EP1999350A1 - Brennverfahren einer brennkraftmaschine und brennkraftmaschine - Google Patents

Brennverfahren einer brennkraftmaschine und brennkraftmaschine

Info

Publication number
EP1999350A1
EP1999350A1 EP07723657A EP07723657A EP1999350A1 EP 1999350 A1 EP1999350 A1 EP 1999350A1 EP 07723657 A EP07723657 A EP 07723657A EP 07723657 A EP07723657 A EP 07723657A EP 1999350 A1 EP1999350 A1 EP 1999350A1
Authority
EP
European Patent Office
Prior art keywords
injection
combustion chamber
internal combustion
combustion engine
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07723657A
Other languages
English (en)
French (fr)
Inventor
Ulrich Spicher
Uwe Wagner
Amin Velji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mot Forschungs- und Entwicklungsgesellschaft fur Motorentechnik Optik Thermodynamik Mbh
Original Assignee
Mot Forschungs- und Entwicklungsgesellschaft fur Motorentechnik Optik Thermodynamik Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mot Forschungs- und Entwicklungsgesellschaft fur Motorentechnik Optik Thermodynamik Mbh filed Critical Mot Forschungs- und Entwicklungsgesellschaft fur Motorentechnik Optik Thermodynamik Mbh
Publication of EP1999350A1 publication Critical patent/EP1999350A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0663Details related to the fuel injector or the fuel spray having multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/103Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector having a multi-hole nozzle for generating multiple sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0636Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space having a substantially flat and horizontal bottom
    • F02B23/0639Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space having a substantially flat and horizontal bottom the combustion space having substantially the shape of a cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0678Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets
    • F02B23/0693Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets the combustion space consisting of step-wise widened multiple zones of different depth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • F02M45/086Having more than one injection-valve controlling discharge orifices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a combustion method of an internal combustion engine according to the preamble of patent claim 1 and an internal combustion engine in which the combustion method is used.
  • the direct fuel injection into the combustion chamber is usually subdivided into a plurality of partial injections such as a pilot injection, a main injection and possibly a post-injection.
  • the individual partial injections are generally carried out with the same injection system components and therefore in identical areas of the combustion chamber.
  • a small pre-injection amount upstream of the actual main injection achieves advantages in terms of noise and nitrogen oxide emissions compared to combustion without pre-injection.
  • the pre-injected fuel burns before combustion of the main injection and increases the temperature in the combustion chamber.
  • the ignition delay for the fuel of the main injection shortens and the proportion of premixed combustion becomes smaller in proportion to the diffusion-controlled combustion. This reduces the maximum pressure increase (“diesel shock") and the peak temperature during combustion, which both lowers the noise level of the engine and reduces the formation of nitrogen oxides during combustion.
  • the increase in the proportion of diffusion-controlled combustion has a negative effect on the soot formation and thus the soot emission. This is particularly evident in the case of a pre-injection quantity which is only minimally above the ideal value and in which the soot emissions increase disproportionately.
  • the higher soot emission is not only due to the larger proportion of diffusion-controlled combustion, but also to other influencing factors.
  • the local air ratio for the main injection is reduced by the pre-injection fuel already reacted there, which both increases soot formation and reduces soot oxidation during combustion.
  • EP 1 045 136 A1 discloses a combustion method having the features of the preamble of claim 1 and an internal combustion engine which operates according to this combustion method. There, the fuel is injected in a lower part load range at a shallow angle to the piston crown. In a higher part-load range, the fuel is injected at a steeper angle to the piston head in a central region of the combustion chamber.
  • the invention has for its object to provide a combustion method of an internal combustion engine with direct injection of the fuel into the combustion chamber by means of one or more injectors, are avoided in the soot formation and soot emission or at least greatly reduced.
  • a combustion method In a combustion method according to the invention, load-independent always takes place a pilot injection into central regions of the combustion chamber and a main injection into the outer region of the combustion chamber. Due to the spatial separation of the pilot injection from the main injection, the formation of soot, which occurs during fuel injection into an already ignited combustion chamber volume, avoided or greatly reduced. As a result, soot emissions are largely avoided.
  • the temperature range of the nitrogen oxide formation can be left out, so that the formation of harmful nitrogen oxides is also kept low.
  • post-injection is often provided both to improve exhaust emissions and to initiate particulate filter regeneration.
  • a late post-injection as is necessary for the exhaust gas temperature increase in a particle filter regeneration, penetrate the injection jets due to the already significantly reduced cylinder pressure far into the combustion chamber and even to the cylinder wall. This leads to wetting of the wall and an entry of fuel into the lubricating oil of the engine, whereby the lubricating properties of the oil deteriorate and the engine wear increases.
