EP2005077A2 - Refrigerating device comprising tubular evaporators - Google Patents

Refrigerating device comprising tubular evaporators

Info

Publication number
EP2005077A2
EP2005077A2 EP07712510A EP07712510A EP2005077A2 EP 2005077 A2 EP2005077 A2 EP 2005077A2 EP 07712510 A EP07712510 A EP 07712510A EP 07712510 A EP07712510 A EP 07712510A EP 2005077 A2 EP2005077 A2 EP 2005077A2
Authority
EP
European Patent Office
Prior art keywords
pipe
refrigerant
loops
refrigerating appliance
appliance according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07712510A
Other languages
German (de)
French (fr)
Inventor
Wolfgang Nuiding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of EP2005077A2 publication Critical patent/EP2005077A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/023Evaporators consisting of one or several sheets on one face of which is fixed a refrigerant carrying coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components

Definitions

  • the present invention relates to a refrigerator in which an internal cooling space is cooled by a tube evaporator through which refrigerant circulated by a compressor flows and which has a carrier board and a pipe arranged thereon in heat-conductive contact.
  • the tube evaporator in close thermal contact with the internal cooling space is thermally shielded from the environment by an insulating layer.
  • the compressor is located outside the insulating layer and supplies the evaporator with compressed refrigerant at ambient temperature.
  • the refrigerant is depressurized as it passes through a vaporizer's evaporator, reducing the boiling point of the refrigerant to a level well below ambient.
  • the resulting evaporation of the refrigerant causes the cooling of the interior. Gaseous refrigerant is sucked from the compressor via a suction line.
  • Rollbond evaporators generally composed of two sheets, one of which has a meandering refrigerant line stamped therein, generally have a collector formed adjacent the downstream end of the refrigerant line, which collects un-vaporized refrigerant during a standstill phase of the compressor and thereby prevents it from being forced out of the evaporator and into the suction line by refrigerant evaporating further upstream in the line.
  • a collector formed adjacent the downstream end of the refrigerant line, which collects un-vaporized refrigerant during a standstill phase of the compressor and thereby prevents it from being forced out of the evaporator and into the suction line by refrigerant evaporating further upstream in the line.
  • To provide such a collector even with a tube evaporator is complicated and expensive, since it is necessary for this, several tube sections with different clear widths close together. Instead, in conventional tube evaporators, a rising outlet tube is often located immediately upstream of the suction tube.
  • Object of the present invention is to provide a refrigeration device with a tube evaporator, in which, despite generous filling with refrigerant, the risk of overflow of the outlet pipe is avoided.
  • the invention achieves this object by providing in a refrigerator with a tube evaporator connected to a compressor via a suction line and in which a refrigerant tube connects a plurality of tube loops connected in series and one of the most downstream of the tube loops to the suction line, rising outlet pipe forms, instead of a conventional horizontal course of straight pipe sections of the individual pipe loops on a predetermined length a rising in the flow direction of the refrigerant flow course of the pipe loops is provided, wherein the predetermined length of the pipe loop in combination with its flow-through cross-section forms a buffer volume, whereby an overflow of liquid refrigerant is prevented in the outlet pipe.
  • Each rising-loop pipe loop portion is capable of storing liquid refrigerant and simultaneously sweeping or displacing supple gaseous refrigerant over the liquid so as to trap the liquid refrigerant in the descending portion and not reach the exit pipe.
  • the storage capacity of the tube evaporator for liquid refrigerant is considerably increased, and the risk of expelling liquid refrigerant into the suction line is reduced accordingly.
  • each pipe loop in a conventional manner comprises two straight pipe sections connected by a curved section, it may be provided according to a first embodiment that the straight sections of a furthest downstream group of the pipe loops are parallel oblique.
  • the straight sections of a furthest downstream group of the pipe loops are parallel oblique.
  • the one further downstream has the course rising in the flow direction of the refrigerant.
  • both straight pipe sections increase in the flow direction of the refrigerant.
  • any straight pipe section is able to catch liquid refrigerant, and the amount attributable to a single section is small. The smaller this amount is, the stronger the flow of gaseous refrigerant that can flow through the pipe section without expelling the liquid refrigerant.
  • the group should comprise a plurality of pipe loops formed as described above; Preferably, the group includes all tube loops of the evaporator.
  • each straight pipe section preferably corresponds to at most half its mean distance to adjacent straight pipe sections.
