EP2002136A1 - Hydrodynamisches axialgleitlager und zugehöriges betriebsverfahren - Google Patents
Hydrodynamisches axialgleitlager und zugehöriges betriebsverfahrenInfo
- Publication number
- EP2002136A1 EP2002136A1 EP07727135A EP07727135A EP2002136A1 EP 2002136 A1 EP2002136 A1 EP 2002136A1 EP 07727135 A EP07727135 A EP 07727135A EP 07727135 A EP07727135 A EP 07727135A EP 2002136 A1 EP2002136 A1 EP 2002136A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lubricant
- bearing
- bearing segment
- gap
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
- F16C17/06—Sliding-contact bearings for exclusively rotary movement for axial load only with tiltably-supported segments, e.g. Michell bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/108—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid with a plurality of elements forming the bearing surfaces, e.g. bearing pads
Definitions
- the invention relates to a hydrodynamic axial plain bearing, which is designed in particular for high loads. Such an axial sliding bearing is particularly applicable for the storage of waves of large electrical machines, such as hydrogen generators.
- the invention also relates to a method for operating such a hydrodynamic thrust bearing.
- hydrodynamic axial plain bearings are used to absorb the axial forces, in particular when the respective shaft is arranged vertically, ie with a vertical axis of rotation.
- the bearing relative to one another bearing segments have facing planar sliding surfaces, between which builds a sustainable hydrodynamic lubricant film during operation.
- the lubricant film thickness depends on a number of factors, in particular the load of the axial sliding bearing.
- ADJUSTED SHEET (RULE 91) ISA / EP as a result of the significant shear stress of the enforced between the stationary rotating components lubricant a significant heating of the same, which usually requires an internal or an external cooling of the lubricant to prevent excessive heating with the result of thermal damage thereof and the operability of the Axial sliding bearing to ensure reliable at all.
- the invention deals with the problem of providing an improved embodiment for a hydrodynamic thrust bearing or for an associated operating method, which allows in particular compared to conventional plain bearings of the same dimension with at least constant running safety increased stress.
- ADJUSTED SHEET (RULE 91) ISA / EP The invention is based on the general idea of subtracting a partial stream of the lubricant within the lubricant gap in a region of a relatively high pressure of the lubricant and returning it to a region of relatively low pressure of the lubricant again in the lubricant gap.
- the invention makes use of the fact that during operation of the thrust bearing within the lubricant gap, a significant pressure gradient is formed.
- a typical pressure curve within the lubricant gap of a conventional axial plain bearing is shown by way of example in FIG.
- at least one inlet opening is arranged in a compensation channel which penetrates the bearing segment at a distance from the sliding surface or extends within the bearing segment and again at least one outlet opening at a point of relatively low pressure the lubricant gap occurs.
- a circulation flow of a part of the lubricant is initiated by a partial flow of the same in the range of high pressure from the lubricant gap in the compensation passage, this flows against the main flow direction of the lubricant in the lubricant gap to finally in a region of the bearing segment with a lower Pressure to re-enter the lubricant gap and to unite with the existing lubricant there.
- ADJUSTED SHEET (RULE 91) ISA / EP within the lubricant gap of the respective bearing segment of the axial sliding bearing.
- the system is self-regulating. Depending on the prevailing pressure conditions, the flow cross sections and the viscosity of the lubricant, an equilibrium state automatically arises during operation. Additional control measures are therefore not required.
- the inventive measure causes an enlargement of the lubricant gap compared to a comparable Axialgieitlager without the inventive measure. This results in the additional benefits of increased running safety due to the thicker lubricating film as well as the resulting possibility of higher load on the thrust bearing.
- an increase in the lubricant gap causes increased throughput of lubricant through the lubricant gap.
- This increases the supply of fresh, cold lubricant, which on the one hand, the temperature and thus the thermal stress of the lubricant itself decreases and on the other hand, so that the temperature of the sliding surfaces decreases.
- This has the consequence that the thermal stress of the respective bearing segment and concomitantly, in the case of large-scale bearing segments, the risk of deformation due to high differences in body temperature is reduced.
- the warm lubricant flowing through the respective bearing segment in the at least one compensation channel contributes to a balanced body temperature within the respective bearing segment.
- 1 is an axial plan view of a bearing segment of a thrust bearing
- FIG. 2 is a sectional view of the bearing segment according to section lines D - D in Fig. 1,
- FIG. 3 is a view of the bearing segment in the circumferential direction according to a viewing direction III in Fig. 2,
- FIG. 5 is a sectional view of the position segment according to section lines C - C in Fig. 3,
- FIG. 6 is a diagram illustrating the pressure ratios within a lubricant gap in a conventional bearing segment
- FIG. 7 shows a diagram for illustrating the pressure conditions within a lubricant gap in the bearing segment according to the invention.
- FIGS. 1 to 5 show a support segment or bearing segment 1 of an otherwise not shown, highly loadable hydrodynamic axial plain bearing, as may be used, for example, on a vertical electric machine, such as a hydrogenerator.
- a vertical electric machine such as a hydrogenerator.
- several of these bearing segments 1 are arranged annularly with respect to a rotation axis of a rotor, not shown, of this machine.
- Said rotor is supported axially on these bearing segments 1 of the axial sliding bearing.
- the bearing segments 1 of the thrust bearing itself in turn rest on a solid surface, so are stationary.
- the thrust bearing is immersed in lubricating oil.
- a friction-reducing lubricant film which is fed from a lubricant bath and / or channels of high-pressure lubrication in a conventional manner.
- the rotor rotates in a direction of rotation 2 indicated in FIG. 1 by an arrow. This results in a leading edge 3 and an outflow edge 4 for the stationary bearing segment 1 for the lubricant conveyed by the rotation of the rotor.
- the respective bearing segment 1 is at its end in Fig. 1 the viewer facing sliding surface 5 chamfered.
- a corresponding chamfer line is designated 6 in FIG.
- the respective axial sliding bearing thus comprises two relatively mutually adjustable assemblies, namely a rotating assembly and a stationary assembly.
- the rotating assembly is formed with its sliding surfaces on the rotor, while the stationary assembly includes the bearing segments 1 with their sliding surfaces 5.