  • a further development of the combustion process according to the invention therefore provides, according to dependent claim 5, a cylinder-axis post-injection into central combustion chamber regions, which avoids wetting of the cylinder wall and thus a possible lubricating oil dilution.
  • soot formation when used in a diesel engine, soot formation can be reduced to such an extent that the current limit values for soot emission, which are permitted by EU regulations, can be exceeded without the use of a particulate filter.
  • FIG. 1 shows a partial section through the upper part of a cylinder with piston, combustion chamber and injectors for pre-injection and main injection of an internal combustion piston engine according to the invention.
  • FIG. 2 shows a partial section as in FIG. 1 of an embodiment of the invention with only one injector for the pilot and main injection;
  • FIG. 3 shows the spatial orientation of pre-injection and time-dependent main injection in an internal combustion engine according to FIG. 2;
  • FIG. 4 shows the spatial orientation of pre-injection and time-sequential main injection in an internal combustion engine according to FIG. 1;
  • Fig. 5 is a partial section through the upper part of a cylinder with piston, combustion chamber and an injector for pilot and main injection in a further embodiment of the invention, wherein the part of the combustion chamber is stepped in the piston.
  • FIG. 1 shows schematically cylinder 10 and piston 11 with combustion chamber 5 of a self-igniting internal combustion engine (diesel engine) with two independently controllable injectors, namely a vertically directed into the combustion chamber main injector 1 for the main injection 2 and a tilted into the combustion chamber 5 pre-injector.
  • the pilot injection 3 takes place with the pre-injector 4 in central, ie near the cylinder axis, areas of the combustion chamber.
  • the main injection 2 takes place with the main injector 1 in outer, ie with respect to the cylinder axis more radially located combustion chamber areas. This results in a complete spatial separation of the combustion chamber areas in which the pre-injected fuel burns, from the combustion chamber areas in which burns the main injected fuel.
  • the piston 11 has a piston recess 6, which allows the greatest possible penetration depth of the pilot injection jets in the almost axial direction of the cylinder 10.
  • the embodiment with the two injectors 1 and 4 also allows the use of a piston with a flat piston recess or a flat piston crown, because the pilot injection into central combustion chamber regions can also take place through the pre-injector in the nearly radial direction of the cylinder 10 parallel to the piston 11, such as this is described with reference to FIG. 5.
  • Fig. 2 in the same parts with like reference numerals as in Fig. 1 and are not described again, shows the structure for a basically same injection sequence as in Fig. 1, but with only one injector, the two groups of nozzle holes with groups has separate control of the nozzle holes and thus also allows the temporal and spatial separation of the injections and the fuel jets.
  • angles ⁇ for defining the pilot and main injection jets are indicated as follows: ⁇ i - angle of the outer envelope of the main injection jets ß n - angle of the inner envelope of the main injection jets ß 2 - tip cone angle of the main injection jets ß 3 - tip cone angle of the pilot injection jets
  • angles ßi, ß n are in practice between 180 ° and 120 °.
  • the angles ⁇ 2 and ⁇ 3 should be less than 120 °, preferably ⁇ 2 ⁇ 20 ° and ⁇ 3 ⁇ 30 °.
  • the impact of the pre-injected fuel can be used on the piston to improve the evaporation of the pre-injected fuel and thus the mixture formation and to accelerate the ignition by the increased component temperature of the piston.
  • FIGS. 3 and 4 show, by way of example, the spatial orientation of the conical injection jets of a pilot injection 3 into central combustion chamber regions in a piston depression 6 and of the conical injection jets of a main injection 2 into combustion chamber regions near the cylinder wall 9, which is common in modern diesel engines with direct injection.
  • an embodiment with an injector 1 as shown in Fig. 2 is shown in Fig. 3.
  • the modified embodiment with two injectors 1, 4 results in a spatial orientation of the injection jets of pilot injection 3 and main injection 2 according to FIG. 4.
  • Fig. 5 shows in a further embodiment by way of example a piston 11 with a stepped piston recess 7.8, which may have different geometries such as rounding and angles.
  • the piston bowl has a cup-shaped central region 8 penetrating deeply into the piston, which provides a large penetration depth for the injection jets of the pilot injection 3, and a plate-shaped, flat region 7 of larger diameter for the conventional main injection 2.
  • the timing of pre-injection, main injection and post-injection is the same as in conventional processes, with pre-injection always beginning before main injection and always before post-injection.
  • the individual injection phases can, as usual, take place completely separated from one another over time. According to the invention, however, a temporal overlap of the individual injection phases is possible.
  • pilot injection 3 is carried out in combustion chamber regions which are separated from the regions of the following main injection 2.
  • the invention is not limited to application to diesel engines. It can also be applied to today's gasoline engines with direct injection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Ein Brennverfahren für eine Brennkraftmaschine, insbesondere eine selbstzündende Brennkraftmaschine, zeichnet sich dadurch aus, daß eine Voreinspritzung in andere Bereiche des Brennraums erfolgt als die Haupteinspritzung.

