EP1994185A2 - Method of integrating a blast furnace with an air gas separation unit - Google Patents

Method of integrating a blast furnace with an air gas separation unit

Info

Publication number
EP1994185A2
EP1994185A2 EP07731629A EP07731629A EP1994185A2 EP 1994185 A2 EP1994185 A2 EP 1994185A2 EP 07731629 A EP07731629 A EP 07731629A EP 07731629 A EP07731629 A EP 07731629A EP 1994185 A2 EP1994185 A2 EP 1994185A2
Authority
EP
European Patent Office
Prior art keywords
air
separation unit
oxygen
blast furnace
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07731629A
Other languages
German (de)
French (fr)
Other versions
EP1994185B1 (en
Inventor
Michel Devaux
Richard Dubettier-Grenier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37229482&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1994185(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to PL07731629T priority Critical patent/PL1994185T3/en
Publication of EP1994185A2 publication Critical patent/EP1994185A2/en
Application granted granted Critical
Publication of EP1994185B1 publication Critical patent/EP1994185B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air

Definitions

  • the present invention relates to a method of integrating at least one blast furnace and at least one air gas separation unit, wherein blast furnace and at least one blast furnace separation unit.
  • air gases are supplied with air by at least n + 1 compressors with n ⁇ 1, and preferably> 1.
  • the blast furnace is the most common equipment for producing cast iron mainly composed of iron (from 92 to 95% by weight), carbon (from 3 to 5% by weight), and other elements in small quantities such as silicon, manganese, phosphorus, sulfur etc.
  • This cast iron is then converted into steel in an oxygen converter by injecting oxygen into the cast iron in the liquid state allowing oxidation, especially of carbon.
  • the steel obtained will then be refined and put in the desired shade (silicon, manganese etc.) before being poured into ingots, slabs, blooms, or billets.
  • desired shade silicon, manganese etc.
  • a blast furnace is mainly supplied with iron ore (usually 1.3 to 1.6 tonnes per tonne of cast iron produced) in the form of agglomerates or "pellets" (in English), which are charged by the blast furnace.
  • blast furnace coke (between 250 and 500 kg per ton of cast iron) also charged by the top, pulverized coal and injected at the level of the tuyeres, with an injected quantity which can vary between 0 and 250 kg per ton of melting, or any other fuel such as natural gas, fuel oil, coke oven gas, plastics, and air that is still called “wind” for a flow rate that may vary from 800 to 1200 Nm 3 per tonne of cast iron produced enriched or not with oxygen, this enrichment may vary from 0 to 15% by volume, or from 0 to 150 Nm 3 of oxygen per tonne of cast iron produced.
  • the gas or gas mixture resulting from the blast furnace is generally recovered and used for its thermal value, either in direct exchange to lower its temperature and to increase that of the gas or the fluid with which it is in heat exchange, either by combustion, by example CO with oxygen to produce additional calories.
  • the blast furnace wind enriched or not with oxygen, is injected at the base of the blast furnace at nozzles which are distributed around the circumference of the blast furnace.
  • This wind is injected at a pressure that can vary from 1 to 7xlO 5 Pa., To overcome the pressure drop in the blast furnace and the pressure existing above the load in the blast furnace.
  • the required airflows are very high, ranging from 5000 Nm 3 / hour for very small blast furnaces (for example, blast furnaces that we see in China today) up to 500000 Nm 3 for very large industrial blast furnaces.
  • blower or more being dedicated to a blast furnace.
  • blast furnaces of at least n + 1 and at times n + 2 blowers are generally available for continuous production. melting when any of these blowers eventually fails (or must be shut down for maintenance or any other cause).
  • the redundant blowers also called blower seconds
  • blower seconds relative to the number of blast furnaces are generally mounted next to the other blowers in operation, and are in the waiting position, ready to start so as to ensure the continuity of the blast furnace. production of cast iron, even when detecting a pressure and / or air flow on a blower lower than a pre-determined value, below which it is necessary to replace this blower by one of the blowers waiting.
  • one or more high capacity oxygen production typically cryogenic separation of the air producing an oxygen of industrial purity, that is to say generally greater than 80% vol. preferably greater than 90% by volume, more preferably greater than 95% by volume, and sometimes of purity greater than 99% by volume.
  • the increase in oxygen requirements at a smelter production site may occur, either in the case of increasing the smelting output of existing blast furnaces or by adding one or more new blast furnaces. at the site, either by increasing the specific oxygen consumption in each blast furnace as a result, for example, of the addition of more fuel such as coal, natural gas, fuel oil, coke oven gas, plastics, etc. (This addition is usually done at the level of the nozzles).
  • This increase can result from the use of oxygen for another technical purpose, such as for example the air enrichment dedicated to the preheating of the stoves.
  • the increase in oxygen requirements can lead to the construction of a new oxygen production unit, be it a cryogenic air separation unit, or by so-called VPSA processes.
  • each blast furnace being powered by at least one of at least one of the n + 1 compressors available, at least one of the compressors that do not feed a blast furnace (hereinafter referred to as the second compressor) is used.
