EP2000642B1 - Herstellungsverfahren für Abgasbehandlungseinrichtungen, wie z.B. Abgaskatalysatoren und Partikelfilter - Google Patents

Herstellungsverfahren für Abgasbehandlungseinrichtungen, wie z.B. Abgaskatalysatoren und Partikelfilter Download PDF

Info

Publication number
EP2000642B1
EP2000642B1 EP08157030.1A EP08157030A EP2000642B1 EP 2000642 B1 EP2000642 B1 EP 2000642B1 EP 08157030 A EP08157030 A EP 08157030A EP 2000642 B1 EP2000642 B1 EP 2000642B1
Authority
EP
European Patent Office
Prior art keywords
insert
housing
circumferential
geometry
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08157030.1A
Other languages
English (en)
French (fr)
Other versions
EP2000642A3 (de
EP2000642A2 (de
Inventor
Georg Wirth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Exhaust Technology GmbH and Co KG
Original Assignee
Eberspaecher Exhaust Technology GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eberspaecher Exhaust Technology GmbH and Co KG filed Critical Eberspaecher Exhaust Technology GmbH and Co KG
Publication of EP2000642A2 publication Critical patent/EP2000642A2/de
Publication of EP2000642A3 publication Critical patent/EP2000642A3/de
Application granted granted Critical
Publication of EP2000642B1 publication Critical patent/EP2000642B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1872Construction facilitating manufacture, assembly, or disassembly the assembly using stamp-formed parts or otherwise deformed sheet-metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/02Fitting monolithic blocks into the housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49345Catalytic device making