Description

MOT Forschungs- und Entwicklungsgesellschaft für Motorentechnik, Optik, Thermodynamik mbH
M31187PCT
Brennverfahren einer Brennkraftmaschine und Brennkraftmaschine
Die Erfindung betrifft ein Brennverfahren einer Brennkraftmaschine gemäß dem Oberbegriff des Patentanspruchs 1 und eine Brennkraftmaschine, in der das Brennverfahren eingesetzt wird.
Bei modernen Dieselmotoren wird die direkte Kraftstoffeinspritzung in den Brennraum meist in mehrere Teileinspritzungen wie eine Voreinspritzung, eine Haupteinspritzung und unter Umständen eine Nacheinspritzung unterteilt. Die einzelnen Teileinspritzungen erfolgen in der Regel mit denselben Einspritzsystemkomponenten und daher in identische Bereiche des Brennraums. Durch eine kleine, der eigentlichen Haupteinspritzung vorgelagerte Vorein- spritzmenge werden Vorteile bei den Geräusch- und Stickoxidemissionen im Vergleich zu einer Verbrennung ohne Voreinspritzung erzielt. Der voreingespritzte Kraftstoff verbrennt vor der Verbrennung der Haupteinspritzung und erhöht die Temperatur im Brennraum. Der Zündverzug für den Kraftstoff der Haupteinspritzung verkürzt sich und der Anteil an vorgemischter Verbrennung wird im Verhältnis zur diffusionskontrollierten Verbrennung kleiner. Dies reduziert den maximalen Druckanstieg („Dieselschlag") und die Spitzentemperatur während der Verbrennung. Dadurch wird sowohl das Geräuschniveau des Motors gesenkt als auch die Bildung von Stickoxiden während der Verbrennung vermindert.
Die Erhöhung des Anteils diffusionskontrollierter Verbrennung wirkt sich jedoch negativ auf die Rußbildung und damit die Rußemission aus. Dies zeigt sich besonders bei einer auch nur minimal über dem Idealwert liegenden Voreinspritzmenge, bei der die Rußemissionen überproportional ansteigen. Die höhere Rußemission liegt nicht nur an dem größeren Anteil diffusionskontrollierter Verbrennung, sondern auch an weiteren Einflußfaktoren. Einerseits ist das lokale Luftverhältnis für die Haupteinspritzung durch den dort schon umgesetzten Kraftstoff der Voreinspritzung reduziert, was sowohl die Rußbildung erhöht als auch die Rußoxidation während der Verbrennung vermindert. Andererseits kann es zu einem direkten Kontakt von noch flüssigem Kraftstoff der Haupteinspritzung mit dem unter Umständen noch brennenden Kraftstoff der Voreinspritzung kommen. Aus der EP 1 045 136 Al sind ein Brennverfahren mit den Merkmalen des Oberbegriffs des Anspruchs 1 und eine Brennkraftmaschine bekannt, die nach diesem Brennverfahren arbeitet. Dort wird der Kraftstoff in einem unteren Teillastbereich unter einem flachen Winkel zum Kolbenboden eingespritzt. In einem höheren Teillastbereich wird der Kraftstoff unter einem steileren Winkel zum Kolbenboden in einen zentralen Bereich des Brennraumes eingespritzt.
Der Erfindung liegt die Aufgabe zugrunde, ein Brennverfahren einer Brennkraftmaschine mit Direkteinspritzung des Kraftstoffes in den Brennraum mittels einer oder mehrerer Einspritzeinrichtungen zu schaffen, bei dem Rußbildung und Rußemission vermieden oder zumindest stark reduziert werden.
Diese Aufgabe ist durch ein Brennverfahren gemäß Patentanspruch 1 und eine Brennkraftmaschine gemäß Patentanspruch 8 gelöst.
Bei einem Brennverfahren gemäß der Erfindung findet lastunabhängig stets eine Voreinspritzung in zentrale Bereiche des Brennraumes und eine Haupteinspritzung in äußere Bereich des Brennraumes statt. Durch die räumliche Trennung der Voreinspritzung von der Haupteinspritzung wird die Rußbildung, die bei Kraftstoffeinspritzung in ein bereits gezündetes Brennraumvolumen entsteht, vermieden oder sehr stark reduziert. Dadurch werden Rußemissionen weitestgehend vermieden. Durch die gestufte Verbrennung kann der Temperaturbereich der Stickoxidbildung ausgespart werden, so daß die Bildung von schädlichen Stickoxiden ebenfalls niedrig gehalten wird.
