 , involving a split of the high-pressure N 2 -stream 56 downstream the N 2 -compander's aftercooler H23 into two different streams 57, 59, will be discussed next.
  • the BOG pre-heater control is based on controlling the coolant flow (N 2 ) on the secondary side.
  • the energy which is transferred between the compressed N 2 and the BOG in the first heat exchanger H10 (pre-heater) will depend on the BOG flow and temperature, and consequently be a more or less fixed value [kW] as long as the BOG flow is constant. This means that the temperature of the N 2 flow exiting the pre-heater H10 will vary with the N 2 flow rate.
  • the three-way valve V12 (or equivalent flow split constellations) in the N 2 stream upstream the pre-heater H10 can be used for two different purposes:
  • the freedom represented by the flow split (three-way valve V12) can be used to ensure a very efficient heat exchange (low LMTD [log mean temp difference], and consequently low exergy losses) in the upper parts of the cold box H20.
  • the heating and cooling curves can in theory be designed to be parallel with a constant temperature difference between streams at any temperature in the upper (warm) parts of the cold box.
  • the Brayton cycle is based on the concept that pressurized N 2 has a higher heat capacity than low pressure N 2 , the heating curves can only be made parallel if the high pressure mass flow is smaller than the cold, low pressure flow.
  • the split of the high pressure stream will consequently cause a very efficient heat exchange in the upper parts of the cold box, and since the branch flow also is cooled independently in the BOG pre-heater, the energy penalty which otherwise would have been associated with the mixing of the two high pressure N2 streams at a lower temperature is reduced to a minimum.
  • the flow split will typically be controlled based on the BOG compressor suction temperature.
  • Another benefit of the flow split control made possible by the three-way valve V12 is that the temperature of the high pressure N 2 stream exiting the pre-heater H10 and flowing in the line 60, can be monitored and, if necessary, controlled in order to avoid rapid temperature fluctuations in the flow which is reintroduced to the cold box via the line 61.
  • the cold box is normally made in aluminium and is sensitive to thermal stress.
  • a safety control function which changes the flow through the pre-heater based on undesirable conditions, the temperature of all streams entering the cold box can be carefully controlled. This would not have been possible if the pre-heater was a low pressure BOG vs. high pressure BOG heat exchanger, as the high temperature BOG outlet temperature would change synchronously with the fluctuation in the low pressure incoming BOG.
  • the split ratio defining the flows of streams 57 and 59 will be adjusted in order to extract as much low temperature duty as possible from the low temperature BOG.
  • this configuration also opens for controlling the split ratio with respect to the temperature of the nitrogen stream 61 entering the cold box' middle section. Doing so, conditions which may expose the main heat exchanger H20 to damaging thermal stresses can easily be eliminated.
  • the heat exchangers H10 and H20 can be combined in one single multi-pass heat exchanger.
  • the main heat exchanger (cold box) H20 typically will be a plate-fin heat exchanger, which to some extent is sensitive to both rapid temperature fluctuations and large local temperature approaches, it can be feasible to extract some of the heat transfer to an external heat exchanger of a more robust type, as shown at the pre-heater H10 in figure 1 .
  • the heat exchanger configuration shown in figure 1 will also dampen the temperature fluctuations of the flow 61 entering the main heat exchanger's H20 middle section, since the N 2 -coolant stream will be very large compared to the BOG flow. This will ensure a much safer operation with respect to thermal stresses in the cold box.
  • the main incentive for employing ambient temperature BOG compression is the possibility this offers for rejecting heat to the ambience. While today's commonly used BOG compressors preserves the compression heat within the BOG stream, the compression heat can now be delivered to an external source operating at ambient or near ambient temperatures (e.g. cooling water).
  • ambient or near ambient temperatures e.g. cooling water
  • Ambient temperature compression also offers other benefits. Since an aftercooler H13 as shown in figure 1 typically will be associated with this system, the temperature of the compressed stream 8 entering the cold box is stabilized relative to the heat rejection source's temperature. After- and intercooling also represent major advantages with respect to operation in recycle and/or anti surge modes, where the external cooling media ensures stable operation, normally without any additional temperature control.
  • Ambient temperature BOG compression is especially favourable for LNG vessels where boil-off rates, compositions, temperatures and pressures may vary considerably with the type of voyage (ballast or laden voyages) and cargo. Inter- and aftercooling towards ambient conditions will stabilize the compression conditions and ease capacity control (recycling, etc.)
  • a "higher" pressure ratio over the BOG compressors C11,C12,C13 will in this context relate to a higher cold box inlet pressure in the line 8 than what is strictly necessary to provide a sufficient differential pressure for forcing the LNG back to the cargo tanks.
  • cryogenic separator F10 to be placed at an intermediate pressure level, typically limited to a zone between two valves V10, V11 as shown in figure 1 .
  • the pressure in this zone can then be controlled independently of the BOG compressor discharge pressure and the cargo tank pressure. Accordingly, some of the overall system's capacity control can be performed by pressure adjustments in this region. It will consequently enable the operator or the automated control system to adjust both the amount of vent gas generated as well as the vent gas composition in order to operate under the most economically favourable conditions during all LNG price fluctuations.
  • a dedicated line can also be placed in order to bypass the separator under conditions where reliquefied BOG is so much subcooled that the separation pressure otherwise will drop below a defined minimum value.
  • the pressure differential between the main heat exchanger H20 and the separator F10 ensures that the separator can be placed more independent of the main heat exchanger.
  • a higher BOG compressor discharge pressure will increase the gain (either in form of a higher adiabatic temperature change or reduced flash gas generation) during the throttling processes down to tank pressure.
  • the purpose of the three-way valve V12 is to selectively control the flow split between (i) the line 59 connected to the first heat exchanger H10 and (ii) the line 57 connected to the cold box H20.
  • the three-way valve V12 described above may be replaced by e.g. a controllable choke valve in the line 60, downstream of the first heat exchanger H10, and a fixed-dimension restriction in the line 57.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (5)