  • the second compressor for supplying the air separation unit while, as soon as one of the compressors (hereinafter referred to as the first compressor) feeding a blast furnace produces an air flow rate lower than a predetermined flow rate D min , said first compressor is disconnected from said blast furnace, and the second compressor is connected to said blast furnace and preferably disconnected from the air separation unit.
  • the flow rate D min typically corresponds to the minimum flow required for the blast furnace to which it is connected to function properly.
  • blowers or compressors are used, when the other blowers (first compressors) are in normal operating condition and normally supply their respective blast furnace, to feed the separation unit with compressed air.
  • air gases generally with a small additional compressor so as to increase the pressure of the air supplied to the air gas separation unit to a value of at least about 5x10 5 kPa and / or to supplement the volume of air supplied to the separation unit
  • the first compressor having a problem is stopped and replace it by the compressor charged in the meantime to supply compressed air to the air separation unit, this unit being, during this time, put in waiting period, until a (other) second compressor r become available (after repair of the first compressor) to supply compressed air to the air separation unit.
  • a complementary compressor, dedicated to the air gas separation unit is provided so as to provide at least a portion of the compressed air necessary for this unit and / or the necessary overpressure.
  • a compressor is said to be “connected” or “connected” to a blast furnace or an air separation unit when said compressor supplies the blast furnace, respectively the gas separation unit. air in compressed air.
  • a compressor is said to be “disconnected” from a blast furnace or an air separation unit when it does not supply the blast furnace, respectively the gas separation unit. air in compressed air.
  • one or more blowers present on the site and provided (s) for the compression of the air or wind sent to the blast furnace, in particular blowers pending, can be used to compress at least a part of the air necessary for the manufacture of oxygen by one or more air gas separation units.
  • the characteristics of one or more blowers initially designed to work in operating ranges adapted to the specific pressure and flow requirements for the blast furnace can be adapted to the specific pressure and flow requirements for the blast furnace production unit. 'oxygen.
  • Compressed air at a pressure in all cases greater than 2 bar absolute, produced by one of the blowers initially dedicated to a blast furnace, may be sent to the oxygen production unit or the blast furnace.
  • the air of this additional blower may then be sent back to the blast furnace, the step of the oxygen production unit being stopped or adapted to a degraded step, compatible with the desired blast furnace step.
  • a piping system may be provided for sending compressed air to one or other of the destinations (blast furnace or air separation unit).
  • a control system will be used to optimize the adaptation, while the range of operation of the fan or blowers initially in the waiting position will be studied to allow flexibility of adaptation to different possible situations.
  • the operation of the unit for separating gases from the air and producing oxygen may be totally stopped if the need for smelting by the blast furnaces requires it and is chosen by the operator as a priority.
  • the unit for separating the gases from the air produces oxygen with a purity higher than 90% vol. (Also called impure oxygen) and preferably at a purity higher than 95% by volume of oxygen.
  • a complementary compressor dedicated to the air gas separation unit to provide a portion of the air required for the air separation unit (if a large amount of air is necessary, too important for the capacity of a blower).
  • this additional compressor can be used to operate the separation unit when the blower (second compressor) will be recovered by a blast furnace. This additional compressor can also be used as a replacement blower in case of two simultaneous failures, in which case the separation unit will be stopped).
  • the oxygen produced by the air-gas separation unit may be intended in part for the blast furnaces or partly for other facilities generally present on site such as converters. Thus, some of the oxygen produced by the gas separation unit the air is used in at least one of the converters present at the integration site.
  • the air gas separation unit has two modes of operation, a so-called regular operating mode and a so-called degraded operation mode.
  • the air separation unit operates in a regular operating mode when it is supplied with air by the second compressor, and in degraded operating mode when the second compressor is connected to a blast furnace, that is, during the waiting period of the air separation unit.
  • the unit for separating the gases from the air produces oxygen of purity greater than 90% vol. in regular operation mode and purity less than or equal to 90% in degraded operation mode.
  • the air gas separation unit produces oxygen of purity greater than 95% vol. in regular operation mode and less than or equal to 95% in degraded operation mode.
  • the air gas separation unit may also generate a first oxygen flow rate in a regular operating mode and a second oxygen flow rate lower than the first flow rate in degraded operation mode.
  • the unit for separating the gases from the air can supply oxygen and in particular supply oxygen to the compressed air lines connected to the blast furnace, even during the waiting period.
  • the separation unit comprises ducts (18, 19) and valves (7, 8, 13) making it possible to connect the second compressor (16) to at least one of the blast furnace air supply ducts (5, 6) or to the gas separation unit in the air (20), either to both.
  • the blast furnaces respectively 1 and 2 are respectively connected to the compressors 3 and 4 via the compressed air supply lines 5 and 6.
  • Compressors 3 and 4 are the blowers normally used to power their blast furnaces respectively.
  • This additional compressor 16 is connected by the supply line 19 and the valve 13 to the air separation unit 20, on the one hand, and by the line 18 to the valves 7 and 8, themselves connected respectively to the supply lines 5 and 6.