  • Fig. 1 is a schematic view of a refrigerator according to the invention.
  • FIG. 2 shows a section through a tube evaporator according to a first embodiment of the invention.
  • Fig. 3 is a similar to Fig. 2, fragmentary section through a tube evaporator according to a second embodiment of the invention.
  • Fig. 1 shows a schematic view of a refrigerating appliance, seen from the back, wherein the rear wall and insulating layer of a body 1 of the device omitted and the remaining outer surfaces of the body 1 are shown transparent to an inner container 2 and attached to the rear wall of the inner container tube evaporator 3 to show.
  • a niche is recessed to form a machine room, which receives a compressor 4 and a condenser 5.
  • the compressor 4, the condenser 5 and the tube evaporator 3 are interconnected to a refrigerant circuit.
  • a suction line 6 extends substantially vertically downwards from the compressor 4 between a right upper corner of the tube evaporator 3.
  • a pressure line 7 emerges from the condenser 5 and runs along a large part of its length within the suction line 6 to the upper right corner of the evaporator 3 where it exits the suction line 6 again and opens via a throttle point 8 in a refrigerant pipe of the evaporator 3.
  • the refrigerant tube forms a plurality of vertically staggered serially connected tube loops 9 each having two rectilinear tube sections connected by a tube bend 10 and connected in opposite directions.
  • the upstream pipe section of each loop 9 is denoted by 1 1, the downstream by 12.
  • the lowermost tube section 12 is connected by a substantially vertical outlet tube to the suction line 6 at the upper right corner of the evaporator.
  • the puddles 14 have a perfectly flat liquid level, it is easy to see that the amount of liquid that each pipe section 12 can accommodate, without the liquid completely blocking its cross-section, must be greatest when the height difference between the two ends of the section is just smaller than the diameter of the pipe section 1 1. Then the puddle 14 can extend over the entire length of the pipe section 12 and fill its volume just in half. Therefore, if the influence of the surface tension on the shape of the liquid level is negligible, be it due to a low surface tension of the refrigerant or a large diameter of the refrigerant pipe, it may be appropriate to select the height difference between the ends of each pipe portion.
  • the liquid refrigerant tends to obstruct the free pipe cross-section due to surface tension, it will be reasonable to make the slope of the sections 11, 12 slightly larger to ensure that the liquid refrigerant is a puddle 14 that is separated from the deepest by inflowing gas Place was displaced, this strives sufficiently strong again, so that in the course of the pipe section 12, the gas can pass through the liquid without displacing it downstream.
  • the height difference can amount to a few multiples of the pipe diameter here.
  • the pipe loops can store a considerable amount of liquid refrigerant before there is a risk that it will be pushed downstream in a stagnant phase of the compressor by further upstream vaporizing refrigerant. Therefore, a large amount of refrigerant may be filled in the refrigerant cycle without liquid refrigerant in such an amount can fill the downstream pipe loops 9, filling the entire discharge pipe 13 connecting the lowermost pipe loop 9 with the suction pipe and into the suction pipe 6 could arrive.
  • Fig. 3 shows a tube evaporator 3 according to a second embodiment of the invention.
  • the suction line 6, the pressure line 7 and its course to the throttle point 8 are the same as in the first embodiment and therefore need not be described again.
  • the two rectilinear pipe sections 1 1, 12 of the pipe loops 9 are not parallel here, but both extend in each case in the flow direction of the refrigerant increasing, in the figure, the slope of the clearer representation is exaggerated because of. This allows both pipe sections 1 1, 12 of each pipe loop 9 to store liquid refrigerant, so that the amount of liquid refrigerant allocated to each pipe section is small and the risk of the liquid refrigerant being displaced downstream by further upstream evaporation still exists is further reduced.
  • pipe loops can also be combined with conventional horizontal pipe sections and those with rising pipe sections in an evaporator, in which case the pipe loops should be provided with rising pipe sections in the downstream part of the evaporator to trap and store liquid refrigerant draining from upstream horizontal pipe sections can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The invention relates to a refrigerating device comprising a tubular evaporator (3) which is connected to a compressor (4) by means of a suction line (6). A coolant pipe of the tubular evaporator forms a plurality of serially connected tubular loops (9) and one ascending outlet tube (13) connecting the tubular loop (9) that lies the furthest downstream to the suction pipe (6). The tubular loops (9) have a course that ascends in the direction of the flow of the coolant for a distance that corresponds at least to the length of the outlet tube (13).