Definitions

  • the present invention relates to a method for producing an exhaust gas treatment device, which contains in a tubular housing at least one exhaust treatment insert, in particular for an exhaust system of an internal combustion engine according to the preamble of claim 1.
  • Exhaust treatment devices such as catalysts and particulate filter, have at least one insert which in a tubular housing is arranged.
  • inserts made of ceramic materials are known.
  • metallic inserts are known. It is customary to arrange the respective use with the help of a use enveloping the bearing mat in the respective housing.
  • This storage mat has several functions. On the one hand, it dampens lateral accelerations to which the exhaust gas treatment insert may be exposed during operation. On the other hand, the bearing mat can form a thermal insulation to the thermal load of the Reduce housing.
  • a positional fixation of the insert in the housing is regularly achieved with the bearing mat.
  • the bearing mat must be pressed radially between the insert and the housing.
  • the radial compression of the bearing mat is relatively problematic, since it can cause damage to the ceramic inserts when excessive forces occur.
  • the inserts in particular ceramic monoliths, can have comparatively large dimensional tolerances, as a result of which local stress peaks can occur during the radial deformation of the housing.
  • a gap formed radially between the respective insert and the housing and filled by the bearing mat in the circumferential direction can thus have an uneven, radially measured gap dimension.
  • a method for producing catalysts is known in which a breaking characteristic of the ceramic monolith is first determined, which depends on the particular combination of ceramic material and bearing mat material.
  • This breakage characteristic includes in particular the dependence of the forces occurring during pressing of the bearing mat on the speed with which the pressing is carried out.
  • the pressing of the bearing mat is now carried out so that damage to the monolith is avoided.
  • the present invention is concerned with the problem of providing an improved embodiment for a manufacturing method of the type mentioned at the outset or for an exhaust gas treatment insert of the type mentioned at the outset, which is characterized in particular by reducing the risk of damage to the insert during manufacture and / or that a comparatively uniform gap progression in the circumferential direction is achieved.
  • the invention is based on the general idea of measuring the circumferential geometry at least in an axial section during the respective use prior to introduction into the housing and to take into account the measured circumferential geometry during the subsequent deformation of the housing. This can take into account the deformation of the housing in particular tolerance-related form deviations of the respective use. As a result, on the one hand voltage peaks can be avoided. On the other hand, the radial compression of the bearing mat can be realized more uniformly.
  • the method can be carried out in such a way that, at least in an axial section of the housing assigned to the respective axial section of the at least one insert, a circumferential geometry of the housing is deformed in dependence on the measured circumferential geometry of the at least one insert such that a radially between the housing and the housing at least one insert trained gap sets a predetermined gap profile in the circumferential direction.
  • the predetermined gap progression can take into account optimum compression of the bearing mat.
  • the predetermined gap profile can take into account anisotropic load limits of the respective insert. Since the achievable gap size correlates with the radial compression of the bearing mat and thus with the forces occurring during pressing, the load of the respective insert during deformation of the housing can be determined by specifying the gap dimension.
  • the respectively measured circumferential geometry of the respective insert can be assigned to predetermined circumferential segments of the insert, in which case, in addition, for the respective circumferential segment, an averaged peripheral geometry from those in the respective circumferential segment measured circumferential geometry values is determined.
  • the deformation of the housing is then also in circumferential segments which are assigned to the circumferential segments of the respective insert, wherein the deformation of the housing in the housing-side circumferential segments takes into account the averaged circumferential geometries.
  • This procedure takes into account in particular deformation tools distributed in the circumferential direction, arranged segmented moldings.
  • the detection and consideration of the circumferential geometry of the respective insert takes place at least in an axial section of the insert. It is clear that in other embodiments, several axial sections can be measured with respect to their circumferential geometry. Accordingly, a corresponding number of axial sections of the housing can then also be deformed during the deformation of the housing as a function of the respectively measured peripheral geometries. In principle, any resolution in the longitudinal direction is conceivable. For example, the complete outer contour of the respective insert may be e.g. be detected by so-called 3-D scanning. Thus, in addition, a longitudinal geometry of the respective insert during deformation of the housing can be taken into account.
  • An exhaust gas treatment device which is produced by the method according to the invention can be characterized, for example, by the fact that the housing has a cross-section adapted to the cross-section of the insert, even if the respective insert has an asymmetrical cross-section with respect to rotations about its longitudinal central axis.
  • the cross-section of the housing then shapes the respective asymmetry of the insert more or less exactly.
  • Ceramic monoliths the cell matrix of which has a lattice of mutually perpendicular webs, have a pressure load capacity that varies from the rotational position. Parallel to webs of the respective monolith is higher loadable than in the diagonal direction of the cells. The dependence of the compressive strength of the respective use of its rotational position can be taken into account when deforming the housing.
  • an exhaust gas treatment device which has been produced by the method according to the invention, in particular also characterized in that the housing is formed in an axial portion assigned to the respective application so that adjusts a course in the circumferential direction for the radial gap geometry, one of the radial, with the rotational position varying pressure load capacity of the respective use dependent course taken in the circumferential direction of the radial compression of the bearing mat.
  • FIG. 1 Corresponding Fig. 1 are used to produce an exhaust gas treatment device 1, which in Fig. 1 is shown only in an unfinished state, at least one exhaust treatment insert 2, at least one bearing mat 3 and a tubular housing 4 is required.
  • the exhaust gas treatment device 1 may be, for example, a particle filter or a catalyst.
  • the exhaust gas treatment device 1 preferably serves for use in an exhaust system of an internal combustion engine, which can be arranged in particular in a motor vehicle.
  • the exhaust gas treatment insert 2, which is also referred to below as the insert 2 in the following, can thus be preferably a particle filter insert or a catalyst insert.
  • the insert 2 can basically consist of a metallic material. However, the insert 2 preferably consists of a ceramic material. In particular, the insert 2 is formed by at least one ceramic monolith. The insert 2 may consist of a single monolith; Similarly, the insert 2 can be assembled from several monoliths.
  • the bearing mat 3 may be a wire mesh made of stainless steel or a fiber mat made of a non-combustible material.
  • the bearing mat 3 is compressible, but it develops a certain spring elasticity, which can be used in the mounted exhaust gas treatment device 1 for fixing the position of the insert 2 in the housing 4.
  • a peripheral geometry of the insert 2 is measured.
  • a corresponding measuring device is denoted by 5 here.
  • a rotation 6 between the insert 2 and the measuring device 5 may be required.
  • the circumferential geometry can be measured in a single axial section. It is assumed that the insert 2, which is produced in particular by the extrusion process, has a circumferential geometry that is constant in the axial direction. Preferably, however, the insert 2 is measured in several axial sections. It is also possible to continuously measure the insert 2 in the axial direction, ie, the axial geometry of the insert 2 is also measured. For this purpose, an axial adjustment 7 between the insert 2 and the measuring device 5 take place.
  • the measurement of the insert 2 is preferably carried out with respect to a mark 8, which is symbolized here by a cross.
  • This marking 8 can be present anyway on the respective insert 2, for example in the form of a longitudinal groove formed on the insert 2 during production.
  • the mark 8 can be attached to the insert 2 in a targeted manner become.
  • a line can be attached to the insert 2 with paint or the like.
  • the insert 2 is provided with the bearing mat 3.
  • the wrapped with the bearing mat 3 insert 2 is shown at III.
  • the wrapped with the bearing mat 3 insert 2 is now inserted in the axial direction in the housing 4, which is shown at IV.
  • an insertion funnel can be used for axial insertion.
  • the housing 4 has an excess, whereby the axial insertion of the provided with the still unpressed bearing mat 3 insert 2 is facilitated.
  • the deformation of the housing 4 is now carried out.
  • Corresponding molding tools are designated by 9 in this case.
  • the radial deformation of the housing 4 is required to achieve a desired radial compression of the bearing mat 3. Only through this radial compression can the bearing mat 3 fulfill its fixing effect or fixation function.
  • the compressed bearing mat 3 is used to fix the insert 2 relative to the housing 4.
  • the forming tool 9 may be expedient to assign the measured circumferential geometry to predetermined circumferential segments of the insert 2 and to determine an average circumferential geometry for the circumferential segments, which can be calculated from the circumferential geometry measured within the respective circumferential segment.