Bei Dieselmotoren mit Common-Rail-Einspritzung wird oft eine Nacheinspritzung sowohl zur Verbesserung der Abgasemissionen als auch zur Einleitung einer Partikelfilterregeneration vorgesehen. Gerade bei einer späten Nacheinspritzung, wie sie zur Abgastemperaturerhöhung bei einer Partikelfilterregeneration notwendig ist, dringen die Einspritzstrahlen aufgrund des schon deutlich abgesunkenen Zylinderdruckes weit in den Brennraum und sogar bis an die Zylinderwand vor. Dies führt zu einer Wandbenetzung und einem Eintrag von Kraftstoff in das Schmieröl des Motors, wodurch sich die Schmiereigenschaften des Öls verschlechtern und der Motorverschleiß erhöht. Eine Weiterbildung des erfindungsgemäßen Brennverfahrens sieht deshalb gemäß Unteranspruch 5 eine zylinderachsennahe Nacheinspritzung in zentrale Brennraumbereiche vor, was eine Benetzung der Zylinderwand und damit eine mögliche Schmierölverdünnung vermeidet. Mit einem Brennverfahren und einer Brennkraftmaschine gemäß der Erfindung läßt sich bei Einsatz in einen Dieselmotor die Rußbildung so weit vermindern, daß die aktuellen, durch EU- Vorschriften zulässigen Grenzwerte für die Rußemission ohne Einsatz eines Partikelfilters unterschritten werden können.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Die Erfindung ist im folgenden mit weiteren Einzelheiten anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
Fig. 1 einen Teilschnitt durch den oberen Teil eines Zylinders mit Kolben, Brennraum und Injektoren für Vor- und Haupteinspritzung einer Brennkraft-Kolbenmaschine gemäß der Erfindung;
Fig. 2 einen Teilschnitt wie Fig. 1 einer Ausführung der Erfindung mit nur einem Injektor für die Vor- und Haupteinspritzung;
Fig. 3 die räumliche Orientierung von Voreinspritzung und zeitlich nachfolgender Haupteinspritzung in einer Brennkraftmaschine gemäß Fig. 2;
Fig. 4 die räumliche Orientierung von Voreinspritzung und zeitlich nachfolgender Haupteinspritzung in einer Brennkraftmaschine gemäß Fig. 1 ; und
Fig. 5 einen Teilschnitt durch den oberen Teil eines Zylinders mit Kolben, Brennraum und einem Injektor für Vor- und Haupteinspritzung in einer weiteren Ausführung der Erfindung, wobei der Teil des Brennraums im Kolben gestuft ausgebildet ist.
Fig. 1 zeigt schematisch Zylinder 10 und Kolben 11 mit Brennraum 5 einer selbstzündenden Brennkraftkolbenmaschine (Dieselmotor) mit zwei unabhängig voneinander ansteuerbaren Injektoren, nämlich einem senkrecht in den Brennraum gerichteten Hauptinjektor 1 für die Haupteinspritzung 2 und einen geneigt in den Brennraum 5 zielenden Vorinjektor 4. Zuerst erfolgt die Voreinspritzung 3 mit dem Vorinjektor 4 in zentrale, also zylinderachsennahe Bereiche des Brennraums. Danach erfolgt die Haupteinspritzung 2 mit dem Hauptinjektor 1 in äußere, also bezüglich der Zylinderachse mehr radial gelegene, Brennraumbereiche. Dadurch ergibt sich eine komplette räumliche Trennung der Brennraumbereiche, in denen der voreingespritzt Kraftstoff verbrennt, von den Brennraumbereichen, in denen der haupteingespritzte Kraftstoff verbrennt. Der Kolben 11 hat eine Kolbenmulde 6, die eine möglichst große Eindringtiefe der Voreinspritzstrahlen in nahezu axialer Richtung des Zylinders 10 erlaubt. Jedoch erlaubt die Ausführung mit den zwei Injektoren 1 und 4 auch die Verwendung eines Kolbens mit einer flachen Kolbenmulde oder einem ebenen Kolbenboden, weil die Voreinspritzung in zentrale Brennraumbereiche auch durch den Vorinjektor in nahezu radialer Richtung des Zylinders 10 parallel zum Kolben 11 erfolgen kann, wie diese anhand der Fig. 5 beschrieben ist.