- ADJUSTED SHEET (RULE 91) ISA / EP In a conventional axial sliding bearing, which is equipped with conventional bearing segments 1, the pressure distribution shown in FIG. 6 is established on the sliding surface 5 of the respective bearing segment 1 during operation. Recognizable increases the pressure from the leading edge 3 to the trailing edge 4 first and then from again. Its maximum reaches the pressure curve approximately in the middle of the downstream third of the respective bearing segment. 1
- a subset of the lubricant is now removed within the lubricant gap from a region of relatively high hydrostatic pressure and returned to a region of relatively low hydrostatic pressure within the lubricant gap.
- the removal of the lubricant and the introduction of the lubricant in each case take place within such a bearing segment 1, in particular in each of these bearing segments 1 of the axial sliding bearing.
- a lubricant path 7 may preferably be formed within the respective bearing segment 1, which runs in the interior of the respective bearing segment 1 and via which the removal of lubricant from the high-pressure region and the introduction of lubricant into the low-pressure region.
- the respective bearing segment 1 contains at least one compensation channel 8.
- the respective compensation channel 8 extends inside the respective bearing segment 1 at a distance from the sliding surface 5.
- the respective compensation channel 8 serves to connect the high-pressure region in FIG Lubricant gap with the low-pressure region in the lubricant gap, so that during operation lubricant can flow from the high pressure area to the low pressure area, and indeed contrary
- ADJUSTED SHEET (RULE 91) ISA / EP the general, the direction of rotation 2 corresponding flow direction of the lubricant in the lubricant gap.
- FIG. 7 now shows the pressure curve in the lubricant gap along the sliding surface 5 in the bearing segment 1 according to the invention or in an axial sliding bearing according to the invention.
- the removal of the lubricant from the lubricant gap whereby the high-pressure region has a significant slump and now has two maxima instead of a maximum.
- the lubricant is introduced into the lubricant gap, which significantly raises the mean pressure in this low pressure region; At the same time, a (smaller) pressure maximum can also be formed there. Overall, thus results within the sliding surface 5 of the respective bearing segment 1, a certain pressure compensation.
- the pressure level in the low-pressure region that is to say in an upstream or front region of the respective bearing segment 1
- the pressure level in the high-pressure region that is to say in a downstream or rear region of the bearing segment 1
- a more favorable pressure distribution results within the lubricant gap, which increases the load capacity and the service life of the axial sliding bearing.
- bearing segments 1 which are mounted pivotably about a bearing axis oriented radially with respect to the axis of rotation
- the pressure displacement leads against the flow to a tilting moment, which increases the lubricant gap upstream of the respective bearing segment 1 and thereby improves the lubricant entry into the lubricant gap.
- an enlargement of the lubricant gap can also be observed, which also leads to a reduction of the load and to an extension of the life of the axial sliding bearing.
- the respective bearing segment 1 has at least one inlet opening 11, which is arranged in the high-pressure region of the lubricant gap and through which the lubricant passes from the lubricant gap into the compensation channel 8. Furthermore, the bearing segment 1 has at least one outlet opening 12, which is arranged in the low-pressure region of the lubricant gap and through which the lubricant is returned from the compensation channel 8 into the lubricant gap.
- the compensating channel 8 thus connects the inlet opening 11 communicating with the lubricant gap with the outlet opening 12 also communicating with the lubricant gap.
- the inlet opening 11 is arranged on the bottom of an inlet groove 13 formed in the sliding surface 5, for example in FIG the bearing segment 1 is milled.
- an outlet groove 14 can also be provided for the outlet opening 12, which is formed in the sliding surface 5, for example, is machined into the bearing segment 1 by milling.
- At least one of these grooves 13, 14, in the example both grooves 13, 14, is rectilinear and thereby oriented radially to the axis of rotation of the rotor or the rotating assembly.
- the respective groove 13, 14 extends over a comparatively large area of the radial width of the respective bearing segment 1. The pressure compensation thereby takes place within comparatively large areas through the grooves 13, 14.
- At least one of the grooves 13, 14 preferably both grooves 13, 14 each have a profile 15 which is concavely curved in longitudinal section 1 towards the sliding surface 5, which is clearly removable, for example, from FIGS. 2 and 3.
- the respective opening that is to say the inlet opening 11 and / or the outlet opening 12, is preferably arranged approximately centrally between the longitudinal ends of the respective groove 13 or 14.
- the respective inlet opening 11 is positioned in the high-pressure region of the lubricant gap within the sliding surface 5 of the respective bearing element 1.
- the arrangement of the respective inlet opening 1 1 thus takes place in a downstream third of the sliding surface 5.
- the inlet opening 1 1 is arranged approximately centrally in the downstream third of the sliding surface 5.
- the respective outlet opening 12 is arranged in the low-pressure region of the lubricant gap within the sliding surface 5 of the respective bearing segment 1.
- the respective outlet opening 12 is thus positioned within an upstream third of the sliding surface 5.
- the outlet opening 12 is arranged approximately centrally in the upstream third of the sliding surface 5.
- the compensation channel 8 can be closed, for example, according to Rg. 1 by means of a closure element 16, which may be configured for example as a set screw.
- a closure element 16 is screwed into a corresponding receiving opening 17, which can be seen in FIG. 5.
- a suitable screwing tool can be used for insertion of the closure element 16.
- the sliding surface of the rotating component that is, of the rotor, lies directly on the sliding surface 5 of the respective bearing segment 1 in the individual bearing segments 1; in this direct contact the lubricant gap is not present.
- the lubricant gap must be produced.
- the lubricant gap is generated, which allows a start of the machine.
- the rotating member rotates, it delivers lubricant through the chamfer 6 into the lubricant gap. ever
- the pumping device can now be connected to at least one of the compensation channels 8 at least in one of the bearing segments 1.
- the pumping device can thus convey lubricant under high pressure via the compensation channel 8 and thus in particular via the inlet opening 11 and the outlet opening 12 and optionally via the inlet groove 13 and the outlet groove 14 into the lubricant gap.
- the lubricant path 7 designed for pressure equalization in the respective bearing segment 1 is used for injecting lubricant into the lubricant gap.
- the pumping device can be switched off, so that via the respective compensation channel 8 and the lubricant path 7 again the desired pressure equalization of the lubricant gap.