  • the forming tool 9 in the circumferential direction six forming bodies, with which the housing 4 can be radially deformed. Accordingly, the insert 2 is subdivided into six peripheral segments, to each of which an average circumferential geometry is assigned from the peripheral data measured within the respective circumferential segment.
  • the circumferential geometry of the housing 4 can then also be deformed in circumferential segments which are assigned to the peripheral segments of the respective insert 2 as a function of the averaged circumferential geometries.
  • the six forming bodies are then driven individually according to the averaged circumferential geometries of the insert 2, whereby the housing 6 is also individually deformed along its circumference in six circumferential segments.
  • the circumferential geometry of the insert 2 on the housing 4 in a single axial section or in several Axial sections or quasi to be implemented continuously in the axial direction. Accordingly, the axial course of the peripheral geometry of the housing 4 can be deformed as a function of the axial course of the circumferential geometry measured in the insert 2 such that a predetermined gap progression can also be established in the axial direction.
  • the housing 4 can then also be deformed in axial sections, which are assigned to the predetermined axial sections of the insert 2, as a function of the averaged circumferential geometries.
  • the forming tool 9 can automatically detect the respective marking 8. Likewise, it may be necessary to insert the respective insert 2 with respect to its mark 8 with a predetermined rotational position and / or axial position in the housing 4. The deformation of the housing 4 then takes place with respect to the mark 8.
  • the bearing mat 3 After deformation of the housing 4, the bearing mat 3 is radially compressed, which can be seen in VI.
  • VI For quality assurance can be provided at VI, the formed by the deformation of the housing 4 actual geometry of the housing 4 or to measure the actual geometry of the gap 10.
  • Corresponding measuring devices are denoted by 11 here.
  • a desired geometry for the housing 4 or for the gap 10 can be determined, which can then be compared with the actual geometry measured at VI.
  • the forming tool 9 or a forming device equipped therewith can be automatically adapted in dependence of this target-actual comparison.
  • the respective exhaust-gas treatment device 1 may set a predetermined course of the gap in the circumferential direction and / or in the axial direction more or less accurately.
  • This gap profile may in particular be selected such that a substantially constant gap dimension is established in the circumferential direction or in the axial direction.
  • Fig. 2 shows Fig. 2 an embodiment in which the exhaust gas treatment device 1 between the insert 2 and the housing 4 has a gap 10 in which the bearing mat 3 is arranged.
  • the gap profile in the circumferential direction is characterized here in that the gap 10 has a substantially constant gap dimension in the circumferential direction.
  • the gap dimension here is the gap width 13 or gap width measured in the radial direction.
  • FIG. 2 shows in an exaggerated view of an insert 2, which has an asymmetrical with respect to rotations about its longitudinal central axis 14 cross-section. It is characteristic of this embodiment of the exhaust gas treatment device 1 that its housing 4 at least in the axial portion assigned to the insert 2 has a cross section which is adapted to the asymmetrical cross section of the insert 2. The housing 4 follows the irregularities of the outer contour of the insert. 2
  • Fig. 3 also shows in exaggerated view a particular embodiment in which the insert 2 is formed from at least one ceramic monolith 15.
  • the monolith 15 has a cell matrix 16 which has a grid of webs 17 extending perpendicular to one another.
  • Such a monolith 15 has anisotropic load capacity for radial pressure loads.
  • the compressive strength of the monolith 15 is greater than under compressive loads, which are inclined relative to the webs 17.
  • the compressive strength is smallest in the direction of diagonals 18 of the grid.
  • the predetermined in the circumferential direction or in the axial direction gap profile can now be selected specifically for the deformation of the housing 4 so that the occurring during deformation of the housing 4 radial compressive load of the insert 2 in response to varying with the rotational position or axial position compressive strength of the insert 2 takes place.
  • Corresponding Fig. 3 is in an exhaust gas treatment device 1, which has been prepared under this condition, the housing 4 is formed at least in one of the respective insert 2 associated axial portion that sets in the circumferential direction for the radial gap geometry a course, one of the radial, with the Rotational position varying compressive strength of the insert 2 dependent course of the radial compression of the bearing mat 3 in the circumferential direction taken into account.
  • the diagonals 18 are oriented at least in a central region of the respective segment 20 substantially perpendicular to the housing 4.
  • the Fig. 4 to 7 show purely by way of example and without limiting the generality of two different embodiments of forming tools 9, with the aid of the housing 4 in the circumferential direction and / or longitudinally segmentally different deformed to the desired cross-sectional shape or gap profile in the circumferential direction or in To achieve longitudinal direction.
  • the forming tool 9 in the in Fig. 4 to 7 shown examples equipped with a plurality of tool segments 21 which are arranged distributed in the circumferential direction and each associated with a circumferential segment of the housing 4.
  • the tool segments 21 are loaded in the radial direction according to arrows.
  • the individual tool segments 21 can be driven individually with this radial contact pressure.
  • the individual tool segments 21 are preferably each controlled away. In this way, each individual tool segment 21 can be assigned an averaged peripheral geometry, which is then realized on the housing 4 in the region of the respective circumferential segment.
  • the housing 4 and the gap 10 are marked in the undeformed state with a, while their deformed state is marked with b.
  • the tool segments 21 can be shorter in the axial direction than the housing 4. In this way, different axial sections of the housing 4 can be individually shaped, that is, with different average cross-sectional geometries in the region of the respective tool segments 21.
  • the tool segments 21 are configured as forming jaws, show the 6 and 7 an embodiment in which the tool segments 21 are designed as forming rollers, which are also referred to in the following as 21.
  • the forming rollers 21 are in terms of their geometry to the outer contour of the housing 4 adapted what is in Fig. 7 is clearly visible.
  • the housing 4 can be pressed or pulled axially through the stationarily arranged forming rollers 21. This results in the desired deformation of the housing 4 in the radial direction, namely segmentally corresponding to the circumferentially distributed and each associated with a peripheral segment forming rollers 21.
  • the forming rollers 21 are applied for the deformation of the housing 4 in the radial direction with a corresponding contact force, the in Fig. 7 represented by arrows.
  • the forming rollers 21 are preferably path-controlled.
  • an embodiment is preferred in which the respective setting of the forming rollers 21 is constant for a plurality of axially successive axial sections, whereby the advancement of the housing 4 for adjusting the forming rollers is interrupted by specifying new values for the cross-sectional geometry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen einer Abgasbehandlungseinrichtung, die in einem rohrförmigen Gehäuse wenigstens einen Abgasbehandlungseinsatz enthält, insbesondere für eine Abgasanlage einer Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1. Abgasbehandlungseinrichtungen, wie z.B. Katalysatoren und Partikelfilter, weisen wenigstens einen Einsatz auf, der in einem rohrförmigen Gehäuse angeordnet ist. Bekannt sind insbesondere Einsätze aus keramischen Materialien. Ebenso sind metallische Einsätze bekannt. Dabei ist es üblich, den jeweiligen Einsatz mit Hilfe einer den Einsatz umhüllenden Lagermatte im jeweiligen Gehäuse anzuordnen. Diese Lagermatte hat mehrere Funktionen. Zum einen dämpft sie Querbeschleunigungen, denen der Abgasbehandlungseinsatz im Betrieb ausgesetzt sein kann. Zum anderen kann die Lagermatte eine thermische Isolierung bilden, um die thermische Belastung des Gehäuses zu reduzieren. Desweiteren wird regelmäßig mit der Lagermatte eine Lagefixierung des Einsatzes im Gehäuse erreicht. Zu diesem Zweck muss die Lagermatte radial zwischen dem Einsatz und dem Gehäuse verpresst werden. Zum radialen Verpressen der Lagermatte ist es bekannt, den mit der Lagermatte umwickelten Einsatz in das Gehäuse axial einzuschieben, wobei das Gehäuse in diesem Zustand noch einen überhöhten Innenquerschnitt aufweist. Anschließend wird das Gehäuse zusammengedrückt, also radial verformt, bis die gewünschte Verpressung der Lagermatte erreicht ist.
  • Bei keramischen Einsätzen, insbesondere wenn sie als Monolith ausgestaltet sind, ist das radiale Verpressen der Lagermatte vergleichsweise problematisch, da es beim Auftreten überhöhter Kräfte zu Beschädigungen der Keramikeinsätze kommen kann. Hinzu kommt der Umstand, dass die Einsätze, insbesondere keramische Monolithen, vergleichsweise große Formtoleranzen aufweisen können, wodurch beim radialen Verformen des Gehäuses lokale Spannungsspitzen auftreten können. Ferner kann dadurch ein radial zwischen dem jeweiligen Einsatz und dem Gehäuse ausgebildeter, von der Lagermatte ausgefüllter Spalt in der Umfangsrichtung ein ungleichmäßiges, radial gemessenes Spaltmaß aufweisen. Dabei kann bei ungünstigen Toleranzketten das Spaltmaß lokal so groß werden, dass die Lagermatte dort nicht hinreichend verpresst ist, was im Betrieb dazu führen kann, dass die Lagermatte an dieser unzulänglich verpressten Stelle herausgelöst wird, wodurch sich im Gehäuse ein den Einsatz umgehender Bypass ausbildet. Dokument WO 2006/135214 beschreibt ein Verfahren zum Herstellen einer Abgasbehandlungseinrichtung gemäß dem Oberbegriff des unabhängigen Anspruchs 1.