  1. Procédé de refroidissement d'un flux de gaz d'évaporation de GNL (BOG) dans un système de reliquéfaction, le BOG s'écoulant d'un réservoir (74), le procédé comprenant :
    - la compression (C11, C12, C13) du BOG ;
    - l'échange thermique du BOG comprimé contre un réfrigérant dans une boîte froide (H20) ;
    - écoulement du BOG essentiellement reliquéfié à partir de la boîte froide (H20) au réservoir (74) ;
    - avant l'étape de compression, le préchauffage du BOG à des températures essentiellement ambiantes, par l'échange thermique du BOG avec ledit réfrigérant dans un premier échangeur de chaleur (H10), avant l'échange thermique, ledit réfrigérant ayant une température plus élevée que celle du BOG,
    - dans lequel le devoir nécessaire de chauffer le BOG avant la compression est transféré du flux de réfrigérant, en aval d'un refroidisseur final de compandeur de réfrigérant (H23) mais en amont de la boîte froide (H20),
    caractérisé en ce qu'une partie du flux de réfrigérant allant au premier échangeur de chaleur (H10), à un point situé entre le refroidisseur final de compandeur de réfrigérant (H23) et le premier échangeur de chaleur (H10), est acheminée dans un trajet d'écoulement dédié dans la boîte froide avant qu'il ne soit mélangé avec le flux de réfrigérant sortant du premier échangeur de chaleur (H10).
  2. Procédé selon la revendication1, dans lequel la pression du BOG reliquéfié entre la boîte froide et le réservoir est commandée indépendamment de la pression de décharge du compresseur BOG et de la pression du réservoir, et la quantité de gaz d'évent générée et la composition de gaz d'évent pouvant ainsi être commandées.
  3. Appareil pour refroidir un gaz d'évaporation de GNL (BOG) dans un système de reliquéfaction, comprenant :
    - un circuit de réfrigérant en boucle fermée pour un échange thermique entre un réfrigérant et le BOG ;
    - un compresseur BOG (C11, C12, C13) ayant un côté entrée relié de manière fluidique à un réservoir de GNL (74) ;
    - une boîte froide (H20) ayant un trajet d'écoulement de BOG avec une entrée BOG reliée de manière fluidique (8) au côté sortie du compresseur BOG ; ledit trajet d'écoulement de BOG ayant une sortie pour le BOG essentiellement reliquéfié, reliée de manière fluide (9, 10, 12, 13) au réservoir ;
    - ladite boîte froide comprenant en outre des trajets d'écoulement de réfrigérant (82, 84, 86) pour un échange thermique entre le BOG et le réfrigérant ; et un premier échangeur de chaleur (H10) dans le raccord fluidique entre le réservoir (74) et le côté entrée du compresseur BOG, ledit premier échangeur de chaleur (H10) ayant un trajet de réfrigérant relié de manière fluide (59, 60) au circuit de réfrigérant en boucle fermée, situé à un point en aval du refroidisseur final de compandeur de réfrigérant (H23), mais en amont des trajets d'écoulement du réfrigérant dans la boîte froide,
    le compresseur BOG recevant le BOG à des températures proches ou égales aux températures ambiantes du système,
    caractérisé par
    - une vanne de sélection (V12) dans le circuit de réfrigérant, dans une conduite (56) en aval du refroidisseur final de compandeur (H23), et
    - une conduite de réfrigérant (59) à une extrémité raccordée à une première sortie de la vanne de sélection (V12) et à l'autre extrémité raccordée à l'entrée du passage de réfrigérant du premier échangeur de chaleur (H10), et
    - une conduite de réfrigérant (57) à une extrémité raccordée à une deuxième sortie du sélecteur vanne (V12) et à l'autre extrémité raccordée à l'entrée d'un premier passage de réfrigérant (82) dans la boîte froide (H20).
  4. Appareil selon la revendication 3, dans lequel le raccord fluidique de trajet de réfrigérant (59, 60) du premier échangeur de chaleur (H10) comprend en outre une conduite de réfrigérant (60) à une extrémité raccordée à la sortie du passage de réfrigérant du premier échangeur de chaleur (H10) et à l'autre extrémité raccordée à une conduite (58) reliée de manière fluide à la sortie du premier passage de réfrigérant (82) du deuxième échangeur de chaleur (H20), et dans lequel lesdites conduites (58, 60) sont raccordées (61) à l'entrée d'un deuxième passage de réfrigérant (84) dans le deuxième échangeur de chaleur (H20).
  5. Appareil selon la revendication 3, comprenant en outre un séparateur (F10) relié de manière fluide (9) à la sortie de la boîte froide et au réservoir (74), une première vanne (V10) dans la conduite de sortie de la boîte froide (9) et une deuxième vanne (V11) dans une conduite (12) reliée au réservoir, ledit séparateur comprenant également une tuyauterie de ventilation (11), la pression dans le séparateur pouvant être commandée, et la quantité de gaz d'évent et la composition de gaz d'évent pouvant ainsi être ajustées.
EP07747584.6A 2006-04-07 2007-04-02 Procédé et appareil permettant de préchauffer un gaz naturel liquéfié d'évaporation à la température ambiante avant sa compression dans un système de reliquéfaction Active EP2005094B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20061580 2006-04-07
PCT/NO2007/000123 WO2007117148A1 (fr) 2006-04-07 2007-04-02 Procédé et appareil permettant de préchauffer un gaz naturel liquéfié d'évaporation à la température ambiante avant sa compression dans un système de reliquéfaction