  • the air gas separation unit 20 is connected respectively by the supply lines 21 and 22 to the valves 14 and 15 which respectively supply the lines 6 and 5.
  • the replacement compressor 16 supplies via the valve 13 in the open position, the unit for separating the gases from the air which itself delivers its oxygen through the valves respectively 14 and 15 to the lines of blast furnace 6 and 5 so as to enrich this wind with the desired amount of oxygen.
  • the valve 13 which was open is then closed or partially closed in the line 19, the detectors 9 and / or 11 simultaneously controlling the opening of the valves 7 and / or 8 (normally closed during the "normal" operating period) so as to be able to supply compressed air to the lines 5 and / or 6 through these valves 7 and 8.
  • valves 14 and 15 will be either completely closed (preferential mode) or partially closed if the air separation unit 20 can continue to operate. degraded mode.

Abstract

The invention relates to a method of integrating a plurality of blast furnaces with a plurality of air gas separation units, in which the replacement blower available on the blast furnace site is used to feed compressed air into an air gas separation unit making it possible to enrich the blast-furnace blast with oxygen, this unit being stopped when one of the blowers of the blast furnaces has to be replaced with the blower used by the air gas separation unit.

Description

Procédé d'intégration d'un haut-fourneau et d'une unité de séparation de gaz de l'air Process for integrating a blast furnace and an air gas separation unit
La présente invention concerne un procédé d' intégration d'au moins un haut-fourneau et d'au moins une unité de séparation des gaz de l'air, procédé dans lequel n haut- fourneaux et d'au moins une unité de séparation des gaz de l'air sont alimentés en air par au moins n+1 compresseurs avec n≥ 1, et de préférence > 1.The present invention relates to a method of integrating at least one blast furnace and at least one air gas separation unit, wherein blast furnace and at least one blast furnace separation unit. air gases are supplied with air by at least n + 1 compressors with n≥ 1, and preferably> 1.
Le haut-fourneau est l'équipement le plus répandu pour produire de la fonte essentiellement composée de fer (de 92 à 95 % en poids) , de carbone (de 3 à 5 % en poids) , et d'autres éléments en faible quantité tels que le silicium, le manganèse, le phosphore, le souffre etc..The blast furnace is the most common equipment for producing cast iron mainly composed of iron (from 92 to 95% by weight), carbon (from 3 to 5% by weight), and other elements in small quantities such as silicon, manganese, phosphorus, sulfur etc.
Cette fonte est ensuite convertie en acier dans un convertisseur à oxygène par injection d'oxygène dans la fonte à l'état liquide permettant une oxydation notamment du carbone .This cast iron is then converted into steel in an oxygen converter by injecting oxygen into the cast iron in the liquid state allowing oxidation, especially of carbon.
L'acier obtenu sera ensuite affiné et mis à la nuance désirée (silicium, manganèse etc..) avant d'être coulé en lingots, en brames, en blooms, ou en billettes) .The steel obtained will then be refined and put in the desired shade (silicon, manganese etc.) before being poured into ingots, slabs, blooms, or billets.
Un haut-fourneau est essentiellement alimenté par du minerai de fer (en général de 1,3 à 1,6 tonnes par tonne de fonte produite) sous forme d'agglomérés ou de « pellets » (en langue anglaise) enfournés par le gueulard du haut- fourneau, du coke (entre 250 et 500 kg par tonne de fonte) également enfourné par le gueulard, du charbon pulvérisé et injecté au niveau des tuyères, avec une quantité injectée qui peut varier entre 0 et 250 kg par tonne de fonte, ou tout autre combustible tel que du gaz naturel, du fioul, du gaz de cokerie, des matières plastiques, et de l'air que l'on dénomme encore « vent » pour un débit qui peut varier de 800 à 1200 Nm3 par tonne de fonte produite enrichie ou non en oxygène, cet enrichissement pouvant varier de 0 à 15 % en volume environ, soit de 0 à 150 Nm3 d'oxygène par tonne de fonte produite.A blast furnace is mainly supplied with iron ore (usually 1.3 to 1.6 tonnes per tonne of cast iron produced) in the form of agglomerates or "pellets" (in English), which are charged by the blast furnace. blast furnace, coke (between 250 and 500 kg per ton of cast iron) also charged by the top, pulverized coal and injected at the level of the tuyeres, with an injected quantity which can vary between 0 and 250 kg per ton of melting, or any other fuel such as natural gas, fuel oil, coke oven gas, plastics, and air that is still called "wind" for a flow rate that may vary from 800 to 1200 Nm 3 per tonne of cast iron produced enriched or not with oxygen, this enrichment may vary from 0 to 15% by volume, or from 0 to 150 Nm 3 of oxygen per tonne of cast iron produced.