  • Aus der US 6,954,988 B2 ist ein Verfahren zum Herstellen von Katalysatoren bekannt, bei dem zunächst eine Bruchcharakteristik des Keramikmonolithen bestimmt wird, die von der jeweiligen Kombination aus Keramikmaterial und Lagermattenmaterial abhängt. Diese Bruchcharakteristik beinhaltet insbesondere die Abhängigkeit der beim Verpressen der Lagermatte auftretenden Kräfte von der Geschwindigkeit, mit der die Verpressung durchgeführt wird. Beim bekannten Verfahren wird nun das Verpressen der Lagermatte so durchgeführt, dass eine Beschädigung des Monolithen vermieden wird.
  • Die vorliegende Erfindung beschäftigt sich mit dem Problem, für ein Herstellungsverfahren der eingangs genannten Art bzw. für einen Abgasbehandlungseinsatz der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, die sich insbesondere dadurch auszeichnet, dass die Gefahr einer Beschädigung des Einsatzes während der Herstellung reduziert ist und/oder dass ein vergleichsweise gleichmäßiger Spaltverlauf in der Umfangsrichtung erreicht wird.
  • Dieses Problem wird durch die Gegenstände des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung beruht auf dem allgemeinen Gedanken, beim jeweiligen Einsatz vor dem Einbringen in das Gehäuse die Umfangsgeometrie zumindest in einem Axialabschnitt zu vermessen und die gemessene Umfangsgeometrie beim anschließenden Verformen des Gehäuses zu berücksichtigen. Hierdurch kann die Verformung des Gehäuses insbesondere toleranzbedingte Formabweichungen des jeweiligen Einsatzes berücksichtigen. Dadurch können einerseits Spannungsspitzen vermieden werden. Andererseits kann die radiale Verpressung der Lagermatte gleichmäßiger realisiert werden.
  • Insbesondere lässt sich das Verfahren so durchführen, dass zumindest in einem dem jeweiligen Axialabschnitt des wenigstens einen Einsatzes zugeordneten Axialabschnitt des Gehäuses eine Umfangsgeometrie des Gehäuses in Abhängigkeit der gemessenen Umfangsgeometrie des wenigstens einen Einsatzes so verformt wird, dass sich für einen radial zwischen dem Gehäuse und dem wenigstens einen Einsatz ausgebildeten Spalt ein vorbestimmter Spaltverlauf in Umfangsrichtung einstellt. Der vorbestimmte Spaltverlauf kann insbesondere eine optimale Verpressung der Lagermatte berücksichtigen. Ebenso kann der vorbestimmte Spaltverlauf anisotrope Belastungsgrenzen des jeweiligen Einsatzes berücksichtigen. Da das erzielbare Spaltmaß mit der radialen Verpressung der Lagermatte und somit mit den beim Verpressen auftretenden Kräften korreliert, kann über die Vorgabe des Spaltmaßes auch die Belastung des jeweiligen Einsatzes beim Verformen des Gehäuses bestimmt werden.
  • Entsprechend einer vorteilhaften Ausführungsform kann die jeweils gemessene Umfangsgeometrie des jeweiligen Einsatzes vorbestimmten Umfangssegmenten des Einsatzes zugeordnet werden, wobei dann außerdem für das jeweilige Umfangssegment eine gemittelte Umfangsgeometrie aus den im jeweiligen Umfangssegment gemessenen Umfangsgeometriewerten bestimmt wird. Die Verformung des Gehäuses erfolgt dann ebenfalls in Umfangssegmenten, die den Umfangssegmenten des jeweiligen Einsatzes zugeordnet sind, wobei die Verformung des Gehäuses in den gehäuseseitigen Umfangssegmenten die gemittelten Umfangsgeometrien berücksichtigt. Diese Vorgehensweise berücksichtigt insbesondere Verformungswerkzeuge die in Umfangsrichtung verteilt angeordnete, segmentierte Formkörper aufweisen.
  • Die Erfassung und Berücksichtung der Umfangsgeometrie des jeweiligen Einsatzes erfolgt zumindest in einem Axialabschnitt des Einsatzes. Es ist klar, dass bei anderen Ausführungsformen auch mehrere Axialabschnitte hinsichtlich ihrer Umfangsgeometrie vermessen werden können. Dementsprechend lassen sich dann auch beim Umformen des Gehäuses eine entsprechende Anzahl von Axialabschnitten des Gehäuses in Abhängigkeit der jeweils gemessenen Umfangsgeometrien verformen. Grundsätzlich ist auch eine beliebige Auflösung in Längsrichtung denkbar. Beispielsweise kann die vollständige Außenkontur des jeweiligen Einsatzes z.B. durch sogenanntes 3-D-Scannen erfasst werden. Somit kann zusätzlich auch eine Längsgeometrie des jeweiligen Einsatzes beim Verformen des Gehäuses berücksichtigt werden.
  • Eine Abgasbehandlungseinrichtung die nach dem erfindungsgemäßen Verfahren hergestellt ist, kann sich beispielsweise dadurch charakterisieren, dass das Gehäuse einen an den Querschnitt des Einsatzes angepassten Querschnitt aufweist, selbst wenn der jeweilige Einsatz einen bezüglich Drehungen um seine Längsmittelachse einen asymmetrischen Querschnitt besitzt. Der Querschnitt des Gehäuses formt dann die jeweilige Asymmetrie des Einsatzes mehr oder weniger genau nach.
  • Keramische Monolithen, deren Zellmatrix ein Gitter aus zueinander senkrecht verlaufenden Stegen aufweist, besitzen eine von der Drehlage variierende Druckbelastbarkeit. Parallel zu Stegen ist der jeweilige Monolith höher belastbar als in Diagonalrichtung der Zellen. Die Abhängigkeit der Druckbelastbarkeit des jeweiligen Einsatzes von seiner Drehlage kann beim Verformen des Gehäuses berücksichtigt werden. Somit kann sich eine Abgasbehandlungseinrichtung, die nach dem erfindungsgemäßen Verfahren hergestellt worden ist, insbesondere auch dadurch charakterisieren, dass das Gehäuse in einem dem jeweiligen Einsatz zugeordneten Axialabschnitt so geformt ist, dass sich in Umfangsrichtung ein Verlauf für die radiale Spaltgeometrie einstellt, der einen von der radialen, mit der Drehlage variierenden Druckbelastbarkeit des jeweiligen Einsatzes abhängigen Verlauf in Umfangsrichtung der radialen Verpressung der Lagermatte berücksichtigt.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen.
  • Es zeigen, jeweils schematisch,
  • Fig. 1
    einen stark vereinfachten, prinzipiellen Verlauf eines Herstellungsverfahrens,
    Fig. 2 und 3
    jeweils einen stark vereinfacht dargestellten, prinzipiellen Querschnitt eines Abgasbehandlungseinsatzes, bei verschiedenen Ausführungsformen,
    Fig. 4
    einen Längsschnitt entsprechend der Position V in Fig. 1 durch eine Abgasbehandlungseinrichtung beim Verformen ihres Gehäuses entsprechend Schnittlinien IV in Fig. 5,
    Fig. 5
    einen Querschnitt durch die Abgasbehandlungseinrichtung aus Fig. 4 entsprechend Schnittlinien V in Fig. 4,
    Fig. 6
    einen Längsschnitt wie in Fig. 4, jedoch bei einer anderen Ausführungsform entsprechend Schnittlinien VI in Fig. 7,
    Fig. 7
    einen Querschnitt wie in Fig. 5, jedoch bei der Ausführungsform aus Fig. 6 entsprechend Schnittlinien VII in Fig. 6.
  • Entsprechend Fig. 1 werden zum Herstellen einer Abgasbehandlungseinrichtung 1, die in Fig. 1 nur in einem unfertigen Zustand dargestellt ist, zumindest ein Abgasbehandlungseinsatz 2, wenigstens eine Lagermatte 3 und ein rohrförmiges Gehäuse 4 benötigt. Bei der Abgasbehandlungseinrichtung 1 kann es sich beispielsweise um ein Partikelfilter oder um einen Katalysator handeln. Die Abgasbehandlungseinrichtung 1 dient bevorzugt zur Verwendung in einer Abgasanlage einer Brennkraftmaschine, die insbesondere in einem Kraftfahrzeug angeordnet sein kann. Der Abgasbehandlungseinsatz 2, der im Folgenden auch kurz als Einsatz 2 bezeichnet wird, kann somit bevorzugt ein Partikelfiltereinsatz oder ein Katalysatoreinsatz sein. Der Einsatz 2 kann grundsätzlich aus einem metallischen Werkstoff bestehen. Bevorzugt besteht der Einsatz 2 jedoch aus einem keramischen Werkstoff. Insbesondere ist der Einsatz 2 durch wenigstens einen keramischen Monolithen gebildet. Dabei kann der Einsatz 2 aus einem einzigen Monolithen bestehen; ebenso kann der Einsatz 2 aus mehreren Monolithen zusammengebaut sein.
  • Die Lagermatte 3 kann ein Drahtgestrick aus Edelstahl sein oder eine Fasermatte aus einem nicht brennbaren Werkstoff sein. Die Lagermatte 3 ist komprimierbar, wobei sie jedoch eine gewisse Federelastizität entwickelt, was bei der montierten Abgasbehandlungseinrichtung 1 zur Lagefixierung des Einsatzes 2 im Gehäuse 4 genutzt werden kann.
  • Entsprechend Fig. 1 wird bei I zumindest in einem Axialabschnitt des Einsatzes 2 eine Umfangsgeometrie des Einsatzes 2 gemessen. Eine entsprechende Messeinrichtung ist hier mit 5 bezeichnet. Zur Erfassung der Umfangsgeometrie kann eine Drehung 6 zwischen dem Einsatz 2 und der Messeinrichtung 5 erforderlich sein. Die Umfangsgeometrie kann in einem einzigen Axialabschnitt gemessen werden. Dabei wird unterstellt, dass der insbesondere im Strangpressverfahren hergestellte Einsatz 2 eine in Axialrichtung konstante Umfangsgeometrie aufweist. Bevorzugt wird der Einsatz 2 jedoch in mehreren Axialabschnitten vermessen. Ebenso ist es möglich, den Einsatz 2 in Axialrichtung kontinuierlich zu vermessen, d.h., es wird auch die Axialgeometrie des Einsatzes 2 vermessen. Hierzu kann eine Axialverstellung 7 zwischen dem Einsatz 2 und der Messeinrichtung 5 erfolgen.
  • Das Vermessen des Einsatzes 2 erfolgt dabei vorzugsweise bezüglich einer Markierung 8, die hier durch ein Kreuz symbolisiert ist. Diese Markierung 8 kann am jeweiligen Einsatz 2 ohnehin vorhanden sein, beispielsweise in Form einer am Einsatz 2 im Rahmen der Herstellung ausgebildeten Längsnut. Ebenso kann die Markierung 8 gezielt am Einsatz 2 angebracht werden. Beispielsweise lässt sich am Einsatz 2 mit Farbe eine Linie anbringen oder dergleichen.
  • Bei II wird der Einsatz 2 mit der Lagermatte 3 versehen. Der mit der Lagermatte 3 umwickelte Einsatz 2 ist bei III dargestellt. Der mit der Lagermatte 3 umwickelte Einsatz 2 wird nun in axialer Richtung in das Gehäuse 4 eingeführt, was bei IV gezeigt ist. Zum axialen Einführen kann insbesondere ein Einführtrichter verwendet werden. Jedenfalls weist das Gehäuse 4 ein Übermaß auf, wodurch das axiale Einführen des mit der noch unverpressten Lagermatte 3 versehenen Einsatzes 2 erleichtert ist.
  • Bei V erfolgt nun die Verformung des Gehäuses 4. Entsprechende Formwerkzeuge sind in dabei mit 9 bezeichnet. Die radiale Verformung des Gehäuses 4 ist erforderlich, um eine gewünschte radiale Verpressung der Lagermatte 3 zu erzielen. Erst durch diese radiale Verpressung kann die Lagermatte 3 ihre Fixierungswirkung bzw. Fixierungsfunktion erfüllen. Die verpresste Lagermatte 3 dient unter anderem zur Lagefixierung des Einsatzes 2 relativ zum Gehäuse 4. Beim Verformen des Gehäuses 4 wird nun die zuvor bei I gemessene Umfangsgeometrie und gegebenenfalls die gemessene Axialgeometrie berücksichtigt.