- the respective pump device is connected via at least one suitable, corresponding non-return device to the lubricant path 7 or to the respective compensation channel 8.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Die vorliegende Erfindung betrifft ein Lagersegment (1) für ein hochbeanspruchbares hydrodynamisches Axialgleitlager, insbesondere für eine elektrische Maschine, wie beispielsweise ein Hydrogenerator, mit zwei relativ zueinander verstellbaren Baugruppen, wobei die eine Baugruppe eine rotierende Bewegung ausführt und die andere Baugruppe wenigstens ein solches mit einer festen Unterlage verbundenes Lagersegment (1) umfasst, wobei sich im Betriebszustand zwischen gegenüberliegenden Gleitflächen der beiden Baugruppen ein Schmiermittelspalt ausbildet. Um das Axialgleitlager zu verbessern, weist das Lagersegment (1) zumindest einen Ausgleichskanal (8) für das Schmiermittel auf, welcher einen Bereich relativ hohem Drucks innerhalb des Schmiermittelspalts und einen Bereich relativ niedrigem Drucks innerhalb des Schmiermittelspalts miteinander verbindet.
Description
Hydrodynamisches Axialgleitlager und zugehöriges Betriebsverfahren
Technisches Gebiet
Die Erfindung betrifft ein hydrodynamisches Axialgleitlager, welches insbesondere für hohe Beanspruchungen ausgelegt ist. Ein solches Axialgleitlager ist insbesondere anwendbar zur Lagerung von Wellen großer elektrischer Maschinen, wie beispielsweise Hydrogeneratoren. Die Erfindung betrifft außerdem ein Verfahren zum Betreiben eines derartigen hydrodynamischen Axialgleitlagers.
Stand der Technik
Zur axialen Lagerung der Wellen großer elektrischer Maschinen, wie zum Beispiel Hydrogeneratoren, werden hoch belastbare hydrodynamische Axialgleitlager zur Aufnahme der Axialkräfte eingesetzt, insbesondere dann, wenn die jeweilige Welle stehend, also mit vertikaler Rotationsachse, angeordnet ist. Die eine Relativbewegung zueinander ausführenden Lagersegmente besitzen einander zugewandte ebene Gleitflächen, zwischen denen sich während des Betriebs ein tragfähiger hydrodynamischer Schmierfilm aufbaut. Die Schmierfilmdicke hängt dabei von einer Reihe von Faktoren ab, insbesondere von der Belastung des Axialgleitlagers. Innerhalb des Axialgleitlagers erfolgt die
BERICHTIGTES BLATT (REGEL 91) ISA/EP
in Folge der erheblichen Scherbeanspruchung des zwischen den stationären rotierenden Bauteilen durchgesetzten Schmiermittels eine deutliche Erwärmung desselben, die in der Regel eine interne oder eine externe Kühlung des Schmiermittels erforderlich macht, um eine übermäßige Erwärmung mit der Folge einer thermischen Schädigung desselben zu verhindern sowie die Funktionsfähigkeit des Axialgleitlagers überhaupt zuverlässig zu gewährleisten.
Bei großflächigen Lagersegmenten kann es dabei zu erheblichen Temperaturunterschieden innerhalb der Lagersegmente zwischen den der Gleitfläche unmittelbar benachbarten Bereichen und den davon weiter beabstandeten Bereichen kommen, die in thermischen Spannungen ihren Niederschlag finden, welche insgesamt die Belastbarkeit und die Lebensdauer dieser Bauteile beeinträchtigen.
Darstellung der Erfindung
Hier setzt die Erfindung an. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für ein hydrodynamisches Axialgleitlager beziehungsweise für ein zugehöriges Betriebsverfahren eine verbesserte Ausführungsform anzugeben, die insbesondere gegenüber herkömmlichen Gleitlagern gleicher Dimension bei zumindest gleichbleibender Laufsicherheit eine erhöhte Beanspruchung zulässt.
Erfindungsgemäß wird diese Aufgabe durch die Gegenstände der unabhängigen Ansprüche gelöst, Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
BERICHTIGTES BLATT (REGEL 91) ISA/EP
Die Erfindung beruht auf dem allgemeinen Gedanken, innerhalb des Schmiermittelspalts in einem Bereich eines relativ hohen Drucks des Schmiermittels einen Teilstrom des Schmiermittels abzuziehen und diesen in einen Bereich relativ niedrigen Drucks des Schmiermittels wieder in den Schmiermittelspalt zurückzuführen.
Die Erfindung macht sich hierbei die Erkenntnis zunutze, dass sich während des Betriebs des Axialgleitlagers innerhalb des Schmiermittelspalts ein erhebliches Druckgefälle ausbildet. Ein typischer Druckverlauf innerhalb des Schmiermittelspalts eines herkömmlichen Axialgleitlagers ist exemplarisch in Fig. 6 wiedergegeben. In dem Bereich des höchsten oder annähernd höchsten Drucks innerhalb des Schmiermittelspalts ist erfindungsgemäß wenigstens eine Einlassöffnung in einen Ausgleichskanal angeordnet, welcher in einem Abstand von der Gleitfläche das Lagersegment durchdringt beziehungsweise innerhalb des Lagersegments verläuft und an einer Stelle relativ niedrigen Drucks wieder über wenigstens eine Auslassöffnung in den Schmiermittelspalt eintritt. Aufgrund der vorhandenen Druckdifferenz wird eine Kreislaufströmung eines Teiles des Schmiermittels initiiert, indem ein Teilstrom desselben im Bereich des hohen Drucks aus dem Schmiermittelspalt in den Ausgleichskanal übertritt, diesen entgegen der Hauptfließrichtung des Schmiermittels im Schmiermittelspalt durchströmt, um schließlich in einem Bereich des Lagersegments mit einem niedrigeren Druck wieder in den Schmiermittelspalt einzutreten und sich mit dem dort vorhandenen Schmiermittel zu vereinen.
Die mit der Erfindung einhergehenden Vorteile sind sehr vielfältig. Indem das Schmiermittel in einem stromabwärtigen Bereich hohen Drucks entnommen wird und einem stromaufwärtigen Bereich niedrigen Drucks zugeführt wird, wird das Druckniveau in dem Entnahmebereich vermindert und in dem Einleitbereich angehoben. In der Folge stellt sich eine ausgeglichenere Druckverteilung
BERICHTIGTES BLATT (REGEL 91) ISA/EP
innerhalb des Schmiermittelspalts des jeweiligen Lagersegments des Axialgleitlagers ein. Das System ist selbstregulierend. In Abhängigkeit der herrschenden Druckverhältnisse, der Strömungsquerschnitte sowie der Viskosität des Schmiermittels stellt sich im Betrieb selbsttätig ein Gleichgewichtszustand ein. Zusätzliche Regelmaßnahmen sind daher nicht erforderlich.