Grâce à ce haut-fourneau, on produit principalement de la fonte, du laitier (de 200 à 400 kg par tonne de fonte produite) , laitier qui peut être ensuite valorisé dans différentes applications, des gaz, contenant notamment de l'azote (40 à 60 % en volume), du monoxyde de carbone COThanks to this blast furnace, we mainly produce cast iron, slag (from 200 to 400 kg per tonne of cast iron produced), slag which can then be recovered in different applications, gases, notably containing nitrogen (40 60% by volume), carbon monoxide CO
(de 20 à 25 % en volume) , du dioxyde de carbone CO2 (de 20 à 25 % en volume) et de l'hydrogène (de 1 à 7 % en volume) .(20 to 25% by volume), carbon dioxide CO2 (20 to 25% by volume) and hydrogen (1 to 7% by volume).
Il peut également exister divers autres éléments en teneur inférieure à 1 % .There may also be various other elements in content of less than 1%.
Le gaz ou mélange de gaz issu du haut-fourneau est généralement récupéré et utilisé pour sa valeur thermique, soit en échange direct pour abaisser sa température et augmenter celle du gaz ou du fluide avec lequel il est en échange thermique, soit par combustion, par exemple CO avec de l'oxygène afin de produire des calories additionnelles.The gas or gas mixture resulting from the blast furnace is generally recovered and used for its thermal value, either in direct exchange to lower its temperature and to increase that of the gas or the fluid with which it is in heat exchange, either by combustion, by example CO with oxygen to produce additional calories.
Le vent du haut-fourneau enrichi ou non en oxygène est injecté à la base du haut-fourneau au niveau de tuyères qui sont réparties tout autour de la circonférence du haut- fourneau.The blast furnace wind, enriched or not with oxygen, is injected at the base of the blast furnace at nozzles which are distributed around the circumference of the blast furnace.
Ce vent est injecté sous une pression qui peut varier de 1 à 7xlO5Pa., pour vaincre la perte de charge dans le haut- fourneau ainsi que la pression existant au-dessus de la charge dans le haut-fourneau. Les débits d'air nécessaires sont très élevés, variant de 5000 Nm3/heure pour des haut-fourneaux très petits (par exemple des haut-fourneaux que l'on voit aujourd'hui en Chine notamment) jusqu'à 500000 Nm3 pour de très gros haut- fourneaux industriels.This wind is injected at a pressure that can vary from 1 to 7xlO 5 Pa., To overcome the pressure drop in the blast furnace and the pressure existing above the load in the blast furnace. The required airflows are very high, ranging from 5000 Nm 3 / hour for very small blast furnaces (for example, blast furnaces that we see in China today) up to 500000 Nm 3 for very large industrial blast furnaces.
Pour amener l'air ambiant à cette pression, on utilise des compresseurs d'air ou « soufflantes » très puissants, une soufflante (ou plusieurs) étant dédiée à un haut-fourneau.To bring the ambient air to this pressure, it uses air compressors or "blowers" very powerful, a blower (or more) being dedicated to a blast furnace.
Dans une usine produisant de la fonte et qui possède plus d'un haut-fourneaux, on dispose généralement pour n haut- fourneaux de n+1 au moins soufflantes, et quelques fois de n+2 soufflantes afin d'assurer une production continue de fonte lorsque l'une de ces soufflantes tombe éventuellement en panne (ou doit être arrêtée pour maintenance ou toute autre cause) .In a factory producing cast iron and having more than one blast furnace, blast furnaces of at least n + 1 and at times n + 2 blowers are generally available for continuous production. melting when any of these blowers eventually fails (or must be shut down for maintenance or any other cause).
En effet, les soufflantes redondantes (encore appelées secondes soufflantes) par rapport au nombre de haut- fourneaux sont généralement montées à côté des autres soufflantes en fonctionnement, et sont en position d'attente, prêtes à démarrer de manière à assurer la continuité de la production de fonte, même lorsqu'on détecte une pression et/ou débit d'air sur une soufflante inférieure à une valeur pré-déterminée, en deçà de laquelle il est nécessaire de remplacer cette soufflante par l'une des soufflantes en attente.In fact, the redundant blowers (also called blower seconds) relative to the number of blast furnaces are generally mounted next to the other blowers in operation, and are in the waiting position, ready to start so as to ensure the continuity of the blast furnace. production of cast iron, even when detecting a pressure and / or air flow on a blower lower than a pre-determined value, below which it is necessary to replace this blower by one of the blowers waiting.
D'une manière générale, pour l'enrichissement en oxygène du vent d'air, on prévoit sur le site de production de fonte, à proximité des haut-fourneaux, ou reliés à ceux-ci par des canalisations, une ou plusieurs unités de production d'oxygène de grande capacité, généralement des unités de séparation cryogéniques de l'air produisant un oxygène de pureté industrielle, c'est à dire généralement supérieure à 80 % vol. de préférence supérieure à 90 % vol., plus préférentiellement supérieure à 95 % vol., et quelques fois de pureté supérieure à 99 % vol.In general, for oxygen enrichment of the air wind, at the melting site, near the blast furnaces, or connected to them by pipes, one or more high capacity oxygen production, typically cryogenic separation of the air producing an oxygen of industrial purity, that is to say generally greater than 80% vol. preferably greater than 90% by volume, more preferably greater than 95% by volume, and sometimes of purity greater than 99% by volume.