Description

Kältegerät mit Rohrverdampfer Refrigeration device with tube evaporator
Die vorliegende Erfindung betrifft ein Kältegerät, bei dem ein interner Kühlraum durch einen Rohrverdampfer gekühlt ist, durch den von einem Verdichter umgewälztes Kältemittel strömt und der eine Trägerplatine und eine darauf in wärmeleitendem Kontakt angeordnete Rohrleitung aufweist. Der in engem thermischen Kontakt mit dem internen Kühlraum stehende Rohrverdampfer ist gegen die Umgebung durch eine Isolationsschicht thermisch abgeschirmt. Der Verdichter ist außerhalb der Isolationsschicht angeordnet und führt dem Verdampfer verdichtetes Kältemittel bei Umgebungstemperatur zu. Das Kältemittel wird beim Passieren einer Drosselstelle des Verdampfers auf einen niedrigen Druck entspannt, wodurch sich die Siedetemperatur des Kältemittels auf einen Wert deutlich unter der Umgebungstemperatur verringert. Die daraus resultierende Verdampfung des Kältemittels bewirkt die Kühlung des Innenraumes. Gasförmiges Kältemittel wird vom Verdichter über eine Saugleitung abgesaugt.The present invention relates to a refrigerator in which an internal cooling space is cooled by a tube evaporator through which refrigerant circulated by a compressor flows and which has a carrier board and a pipe arranged thereon in heat-conductive contact. The tube evaporator in close thermal contact with the internal cooling space is thermally shielded from the environment by an insulating layer. The compressor is located outside the insulating layer and supplies the evaporator with compressed refrigerant at ambient temperature. The refrigerant is depressurized as it passes through a vaporizer's evaporator, reducing the boiling point of the refrigerant to a level well below ambient. The resulting evaporation of the refrigerant causes the cooling of the interior. Gaseous refrigerant is sucked from the compressor via a suction line.
Bei Rollbond-Verdampfern, die im Allgemeinen aus zwei Blechen zusammengefügt sind, von denen in eines eine mäandernde Kältemittelleitung eingeprägt ist, ist im Allgemeinen benachbart zum stromabwärtigen Ende der Kältemittelleitung in dieser ein Sammler geformt, der während einer Stillstandsphase des Verdichters unverdampftes Kältemittel auffängt und dadurch verhindert, dass es durch weiter stromaufwärts in der Leitung verdampfendes Kältemittel aus dem Verdampfer heraus und in die Saugleitung gedrückt wird. Einen solchen Sammler auch bei einem Rohrverdampfer vorzusehen, ist aufwändig und kostspielig, da es hierfür erforderlich ist, mehrere Rohrabschnitte mit unterschiedlichen lichten Weiten dicht zusammenzufügen. Statt dessen ist bei herkömmlichen Rohrverdampfern häufig ein ansteigendes Austrittsrohr unmittelbar stromaufwärts vom Saugrohr angeordnet. Solange dieses Austrittsrohr nicht vollständig mit flüssigem Kältemittel gefüllt ist, so dass gasförmiges Kältemittel am stromaufwärtigen, unteren Ende des Austrittsrohres eindringen kann, können Blasen des gasförmigen Kältemittels durch eventuell in dem Rohr vorhandenes flüssiges Kältemittel hindurch aufsteigen. Wenn jedoch die Menge an am stromabwärtigen Ende des Verdampfers versammeltem Kältemittel größer wird als das Fassungsvermögen des Austrittsrohres, gelangt flüssiges Kältemittel in die Saugleitung und kühlt diese außerhalb der Isolationsschicht. Dies führt zum einen zu einem schlechten thermischen Wirkungsgrad des Kältegerätes, zum anderen kann Tauwasser, das sich außen an der Saugleitung niederschlägt, zu Schäden am Gerät führen oder in die Isolationsschicht eindringen und so deren Isolationsvermögen beeinträchtigen. Um dieser Gefahr zu begegnen, begrenzt man gegenwärtig die Menge an Kältemittel im Kältekreislauf eines Kältegerätes, um zu verhindern, dass sich genügend flüssiges Kältemittel ansammeln kann, um das Austrittsrohr zum Überlaufen zu bringen. Eine solche Begrenzung kann jedoch ebenfalls den Wirkungsgrad des Kältegerätes beeinträchtigen.Rollbond evaporators, generally composed of two sheets, one of which has a meandering refrigerant line stamped therein, generally have a collector formed adjacent the downstream end of the refrigerant line, which collects un-vaporized refrigerant during a standstill phase of the compressor and thereby prevents it from being forced out of the evaporator and into the suction line by refrigerant evaporating further upstream in the line. To provide such a collector even with a tube evaporator, is complicated and expensive, since it is necessary for this, several tube sections with different clear widths close together. Instead, in conventional tube evaporators, a rising outlet tube is often located immediately upstream of the suction tube. As long as this outlet tube is not completely filled with liquid refrigerant, so that gaseous refrigerant can penetrate the upstream, lower end of the outlet tube, bubbles of the gaseous refrigerant may rise through any liquid refrigerant present in the tube. However, when the amount of refrigerant collected at the downstream end of the evaporator becomes larger than the capacity of the discharge pipe, liquid refrigerant enters the suction pipe and cools it outside the insulation layer. This leads to a bad thermal efficiency the refrigeration unit, on the other hand, condensation, which is reflected on the outside of the suction line, cause damage to the device or penetrate into the insulation layer and thus affect their insulation capacity. To counteract this danger, one currently limits the amount of refrigerant in the refrigeration cycle of a refrigerator to prevent enough liquid refrigerant from accumulating to overflow the outlet tube. However, such a limitation may also affect the efficiency of the refrigerator.
Aufgabe der vorliegenden Erfindung ist, ein Kältegerät mit einem Rohrverdampfer zu schaffen, bei dem trotz großzügigerer Befüllung mit Kältemittel die Gefahr eines Überlaufens des Austrittsrohres vermieden ist.Object of the present invention is to provide a refrigeration device with a tube evaporator, in which, despite generous filling with refrigerant, the risk of overflow of the outlet pipe is avoided.