Überraschenderweise hat sich ferner herausgestellt, dass die erfindungsgemäße Maßnahme eine Vergrößerung des Schmiermittelspalts gegenüber einem vergleichbaren Axialgieitlager ohne die erfindungsgemäße Maßnahme bewirkt. Daraus folgen die zusätzlichen Vorteile einer erhöhten Laufsicherheit aufgrund des dickeren Schmierfilms wie der sich daraus bietenden Möglichkeit einer höheren Belastung des Axialgleitlagers.
Darüber hinaus bewirkt eine Vergrößerung des Schmiermittelspalts einen erhöhten Durchsatz an Schmiermittel durch den Schmiermittelspalt. Dies erhöht die Zufuhr frischen, kalten Schmiermittels, wodurch zum einen die Temperatur und damit die thermische Beanspruchung des Schmiermittels selbst sinkt und zum anderen damit auch die Temperatur der Gleitflächen sinkt. Dies wiederum hat zur Folge, dass sich die thermische Beanspruchung des jeweiligen Lagersegments und damit einhergehend, im Falle großflächiger Lagersegmente, die Gefahr einer Deformation in Folge hoher Differenzen der Körpertemperatur vermindert. Ferner trägt das in dem wenigstens einen Ausgleichskanal das jeweilige Lagersegment durchfließende, warme Schmiermittel zu einer ausgeglichenen Körpertemperatur innerhalb des jeweiligen Lagersegments bei.
Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
BERICHTIGTES BLATT (REGEL 91) ISA/EP
Kurze Beschreibung der Zeichnungen
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei gleiche oder ähnliche oder funktional gleiche oder einander entsprechende Elemente unter denselben Bezugszeichen figurieren. Es zeigen, jeweils schematisch
Fig. 1 eine axiale Draufsicht auf ein Lagersegment eines Axialgleitlagers,
Fig. 2 eine Schnittansicht des Lagersegmentes gemäß Schnittlinien D - D in Fig. 1 ,
Fig. 3 eine Ansicht des Lagersegments in Umfangsrichtung entsprechend einer Blickrichtung III in Fig. 2,
Fig. 5 eine Schnittansicht des Lagesegments entsprechend Schnittlinien C - C in Fig. 3,
Fig. 6 ein Diagramm zur Veranschaulichung der Druckverhältnisse innerhalb eines Schmiermittelspalts bei einem herkömmlichen Lagersegment,
Fig. 7 ein Diagramm zur Veranschaulichung der Druckverhältnisse innerhalb eines Schmiermittelspalts beim erfindungsgemäßen Lagersegment.
Wege zur Ausführung der Erfindung
BERICHTIGTES BLATT (REGEL 91) ISA/EP
Die Figuren 1 bis 5 zeigen ein Tragsegment oder Lagersegment 1 eines im Übrigen nicht gezeigten, hoch beanspruchbaren, hydrodynamischen Axialgleitlagers, wie es beispielsweise an einer vertikalen elektrischen Maschine, wie einem Hydrogenerator, zum Einsatz kommen kann. Zweckmäßig sind dabei mehrere dieser Lagersegmente 1 bezüglich einer Rotationsachse eines nicht dargestellten Rotors dieser Maschine ringförmig angeordnet. Besagter Rotor stützt sich axial auf diesen Lagersegmenten 1 des Axialgleitlagers ab. Die Lagersegmente 1 des Axialgleitlagers selbst wiederum ruhen auf einer festen Unterlage, sind also stationär. Das Axialgleitlager ist in Schmieröl eingetaucht. Während des Betriebs der Maschine bildet sich zwischen kommunizierenden Kontaktflächen oder Gleitflächen des Rotors einerseits und der Lagersegmente 1 andererseits ein reibungsvermindemder Schmierfilm aus, der aus einem Schmiermittelbad und/oder über Kanäle einer Hochdruckschmierung in an sich bekannter Weise gespeist wird. Beispielsweise rotiert der Rotor in einer in Rg. 1 durch einen Pfeil gekennzeichneten Drehrichtung 2. Hierdurch ergibt sich für das stationäre Lagersegment 1 für das durch die Rotation des Rotors geförderte Schmiermittel eine Anströmkante 3 und eine Abströmkante 4. Anströmseitig ist das jeweilige Lagersegment 1 an seiner in Fig. 1 dem Betrachter zugewandten Gleitfläche 5 angefast. Eine entsprechende Fasenlinie ist in Fig. 1 mit 6 bezeichnet. Durch die Anfasung 6 wird das Eindringen des Schmieröls in den Schmiermittelspalt erleichtert, der sich axial zwischen der Gleitfläche 5 des jeweiligen Lagersegments 1 und der dazu korrespondierenden Gleitfläche des Rotors ausbildet.
Das jeweilige Axialgleitlager umfasst somit zwei relativ zueinander verstellbare Baugruppen, nämlich eine rotierende Baugruppe und eine stationäre Baugruppe. Die rotierende Baugruppe ist mit ihren Gleitflächen am Rotor ausgebildet, während die stationäre Baugruppe die Lagersegmente 1 mit deren Gleitflächen 5 umfasst.
BERICHTIGTES BLATT (REGEL 91) ISA/EP
Bei einem herkömmlichen Axialgleitlager, das mit herkömmlichen Lagersegmenten 1 ausgestattet ist, stellt sich im Betrieb die in Fig. 6 dargestellte Druckverteilung auf der Gleitfläche 5 des jeweiligen Lagersegments 1 ein. Erkennbar nimmt der Druck von der Anströmkante 3 bis zur Abströmkante 4 zunächst zu und dann wieder ab. Sein Maximum erreicht der Druckverlauf etwa in der Mitte des abströmseitigen Drittels des jeweiligen Lagersegments 1.