L'augmentation des besoins en oxygène d'un site de production de fonte peut intervenir, soit dans le cas de l'augmentation de la production de fonte dans les haut- fourneaux existants, soit par ajout d'un ou plusieurs nouveaux haut-fourneaux sur le site, soit par augmentation de la consommation spécifique d'oxygène dans chaque haut fourneau par suite, par exemple, de l'ajout de plus de combustible tel que le charbon, le gaz naturel, le fioul, le gaz de cokerie, les matières plastiques, etc.. (Cet ajout se fait généralement au niveau des tuyères) . Cette augmentation peut résulter de l'utilisation d'oxygène pour un autre objectif technique, tel que par exemple l'enrichissement d'air dédié au préchauffage des cowpers .The increase in oxygen requirements at a smelter production site may occur, either in the case of increasing the smelting output of existing blast furnaces or by adding one or more new blast furnaces. at the site, either by increasing the specific oxygen consumption in each blast furnace as a result, for example, of the addition of more fuel such as coal, natural gas, fuel oil, coke oven gas, plastics, etc. (This addition is usually done at the level of the nozzles). This increase can result from the use of oxygen for another technical purpose, such as for example the air enrichment dedicated to the preheating of the stoves.
Dans ce cas, l'augmentation des besoins en oxygène peut conduire à la construction d'une nouvelle unité de production d'oxygène, que ce soit une unité de séparation cryogénique de l'air, ou par des procédés dits de VPSA.In this case, the increase in oxygen requirements can lead to the construction of a new oxygen production unit, be it a cryogenic air separation unit, or by so-called VPSA processes.
Lorsqu'il est nécessaire de faire un tel investissement d'une nouvelle unité de séparation des gaz de l'air, compte tenu du coût élevé d'une telle unité, il peut s'avérer nécessaire ou préférable d'utiliser des éléments existants déjà sur le site.When it is necessary to make such an investment in a new air separation unit, given the high cost of such a unit, it may be necessary or preferable to use existing elements already in place. on the site.
Le procédé selon l'invention permet de répondre à ce problème ainsi posé. II est caractérisé en ce que, chaque haut fourneau étant alimenté par au moins un compresseur parmi les n+1 au moins compresseurs disponibles, au moins un des compresseurs qui n'alimentent pas un haut fourneau (ci-après appelé second compresseur) est utilisé pour alimenter l'unité de séparation des gaz de l'air tandis que, dès que l'un des compresseurs (ci-après appelé premier compresseur) alimentant un haut-fourneau produit un débit d'air inférieur à un débit prédéterminé Dmin, ledit premier compresseur est déconnecté dudit haut-fourneau, et le second compresseur est connecté au dit haut-fourneau et de préférence déconnecté de l'unité de séparation des gaz de l'air.The method according to the invention makes it possible to respond to this problem thus posed. It is characterized in that, each blast furnace being powered by at least one of at least one of the n + 1 compressors available, at least one of the compressors that do not feed a blast furnace (hereinafter referred to as the second compressor) is used. for supplying the air separation unit while, as soon as one of the compressors (hereinafter referred to as the first compressor) feeding a blast furnace produces an air flow rate lower than a predetermined flow rate D min , said first compressor is disconnected from said blast furnace, and the second compressor is connected to said blast furnace and preferably disconnected from the air separation unit.
Le débit Dmin correspond typiquement au débit minimum requis pour que le haut-fourneau auquel il est relié fonctionne correctement .The flow rate D min typically corresponds to the minimum flow required for the blast furnace to which it is connected to function properly.
De cette manière, on utilise une des soufflantes ou compresseurs disponibles (second compresseur) , lorsque les autres soufflantes (premiers compresseurs) sont en état de marche normale et alimentent normalement leur haut-fourneau respectif, pour alimenter en air comprimé l'unité de séparation des gaz de l'air (avec généralement un petit compresseur supplémentaire de manière à augmenter la pression de l'air fourni à l'unité de séparation de gaz de l'air jusqu'à une valeur d'au moins 5xlO5 kPa environ et/ou pour compléter le volume d'air fourni à l'unité de séparation) et, lorsqu'un problème est détecté au niveau de l'un des premiers compresseurs alimentant le haut-fourneau, on arrête le premier compresseur ayant un problème et on le remplace par le compresseur chargé entre-temps d'alimenter en air comprimé l'unité de séparation des gaz de l'air, cette unité étant, pendant ce temps là, mise en période d'attente, jusqu'à ce qu'un (autre) second compresseur devienne disponible (après réparation du premier compresseur) pour alimenter en air comprimé l'unité de séparation des gaz de l'air. De préférence, un compresseur complémentaire, dédié à l'unité de séparation des gaz de l'air est prévu de manière à fournir une partie au moins de l'air comprimé nécessaire à cette unité et/ou la surpression nécessaire.In this way, one of the available blowers or compressors (second compressor) is used, when the other blowers (first compressors) are in normal operating condition and normally supply their respective blast furnace, to feed the separation unit with compressed air. air gases (generally with a small additional compressor so as to increase the pressure of the air supplied to the air gas separation unit to a value of at least about 5x10 5 kPa and / or to supplement the volume of air supplied to the separation unit) and, when a problem is detected at one of the first compressors supplying the blast furnace, the first compressor having a problem is stopped and replace it by the compressor charged in the meantime to supply compressed air to the air separation unit, this unit being, during this time, put in waiting period, until a (other) second compressor r become available (after repair of the first compressor) to supply compressed air to the air separation unit. Preferably, a complementary compressor, dedicated to the air gas separation unit is provided so as to provide at least a portion of the compressed air necessary for this unit and / or the necessary overpressure.