  • Insbesondere berücksichtig eine entsprechende, hier nicht gezeigte Steuerung des Umformwerkzeugs 9, die gemessen Umfangsgeometrie bzw. Axialgeometrie derart, dass sich für einen Spalt 10, der sich radial zwischen dem Gehäuse 4 und dem Einsatz 2 ausbildet und in dem die Lagermatte 3 angeordnet ist, ein vorbestimmter Spaltverlauf in Umfangsrichtung einstellt.
  • Dabei kann es - je nach Aufbau des Umformwerkzeugs 9 - zweckmäßig sein, die gemessene Umfangsgeometrie vorbestimmten Umfangssegmenten des Einsatzes 2 zuzuordnen und für die Umfangssegmente jeweils eine gemittelte Umfangsgeometrie zu bestimmen, die sich anhand der innerhalb des jeweiligen Umfangssegments gemessenen Umfangsgeometrie berechnen lässt. Beispielsweise weist das Umformwerkzeug 9 in Umfangsrichtung sechs Umformkörper auf, mit denen das Gehäuse 4 radial verformt werden kann. Dementsprechend wird der Einsatz 2 in sechs Umfangssegmente unterteilt, denen jeweils eine mittlere Umfangsgeometrie aus den innerhalb des jeweiligen Umfangssegments gemessenen Umfangsdaten zugeordnet wird. Beim Umformen des Gehäuses 4 kann dann die Umfangsgeometrie des Gehäuses 4 ebenfalls in Umfangssegmenten, die den Umfangssegmenten des jeweiligen Einsatzes 2 zugeordnet sind, in Abhängigkeit der gemittelten Umfangsgeometrien verformt werden. Im Beispiel werden die sechs Umformkörper dann individuell entsprechend den gemittelten Umfangsgeometrien des Einsatzes 2 angesteuert, wodurch das Gehäuse 6 entlang seines Umfangs ebenfalls in sechs Umfangssegmenten individuell verformt wird.
  • Je nach Ausgestaltung des zur Verfügung stehenden Umformwerkzeugs kann die Umfangsgeometrie des Einsatzes 2 am Gehäuse 4 in einem einzigen Axialabschnitt oder in mehreren Axialenabschnitten oder quasi in axialer Richtung kontinuierlich umgesetzt werden. Dementsprechend kann der axiale Verlauf der Umfangsgeometrie des Gehäuses 4 in Abhängigkeit des im Einsatz 2 gemessenen axialen Verlaufs der Umfangsgeometrie so verformt werden, dass sich auch in der axialen Richtung ein vorbestimmter Spaltverlauf einstellen kann. Je nach Umformwerkzeug 9 kann es auch hier zweckmäßig sein, den an sich kontinuierlich messbaren axialen Verlauf der Umfangsgeometrie des Einsatzes 2 vorbestimmten Axialabschnitten des Einsatzes 2 zuzuordnen und für den jeweiligen Axialabschnitt aus den gemessenen Werten eine gemittelte Umfangsgeometrie zu bestimmen. Das Gehäuse 4 lässt sich dann ebenfalls in Axialabschnitten, die den vorbestimmten Axialabschnitten des Einsatzes 2 zugeordnet sind, in Abhängigkeit der gemittelten Umfangsgeometrien verformen.
  • Für den Umformvorgang des Gehäuses 4 kann es zweckmäßig sein, die Markierung 8 zu berücksichtigen. Beispielsweise kann das Umformwerkzeug 9 selbsttätig die jeweilige Markierung 8 erkennen. Ebenso kann es erforderlich sein, den jeweiligen Einsatz 2 bezüglich seiner Markierung 8 mit einer vorbestimmten Drehlage und/oder Axiallage in das Gehäuse 4 einzusetzen. Die Verformung des Gehäuses 4 erfolgt dann bezüglich der Markierung 8.
  • Nach dem Verformen des Gehäuses 4 ist die Lagermatte 3 radial verpresst, was bei VI erkennbar ist. Zur Qualitätssicherung kann bei VI vorgesehen sein, die durch die Verformung des Gehäuses 4 gebildete Ist-Geometrie des Gehäuses 4 bzw. die Ist-Geometrie des Spalts 10 zu vermessen. Entsprechende Messeinrichtungen sind hier mit 11 bezeichnet. In Abhängigkeit der am Einsatz 2 bei I gemessenen Geometrie lässt sich eine Soll-Geometrie für das Gehäuse 4 bzw. für den Spalt 10 ermitteln, die dann mit der bei VI gemessenen Ist-Geometrie verglichen werden kann. Durch eine Rückkopplung 12 kann das Umformwerkzeug 9 bzw. eine damit ausgestattete Umformvorrichtung in Abhängigkeit dieses Soll-Ist-Vergleichs automatisch adaptiert werden.
  • Wie vorstehend erläutert lässt sich durch die erfindungsgemäße Vorgehensweise bei der jeweiligen Abgasbehandlungseinrichtung 1 ein in Umfangsrichtung und/oder in Axialrichtung vorbestimmter Spaltverlauf mehr oder weniger genau einstellen. Dieser Spaltverlauf kann insbesondere so gewählt sein, dass sich in der Umfangsrichtung bzw. in der Axialrichtung ein im wesentlichen konstantes Spaltmaß einstellt. Beispielsweise zeigt Fig. 2 eine Ausführungsform, bei welcher die Abgasbehandlungseinrichtung 1 zwischen dem Einsatz 2 und dem Gehäuse 4 einen Spalt 10 aufweist, in dem die Lagermatte 3 angeordnet ist. Der Spaltverlauf in Umfangsrichtung charakterisiert sich hier dadurch, dass der Spalt 10 in Umfangsrichtung ein im wesentlichen konstantes Spaltmaß besitzt. Das Spaltmaß ist hier die in radialer Richtung gemessene Spaltbreite 13 oder Spaltweite. Fig. 2 zeigt in einer übertriebenen Darstellung einen Einsatz 2, der einen bezüglich Drehungen um seine Längsmittelachse 14 asymmetrischen Querschnitt aufweist. Charakteristisch ist für diese Ausführungsform der Abgasbehandlungseinrichtung 1, dass ihr Gehäuse 4 zumindest in dem dem Einsatz 2 zugeordneten Axialabschnitt einen Querschnitt aufweist, der an den asymmetrisch Querschnitt des Einsatzes 2 angepasst ist. Das Gehäuse 4 folgt den Unregelmäßigkeiten der Außenkontur des Einsatzes 2.
  • Fig. 3 zeigt ebenfalls in übertriebener Darstellung eine besondere Ausführungsform, bei welcher der Einsatz 2 aus wenigstens einem keramischen Monolithen 15 gebildet ist. Der Monolith 15 weist eine Zellmatrix 16 auf, die ein Gitter aus senkrecht zueinander verlaufenden Stegen 17 besitzt. Ein derartiger Monolith 15 weist für radiale Druckbelastungen eine anisotrope Belastbarkeit auf. Bei Druckbelastungen, die parallel zu Stegen 17 verlaufen, ist die Druckbelastbarkeit des Monolithen 15 größer als bei Druckbelastungen, die gegenüber den Stegen 17 geneigt sind. Insbesondere ist die Druckbelastbarkeit in Richtung von Diagonalen 18 des Gitters am kleinsten.
  • Der in der Umfangsrichtung bzw. in der Axialrichtung vorbestimmte Spaltverlauf kann für die Umformung des Gehäuses 4 nun gezielt so gewählt sein, dass die beim Verformen des Gehäuses 4 auftretende radiale Druckbelastung des Einsatzes 2 in Abhängigkeit einer mit der Drehlage bzw. Axiallage variierenden Druckbelastbarkeit des Einsatzes 2 erfolgt. Das bedeutet, dass insbesondere die anisotrope Druckbelastbarkeit des Einsatzes 2 beim Verpressen der Lagermatte 3 berücksichtigt wird. Hierdurch kann in Bereichen, die eine höhere Druckbelastbarkeit aufweisen, eine stärkere Verpressung der Lagermatte 3 erreicht werden.
  • Entsprechend Fig. 3 ist bei einer Abgasbehandlungseinrichtung 1, die unter dieser Voraussetzung hergestellt worden ist, das Gehäuse 4 zumindest in einem dem jeweiligen Einsatz 2 zugeordneten Axialabschnitt so geformt, dass sich in der Umfangsrichtung für die radiale Spaltgeometrie ein Verlauf einstellt, der einen von der radialen, mit der Drehlage variierenden Druckbelastbarkeit des Einsatzes 2 abhängigen Verlauf der radialen Verpressung der Lagermatte 3 in Umfangsrichtung berücksichtigt. Im gezeigten konkreten Beispiel ist die radiale Verpressung der Lagermatte 3 in Umfangssegmenten 19, in denen die Stege 17 zumindest in einem mittleren Bereich des jeweiligen Segments 19 senkrecht zum Gehäuse 4 orientiert sind, größer als in anderen Umfangssegmenten 20, in denen die Stege 17 zumindest in einem mittleren Bereich des jeweiligen Umfangssegments 20 um etwa 45° gegenüber dem Gehäuse 4 geneigt sind. In diesen anderen Umfangssegmenten 20 sind insbesondere die Diagonalen 18 zumindest in einem mittleren Bereich des jeweiligen Segments 20 im wesentlichen senkrecht zum Gehäuse 4 orientiert.
  • Die Fig. 4 bis 7 zeigen rein exemplarisch und ohne Beschränkung der Allgemeinheit zwei verschiedene Ausführungsformen von Umformwerkzeugen 9, mit deren Hilfe das Gehäuse 4 in Umfangsrichtung und/oder in Längsrichtung segmentweise unterschiedlich deformiert werden kann, um den erwünschten Querschnittsverlauf bzw. Spaltverlauf in Umfangsrichtung bzw. in Längsrichtung erzielen zu können. Beispielsweise ist das Umformwerkzeug 9 bei den in den Fig. 4 bis 7 gezeigten Beispielen mit mehreren Werkzeugsegmenten 21 ausgestattet, die in Umfangsrichtung verteilt angeordnet sind und denen jeweils ein Umfangssegment des Gehäuses 4 zugeordnet ist. Für den Umformvorgang werden die Werkzeugsegmente 21 in radialer Richtung entsprechend Pfeilen belastet. Dabei sind die einzelnen Werkzeugsegmente 21 individuell mit dieser radialen Anpresskraft antreibbar. Die einzelnen Werkzeugsegmente 21 sind vorzugsweise jeweils weggesteuert. Auf diese Weise lässt sich jedem einzelnen Werkzeugsegment 21 eine gemittelte Umfangsgeometrie zuordnen, die dann am Gehäuse 4 im Bereich des jeweiligen Umfangssegments realisiert wird.
  • In den Fig. 4 und 6 sind die Lagermatte 3, das Gehäuse 4 und der Spalt 10 im unverformten Zustand mit a gekennzeichnet, während ihr verformter Zustand mit b gekennzeichnet ist. Die Werkzeugsegmente 21 können in axialer Richtung kürzer sein als das Gehäuse 4. Hierdurch lassen sich verschiedene Axialabschnitte des Gehäuses 4 individuell umformen, also mit unterschiedlichen mittleren Querschnittsgeometrien im Bereich der jeweiligen Werkzeugsegmente 21.
  • Während bei der Ausführungsform der Fig. 4 und 5 die Werkzeugsegmente 21 als Umformbacken ausgestaltet sind, zeigen die Fig. 6 und 7 eine Ausführungsform, bei welcher die Werkzeugsegmente 21 als Umformwalzen ausgestaltet sind, die im Folgenden ebenfalls mit 21 bezeichnet werden. Die Umformwalzen 21 sind hinsichtlich ihrer Geometrie an die Außenkontur des Gehäuses 4 adaptiert, was in Fig. 7 deutlich erkennbar ist. Beim Umformen kann eine axiale Relativbewegung zwischen dem Gehäuse 4 und den Umformwalzen 21 durchgeführt werden. Beispielsweise kann das Gehäuse 4 durch die stationär angeordneten Umformwalzen 21 axial hindurchgedrückt oder hindurchgezogen werden. Hierbei kommt es zur gewünschten Verformung des Gehäuses 4 in radialer Richtung, und zwar segmentweise entsprechend den umfangsmäßig verteilt angeordneten und jeweils einem Umfangsegment zugeordneten Umformwalzen 21. Auch die Umformwalzen 21 werden für die Umformung des Gehäuses 4 in radialer Richtung mit einer entsprechenden Anpresskraft beaufschlagt, die in Fig. 7 durch Pfeile repräsentiert ist. Auch hier sind die Umformwalzen 21 bevorzugt weggesteuert. Bei dieser Ausführungsform ist es grundsätzlich möglich, beim Durchziehen oder Durchdrücken des Gehäuses 4 zentral durch die Umformwalzen 21 diese für unterschiedliche Axialabschnitte des Gehäuses 4 unterschiedlich einzustellen, und zwar individuell. Dies kann theoretisch kontinuierlich erfolgen. Bevorzugt ist jedoch eine Ausführungsform, bei der die jeweilige Einstellung der Umformwalzen 21 für mehrere, axial aufeinander folgende Axialabschnitte jeweils konstant ist, wobei der Vorschub des Gehäuses 4 zum Einstellen der Umformwalzen, durch Vorgabe neuer Werte für die Querschnittsgeometrie, unterbrochen wird.