Beim erfindungsgemäßen Betrieb des Axialgleitlagers wird nun innerhalb des Schmiermittelspalts aus einem Bereich relativ hohen hydrostatischen Drucks eine Teilmenge des Schmiermittels abgeführt und in einen Bereich relativ niedrigen hydrostatischen Drucks innerhalb des Schmiermittelspalts zurückgeführt. Vorzugsweise erfolgen dabei die Entnahme des Schmiermittels und die Einleitung des Schmiermittels jeweils innerhalb eines solchen Lagersegments 1 , insbesondere bei jedem dieser Lagersegmente 1 des Axialgleitlagers. Bevorzugt kann hierzu innerhalb des jeweiligen Lagersegments 1 ein Schmiermittelpfad 7 ausgebildet werden, der im Inneren des jeweiligen Lagersegments 1 verläuft und über den die Schmiermittelentnahme aus dem Hochdruckbereich und die Schmiermitteleinleitung in den Niederdruckbereich erfolgt.
Zur Realisierung dieser Schmiermittelführung vom Hochdruckbereich zum Niederdruckbereich innerhalb des jeweiligen Lagersegments 1 enthält das jeweilige Lagersegment 1 zumindest einen Ausgleichskanal 8. Der jeweilige Ausgleichskanal 8 erstreckt sich im Inneren des jeweiligen Lagersegments 1 beabstandet zur Gleitfläche 5. Der jeweilige Ausgleichskanal 8 dient zur Verbindung des Hochdruckbereichs im Schmiermittelspalt mit dem Niederdruckbereich im Schmiermittelspalt, so dass im Betrieb Schmiermittel vom Hochdruckbereich zum Niederdruckbereich strömen kann, und zwar entgegen
BERICHTIGTES BLATT (REGEL 91) ISA/EP
der allgemeinen, dem Drehsinn 2 entsprechenden Strömungsrichtung des Schmiermittels im Schmiermittelspalt.
Fig. 7 zeigt nun den Druckverlauf im Schmiermittelspalt entlang der Gleitfläche 5 beim erfindungsgemäßen Lagersegment 1 beziehungsweise bei einem erfindungsgemäßen Axialgleitlager. Bei 9 erfolgt die Entnahme des Schmiermittels aus dem Schmiermittelspalt, wodurch der Hochdruckbereich einen signifikanten Einbruch aufweist und nunmehr statt einem Maximum zwei Maxima aufweist. Bei 10 erfolgt die Einleitung des Schmiermittels in den Schmiermittelspalt, wodurch in diesem Niederdruckbereich der mittlere Druck signifikant angehoben wird; gleichzeitig kann sich auch dort ein (kleineres) Druckmaximum ausbilden. Insgesamt ergibt sich somit innerhalb der Gleitfläche 5 des jeweiligen Lagersegments 1 ein gewisser Druckausgleich. Das Druckniveau im Niederdruckbereich, also in einem anströmseitigen oder vorderen Bereich des jeweiligen Lagersegments 1 wird dadurch angehoben, während gleichzeitig das Druckniveau im Hochdruckbereich, also in einem abströmseitigen oder hinteren Bereich des Lagersegments 1 entsprechend abgesenkt wird. In der Folge ergibt sich innerhalb des Schmiermittelspalts eine günstigere Druckverteilung, was die Belastbarkeit und die Lebensdauer des Axialgleitlagers erhöht.
Bei Lagersegmenten 1 , die um eine bezüglich der Rotationsachse radial orientierten Lagerachse schwenkbar gelagert sind, führt die Druckverlagerung entgegen der Anströmung zu einem Kippmoment, was den Schmiermittelspalt anströmseitig des jeweiligen Lagersegments 1 vergrößert und dadurch den Schmiermitteleintrag in den Schmiermittelspalt verbessert. Überraschenderweise kann außerdem eine Vergrößerung des Schmiermittelspalts beobachtet werden, was ebenfalls zu einer Reduzierung der Belastung und zu einer Verlängerung der Lebenszeit des Axialgleitlagers führt.
BERICHTIGTES BLATT (REGEL 91) ISA/EP
Entsprechend den Fig. 1 bis 3 weist das jeweilige Lagersegment 1 wenigstens eine Einlassöffnung 11 auf, die im Hochdruckbereich des Schmiermittelspalts angeordnet ist und durch die das Schmiermittel aus dem Schmiermittelspalt in den Ausgleichskanal 8 gelangt. Ferner weist das Lagersegment 1 wenigstens eine Auslassöffnung 12 auf, die im Niederdruckbereich des Schmiermittelspalts angeordnet ist und durch die das Schmiermittel aus dem Ausgleichskanal 8 in den Schmiermittelspalt rückgeführt wird. Der Ausgleichskanal 8 verbindet somit die mit dem Schmiermittelspalt kommunizierende Einlassöffnung 11 mit der ebenfalls mit dem Schmiermittelspalt kommunizierenden Auslassöffnung 12. Die Einlassöffnung 11 ist bei der hier gezeigten, bevorzugten Ausführungsform am Grund einer Einlassnut 13 angeordnet, die in der Gleitfläche 5 ausgebildet ist, beispielsweise in das Lagersegment 1 eingefräst ist. In entsprechender Weise kann auch für die Auslassöffnung 12 eine Auslassnut 14 vorgesehen sein, die in der Gleitfläche 5 ausgebildet ist, beispielsweise durch Fräsen in das Lagersegment 1 eingearbeitet ist. Zumindest eine dieser Nuten 13, 14, im Beispiel beide Nuten 13, 14, ist geradlinig ausgestaltet und dabei radial zur Rotationsachse des Rotors beziehungsweise der rotierenden Baugruppe orientiert. Außerdem erstreckt sich die jeweilige Nut 13, 14 über einen vergleichsweise großen Bereich der radialen Breite des jeweiligen Lagersegments 1. Der Druckausgleich findet dadurch innerhalb vergleichsweise großer, durch die Nuten 13, 14 bestimmter Bereiche statt. Des weiteren kann zumindest eine der Nuten 13, 14 vorzugsweise beide Nuten 13, 14 jeweils ein im Längsschnitt 1 zur Gleitfläche 5 hin konkav gewölbtes Profil 15 aufweisen, was beispielsweise den Fig. 2 und 3 deutlich entnehmbar ist. Die jeweilige Öffnung, also die Einlassöffnung 11 und/oder die Auslassöffnung 12 ist vorzugsweise etwa mittig zwischen den Längsenden der jeweiligen Nut 13 beziehungsweise 14 angeordnet.