Fig. 2, in der gleiche Teile mit gleichen Bezugszahlen wie in Fig. 1 bezeichnet und nicht nochmals beschrieben sind, zeigt den Aufbau für einen prinzipiell gleichen Einspritzablauf wie bei Fig. 1, jedoch mit nur einem Injektor, der zwei Gruppen von Düsenlöchern mit gruppenweise getrennter Ansteuerung der Düsenlöcher hat und damit ebenfalls die zeitliche und räumliche Trennung der Einspritzungen bzw. der Kraftstoffstrahlen ermöglicht.
In den Fig. 1 und 2 sind Winkel ß zur Definition der Vor- und Haupteinspritzstrahlen wie folgt angegeben: ßi - Winkel der äußeren Einhüllenden der Haupteinspritzstrahlen ßn - Winkel der inneren Einhüllenden der Haupteinspritzstrahlen ß2 - Spitzenkegelwinkel der Haupteinspritzstrahlen ß3 - Spitzenkegelwinkel der Voreinspritzstrahlen
Die Winkel ßi, ßn liegen in der Praxis zwischen 180° und 120°. Die Winkel ß2 und ß3 sollten kleiner als 120° sein, vorzugsweise ß2 < 20° und ß3 < 30°.
Durch die zylinderachsennahe Voreinspritzung 3 in Richtung des Kolbens 11 kann das Auftreffen des voreingespritzten Kraftstoffs auf den Kolben genutzt werden, um durch die erhöhte Bauteiltemperatur des Kolbens die Verdampfung des voreingespritzten Kraftstoffs und damit die Gemischbildung zu verbessern und die Zündung zu beschleunigen.
Fig. 3 und Fig. 4 zeigen exemplarisch die räumliche Orientierung der kegelförmigen Einspritzstrahlen einer Voreinspritzung 3 in zentrale Brennraumbereiche in einer Kolbenmulde 6 sowie der kegelförmigen Einspritzstrahlen einer Haupteinspritzung 2 in Brennraumbereiche nahe der Zylinderwand 9, die bei modernen Dieselmotoren mit Direkteinspritzung üblich ist. Dabei ist in Fig. 3 eine Ausführung mit einem Injektor 1 wie in Fig. 2 gezeigt dargestellt.
Die abgewandelte Ausgestaltung mit zwei Injektoren 1, 4 ergibt eine räumliche Orientierung der Einspritzstrahlen von Voreinspritzung 3 und Haupteinspritzung 2 gemäß Fig. 4.
Fig. 5 zeigt in einer weiteren Ausführung exemplarisch einen Kolben 11 mit einer gestuften Kolbenmulde 7,8, die unterschiedliche Geometrien wie Abrundungen und Winkel aufweisen kann. Die Kolbenmulde hat einen tassenförmigen, tief in den Kolben vordringenden zentralen Bereich 8, der eine große Eindringtiefe für die Einspritzstrahlen der Voreinspritzung 3 bereitstellt, und einen tellerförmigen, flachen Bereich 7 größeren Durchmessers für die konventionelle Haupteinspritzung 2.
Die zeitliche Abfolge von Voreinspritzung, Haupteinspritzung und Nacheinspritzung ist wie bei konventionellen Verfahren, wobei die Voreinspritzung immer vor der Haupteinspritzung und diese immer vor der Nacheinspritzung beginnen. Die einzelnen Einspritzphasen können wie üblich zeitlich voneinander gänzlich getrennt ablaufen. Erfindungsgemäß ist jedoch auch eine zeitliche Überschneidung der einzelnen Einspritzphasen möglich.
Räumlich wird bei allen Ausführungen der Erfindung die Voreinspritzung 3 in Brennraumbereiche vorgenommen, die von den Bereichen der nachfolgenden Haupteinspritzung 2 getrennt sind.
Die Erfindung ist nicht auf die Anwendung auf Dieselmotoren beschränkt. Sie läßt sich vielmehr auch auf die heute bekannten Otto-Motoren mit Direkteinspritzung anwenden.
Die in der vorstehenden Beschreibung, den Ansprüchen und den Zeichnungen offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausgestaltungen von Bedeutung sein. MOT Forschungs- und Entwicklungsgesellschaft für Motorentechnik, Optik, Thermodynamik mbH
M31187PCT
Bezugszeichenliste
1 Einspritzeinrichtung
2 Haupteinspritzung
3 Voreinspritzung
4 Einspritzeinrichtung
5 Brennraum
6 zentraler Bereich
7 tellerförmiger Bereich
8 tassenförmiger Bereich
9 Zylinderwand
10 Zylinder
11 Kolben ßl,ßn Kegelwinkel der Einhüllenden für die Haupteinspritzung h Spitzenkegelwinkel der Haupteinspritzung ß3 Spitzenkegelwinkel der Voreinspritzung