Dans le présent contexte, un compresseur est dit « connecté » ou « relié » à un haut-fourneau ou à une unité de séparation des gaz de l'air quand ledit compresseur alimente le haut-fourneau, respectivement l'unité de séparation des gaz de l'air en air comprimé. De manière analogue, un compresseur est dit « déconnecté » d'un haut- fourneau ou d'une unité de séparation des gaz de l'air quand il n'alimente pas le haut-fourneau, respectivement l'unité de séparation des gaz de l'air en air comprimé.In the present context, a compressor is said to be "connected" or "connected" to a blast furnace or an air separation unit when said compressor supplies the blast furnace, respectively the gas separation unit. air in compressed air. Similarly, a compressor is said to be "disconnected" from a blast furnace or an air separation unit when it does not supply the blast furnace, respectively the gas separation unit. air in compressed air.
Selon le débit d'air nécessaire pour le haut-fourneau et une unité de séparation des gaz de l'air, et le débit maximum que peut fournir la soufflante (second compresseur) disponible, il sera possible, dans certaines circonstances, de continuer à faire fonctionner l'unité de séparation des gaz de l'air pendant la période d'attente, avec un débit réduit d'air comprimé, (diminué du débit nécessaire au haut-fourneau auquel cette soufflante est maintenant raccordée) .Depending on the airflow required for the blast furnace and an air separation unit, and the maximum flow rate that can be provided by the available blower (second compressor), it will be possible under certain circumstances to continue to operating the air separation unit during the standby period with a reduced flow of compressed air (minus the flow required for the blast furnace to which this blower is now connected).
Différentes variantes de l'invention sont possibles : une ou plusieurs soufflantes présentes sur le site et prévue (s) pour la compression de l'air ou vent envoyé au haut-fourneau, notamment les soufflantes en attente, peuvent être utilisées pour comprimer au moins une partie de l'air nécessaire à la fabrication de l'oxygène par une ou des unités de séparation des gaz d'air. Les caractéristiques de l'une ou des soufflantes initialement prévues pour travailler dans des plages de fonctionnement adaptées aux besoins propres de pression et de débit pour le haut-fourneau pourront être adaptées aux besoins propres de pression et de débit pour l'unité de production d'oxygène.Different variants of the invention are possible: one or more blowers present on the site and provided (s) for the compression of the air or wind sent to the blast furnace, in particular blowers pending, can be used to compress at least a part of the air necessary for the manufacture of oxygen by one or more air gas separation units. The characteristics of one or more blowers initially designed to work in operating ranges adapted to the specific pressure and flow requirements for the blast furnace can be adapted to the specific pressure and flow requirements for the blast furnace production unit. 'oxygen.
L'air comprimé à une pression dans tous les cas supérieure à 2 bars absolus, produit par l'une des soufflantes initialement dédiée à un haut-fourneau, pourra être envoyé à l'unité de production d'oxygène ou au haut-fourneau.Compressed air at a pressure in all cases greater than 2 bar absolute, produced by one of the blowers initially dedicated to a blast furnace, may be sent to the oxygen production unit or the blast furnace.
En marche « normale », c'est à dire lorsque toutes les soufflantes sont en état de marche, l'air de la soufflante en attente (second compresseur) sera intégralement ou en partie seulement, envoyé à l'entrée de l'unité de séparation des gaz de l'air.In "normal" mode, that is to say when all the blowers are in working order, the air of the blower waiting (second compressor) will be entirely or only partially, sent to the entrance of the unit of separation of gases from the air.
Par contre, en cas d'urgence, c'est à dire lorsqu'un nombre insuffisant de soufflantes sera en état de marche normale pour assurer l'injection du vent dans les haut-fourneaux, l'air de cette soufflante additionnelle pourra être alors envoyé de nouveau au haut-fourneau, la marche de l'unité de production d'oxygène étant stoppée ou adaptée à une marche dégradée, compatible avec la marche souhaitée des haut- fourneaux.On the other hand, in case of emergency, that is to say when an insufficient number of blowers will be in normal operating condition to ensure the injection of the wind into the blast furnaces, the air of this additional blower may then be sent back to the blast furnace, the step of the oxygen production unit being stopped or adapted to a degraded step, compatible with the desired blast furnace step.