Publications (3)

Publication Number Publication Date
EP2005094A1 EP2005094A1 (fr) 2008-12-24
EP2005094A4 EP2005094A4 (fr) 2018-05-30
EP2005094B1 true EP2005094B1 (fr) 2019-10-30

Family

ID=38581359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07747584.6A Active EP2005094B1 (fr) 2006-04-07 2007-04-02 Procédé et appareil permettant de préchauffer un gaz naturel liquéfié d'évaporation à la température ambiante avant sa compression dans un système de reliquéfaction

Country Status (8)

Country Link
US (1) US20090113929A1 (fr)
EP (1) EP2005094B1 (fr)
JP (1) JP5280351B2 (fr)
KR (1) KR101290032B1 (fr)
CN (1) CN101449124B (fr)
ES (1) ES2766767T3 (fr)
NO (1) NO345489B1 (fr)
WO (1) WO2007117148A1 (fr)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072885A1 (fr) * 2007-12-21 2009-06-24 Cryostar SAS Procédé et appareil d'alimentation en gaz naturel
JP5148319B2 (ja) * 2008-02-27 2013-02-20 三菱重工業株式会社 液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法
NO330187B1 (no) * 2008-05-08 2011-03-07 Hamworthy Gas Systems As Gasstilforselssystem for gassmotorer
CA2735884C (fr) * 2008-09-19 2017-01-17 Shell Internationale Research Maatschappij B.V. Procede de refroidissement d'un flux d'hydrocarbure et appareil associe
KR101043425B1 (ko) * 2008-10-28 2011-06-22 삼성중공업 주식회사 증발가스 재액화 장치의 벤트 가스 가열 시스템
CN103443435A (zh) 2011-03-11 2013-12-11 大宇造船海洋株式会社 用于将燃料供应到具有再液化装置和高压天然气喷射式发动机的海事结构的系统的驱动方法
KR101106089B1 (ko) 2011-03-11 2012-01-18 대우조선해양 주식회사 고압 천연가스 분사 엔진을 위한 연료 공급 방법
KR101106088B1 (ko) * 2011-03-22 2012-01-18 대우조선해양 주식회사 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매
JP5806381B2 (ja) 2011-03-22 2015-11-10 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド 超過ボイルオフガス消費手段を備えた高圧天然ガス噴射エンジン用燃料供給システム
WO2012128448A1 (fr) 2011-03-22 2012-09-27 대우조선해양 주식회사 Procédé et système permettant de fournir un combustible à un moteur à injection de gaz naturel haute pression
DE102012008961A1 (de) * 2012-05-03 2013-11-07 Linde Aktiengesellschaft Verfahren zum Rückverflüssigen einer Methan-reichen Fraktion
EP2746707B1 (fr) * 2012-12-20 2017-05-17 Cryostar SAS Procédé et appareil de reliquéfaction de gaz naturel
US20140174105A1 (en) * 2012-12-24 2014-06-26 General Electric Campany Systems and methods for re-condensation of boil-off gas
KR101441241B1 (ko) * 2013-04-24 2014-09-17 현대중공업 주식회사 Lng 처리 시스템 및 lng 처리 방법
KR101435330B1 (ko) * 2013-04-24 2014-08-27 현대중공업 주식회사 Lng 처리 시스템 및 lng 처리 방법
KR101334002B1 (ko) 2013-04-24 2013-11-27 현대중공업 주식회사 Lng 처리 시스템
CN103343881B (zh) * 2013-06-19 2015-09-02 广州华丰能源科技有限公司 一种回收bog的工艺及其装置