Die Erfindung löst diese Aufgabe, indem sie bei einem Kältegerät mit einem Rohrverdampfer, der über eine Saugleitung mit einem Verdichter verbunden ist und in welchem ein Kältemittelrohr eine Mehrzahl von in Reihe verbundenen Rohrschleifen und ein die am weitesten stromabwärts gelegene der Rohrschleifen mit der Saugleitung verbindendes, ansteigendes Austrittsrohr bildet, anstelle eines herkömmlichen horizontalen Verlaufs geradliniger Rohrabschnitte der einzelnen Rohrschleifen auf einer vorbestimmten Länge ein in Stromrichtung des Kältemittels ansteigenden Verlauf der Rohrschleifen vorgesehen ist, wobei die vorbestimmte Länge der Rohrschleife in Kombination mit ihrem durchströmbaren Querschnitt ein Puffervolumen bildet, wodurch ein Überströmen von flüssigem Kältemittel in das Austrittsrohr verhindert ist. Jeder Rohrschleifenabschnitt mit ansteigendem Verlauf ist in der Lage, flüssiges Kältemittel zu speichern und gleichzeitig nachdrängendes gasförmiges Kältemittel über das flüssige hinwegstreichen oder durch es hindurchperlen zu lassen, so dass das flüssige Kältemittel in dem absteigenden Abschnitt gefangen bleibt und das Austrittsrohr nicht erreicht. Dadurch ist die Speicherkapazität des Rohrverdampfers für flüssiges Kältemittel erheblich erhöht, und die Gefahr des Herausdrückens von flüssigem Kältemittel in die Saugleitung ist entsprechend verringert.The invention achieves this object by providing in a refrigerator with a tube evaporator connected to a compressor via a suction line and in which a refrigerant tube connects a plurality of tube loops connected in series and one of the most downstream of the tube loops to the suction line, rising outlet pipe forms, instead of a conventional horizontal course of straight pipe sections of the individual pipe loops on a predetermined length a rising in the flow direction of the refrigerant flow course of the pipe loops is provided, wherein the predetermined length of the pipe loop in combination with its flow-through cross-section forms a buffer volume, whereby an overflow of liquid refrigerant is prevented in the outlet pipe. Each rising-loop pipe loop portion is capable of storing liquid refrigerant and simultaneously sweeping or displacing supple gaseous refrigerant over the liquid so as to trap the liquid refrigerant in the descending portion and not reach the exit pipe. As a result, the storage capacity of the tube evaporator for liquid refrigerant is considerably increased, and the risk of expelling liquid refrigerant into the suction line is reduced accordingly.
Bei gleichem Durchströmungsquerschnitt der Rohrschleifen und des Austrittsrohres ist es besonders vorteilhaft, wenn die Rohrschleifen auf wenigstens einer Länge des Austrittsrohres entsprechenden Länge einen in Strömungsrichtung des Kältemittels ansteigenden Verlauf haben. Wenn jede Rohrschleife in an sich bekannter Weise zwei durch einen gekrümmten Abschnitt verbundene gerade Rohrabschnitte aufweist, kann einer ersten Ausgestaltung zufolge vorgesehen sein, dass die geraden Abschnitte einer am weitesten stromabwärts gelegenen Gruppe der Rohrschleifen parallel schräg verlaufen. Somit ist von den zwei parallelen geraden Rohrabschnitten jeder Schleife einer in der Lage, flüssiges Kältemittel zu speichern.With the same flow cross-section of the pipe loops and the outlet pipe, it is particularly advantageous if the pipe loops on at least one length of the outlet pipe corresponding length have a rising in the flow direction of the refrigerant flow. If each pipe loop in a conventional manner comprises two straight pipe sections connected by a curved section, it may be provided according to a first embodiment that the straight sections of a furthest downstream group of the pipe loops are parallel oblique. Thus, of the two parallel straight pipe sections of each loop, one is capable of storing liquid refrigerant.
Vorzugsweise hat von den zwei geraden Abschnitten jeder Rohrschleife der Gruppe der weiter stromabwärts gelegene den in Stromrichtung des Kältemittels ansteigenden Verlauf.Preferably, of the two straight sections of each pipe loop of the group, the one further downstream has the course rising in the flow direction of the refrigerant.
Einer zweiten Ausgestaltung zufolge steigen bei einer am weitesten stromabwärts gelegenen Gruppe der Rohrschleifen jeweils beide gerade Rohrabschnitte in Stromrichtung des Kältemittels an. So ist jeder gerade Rohrabschnitt in der Lage, flüssiges Kältemittel aufzufangen, und die auf einen einzelnen Abschnitt entfallende Menge ist gering. Je geringer diese Menge ist, um so stärker kann der Strom an gasförmigem Kältemittel sein, der durch den Rohrabschnitt fließen kann, ohne das flüssige Kältemittel herauszudrängen.According to a second embodiment, in a most downstream group of pipe loops, both straight pipe sections increase in the flow direction of the refrigerant. Thus, any straight pipe section is able to catch liquid refrigerant, and the amount attributable to a single section is small. The smaller this amount is, the stronger the flow of gaseous refrigerant that can flow through the pipe section without expelling the liquid refrigerant.
Um eine hohe Speicherkapazität zu realisieren, sollte die Gruppe eine Mehrzahl von wie oben beschrieben ausgebildeten Rohrschleifen umfassen; vorzugsweise gehören der Gruppe sämtliche Rohrschleifen des Verdampfers an.In order to realize a high storage capacity, the group should comprise a plurality of pipe loops formed as described above; Preferably, the group includes all tube loops of the evaporator.
Der Höhenunterschied zwischen den zwei Enden jedes geraden Rohrabschnittes entspricht vorzugsweise maximal der Hälfte seines mittleren Abstands zu benachbarten geraden Rohrabschnitten.The height difference between the two ends of each straight pipe section preferably corresponds to at most half its mean distance to adjacent straight pipe sections.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Es zeigen:Further features and advantages of the invention will become apparent from the following description of embodiments with reference to the accompanying figures. Show it:
Fig. 1 eine schematische Ansicht eines erfindungsgemäßen Kältegerätes; - A -Fig. 1 is a schematic view of a refrigerator according to the invention; - A -
Fig. 2 einen Schnitt durch einen Rohrverdampfer gemäß einer ersten Ausgestaltung der Erfindung; und2 shows a section through a tube evaporator according to a first embodiment of the invention. and
Fig. 3 einen zu Fig. 2 analogen, fragmentarischen Schnitt durch einen Rohrverdampfer gemäß einer zweiten Ausgestaltung der Erfindung.Fig. 3 is a similar to Fig. 2, fragmentary section through a tube evaporator according to a second embodiment of the invention.
Fig. 1 zeigt eine schematische Ansicht eines Kältegerätes, gesehen von der Rückseite her, wobei Rückwand und Isolationsschicht eines Korpus 1 des Geräts weggelassen und die übrigen Außenflächen des Korpus 1 transparent dargestellt sind, um einen Innenbehälter 2 und einen an der Rückwand des Innenbehälters angebrachten Rohrverdampfer 3 zu zeigen.Fig. 1 shows a schematic view of a refrigerating appliance, seen from the back, wherein the rear wall and insulating layer of a body 1 of the device omitted and the remaining outer surfaces of the body 1 are shown transparent to an inner container 2 and attached to the rear wall of the inner container tube evaporator 3 to show.
Im unteren rückwärtigen Bereich des Innenbehälters 2 ist eine Nische ausgespart, um einen Maschinenraum zu bilden, der einen Verdichter 4 und einen Verflüssiger 5 aufnimmt. Der Verdichter 4, der Verflüssiger 5 und der Rohrverdampfer 3 sind untereinander zu einem Kältemittelkreislauf verbunden.In the lower rear region of the inner container 2, a niche is recessed to form a machine room, which receives a compressor 4 and a condenser 5. The compressor 4, the condenser 5 and the tube evaporator 3 are interconnected to a refrigerant circuit.
Eine Saugleitung 6 erstreckt sich zwischen einer rechten oberen Ecke des Rohrverdampfers 3 im Wesentlichen vertikal abwärts zum Verdichter 4. Eine Druckleitung 7 geht aus vom Verflüssiger 5 und verläuft auf einem großen Teil ihrer Länge innerhalb der Saugleitung 6 bis zu der oberen rechten Ecke des Verdampfers 3, wo sie aus der Saugleitung 6 wieder austritt und über eine Drosselstelle 8 in ein Kältemittelrohr des Verdampfers 3 mündet. Das Kältemittelrohr bildet eine Mehrzahl von vertikal gestaffelt in Reihe verbundenen Rohrschleifen 9, die jeweils zwei durch einen Rohrbogen 10 verbundene, in entgegengesetzte Richtungen verlaufende geradlinige Rohrabschnitte aufweisen. Der stromaufwärts gelegene Rohrabschnitt jeder Schleife 9 ist mit 1 1 , der stromabwärts gelegene mit 12 bezeichnet. Der unterste Rohrabschnitt 12 ist durch ein im wesentlichen vertikales Austrittsrohr mit der Saugleitung 6 an der oberen rechten Ecke des Verdampfers verbunden.A suction line 6 extends substantially vertically downwards from the compressor 4 between a right upper corner of the tube evaporator 3. A pressure line 7 emerges from the condenser 5 and runs along a large part of its length within the suction line 6 to the upper right corner of the evaporator 3 where it exits the suction line 6 again and opens via a throttle point 8 in a refrigerant pipe of the evaporator 3. The refrigerant tube forms a plurality of vertically staggered serially connected tube loops 9 each having two rectilinear tube sections connected by a tube bend 10 and connected in opposite directions. The upstream pipe section of each loop 9 is denoted by 1 1, the downstream by 12. The lowermost tube section 12 is connected by a substantially vertical outlet tube to the suction line 6 at the upper right corner of the evaporator.
Wie in dem in Fig. 2 gezeigten Schnitt durch den Rohrverdampfer 3 deutlicher zu sehen, hat von den Rohrschleifen 9 nur die am weitesten stromaufwärts gelegene, die unmittelbar an die Drosselstelle 8 anschließt, horizontale geradlinige Rohrabschnitte 1 1 '. Bei allen weiter stromabwärts liegenden Rohrschleifen 9 sind die geradlinigen Rohrabschnitte 1 1 , 12 untereinander parallel und zu der von der Saugleitung 6 abgewandten Seite des Verdampfers hin leicht abschüssig. So kann sich eine Pfütze 14 von flüssigem Kältemittel jeweils im tiefstgelegenen Bereich jeder Rohrschleife 9, am Anfang ihres Rohrabschnitts 12, sammeln.As can be seen more clearly in the section through the tube evaporator 3 shown in FIG. 2, of the tube loops 9, only the most upstream, which directly adjoins the restriction 8, has horizontal rectilinear tube sections 11 '. In all downstream pipe loops 9 are the rectilinear Pipe sections 1 1, 12 mutually parallel and slightly sloping towards the side facing away from the suction line 6 side of the evaporator. Thus, a puddle 14 of liquid refrigerant in each case in the lowest area of each pipe loop 9, at the beginning of their pipe section 12, collect.
Wenn man annimmt, dass die Pfützen 14 einen perfekt ebenen Flüssigkeitsspiegel aufweisen, sieht man leicht ein, dass die Menge an Flüssigkeit, die jeder Rohrabschnitt 12 aufnehmen kann, ohne dass die Flüssigkeit seinen Querschnitt völlig versperrt, dann am größten sein muss, wenn der Höhenunterschied zwischen den zwei Enden des Abschnittes knapp kleiner als der Durchmesser des Rohrabschnittes 1 1 ist. Dann kann sich die Pfütze 14 über die gesamte Länge des Rohrabschnitts 12 erstrecken und dessen Volumen knapp zur Hälfte ausfüllen. Wenn der Einfluss der Oberflächenspannung auf die Form des Flüssigkeitsspiegels vernachlässigbar ist, sei es aufgrund einer geringen Oberflächenspannung des Kältemittels oder eines großen Durchmessers des Kältemittelrohrs, kann es daher zweckmäßig sein, den Höhenunterschied zwischen den Enden jedes Rohrabschnitts so zu wählen.Assuming that the puddles 14 have a perfectly flat liquid level, it is easy to see that the amount of liquid that each pipe section 12 can accommodate, without the liquid completely blocking its cross-section, must be greatest when the height difference between the two ends of the section is just smaller than the diameter of the pipe section 1 1. Then the puddle 14 can extend over the entire length of the pipe section 12 and fill its volume just in half. Therefore, if the influence of the surface tension on the shape of the liquid level is negligible, be it due to a low surface tension of the refrigerant or a large diameter of the refrigerant pipe, it may be appropriate to select the height difference between the ends of each pipe portion.