Claims

Patentansprüche
1. Brennverfahren einer Brennkraftmaschine, bei der Kraftstoff mittels einer oder mehrerer Einspritzeinrichtungen direkt in den Brennraum (5) eingespritzt wird, wobei der Einspritzvorgang in mindestens zwei Teileinspritzungen (2,3) unterteilt ist, die in unterschiedliche Bereiche (5,6,7,8) des Brennraums erfolgen, dadurch gekennzeichnet, daß eine Voreinspritzung (3) in zentrale Bereiche (6,8) und eine Haupteinspritzung (2) in äußere Bereiche (7) des Brennraums (5) mit freier räumlicher Anordnung der Einspritzstrahlen gerichtet wird.
2. Brennverfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Voreinspritzung (3) mindestens einen Einspritzstrahl aufweist.
3. Brennverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Haupteinspritzung (2) mindestens einen Einspritzstrahl aufweist und daß die Anzahl der Vor- und Haupt-Einspritzstrahlen gleich oder unterschiedlich ist.
4. Brennverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die voreingespritzte Kraftstoffmenge kleiner als die haupteingespritzte Kraftstoffmenge ist.
5. Brennverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß nach der Haupteinspritzung eine Nacheinspritzung in zylinderachsennahe Bereiche (6,8) des Brennraums erfolgt.
6. Brennverfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Einspritzstrahlen kegelförmig mit gleichen oder unterschiedlichen Kegelwinkeln ausgebildet sind.
7. Anwendung eines Brennverfahrens nach einem der Ansprüche 1 bis 6 in einer selbstzündenden Brennkraftkolbenmaschine.
8. Brennkraftmaschine mit Brennraum (5) und einer Einspritzeinrichtung (1,4) zum Einspritzen von Kraftstoff in den Brennraum (5), wobei die Einspritzeinrichtung so ausgebildet ist, daß sie mindestens zwei , während unterschiedlicher Zeiträume erfolgende Einspritzungen (2,3) in jeweils unterschiedliche Bereiche (6,7,8) des Brennraums ermöglicht, nämlich eine Voreinspritzung in einen zentral, insbesondere in einer Kolbenmulde (6, 7, 8), gelegenen Bereich des Brennraums, und eine Haupteinspritzung in einen außerhalb des zentralen Bereiches gelegenen Bereich, der insbesondere nahe einer Zylinderwand (9) liegt.
9. Brennkraftmaschine nach Anspruch 8, dadurch gekennzeichnet, daß die Einspritzeinrichtung mindestens zwei Injektoren (1,4) aufweist, von denen einer (1) für die Voreinspritzung (3) in den zentralen Bereich (6,8) und ein weiterer (4) für die Haupteinspritzung (2) in den außerhalb gelegenen Bereich des Brennraums (5) ausgebildet sind.
10. Brennkraftmaschine nach Anspruch 9, dadurch gekennzeichnet, daß jeder Injektor (1,4) mehrere Düsenlöcher aufweist, die gruppenweise jeweils zu unterschiedlichen Zeitpunkten zum Abgeben von Kraftstoff ansteuerbar und in die genannten unterschiedlichen Bereiche des Brennraums (5) gerichtet sind.
11. Brennkraftmaschine nach Anspruch 8, dadurch gekennzeichnet, daß die Einspritzvorrichtung einen einzigen Injektor (1) aufweist, der über zwei Gruppen von Düsenlöchern verfügt, die jeweils in die genannten unterschiedlichen Bereiche des Brennraums (5) gerichtet und gruppenweise zeitlich voneinander getrennt ansteuerbar sind.
12. Brennkraftmaschine nach Anspruch 11 , dadurch gekennzeichnet, daß die eine Gruppe von Düsenlöchern im wesentlichen radial und die andere Gruppe von Düsenlöchern im wesentlichen axial bezüglich eines Zylinders (10) der Brennkraftmaschine ausgerichtet sind.
13. Brennkraftmaschine nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß der Brennraum (5) in einem Zylinder (10) und/oder einem darin gleitbaren Kolben (11) vorgesehen ist, und daß der Teil des Brennraums im Kolben (11) gestuft mit einem flachen tellerförmigen Bereich (7) für die Haupteinspritzung (2) und mit einem tassenförmigen tiefen Bereich (8) für die Voreinspritzung ausgebildet ist (Fig.6).
EP07723657A 2006-03-27 2007-03-27 Brennverfahren einer brennkraftmaschine und brennkraftmaschine Withdrawn EP1999350A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006014071A DE102006014071B3 (de) 2006-03-27 2006-03-27 Brennverfahren einer Brennkraftmaschine und Brennkraftmaschine
PCT/EP2007/002711 WO2007110232A1 (de) 2006-03-27 2007-03-27 Brennverfahren einer brennkraftmaschine und brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP1999350A1 true EP1999350A1 (de) 2008-12-10