Claims (8)

  1. Verfahren zum Herstellen einer Abgasbehandlungseinrichtung (1), die in einem rohrförmigen Gehäuse (4) wenigstens einen Abgasbehandlungseinsatz (2) enthält, insbesondere für eine Abgasanlage einer Brennkraftmaschine,
    - bei dem in wenigstens einem Axialabschnitt des jeweiligen Einsatzes (2) eine Umfangsgeometrie des wenigstens einen Einsatzes (2) gemessen wird,
    - bei dem der wenigstens eine Einsatz (2) in das Gehäuse (4) axial eingesetzt wird,
    - bei dem beim Verformen des Gehäuses (4) die gemessene Umfangsgeometrie des wenigstens einen Einsatzes (2) berücksichtigt wird,
    dadurch gekennzeichnet,
    - dass eine durch das Verformen des Gehäuses (4) gebildete Ist-Geometrie des Gehäuses (4) und/oder des Spalts (10) vermessen und mit einer in Abhängigkeit der gemessenen Geometrie des wenigstens einen Einsatzes (2) ermittelten Soll-Geometrie verglichen wird,
    - dass eine das Verformen des Gehäuses (4) durchführende Umformvorrichtung in Abhängigkeit des Soll-Ist-Vergleichs automatisch adaptiert wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass zumindest in einem dem jeweiligen Axialabschnitt des wenigstens einen Einsatzes (2) zugeordneten Axialabschnitt des Gehäuses (4) eine Umfangsgeometrie des Gehäuses (4) in Abhängigkeit der gemessene Umfangsgeometrie des wenigstens einen Einsatzes (2) so verformt wird, dass sich für einen radial zwischen dem Gehäuse (4) und dem wenigstens einen Einsatz (2) ausgebildeten Spalt (10) ein vorbestimmter Spaltverlauf in Umfangsrichtung einstellt.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    - dass die gemessene Umfangsgeometrie des jeweiligen Einsatzes (2) vorbestimmten Umfangssegmenten zugeordnet wird und für das jeweilige Umfangssegment eine gemittelte Umfangsgeometrie bestimmt wird,
    - dass die Umfangsgeometrie des Gehäuses (4) in den Umfangssegmenten des jeweiligen Einsatzes (2) zugeordneten Umfangssegmenten in Abhängigkeit der gemittelten Umfangsgeometrien verformt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    - dass außerdem der axiale Verlauf der Umfangsgeometrie des jeweiligen Einsatzes (2) gemessen wird,
    - dass der axiale Verlauf der Umfangsgeometrie des Gehäuses (4) in Abhängigkeit des gemessenen Verlaufs des jeweiligen Einsatzes so verformt wird, dass sich auch in axialer Richtung ein vorbestimmter Spaltverlauf einstellt.
  5. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    - dass der gemessene axiale Verlauf der Umfangsgeometrie des jeweiligen Einsatzes (2) vorbestimmten Axialabschnitten zugeordnet wird und für den jeweiligen Axialabschnitt eine gemittelte Umfangsgeometrie bestimmt wird,
    - dass der axiale Verlauf des Gehäuses (4) in den Axialabschnitten des jeweiligen Einsatzes (2) zugeordneten Axialabschnitten in Abhängigkeit der gemittelten Umfangsgeometrien verformt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    - dass die Vermessung des Einsatzes (2) bezüglich einer am jeweiligen Einsatz (2) vorhandenen oder angebrachten Markierung (8) durchgeführt wird,
    - dass der jeweilige Einsatz (2) bezüglich seiner Markierung (8) mit einer vorbestimmten Relativlage in das Gehäuse (4) eingesetzt wird, so dass die Verformung des Gehäuses (4) bezüglich der Markierung (8) des jeweiligen Einsatzes (2) erfolgt.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass der in Umfangsrichtung und/oder in Axialrichtung vorbestimmte Spaltverlauf so gewählt ist, dass sich in Umfangsrichtung und/oder in Axialrichtung ein im Wesentlichen konstantes Spaltmaß (13) einstellt.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass der in Umfangsrichtung und/oder in Axialrichtung vorbestimmte Spaltverlauf so gewählt ist, dass die beim Verformen des Gehäuses (4) auftretende radiale Druckbelastung des wenigstens einen Einsatzes (2) in Abhängigkeit einer mit der Drehlage und/oder Axiallage variierenden Druckbelastbarkeit des wenigstens einen Einsatzes (2) erfolgt.
EP08157030.1A 2007-06-06 2008-05-28 Herstellungsverfahren für Abgasbehandlungseinrichtungen, wie z.B. Abgaskatalysatoren und Partikelfilter Active EP2000642B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007026810A DE102007026810A1 (de) 2007-06-06 2007-06-06 Herstellungsverfahren für Abgasbehandlungseinrichtungen, wie z.B. Abgaskatalysatoren und Partikelfilter