On pourra prévoir un système de canalisations permettant d'envoyer l'air comprimé sur l'une ou l'autre des destinations (haut-fourneau ou unité de séparation des gaz de l'air) .A piping system may be provided for sending compressed air to one or other of the destinations (blast furnace or air separation unit).
De préférence, on utilisera un système de régulation pour optimiser l'adaptation, tandis que la plage de fonctionnement de la ou des soufflantes initialement en position d'attente sera étudié pour permettre une souplesse d'adaptation aux différentes situations possibles.Preferably, a control system will be used to optimize the adaptation, while the range of operation of the fan or blowers initially in the waiting position will be studied to allow flexibility of adaptation to different possible situations.
La marche de l'unité de séparation des gaz de l'air et produisant de l'oxygène pourra être totalement arrêtée si le besoin de production de fonte par les haut-fourneaux le requiert et est choisi par l'opérateur comme étant prioritaire .The operation of the unit for separating gases from the air and producing oxygen may be totally stopped if the need for smelting by the blast furnaces requires it and is chosen by the operator as a priority.
De préférence, l'unité de séparation des gaz de l'air produit de l'oxygène à une pureté supérieure à 90 % vol. (dit encore oxygène impur) et préférentiellement à une pureté supérieure à 95 % en volume d'oxygène.Preferably, the unit for separating the gases from the air produces oxygen with a purity higher than 90% vol. (Also called impure oxygen) and preferably at a purity higher than 95% by volume of oxygen.
De préférence également, on prévoira un compresseur complémentaire dédié à l'unité de séparation des gaz de l'air afin de fournir une partie de l'air nécessaire à l'unité de séparation des gaz de l'air (si une forte quantité d'air est nécessaire, trop importante pour la capacité d'une soufflante) . En outre, ce compresseur complémentaire pourra être utilisé pour faire fonctionner l'unité de séparation lorsque la soufflante (second compresseur) sera récupérée par un haut-fourneau. Ce compresseur complémentaire pourra être également utilisé comme soufflante de remplacement en cas de deux pannes simultanées, auquel cas l'unité de séparation sera arrêtée) .Also preferably, there will be provided a complementary compressor dedicated to the air gas separation unit to provide a portion of the air required for the air separation unit (if a large amount of air is necessary, too important for the capacity of a blower). In addition, this additional compressor can be used to operate the separation unit when the blower (second compressor) will be recovered by a blast furnace. This additional compressor can also be used as a replacement blower in case of two simultaneous failures, in which case the separation unit will be stopped).
L'oxygène produit par l'unité de séparation des gaz de l'air pourra être destiné en partie aux haut-fourneaux ou en partie à d'autres installations généralement présentes sur le site comme les convertisseurs. Ainsi, une partie de l'oxygène produit par l'unité de séparation des gaz de l'air est utilisée dans au moins un des convertisseurs présents sur le site d'intégration.The oxygen produced by the air-gas separation unit may be intended in part for the blast furnaces or partly for other facilities generally present on site such as converters. Thus, some of the oxygen produced by the gas separation unit the air is used in at least one of the converters present at the integration site.
Selon une variante, l'unité de séparation des gaz de l'air présente deux modes de fonctionnement, un mode d'opération dit régulier et un mode d'opération dit dégradé.According to one variant, the air gas separation unit has two modes of operation, a so-called regular operating mode and a so-called degraded operation mode.
Typiquement, l'unité de séparation des gaz de l'air fonctionne en mode d'opération régulier quand elle est alimentée en air par le second compresseur, et en mode d'opération dégradé quand le second compresseur est connecté à un haut-fourneau, c'est à dire pendant la période d'attente de l'unité de séparation des gaz de l'air.Typically, the air separation unit operates in a regular operating mode when it is supplied with air by the second compressor, and in degraded operating mode when the second compressor is connected to a blast furnace, that is, during the waiting period of the air separation unit.
Selon une première forme de réalisation, l'unité de séparation des gaz de l'air produit de l'oxygène de pureté supérieure à 90 % vol. en mode d'opération régulier et de pureté inférieure ou égale à 90 % en mode d'opération dégradée. Selon une autre forme de mise en œuvre, l'unité de séparation des gaz de l'air produit de l'oxygène de pureté supérieure à 95 % vol. en mode d'opération régulier et inférieure ou égale à 95 % en mode d'opération dégradée. L'unité de séparation des gaz de l'air peut également générer un premier débit d' oxygène en mode d' opération régulier et un deuxième débit d'oxygène inférieur au premier débit en mode d'opération dégradé.According to a first embodiment, the unit for separating the gases from the air produces oxygen of purity greater than 90% vol. in regular operation mode and purity less than or equal to 90% in degraded operation mode. According to another form of implementation, the air gas separation unit produces oxygen of purity greater than 95% vol. in regular operation mode and less than or equal to 95% in degraded operation mode. The air gas separation unit may also generate a first oxygen flow rate in a regular operating mode and a second oxygen flow rate lower than the first flow rate in degraded operation mode.