Family

ID=38171109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07723657A Withdrawn EP1999350A1 (de) 2006-03-27 2007-03-27 Brennverfahren einer brennkraftmaschine und brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP1999350A1 (de)
DE (1) DE102006014071B3 (de)
WO (1) WO2007110232A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014601A (zh) * 2012-04-11 2016-10-12 三菱重工业株式会社 二冲程燃气发动机及该发动机用的燃料气体喷射系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058290A1 (de) 2009-12-04 2011-06-09 Vladimir Volchkov Viertaktmotor, Verfahren zu seinem Betrieb und Kraftstoffeinspritzverfahren
DE102011017247A1 (de) 2011-04-07 2014-02-13 Vladimir Volchkov Viertaktmotor und Verfahren zu seinem Betrieb
DE102012011149A1 (de) * 2012-06-05 2013-12-05 Abb Turbo Systems Ag Einspritzsystem für kompressionsgezündete Dieselmotoren
DE102012214261A1 (de) 2012-08-10 2014-05-22 Bayerische Motoren Werke Aktiengesellschaft Brennkraftmaschine mit einem ersten und einem zweiten Injektor
EP2703631B1 (de) * 2012-08-31 2021-08-11 Caterpillar Motoren GmbH & Co. KG Injektorkonfiguration eines Zylinderkopfes eines Verbrennungsmotors mit zweifachem Brennstoff
DE102014015785A1 (de) * 2014-12-05 2016-06-09 Man Diesel & Turbo Se Verfahren zum Betreiben einer Brennkraftmaschine
US10823106B1 (en) 2019-05-13 2020-11-03 Caterpillar Inc. Early pilot lean burn strategy in dual fuel engine using targeted pilot flames
US11359590B1 (en) 2021-05-26 2022-06-14 Caterpillar Inc. Igniter for dual fuel engine having liquid fuel outlet checks and spark ignition source
CN114165329B (zh) * 2021-12-17 2023-05-09 中国船舶集团有限公司第七一一研究所 燃烧室组件、组织燃烧的方法、计算机可读介质、内燃机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414940A (en) * 1981-04-13 1983-11-15 Loyd Robert W Conditioned compression ignition system for stratified charge engines
US4543930A (en) * 1983-11-17 1985-10-01 Southwest Research Institute Staged direct injection diesel engine
CH665453A5 (de) * 1985-01-11 1988-05-13 Sulzer Ag Zylinderdeckel fuer eine kolbenbrennkraftmaschine.
JP3024830B2 (ja) * 1991-09-09 2000-03-27 ヤンマーディーゼル株式会社 直接噴射式ディーゼル機関の燃焼室
US5899389A (en) * 1997-06-02 1999-05-04 Cummins Engine Company, Inc. Two stage fuel injector nozzle assembly
DE19916485C2 (de) * 1999-04-13 2001-10-31 Daimler Chrysler Ag Verfahren zum Betrieb einer Hubkolbenbrennkraftmaschine
GB0021296D0 (en) * 2000-08-30 2000-10-18 Ricardo Consulting Eng A dual mode fuel injector
US6725838B2 (en) * 2001-10-09 2004-04-27 Caterpillar Inc Fuel injector having dual mode capabilities and engine using same
DE10329506A1 (de) * 2003-06-30 2005-01-20 Daimlerchrysler Ag Selbstzündende Brennkraftmaschine
DE10329524A1 (de) * 2003-06-30 2005-01-27 Daimlerchrysler Ag Selbstzündende Brennkraftmaschine
US7243862B2 (en) * 2004-04-07 2007-07-17 Delphi Technologies, Inc. Apparatus and method for mode-switching fuel injector nozzle
FR2871524B1 (fr) * 2004-06-10 2006-09-01 Renault Sas Piston pour un moteur a combustion interne comportant un bol qui comporte deux zones de combustion distinctes et des moyens d'injection associes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007110232A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014601A (zh) * 2012-04-11 2016-10-12 三菱重工业株式会社 二冲程燃气发动机及该发动机用的燃料气体喷射系统
CN106014601B (zh) * 2012-04-11 2019-06-04 三菱重工业株式会社 二冲程燃气发动机及该发动机用的燃料气体喷射系统