Publications (3)

Publication Number Publication Date
EP2000642A2 EP2000642A2 (de) 2008-12-10
EP2000642A3 EP2000642A3 (de) 2009-11-04
EP2000642B1 true EP2000642B1 (de) 2017-08-09

Family

ID=39745054

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08157030.1A Active EP2000642B1 (de) 2007-06-06 2008-05-28 Herstellungsverfahren für Abgasbehandlungseinrichtungen, wie z.B. Abgaskatalysatoren und Partikelfilter

Country Status (3)

Country Link
US (2) US8146252B2 (de)
EP (1) EP2000642B1 (de)
DE (1) DE102007026810A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100960451B1 (ko) 2008-02-29 2010-05-28 주식회사 하이닉스반도체 반도체 소자 및 그 제조 방법
US8112857B2 (en) * 2009-01-20 2012-02-14 Abbott Laboratories Vascular Enterprises Limited Stent crimping device
DE112016007651B4 (de) * 2015-03-24 2024-09-05 Cummins Emission Solutions Inc. Integriertes Nachbehandlungssystem
FR3065488B1 (fr) * 2017-04-20 2019-06-28 Faurecia Systemes D'echappement Element de ligne d'echappement et procede de fabrication d'un tel element
DE102018107836A1 (de) 2018-04-03 2019-10-10 Faurecia Emissions Control Technologies, Germany Gmbh Verfahren zur Herstellung einer Abgas führenden Vorrichtung eines Kraftfahrzeugs
DE102019211388A1 (de) * 2019-07-31 2021-02-04 Audi Ag Verfahren zum Herstellen eines Partikelfilters für eine Abgasanlage sowie entsprechender Partikelfilter