KR101519541B1 (ko) * 2013-06-26 2015-05-13 대우조선해양 주식회사 증발가스 처리 시스템
CN103382930B (zh) * 2013-08-06 2015-06-17 国鸿液化气机械工程(大连)有限公司 一种用常温压缩机处理低温气体的系统
GB201316227D0 (en) 2013-09-12 2013-10-30 Cryostar Sas High pressure gas supply system
CN104141881A (zh) * 2014-07-18 2014-11-12 江汉石油钻头股份有限公司 一种利用常温压缩机压缩深冷介质的换热系统
GB201414893D0 (en) * 2014-08-21 2014-10-08 Liquid Gas Equipment Ltd Method of cooling boil off gas and apparatus therefor
JP6516430B2 (ja) 2014-09-19 2019-05-22 大阪瓦斯株式会社 ボイルオフガスの再液化設備
JP6501527B2 (ja) * 2015-01-09 2019-04-17 大阪瓦斯株式会社 ボイルオフガスの再液化設備
CN104713696A (zh) * 2015-02-04 2015-06-17 中国海洋石油总公司 一种独立c型lng液舱模型试验方法
KR101599407B1 (ko) 2015-02-11 2016-03-03 대우조선해양 주식회사 선박
CN104792114B (zh) * 2015-04-10 2017-11-07 四川金科深冷设备工程有限公司 Bog再液化工艺及其再液化回收系统
JP6802810B2 (ja) 2015-06-02 2020-12-23 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド 船舶
WO2016195233A1 (fr) * 2015-06-02 2016-12-08 대우조선해양 주식회사 Navire
SG11201710001XA (en) 2015-06-02 2018-01-30 Daewoo Shipbuilding & Marine Ship
EP3420289B1 (fr) * 2016-02-26 2022-12-21 Lge Ip Management Company Limited Procédé de refroidissement de gaz d'évaporation et appareil associé
KR101792708B1 (ko) * 2016-06-22 2017-11-02 삼성중공업(주) 유체냉각장치
KR101767557B1 (ko) 2016-09-01 2017-08-11 대우조선해양 주식회사 선박용 증발가스 재액화 시스템 및 방법
KR101767558B1 (ko) 2016-09-05 2017-08-11 대우조선해양 주식회사 선박용 증발가스 재액화 시스템 및 방법
KR101767559B1 (ko) 2016-09-05 2017-08-11 대우조선해양 주식회사 선박용 증발가스 재액화 시스템 및 방법
KR101876974B1 (ko) * 2016-09-29 2018-07-10 대우조선해양 주식회사 선박용 증발가스 재액화 장치 및 방법
FR3066189B1 (fr) * 2017-05-12 2022-01-21 Gaztransport Et Technigaz Dispositif et procede d'alimentation en combustible d'une installation de production d'energie
JP6623244B2 (ja) * 2018-03-13 2019-12-18 株式会社神戸製鋼所 再液化装置
FR3089274B1 (fr) * 2018-11-30 2022-03-04 Gaztransport Et Technigaz Dispositif de génération de gaz sous forme gazeuse à partir de gaz liquéfié
JP2022526970A (ja) * 2019-04-05 2022-05-27 リンデ ゲゼルシャフト ミット ベシュレンクテル ハフツング 熱交換器を動作させるための方法、熱交換器を有する構成、および対応する構成を有するシステム
US20210231366A1 (en) * 2020-01-23 2021-07-29 Air Products And Chemicals, Inc. System and method for recondensing boil-off gas from a liquefied natural gas tank
US20230258400A1 (en) * 2020-07-23 2023-08-17 Bechtel Energy Technologies & Solutions, Inc. Systems and Methods for Utilizing Boil-Off Gas for Supplemental Cooling in Natural Gas Liquefaction Plants
IT202100020159A1 (it) 2021-07-28 2023-01-28 Saipem Spa Processo di ricondensazione del bog mediante le frigorie di liquidi criogenici cogenerati nel processo di vaporizzazione del lng