BERICHTIGTES BLATT (REGEL 91) ISA/EP
Die jeweilige Einlassöffnung 11 ist im Hochdruckbereich des Schmiermittelspalts innerhalb der Gleitfläche 5 des jeweiligen Lagerelements 1 positioniert. Bevorzugt erfolgt die Anordnung der jeweiligen Einlassöffnung 1 1 somit in einem abströmseitigen Drittel der Gleitfläche 5. Vorzugsweise ist die Einlassöffnung 1 1 etwa mittig im abströmseitigen Drittel der Gleitfläche 5 angeordnet. Im Unterschied dazu ist die jeweilige Auslassöffnung 12 im Niederdruckbereich des Schmiermittelspalts innerhalb der Gleitfläche 5 des jeweiligen Lagersegments 1 angeordnet. Zweckmäßig ist somit die jeweilige Auslassöffnung 12 innerhalb eines anströmseitigen Drittels der Gleitfläche 5 positioniert. Vorzugsweise ist die Auslassöffnung 12 etwa mittig im anströmseitigen Drittel der Gleitfläche 5 angeordnet.
Der Ausgleichskanal 8 kann beispielsweise gemäß Rg. 1 mittels eines Verschlusselements 16 verschlossen werden, das beispielsweise als Madenschraube ausgestaltet sein kann. Das Verschlusselement 16 wird hierzu in eine entsprechende Aufnahmeöffnung 17 eingeschraubt, die in Fig. 5 erkennbar ist. Zum Einsetzen des Verschlusselements 16 kann ein geeignetes Schraubwerkzeug verwendet werden.
Bei ruhender Maschine liegt bei den einzelnen Lagersegmenten 1 die Gleitfläche des rotierenden Bauteils, also des Rotors direkt auf der Gleitfläche 5 des jeweiligen Lagersegments 1 auf; bei dieser direkten Kontaktierung ist der Schmiermittelspalt nicht vorhanden. Um die Maschine anfahren zu können, muss der Schmiermittelspalt hergestellt werden. Zu diesem Zweck ist es bekannt, an geeigneten Hochdruckschmierstellen mit Hilfe einer Pumpeinrichtung Schmiermittel unter Hochdruck in die Kontaktzone zwischen den axial aneinander anliegenden Gleitflächen einzupressen. Hierdurch wird der Schmiermittelspalt erzeugt, der ein Anfahren der Maschine ermöglicht. Sobald das rotierende Bauteil dreht, fördert es Schmiermittel über die Anfasung 6 in den Schmiermittelspalt. Je
BERICHTIGTES BLATT (REGEL 91) ISA/EP
nach Pumpwirkung dieser Relativbewegung kann der Betrieb der Pumpeinrichtung eingestellt werden, da genügend Schmiermittel über die Mitnahme des Rotors in den Schmiermittelspalt gelangt. Gemäß einer besonders vorteilhaften Ausführungsform kann nun die Pumpeinrichtung zumindest bei einem der Lagersegmente 1 an wenigstens einen der Ausgleichskanäle 8 angeschlossen sein. Beim Anfahren der Maschine kann somit die Pumpeinrichtung Schmiermittel unter hohem Druck über den Ausgleichskanal 8 und somit insbesondere über die Einlassöffnung 11 und die Auslassöffnung 12 sowie gegebenenfalls über die Einlassnut 13 und die Auslassnut 14 in den Schmiermittelspalt fördert. Das bedeutet, dass beim Anfahren der Maschine der für den Druckausgleich im jeweiligen Lagersegment 1 ausgebildete Schmiermittelpfad 7 zum Einpressen von Schmiermittel in den Schmiermittelspalt genutzt wird. Sobald die Pumpwirkung der rotierenden Baugruppe ausreicht, hinreichend Schmiermittel in den Schmiermittelspalt zu fördern, kann die Pumpeinrichtung ausgeschaltet werden, sodass über den jeweiligen Ausgleichskanal 8 beziehungsweise den Schmiermittelpfad 7 wieder der gewünschte Druckausgleich des Schmiermittelspalts erfolgt. Dabei ist klar, dass die jeweilige Pumpeinrichtung über zumindest eine geeignete, entsprechende Rückschlagsperreinrichtung an den Schmiermittelpfad 7 beziehungsweise an den jeweiligen Ausgleichskanal 8 angeschlossen ist.
BERICHTIGTES BLATT (REGEL 91) äSA/EP
Bezugszeichen liste
Lagersegment
Drehrichtung
Anström kante
Abströmkante
Gleitfläche
Anphasung
Schmiermittelpfad
Ausgleichskanal
Entnahmestelle
Einleitstelle
Einlassöffnung
Auslassöffnung
Einlassnut
Auslassnut
Profil
Verschlusselement
Aufnahme
BERICHTIGTES BLATT (REGEL 91) ISA/EP
Claims
1. Lagersegment für ein hochbeanspruchbares hydrodynamisches Axialgleitlager, insbesondere für eine elektrische Maschine, wie beispielsweise ein Hydrogenerator mit zwei relativ zueinander verstellbaren Baugruppen, wobei die eine Baugruppe eine rotierende Bewegung ausführt und die andere Baugruppe wenigstens ein solches mit einer festen Unterlage verbundenes Lagersegment (1 ) umfasst, wobei sich im Betriebszustand zwischen gegenüberliegenden Gleitflächen der beiden Baugruppen ein Schmiermittelspalt ausbildet, wobei das Lagersegment (1) zumindest einen Ausgleichskanal (8) für das Schmiermittel aufweist, welcher einen Bereich relativ hohen Drucks innerhalb des Schmiermittelspalts und einen Bereich relativ niedrigen Drucks innerhalb des Schmiermittelspalts miteinander verbindet.
2. Lagersegment nach Anspruch 1 , d a d u rc h ge ke n n ze i c h n et, dass der jeweilige Ausgleichskanal (8) unterhalb der Gleitfläche (5) des Lagersegments (1) verläuft und zumindest eine mit dem Schmiermittelspalt kommunizierende Einlassöffnuπg (11) mit mindestens einer mit dem Schmiermittelspalt kommunizierenden Auslassöffnung (12) verbindet.