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2604886A1 (de) * 1976-02-07 1977-08-11 Zeuna Staerker Kg Verfahren zur herstellung eines katalysators zur reinigung der abgase von brennkraftmaschinen
US4969264A (en) * 1986-06-12 1990-11-13 Tennessee Gas Pipeline Company Catalytic converter and substrate support
ES2111985T3 (es) * 1994-05-02 1998-03-16 Leistritz Abgastech Procedimiento y dispositivo para el montaje de un catalizador de gases de escape.
DE4433974C1 (de) * 1994-09-23 1996-03-28 Eberspaecher J Verfahren zur Herstellung von Katalysatoren
IT1303635B1 (it) * 1997-12-19 2001-02-21 Corning Inc Metodo di fabbricazione di un convertitore catalitico da utilizzarein un motore a combustione interna
US6591497B2 (en) * 1998-08-27 2003-07-15 Delphi Technologies, Inc. Method of making converter housing size based upon substrate size
ES2293448T3 (es) * 2001-05-18 2008-03-16 Hess Engineering, Inc. Metodo y aparato para fabricar un convertidor catalitico.
US7900352B2 (en) * 2001-05-18 2011-03-08 Hess Engineering, Inc. Method and apparatus for manufacturing a catalytic converter
WO2003033886A1 (de) * 2001-10-08 2003-04-24 Siemens Aktiengesellschaft Verfahren zur herstellung eines katalysatormoduls, katalysatormodul und katalysatorsystem
JP4530607B2 (ja) * 2002-08-14 2010-08-25 株式会社三五 ハニカム構造体内蔵流体処理装置の製造方法
JP3740154B2 (ja) * 2004-03-25 2006-02-01 株式会社ユーメックス 触媒コンバータの製造方法および触媒コンバータ
BRPI0606725A2 (pt) * 2005-01-12 2009-07-14 Tenneco Automotive Operating aparelho e método de envasamento de conversor catalìtico de pós-calibração
DE102005010267A1 (de) * 2005-03-07 2006-09-14 Arvinmeritor Emissions Technologies Gmbh Verfahren zum Herstellen einer abgasführenden Vorrichtung, insbesondere einer Fahrzeugabgasreinigungsvorrichtung
DE102005029163A1 (de) * 2005-06-23 2006-12-28 Arvinmeritor Emissions Technologies Gmbh Verfahren zum Herstellen von abgasführenden Vorrichtungen, insbesondere Abgasreinigungsvorrichtungen
DE102006010740A1 (de) * 2006-03-08 2007-09-13 Arvinmeritor Emissions Technologies Gmbh Verfahren zum Herstellen von abgasführenden Vorrichtungen sowie Vorrichtung zum Herstellen von abgasführenden Vorrichtungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8146252B2 (en) 2012-04-03
EP2000642A3 (de) 2009-11-04
US20080301940A1 (en) 2008-12-11
US20120121474A1 (en) 2012-05-17
DE102007026810A1 (de) 2008-12-11
EP2000642A2 (de) 2008-12-10
US9212588B2 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
EP2000642B1 (de) Herstellungsverfahren für Abgasbehandlungseinrichtungen, wie z.B. Abgaskatalysatoren und Partikelfilter
EP1861594A1 (de) Verfahren zum herstellen einer abgasführenden vorrichtung, insbesondere einer fahrzeugabgasreinigungsvorrichtung
EP2556905A2 (de) Verfahren und Vorrichtung zur Herstellung von ringförmigen Kupplungslamellen mit Verzahnung
WO2006136214A1 (de) Verfahren zum herstellen von abgasführenden vorrichtungen, insbesondere abgasreinigungsvorrichtungen
DE102005038572A1 (de) Vorrichtung und Verfahren zur Herstellung metallischer Wabenkörper mit mindestens einem Formsegment
DE7935982U1 (de) Wälzlagerkäfig
WO2009146679A1 (de) Verfahren zum herstellen eines käfigelements für einen wälzlagerkäfig und wälzlagerkäfig
EP1890812B1 (de) Herstellung von, insbesondere grossen, wabenkörpern für die mobile abgasnachbehandlung
DE112017001668B4 (de) Keilrippenriemenherstellungsverfahren
EP1445443B1 (de) Verfahren und Vorrichtung zur Herstellung eines Abgaskatalysators oder Diesel-Partikelfilters
EP1882089B1 (de) Verfahren zur herstellung einer abgasführenden vorrichtung
DE102010005629A1 (de) Verfahren zum Herstellen von abgasführenden Vorrichtungen
DE3532408A1 (de) Traegermatrix, insbesondere fuer einen katalytischen reaktor zur abgasreinigung bei brennkraftmaschinen
EP2913495B1 (de) Verfahren zum Herstellen einer Abgasnachbehandlungseinrichtung und entsprechende Abgasnachbehandlungseinrichtung
DE102011115509C5 (de) Verfahren zum Einhausen eines Monolithen mit Lagerungsmatte in ein Gehäuse durch Stopfen
DE102004056804B4 (de) Katalysator und/oder Partikelfilter sowie zugehöriges Herstellungsverfahren und zugehörige Lagermatte
EP3107670A1 (de) Verfahren und vorrichtung zur herstellung eines zahnrades nebst spannmittel
DE102014215628A1 (de) Verfahren zur Herstellung eines Innenrings oder eines Außenrings für ein Planetenwälzlager, oder einer Mutter für ein Planetenwälzgetriebe
EP2991786B1 (de) Verfahren zur herstellung eines drahtformkörpers aus einem drahtgewebe sowie drahtformkörper
WO2009000664A2 (de) Verfahren zum herstellen eines wabenkörpers für einen katalysator oder partikelfilter, sowie extrudervorrichtung zum herstellen eines solchen wabenkörpers
EP2998530B1 (de) Verfahren zur herstellung eines abgaskonverters, werkzeug für eine ringpresse zur herstellung eines abgaskonverters, ringpresse mit diesem werkzeug und mittels der ringpresse hergestellter abgaskonverter
DE102019201564A1 (de) Lagerkäfigsegment mit mindestens einer Ausnehmung zur erleichterten Biegung
DE102006015657B4 (de) Verfahren zum Herstellen von abgasführenden Vorrichtungen, insbesondere Abgasreinigungsvorrichtungen
DE102005022512A1 (de) Herstellungsverfahren für eine Abgasbehandlungsvorrichtung
EP3914813B1 (de) Vorrichtung mit reinigungsvorrichtung zur herstellung einer abgasnachbehandlungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01N 3/28 20060101AFI20080923BHEP

Ipc: B01J 35/04 20060101ALI20090928BHEP

Ipc: F01N 7/18 20060101ALI20090928BHEP

17P Request for examination filed

Effective date: 20100504

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EBERSPAECHER EXHAUST TECHNOLOGY GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01N 13/18 20100101ALI20170209BHEP

Ipc: B01J 35/04 20060101ALI20170209BHEP

Ipc: F01N 3/28 20060101AFI20170209BHEP

INTG Intention to grant announced

Effective date: 20170307

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 917109

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008015512

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170809

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171109

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171110

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008015512

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180518

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 917109

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008015512

Country of ref document: DE

Owner name: PUREM GMBH, DE

Free format text: FORMER OWNER: EBERSPAECHER EXHAUST TECHNOLOGY GMBH & CO. KG, 66539 NEUNKIRCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240522

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240517

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240522

Year of fee payment: 17