Wenn das flüssige Kältemittel dazu neigt, aufgrund von Oberflächenspannung den freien Rohrquerschnitt zu versperren, wird man das Gefälle der Abschnitte 1 1 , 12 sinnvollerweise etwas größer wählen, um zu gewährleisten, dass das flüssige Kältemittel einer Pfütze 14, das durch nachströmendes Gas von der tiefsten Stelle verdrängt wurde, dieser ausreichend stark wieder zustrebt, so dass im Verlauf des Rohrabschnitts 12 das Gas die Flüssigkeit passieren kann, ohne sie stromabwärts zu verdrängen. Der Höhenunterschied kann hier einige wenige Vielfache des Rohrdurchmessers betragen.If the liquid refrigerant tends to obstruct the free pipe cross-section due to surface tension, it will be reasonable to make the slope of the sections 11, 12 slightly larger to ensure that the liquid refrigerant is a puddle 14 that is separated from the deepest by inflowing gas Place was displaced, this strives sufficiently strong again, so that in the course of the pipe section 12, the gas can pass through the liquid without displacing it downstream. The height difference can amount to a few multiples of the pipe diameter here.
Im einen wie im anderen Falle können die Rohrschleifen eine beträchtliche Menge an flüssigem Kältemittel speichern, bevor die Gefahr besteht, dass dieses in einer Stillstandsphase des Verdichters durch weiter stromaufwärts verdampfendes Kältemittel stromabwärts gedrückt wird. Es kann daher eine große Menge an Kältemittel in den Kältemittelkreislauf eingefüllt sein, ohne dass flüssiges Kältemittel in einer solchen Menge die stromabwärts gelegenen Rohrschleifen 9 füllen kann, dass es das gesamte die unterste Rohrschleife 9 mit der Saugleitung verbindende Austrittsrohr 13 ausfüllen und bis in die Saugleitung 6 gelangen könnte. Fig. 3 zeigt einen Rohrverdampfer 3 gemäß einer zweiten Ausgestaltung der Erfindung. Die Saugleitung 6, die Druckleitung 7 und deren Verlauf bis zur Drosselstelle 8 sind die gleichen wie bei der ersten Ausgestaltung und brauchen daher nicht erneut beschrieben zu werden. Die zwei geradlinigen Rohrabschnitte 1 1 , 12 der Rohrschleifen 9 sind hier nicht parallel, sondern verlaufen beide jeweils in Strömungsrichtung des Kältemittels ansteigend, wobei in der Figur die Steigung der deutlicheren Darstellung wegen übertrieben ist. Dies ermöglicht es beiden Rohrabschnitten 1 1 , 12 jeder Rohrschleife 9, flüssiges Kältemittel zu speichern, so dass die auf jeden Rohrabschnitt entfallende Menge an flüssigem Kältemittel klein ist und die Gefahr, dass das flüssige Kältemittel durch weiter stromaufwärts stattfindende Verdunstung nach stromabwärts verdrängt wird, noch weiter verringert ist.In one case as in the other case, the pipe loops can store a considerable amount of liquid refrigerant before there is a risk that it will be pushed downstream in a stagnant phase of the compressor by further upstream vaporizing refrigerant. Therefore, a large amount of refrigerant may be filled in the refrigerant cycle without liquid refrigerant in such an amount can fill the downstream pipe loops 9, filling the entire discharge pipe 13 connecting the lowermost pipe loop 9 with the suction pipe and into the suction pipe 6 could arrive. Fig. 3 shows a tube evaporator 3 according to a second embodiment of the invention. The suction line 6, the pressure line 7 and its course to the throttle point 8 are the same as in the first embodiment and therefore need not be described again. The two rectilinear pipe sections 1 1, 12 of the pipe loops 9 are not parallel here, but both extend in each case in the flow direction of the refrigerant increasing, in the figure, the slope of the clearer representation is exaggerated because of. This allows both pipe sections 1 1, 12 of each pipe loop 9 to store liquid refrigerant, so that the amount of liquid refrigerant allocated to each pipe section is small and the risk of the liquid refrigerant being displaced downstream by further upstream evaporation still exists is further reduced.
Es liegt auf der Hand, dass es - je nach Befüllung des Kältemittelkreises mit Kältemittel - eventuell nicht erforderlich ist, alle Rohrschleifen mit ansteigenden Rohrabschnitten auszubilden, um das in einer Stillstandsphase des Verdichters eventuell anfallende flüssige Kältemittel aufzufangen. Es können daher auch Rohrschleifen mit herkömmlichen horizontalen Rohrabschnitten und solche mit ansteigenden Rohrabschnitten in einem Verdampfer kombiniert sein, wobei in diesem Fall die Rohrschleifen mit ansteigenden Rohrabschnitten im stromabwärtigen Teil des Verdampfers vorgesehen sein sollten, um aus stromaufwärtigen horizontalen Rohrabschnitten ablaufendes flüssiges Kältemittel auffangen und speichern zu können. It is obvious that, depending on how the refrigerant circuit is filled with refrigerant, it may not be necessary to form all the pipe loops with rising pipe sections in order to catch the liquid refrigerant which may be generated during a standstill phase of the compressor. Therefore, pipe loops can also be combined with conventional horizontal pipe sections and those with rising pipe sections in an evaporator, in which case the pipe loops should be provided with rising pipe sections in the downstream part of the evaporator to trap and store liquid refrigerant draining from upstream horizontal pipe sections can.