3. Lagersegment nach Anspruch 2, d a d u rc h g e ke n n ze i c h n et,
- dass die wenigstens eine Einlassöffnung (11) in einer Einlassnut (13) angeordnet ist, die in der Gleitfläche (5) ausgebildet ist, und/oder
BERICHTIGTES BLATT (REGEL 91) ISA/EP - dass die wenigstens eine Auslassöffnung (12) in einer Auslassnut (14) angeordnet ist, die in der Gleitfläche (5) ausgebildet ist.
4. Lagersegment nach Anspruch 3, dadurch gekennzeichnet,
- dass die jeweilige Nut (13, 14) geradlinig ausgestaltet ist und radial zur Rotationsachse, der rotierenden Baugruppe orientiert ist, und/oder
- dass die jeweilige Nut (13, 14) im Längsschnitt ein zur Gleitfläche (5) hin konkav gewölbtes Profil (15) aufweist, und/oder
- dass die jeweilige Öffnung (11, 12) in der jeweiligen Nut (13, 14) mittig zwischen deren Längsenden angeordnet ist.
5. Lagersegment nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet,
- dass die jeweilige Einlassöffnung (11 ) in einem abströmseitigen Drittel der Gleitfläche (5) angeordnet ist, und/oder
- dass die jeweilige Auslassöffnung (12) in einem anströmseitigen Drittel der Gleitfläche (5) angeordnet ist. ■
6. Hochbeanspruchbares hydrodynamisches Axialgleitlager, insbesondere für eine elektrische Maschine, wie beispielsweise einen Hydrogenerator, mit zwei relativ zueinander verstellbaren Baugruppen, wobei die eine Baugruppe eine rotierende Bewegung ausführt und die andere Baugruppe wenigstens ein mit einer festen Unterlage verbundenes Lagersegment (1) nach einem der Ansprüche 1 bis 5 aufweist, wobei sich im Betriebszustand zwischen gegenüberliegenden Gleitflächen der beiden Baugruppen ein Schmiermittelspalt ausbildet.
7. Axialgleitlager nach Anspruch 6,
BERICHTIGTES BLATT (REGEL 91) ISA/EP da du rc h ge ken nze i c h net, dass eine Pumpeinrichtung zum Einbringen von Schmiermittel in den Schmiermittelspalt beim Anfahren einer mit dem Axialgleitlager ausgestatteten Maschine bei wenigstens einem solchen Lagersegment (1 ) an wenigstens einen solchen Ausgleichskanal (8) angeschlossen ist.
8. Verfahren zum Betrieb eines hydrodynamischen Axialgleitlagers, insbesondere in einer elektrischen Maschine, wie beispielweise einem Hydrogenerator, bei dem innerhalb des Schmiermittelspalts aus einem Bereich relativ hohen Drucks eine Teilmenge des Schmiermittels abgeführt und in einen Bereich relativ niedrigen Drucks innerhalb des Schmiermittelspalts zurückgeführt wird.
9. Verfahren nach Anspruch 8, dadurc h geke nnzei c h net, dass das Entnehmen von Schmiermittel aus dem Bereich relativ hohen Drucks und das Einleiten von Schmiermittel in den Bereich relativ niedrigen Drucks innerhalb wenigstens eines Lagersegments (1 ) einer stationären Baugruppe des Axialgleitlagers erfolgt.
10. Verfahren nach Anspruch 9, dad u rch geke nnzei c h net, dass das Entnehmen von Schmiermittel aus dem Bereich relativ hohem Druck und das Einleiten von Schmiermittel in den Bereich relativ niedrigen Drucks jeweils über einen im Inneren des jeweiligen Lagersegments (1 ) verlaufenden Schmiermittelpfad (7) erfolgt.
11. Verfahren nach Anspruch 10, dadu rch gekennzei c h net,
BERICHTIGTES BLATT (REGEL 91) ISA/EP dass zum Anfahren einer mit dem Axialgleitlager ausgestatteten Maschine Schmiermittel über den Schmiermittelpfad (7) in den Schmiermittelspalt gepumpt wird.
* * * * *
BERICHTIGTES BLATT (REGEL 91) ISA/EP
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102006015531 | 2006-03-31 | ||
| PCT/EP2007/052658 WO2007113103A1 (de) | 2006-03-31 | 2007-03-20 | Hydrodynamisches axialgleitlager und zugehöriges betriebsverfahren |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2002136A1 true EP2002136A1 (de) | 2008-12-17 |
Family
ID=38325833
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP07727135A Withdrawn EP2002136A1 (de) | 2006-03-31 | 2007-03-20 | Hydrodynamisches axialgleitlager und zugehöriges betriebsverfahren |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20090080820A1 (de) |
| EP (1) | EP2002136A1 (de) |
| JP (1) | JP2009531623A (de) |
| CN (1) | CN101432535A (de) |
| CA (1) | CA2647751A1 (de) |
| WO (1) | WO2007113103A1 (de) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IT1395716B1 (it) * | 2009-09-22 | 2012-10-19 | Nuovo Pignone Spa | Cuscinetto, meccanismo di fissaggio e metodo per fissare almeno un pattino. |
| IT1395717B1 (it) * | 2009-09-22 | 2012-10-19 | Nuovo Pignone Spa | Cuscinetto, meccanismo di distribuzione olio e metodo. |
| US8490516B2 (en) * | 2009-09-30 | 2013-07-23 | Hitachi Koki Co., Ltd. | Screw driving machine having combustion-type power mechanism and electric power mechanism |
| DE102011009070A1 (de) * | 2011-01-20 | 2012-07-26 | Schottel Gmbh | Ruderpropeller mit einem ein Planetengetriebe umfassenden Unterwassergetriebe |
| KR101811451B1 (ko) * | 2011-06-29 | 2017-12-21 | 엘지이노텍 주식회사 | 볼 조인트 유닛 |
| KR101676986B1 (ko) | 2013-01-31 | 2016-11-16 | 미츠비시 히타치 파워 시스템즈 가부시키가이샤 | 틸팅 패드 베어링 장치 |
| CN103216537A (zh) * | 2013-03-04 | 2013-07-24 | 哈尔滨电机厂有限责任公司 | 大型抽水蓄能机组发电电动机双向泵瓦结构 |