Also Published As

Publication number Publication date
DE102006014071B3 (de) 2007-10-25
WO2007110232A1 (de) 2007-10-04

Similar Documents

Publication Publication Date Title
DE102006014071B3 (de) Brennverfahren einer Brennkraftmaschine und Brennkraftmaschine
EP1537316B1 (de) Verfahren zum betrieb einer brennkraftmaschine mit kraftstoffdirekteinspritzung
EP1537320B1 (de) Verfahren zum betrieb einer fremdgezündeten brennkraftmaschine
EP1488091B1 (de) Selbstzündende brennkraftmaschine
EP1180211B1 (de) Verfahren zum einspritzen von kraftstoff und einspritzventil zur durchführung des verfahrens
DE10213025B4 (de) Selbstzündende Brennkraftmaschine
DE10329506A1 (de) Selbstzündende Brennkraftmaschine
EP1608856A1 (de) Brennkraftmaschine mit selbstz ndung
DE19639172A1 (de) Kraftstoff-Direkteinspritzverfahren für eine Dieselbrennkraftmaschine
DE102012203802A1 (de) Fremdgezündete Brennkraftmaschine mit katalytisch beschichteter Einspritzvorrichtung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE19815266B4 (de) Verfahren zur Einspritzung von Kraftstoff in eine Brennkraftmaschine
DE102018000706A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine für ein Kraftfahrzeug
DE102013213749A1 (de) Verfahren und Vorrichtung zur Steuerung eines Viertakt-Verbrennungsmotors
WO2021148190A1 (de) Verfahren zum betreiben einer verbrennungskraftmaschine eines kraftfahrzeugs, insbesondere eines kraftwagens
DE10014553A1 (de) Verfahren zum Betrieb einer direkteinspritzenden Otto-Brennkraftmaschine
WO2011110208A1 (de) Verfahren zum betrieb einer fremdgezündeten brennkraftmaschine
EP2615296A1 (de) Verfahren und Vorrichtung zum Einspritzen von Kraftstoff in eine Brennkammer eines Verbrennungsmotors
DE60217021T2 (de) Verfahren zur Steuerung der Brennstoffeinspritzung einer Brennkraftmaschine mit Direkteinspritzung
EP1491740B1 (de) Verfahren zum Betrieb eines Dieselmotors
DE10320848B4 (de) Verfahren zum Betrieb einer fremdgezündeten Brennkraftmaschine
DE102012018780A1 (de) Kraftstoff-Einspritzsystem einer Brennkraftmaschine
DE102019209756A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor, Kraftstoffinjektor
DE102020100535A1 (de) Verfahren zur Reduzierung der Rußemission eines direkteinspritzenden Dieselmotors
DE102020212697B4 (de) Injektor, Dieselmotor und Kraftfahrzeug
AT526244B1 (de) Verfahren zum Betreiben einer fremdgezündeten Viertakt-Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VELJI, AMIN

Inventor name: WAGNER, UWE,C/O MOT MBH

Inventor name: SPICHER, ULRICH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VELJI, AMIN

Inventor name: SPICHER, ULRICH

Inventor name: WAGNER, UWE

17Q First examination report despatched

Effective date: 20090129

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20100316