Claims

Ansprüche claims
1 . Kältegerät mit einem Rohrverdampfer (3), der eine Trägerplatine und eine darauf in wärmeleitendem Kontakt angeordnete Rohrleitung aufweist über eine Saugleitung (6) mit einem Verdichter (4) verbunden ist wobei das Kältemittelrohr eine Mehrzahl von in Reihe verbundenen Rohrschleifen (9) und ein die am weitesten stromabwärts gelegene der Rohrschleifen (9) mit der Saugleitung (6) verbindendes, ansteigendes Austrittsrohr (13) bildet, dadurch gekennzeichnet, dass die Rohrschleifen (9) auf wenigstens einer Länge einen in Stromrichtung des Kältemittels ansteigenden Verlauf haben, durch welche in Kombination mit dem durchströmbaren Querschnitt der Rohrschleifen (9) ein Aufnahmevolumen gebildet ist, welches das flüssige1 . Refrigerating appliance with a tube evaporator (3), which has a carrier plate and arranged thereon in heat-conducting contact pipe via a suction line (6) with a compressor (4) is connected wherein the refrigerant pipe a plurality of series-connected pipe loops (9) and a farthest downstream of the pipe loops (9) with the suction line (6) connecting, rising outlet pipe (13), characterized in that the pipe loops (9) on at least one length have a rising in the flow direction of the refrigerant flow through which in combination with the flow-through cross-section of the pipe loops (9) a receiving volume is formed, which is the liquid
Kältemittel zu puffern vermag.Could buffer refrigerant.
2. Kältegerät nach Anspruch 1 , dadurch gekennzeichnet, dass die Rohrschleifen (9) auf wenigstens einer Länge des Austrittsrohres (13) entsprechenden Länge einen in Stromrichtung des Kältemittels ansteigenden Verlauf haben.2. Refrigerating appliance according to claim 1, characterized in that the pipe loops (9) on at least one length of the outlet pipe (13) corresponding length have a rising in the flow direction of the refrigerant flow.
3. Kältegerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jede Rohrschleife (9) jeweils zwei durch einen gekrümmten Abschnitt (10) verbundene gerade Rohrabschnitte (1 1 , 12) aufweist.3. Refrigerating appliance according to claim 1 or 2, characterized in that each pipe loop (9) each having two by a curved portion (10) connected straight pipe sections (1 1, 12).
4. Kältegerät nach Anspruch 3, dadurch gekennzeichnet, dass die geraden Abschnitte (1 1 , 12) einer am weitesten stromabwärts gelegenen Gruppe der Rohrschleifen (9) parallel schräg verlaufen.4. Refrigerating appliance according to claim 3, characterized in that the straight sections (1 1, 12) of a most downstream group of pipe loops (9) extend obliquely parallel.
5. Kältegerät nach Anspruch 4, dadurch gekennzeichnet, dass von den zwei geraden Abschnitten (1 1 , 12) jeder Rohrschleife (9) der Gruppe der weiter stromabwärts gelegene (12) den in Stromrichtung des Kältemittels ansteigenden Verlauf hat.5. Refrigerating appliance according to claim 4, characterized in that of the two straight sections (1 1, 12) of each pipe loop (9) of the group further downstream (12) has the rising in the flow direction of the refrigerant course.
6. Kältegerät nach Anspruch 3, dadurch gekennzeichnet, dass die geraden Abschnitte (1 1 , 12) einer am weitesten stromabwärts gelegenen Gruppe der Rohrschleifen (9) jeweils beide in Stromrichtung des Kältemittels ansteigen. 6. Refrigerating appliance according to claim 3, characterized in that the straight portions (1 1, 12) of a most downstream group of pipe loops (9) each rise both in the flow direction of the refrigerant.
7. Kältegerät nach Anspruch 4, 5 oder 6, dadurch gekennzeichnet, dass die Gruppe eine Mehrzahl von Rohrschleifen (9) umfasst.7. Refrigerating appliance according to claim 4, 5 or 6, characterized in that the group comprises a plurality of pipe loops (9).
8. Kältegerät nach Anspruch 7, dadurch gekennzeichnet, dass die Gruppe alle Rohrschleifen (9 umfasst.8. Refrigerating appliance according to claim 7, characterized in that the group comprises all tube loops (9).
9. Kältegerät nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass der Höhenunterschied zwischen den zwei Enden jedes geraden Rohrabschnitts 1 1 , 12) maximal der Hälfte seines mittleren Abstands zu benachbarten geraden Rohrabschnitten (1 1 , 12) entspricht. 9. Refrigerating appliance according to one of claims 3 to 8, characterized in that the height difference between the two ends of each straight pipe section 1 1, 12) corresponds to a maximum of half its average distance to adjacent straight pipe sections (1 1, 12).
EP07712510A 2006-04-05 2007-03-12 Refrigerating device comprising tubular evaporators Withdrawn EP2005077A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202006005551U DE202006005551U1 (en) 2006-04-05 2006-04-05 Refrigeration device with tube evaporator
PCT/EP2007/052291 WO2007115877A2 (en) 2006-04-05 2007-03-12 Refrigerating device comprising tubular evaporators

Publications (1)

Publication Number Publication Date
EP2005077A2 true EP2005077A2 (en) 2008-12-24

Family

ID=36710192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07712510A Withdrawn EP2005077A2 (en) 2006-04-05 2007-03-12 Refrigerating device comprising tubular evaporators

Country Status (6)

Country Link
US (1) US8122737B2 (en)
EP (1) EP2005077A2 (en)
CN (1) CN101410679A (en)
DE (1) DE202006005551U1 (en)
RU (1) RU2426038C2 (en)
WO (1) WO2007115877A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008024325A1 (en) * 2008-05-20 2009-11-26 BSH Bosch und Siemens Hausgeräte GmbH Cooling unit with coolant storage in the condenser and corresponding procedure
DE102016123512A1 (en) 2016-12-06 2018-06-07 Coolar UG (haftungsbeschränkt) evaporator device
JP2019207068A (en) * 2018-05-29 2019-12-05 株式会社ノーリツ Heat exchanger and water heating system including the same
CN115479427B (en) * 2021-06-16 2023-08-15 青岛海尔电冰箱有限公司 Refrigerator with a refrigerator body