| US9618048B2 (en) * | 2014-08-12 | 2017-04-11 | Lufkin Industries, Llc | Reverse bypass cooling for tilted pad journal and tilting pad thrust bearings |
| JP6038088B2 (ja) * | 2014-09-22 | 2016-12-07 | 三菱重工業株式会社 | 軸受及び軸受パッド |
| DE102016206139A1 (de) * | 2016-04-13 | 2017-10-19 | Robert Bosch Gmbh | Vorrichtung mit einem Reibkontakt und Verfahren zum Betreiben einer Vorrichtung mit einem Reibkontakt |
| CN106438677B (zh) * | 2016-11-17 | 2019-03-08 | 中国长江动力集团有限公司 | 推力支撑轴承和汽缸 |
| NL2018947B1 (en) * | 2017-05-19 | 2018-11-28 | Univ Delft Tech | Bearing device |
| US12065940B2 (en) * | 2018-12-03 | 2024-08-20 | BMTS Technology GmbH & Co. KG | Exhaust gas turbocharger having a hydrodynamic plain bearing or a hydrodynamic plain bearing |
| IT201900007995A1 (it) * | 2019-06-04 | 2020-12-04 | Nuovo Pignone Tecnologie Srl | Un cuscinetto con tacchetti aventi al proprio interno micro-canali di refrigerazione e metodo |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3339990A (en) * | 1964-07-13 | 1967-09-05 | Worthington Corp | Lubricated bearing shoe |
| DE2211414A1 (de) * | 1972-03-06 | 1973-09-13 | Siemens Ag | Hydrodynamisches spurlager mit mittig unterstuetzten kippsegmenten fuer eine in zwei drehrichtungen rotierende welle |
| US4323286A (en) * | 1980-07-28 | 1982-04-06 | General Electric Co. | Thrust bearing cooling apparatus |
| SE442328B (sv) * | 1983-09-29 | 1985-12-16 | Jan R Schnittger | Hydrodynamisk lagerenhet |
| CA2324322C (en) * | 2000-10-26 | 2008-12-30 | General Electric Canada Inc. | Thrust bearing |
| US7160031B2 (en) * | 2003-11-20 | 2007-01-09 | Matsushita Electric Industrial Co., Ltd. | Thrust dynamic pressure bearing, spindle motor using the same, and information recording and reproducing apparatus using them |
-
2007
- 2007-03-20 EP EP07727135A patent/EP2002136A1/de not_active Withdrawn
- 2007-03-20 CN CNA2007800156323A patent/CN101432535A/zh active Pending
- 2007-03-20 CA CA002647751A patent/CA2647751A1/en not_active Abandoned
- 2007-03-20 JP JP2009502024A patent/JP2009531623A/ja not_active Withdrawn
- 2007-03-20 WO PCT/EP2007/052658 patent/WO2007113103A1/de not_active Ceased
-
2008
- 2008-09-29 US US12/240,079 patent/US20090080820A1/en not_active Abandoned
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2007113103A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2009531623A (ja) | 2009-09-03 |
| US20090080820A1 (en) | 2009-03-26 |
| CA2647751A1 (en) | 2007-10-11 |
| CN101432535A (zh) | 2009-05-13 |
| WO2007113103A1 (de) | 2007-10-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2007113103A1 (de) | Hydrodynamisches axialgleitlager und zugehöriges betriebsverfahren | |
| EP2787226B1 (de) | Hydrodynamisches Radialgleitlager für große Turbosätze | |
| EP3011181B1 (de) | Kältemittelverdichter | |
| DE2443720A1 (de) | Drehkolbenpumpe fuer fluessigkeiten | |
| EP2737226A1 (de) | Kippsegmentradiallager mit einer ausrichteinrichtung für eine einwellenströmungsmaschine | |
| EP0040267A1 (de) | Gekühlter Leitschaufelträger | |
| EP3108145A1 (de) | Rotationsmaschine sowie verfahren für den wärmeaustausch in einer rotationsmaschine | |
| EP2193907B1 (de) | Schnecken-Maschine mit axialem Ausgleich für thermische Ausdehnung | |
| DE102015209637A1 (de) | Walzenanordnung | |
| WO2021244814A1 (de) | Antriebseinheit für ein fahrzeug | |
| DE10030698A1 (de) | Verfahren zum Schmieren und Kühlen eines hydrodynamischen Gleitlagers und Vorrichtung zur Durchführung dieses Verfahrens | |
| WO1990014523A1 (de) | Selbstfördereinrichtung für die schmierung eines lagers | |
| EP2842716B1 (de) | Schneckenmaschine und Verfahren zur Aufbereitung von Kunststoffschmelzen | |
| WO2023174888A1 (de) | Ölpumpe für ein kraftfahrzeug | |
| EP1717466A2 (de) | Gleitlager mit einem sich erweiternden Lagerspalt im Randbereich | |
| WO2008122518A1 (de) | Hydrodynamisches axialgleitlager und zugehöriges betriebsverfahren | |
| DE102019216495B4 (de) | Lageranordnung für die Lagerung eines Bohrkopfes in einer Tunnelbohrmaschine und Tunnelbohrmaschine | |
| WO2021160677A1 (de) | Schraubenverdichter mit einseitig gelagerten rotoren | |
| DE102022129717B3 (de) | Lageranordnung | |
| DE102014008474B4 (de) | Gleitlager in einer Spritzgussmaschine | |
| EP1999387A1 (de) | Hydrodynamisches gleitlager | |
| DE1958527A1 (de) | Lageranordnung fuer die Abtriebswelle einer Gasturbine | |
| DE102023109843A1 (de) | Verdichter, insbesondere Kältemittelverdichter in Radialkolbenbauweise | |
| DE102012212197A1 (de) | Hochdruckpumpe für ein Kraftstoffeinspritzsystem | |
| DE102017216563A1 (de) | Turbomaschine sowie Verfahren zum Betreiben einer Turbomaschine im Drehbetrieb |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20080925 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE ES FR LI SE |
|
| DAX | Request for extension of the european patent (deleted) | ||
| RBV | Designated contracting states (corrected) |
Designated state(s): AT CH DE ES FR LI SE |
|
| 17Q | First examination report despatched |
Effective date: 20091116 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20120908 |