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3194025A (en) * 1963-01-14 1965-07-13 Phillips Petroleum Co Gas liquefactions by multiple expansion refrigeration
CH561620A5 (fr) * 1972-12-11 1975-05-15 Sulzer Ag
GB1471404A (en) * 1973-04-17 1977-04-27 Petrocarbon Dev Ltd Reliquefaction of boil-off gas
GB1472533A (en) * 1973-06-27 1977-05-04 Petrocarbon Dev Ltd Reliquefaction of boil-off gas from a ships cargo of liquefied natural gas
US4065938A (en) * 1976-01-05 1978-01-03 Sun-Econ, Inc. Air-conditioning apparatus with booster heat exchanger
FR2386781A1 (fr) * 1977-04-06 1978-11-03 Messier Sa Procede et dispositif de controle de l'environnement climatique d'une enceinte souterraine, renfermant une source de calories parasites
US4202180A (en) * 1978-10-13 1980-05-13 The Scott & Fetzer Company Liquefied gas supply system
US4541852A (en) * 1984-02-13 1985-09-17 Air Products And Chemicals, Inc. Deep flash LNG cycle
GB2175685B (en) * 1985-05-30 1989-07-05 Aisin Seiki Heat exchange arrangements.
US4846862A (en) * 1988-09-06 1989-07-11 Air Products And Chemicals, Inc. Reliquefaction of boil-off from liquefied natural gas
US5076822A (en) * 1990-05-07 1991-12-31 Hewitt J Paul Vapor recovery system
US5176002A (en) * 1991-04-10 1993-01-05 Process Systems International, Inc. Method of controlling vapor loss from containers of volatile chemicals
AUPM485694A0 (en) * 1994-04-05 1994-04-28 Bhp Petroleum Pty. Ltd. Liquefaction process
US5490390A (en) * 1994-05-13 1996-02-13 Ppg Industries, Inc. Liquefaction of chlorine or other substances
AU718068B2 (en) * 1995-10-05 2000-04-06 Bhp Petroleum Pty. Ltd. Liquefaction process
NO305525B1 (no) * 1997-03-21 1999-06-14 Kv Rner Maritime As FremgangsmÕte og anordning ved lagring og transport av flytendegjort naturgass
TW368596B (en) * 1997-06-20 1999-09-01 Exxon Production Research Co Improved multi-component refrigeration process for liquefaction of natural gas
MY117068A (en) * 1998-10-23 2004-04-30 Exxon Production Research Co Reliquefaction of pressurized boil-off from pressurized liquid natural gas
US6082133A (en) * 1999-02-05 2000-07-04 Cryo Fuel Systems, Inc Apparatus and method for purifying natural gas via cryogenic separation
GB0001801D0 (en) * 2000-01-26 2000-03-22 Cryostar France Sa Apparatus for reliquiefying compressed vapour
US6751985B2 (en) * 2002-03-20 2004-06-22 Exxonmobil Upstream Research Company Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state
US6672104B2 (en) * 2002-03-28 2004-01-06 Exxonmobil Upstream Research Company Reliquefaction of boil-off from liquefied natural gas
US6564579B1 (en) * 2002-05-13 2003-05-20 Black & Veatch Pritchard Inc. Method for vaporizing and recovery of natural gas liquids from liquefied natural gas
JP2004338447A (ja) * 2003-05-13 2004-12-02 Denso Corp 空調装置
NO322620B1 (no) * 2003-10-28 2006-11-06 Moss Maritime As Anordning til lagring og transport av flytendegjort naturgass
US20060032239A1 (en) * 2004-08-12 2006-02-16 Chicago Bridge & Iron Company Boil-off gas removal system
KR100688168B1 (ko) * 2004-12-15 2007-03-02 엘지전자 주식회사 공기조화기의 열교환기
NO20051315L (no) * 2005-03-14 2006-09-15 Hamworthy Kse Gas Systems As System og metode for kjoling av en BOG strom
JP2009501896A (ja) * 2005-07-19 2009-01-22 シンヨン ヘビー インダストリーズ カンパニー,リミティド Lngbog再液化装置
US7581411B2 (en) * 2006-05-08 2009-09-01 Amcs Corporation Equipment and process for liquefaction of LNG boiloff gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP5280351B2 (ja) 2013-09-04