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2371215A (en) * 1945-03-13 Refrigerating apparatus
US1995167A (en) * 1933-01-14 1935-03-19 Ingersoll Steel And Dise Co Evaporator
US2118637A (en) * 1936-03-05 1938-05-24 Gen Electric Evaporator for refrigerating machines
US2292803A (en) * 1937-04-17 1942-08-11 Gen Electric Evaporator for refrigerating machines
US2730872A (en) * 1954-05-25 1956-01-17 Reynolds Metals Co Evaporator incorporating accumulator wells and feed grid
US2827774A (en) * 1955-03-10 1958-03-25 Avco Mfg Corp Integral evaporator and accumulator and method of operating the same
DE1299007B (en) * 1964-09-18 1969-07-10 Danfoss As Cooling system with cool compartment evaporator and upstream freezer compartment evaporator
ES461192A1 (en) * 1976-07-29 1978-12-01 Matsushita Electric Ind Co Ltd Heat pump including auxiliary outdoor heat exchanger acting as defroster and sub-cooler
US4187690A (en) * 1978-08-16 1980-02-12 Gulf & Western Manufacturing Company Ice-maker heat pump
US4291546A (en) * 1979-06-11 1981-09-29 Alco Foodservice Equipment Company Cold plate heat exchanger
DE3703902A1 (en) * 1987-02-09 1988-08-18 Liebherr Hausgeraete Plate evaporator for refrigerators and freezers
US4823561A (en) * 1988-03-18 1989-04-25 Medlock Danny H Refrigeration apparatus having a heat exchanger pre-cooling element
KR910002810Y1 (en) * 1988-10-06 1991-05-02 삼성전자 주식회사 Evaporator for ice-maker
KR910003551Y1 (en) * 1989-03-03 1991-05-31 삼성전자 주식회사 Evaporator for ice-maker
DE3921485A1 (en) * 1989-06-30 1991-01-10 Erno Raumfahrttechnik Gmbh EVAPORATION HEAT EXCHANGER
US4995453A (en) * 1989-07-05 1991-02-26 Signet Systems, Inc. Multiple tube diameter heat exchanger circuit
US5031411A (en) * 1990-04-26 1991-07-16 Dec International, Inc. Efficient dehumidification system
SU1740916A1 (en) 1990-06-14 1992-06-15 Московский автомобильный завод им.И.А.Лихачева Evaporator
JPH1019417A (en) * 1996-07-04 1998-01-23 Matsushita Refrig Co Ltd Cooler
US6370901B1 (en) * 2000-07-26 2002-04-16 Ming-Li Tso Compound evaporation system and device thereof
JP2003090690A (en) * 2001-09-18 2003-03-28 Hitachi Ltd Lamination type heat exchanger and refrigerating cycle
FR2867843B1 (en) 2004-03-22 2006-04-28 Pechiney Rhenalu COOLING PANEL FOR REFRIGERATOR OR FREEZER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007115877A3 *

Also Published As

Publication number Publication date
WO2007115877A2 (en) 2007-10-18
RU2426038C2 (en) 2011-08-10
DE202006005551U1 (en) 2006-07-06
WO2007115877A3 (en) 2007-11-29
CN101410679A (en) 2009-04-15
RU2008142982A (en) 2010-05-10
US8122737B2 (en) 2012-02-28
US20090120125A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
EP1240466B1 (en) Refrigeration device
DE1476999A1 (en) Absorption refrigeration system and method of operating the same
DE102018002201B4 (en) Water-lithium bromide absorption refrigeration system
DE2602582C2 (en) Liquid separator for refrigeration systems
WO2007115877A2 (en) Refrigerating device comprising tubular evaporators
WO2001031267A1 (en) Refrigeration device, such as a refrigerator, a refrigerator/freezer combination or the like
DE102011004591A1 (en) Refrigeration unit with evaporation tray
EP0789206B1 (en) Refrigeration apparatus
DE112017002266T5 (en) heat exchangers
DE69727197T2 (en) Absorption refrigerator
EP2612088A2 (en) Refrigeration device and method for producing the same
EP2372277A2 (en) Cooling device with condensate atomiser
DE2039246C3 (en) Refrigerator, especially two-temperature refrigerator
WO2016192989A1 (en) Refrigerant circuit
EP0547316B1 (en) Two-temperature household refrigeration apparatus with a single cycle
DE19524840A1 (en) Evaporator arrangement for household refrigeration devices
DE202006019473U1 (en) Fridge and / or freezer
EP3599434A1 (en) Single circuit refrigerator
DE3703902C2 (en)
DE2212890C3 (en) Condenser system in an absorption refrigerator working with inert gas
DE102009000840A1 (en) Refrigeration unit with uniform temperature distribution
DE970641C (en) Refrigerator for absorption refrigerators with pressure equalizing gas
DE1476988A1 (en) Evaporator for refrigerators, especially for household refrigerators
DE202006013713U1 (en) A method for providing refrigerator shelving has the system evaporator tubing formed in a flat panel with closely adjacent bends at each side with no additional components
DE102010062739A1 (en) Refrigeration device used in household appliance, has condenser whose columnar portion is accommodated in recess of heat insulating layer through which chilled goods are flowed along vertical direction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081105

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BSH HAUSGERAETE GMBH

17Q First examination report despatched

Effective date: 20160311

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160722