CN101449124B (zh) 2012-07-25
JP2009533642A (ja) 2009-09-17
CN101449124A (zh) 2009-06-03
NO345489B1 (no) 2021-03-01
EP2005094A4 (fr) 2018-05-30
KR101290032B1 (ko) 2013-07-30
NO20084544L (no) 2008-10-28
EP2005094A1 (fr) 2008-12-24
KR20080113046A (ko) 2008-12-26
ES2766767T3 (es) 2020-06-15
WO2007117148A1 (fr) 2007-10-18
US20090113929A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
EP2005094B1 (fr) Procédé et appareil permettant de préchauffer un gaz naturel liquéfié d'évaporation à la température ambiante avant sa compression dans un système de reliquéfaction
EP2746707B1 (fr) Procédé et appareil de reliquéfaction de gaz naturel
US20080202158A1 (en) System And Method For Cooling A Bog Stream
KR100761974B1 (ko) 작동유체의 유량조절수단을 이용하여 부하 변동 조절이가능한 천연가스 액화장치
EP2229567B1 (fr) Procédé permettant de réguler la capacité de refroidissement d'un système de refroidissement sur la base d'un processus d'expansion gazeuse
RU2749931C2 (ru) Установка сжижения природного газа, в которой применяется механическое охлаждение и охлаждение жидким азотом
CN104520660A (zh) 用于天然气液化的系统和方法
CA2618576A1 (fr) Procede de liquefaction de gaz naturel destine a produire un gnl
KR101814439B1 (ko) 연료가스 공급시스템
JP2019529218A (ja) 船舶用の蒸発ガス再液化装置及び蒸発ガス再液化方法
RU2719258C2 (ru) Система и способ обработки газа, полученного при испарении криогенной жидкости
US10830533B2 (en) Vessel comprising engine
CN104807287A (zh) 一种小型天然气液化制冷系统及方法
US10808996B2 (en) Vessel comprising engine
KR20080081436A (ko) Lng bog 재액화 장치 및 방법
AU2020327920B2 (en) Systems and methods for improving the efficiency of open-cycle cascade-based liquified natural gas systems
KR102485538B1 (ko) 액화 천연 가스 탱크에서 비등 가스를 재응축하기 위한 시스템 및 방법
KR20160150346A (ko) 저장탱크를 포함하는 선박
KR20190071180A (ko) 선박용 증발가스 재액화 시스템 및 방법
CN219156826U (zh) 一种lng液化脱氮系统
KR20190076269A (ko) 선박용 증발가스 재액화 시스템 및 방법
KR20160144738A (ko) 저장탱크를 포함하는 선박
CN116592575A (zh) 一种基于氮气膨胀和节流制冷的天然气bog直接再液化系统及方法
CN113983758A (zh) 带预冷的多级bog膨胀海上lng闪蒸气再液化装置和工艺
CN117168087A (zh) 模块化氢液化系统

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20180426

RIC1 Information provided on ipc code assigned before grant

Ipc: F25J 1/02 20060101ALI20180420BHEP

Ipc: F25J 1/00 20060101AFI20180420BHEP

Ipc: F17C 13/00 20060101ALI20180420BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190529

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WAERTSILAE GAS SOLUTIONS NORWAY AS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007059420

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1196604

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20200400166

Country of ref document: GR

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200302

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2766767

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007059420

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1196604

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007059420

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200402

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230420

Year of fee payment: 17

Ref country code: ES

Payment date: 20230627

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230420

Year of fee payment: 17

Ref country code: GR

Payment date: 20230420

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 17