Ainsi, l'unité de séparation des gaz de l'air peut fournir de l'oxygène et en particulier alimenter en oxygène les canalisations d'air comprimé reliées au haut-fourneau, même pendant la période d'attente.Thus, the unit for separating the gases from the air can supply oxygen and in particular supply oxygen to the compressed air lines connected to the blast furnace, even during the waiting period.
Selon une autre variante, l'unité de séparation comporte des canalisations (18, 19) et des vannes (7, 8, 13) permettant de relier le second compresseur (16) soit à l'une au moins des canalisations (5, 6) d'alimentation en air des haut-fourneaux, soit à l'unité de séparation des gaz dans l'air (20), soit au deux.According to another variant, the separation unit comprises ducts (18, 19) and valves (7, 8, 13) making it possible to connect the second compressor (16) to at least one of the blast furnace air supply ducts (5, 6) or to the gas separation unit in the air (20), either to both.
L'invention sera mieux comprise à l'aide de l'exemple de réalisation suivant décrit sur la figure unique qui représente un exemple de réalisation de l'invention à l'aide de deux haut-fourneaux, une unité de séparation des gaz de l'air et trois compresseurs.The invention will be better understood with the aid of the following example of embodiment described in the single figure which represents an exemplary embodiment of the invention using two blast furnaces, a gas separation unit of the invention. air and three compressors.
Les haut-fourneaux respectivement 1 et 2 sont reliés respectivement aux compresseurs 3 et 4 par l'intermédiaire des lignes d'alimentation en air comprimé 5 et 6.The blast furnaces respectively 1 and 2 are respectively connected to the compressors 3 and 4 via the compressed air supply lines 5 and 6.
Sur la ligne 5, on retrouve un capteur de débit 9 mesurant le débit minimum sur la ligne 5 et un capteur de débit 10 régulant le débit de l'air comprimé du compresseur 3.On line 5, there is a flow sensor 9 measuring the minimum flow on line 5 and a flow sensor 10 regulating the flow of compressed air of compressor 3.
On retrouve la même fonction avec les détecteurs 11 de débit minimum sur la ligne 6 et 12 de régulation du compresseur 4.We find the same function with the detectors 11 of minimum flow on the line 6 and 12 of the compressor 4 control.
Les compresseurs 3 et 4 sont les soufflantes normalement utilisées pour alimenter respectivement leurs haut- fourneaux.Compressors 3 and 4 are the blowers normally used to power their blast furnaces respectively.
Sur le site, on dispose d'un compresseur ou soufflante supplémentaire destiné à venir palier les défaillances des compresseurs 3 ou 4.On the site, there is an additional compressor or blower intended to overcome the failures of compressors 3 or 4.
Ce compresseur supplémentaire 16 est relié par la ligne alimentation 19 et la vanne 13 à l'unité de séparation des gaz de l'air 20, d'une part, et par la ligne 18 aux vannes 7 et 8, elles-mêmes reliées respectivement aux lignes d'alimentation 5 et 6.This additional compressor 16 is connected by the supply line 19 and the valve 13 to the air separation unit 20, on the one hand, and by the line 18 to the valves 7 and 8, themselves connected respectively to the supply lines 5 and 6.
Sur la ligne d'alimentation 19, on retrouve un capteur de débit 17 chargé de réguler le débit d'air envoyé à l'unité de séparation des gaz de l'air 20 par le compresseur 16 lorsque celui-ci est en fonctionnement.On the supply line 19, there is a flow sensor 17 responsible for regulating the air flow sent to the air separation unit 20 by the compressor 16 when the latter is in operation.
L'unité de séparation des gaz de l'air 20 est reliée respectivement par les lignes d'alimentation 21 et 22 aux vannes 14 et 15 qui alimentent respectivement les lignes 6 et 5.The air gas separation unit 20 is connected respectively by the supply lines 21 and 22 to the valves 14 and 15 which respectively supply the lines 6 and 5.
Le fonctionnement de ce système est le suivant : en fonctionnement normal, c'est à dire lorsque les compresseurs 3 et 4 fonctionnent normalement, c'est à dire que le débit de l'air envoyé respectivement aux haut- fourneaux 1 et 2 est supérieur au minimum requis pour le fonctionnement normal de ces haut-fourneaux, et mesuré respectivement par les détecteurs 9 et 11, les vannes 14 et 15 sont en position ouverte ainsi que la vanne 13.The operation of this system is as follows: in normal operation, that is to say when the compressors 3 and 4 are operating normally, that is to say that the flow rate of the air sent respectively to the blast furnaces 1 and 2 is greater the minimum required for the normal operation of these blast furnaces, and measured respectively by the detectors 9 and 11, the valves 14 and 15 are in the open position and the valve 13.
Dans ce cas, le compresseur de remplacement 16 alimente par l'intermédiaire de la vanne 13 en position ouverte, l'unité de séparation des gaz de l'air qui elle-même débite son oxygène à travers les vannes respectivement 14 et 15 aux lignes d'alimentation de vent des haut-fourneaux 6 et 5 de manière à enrichir ce vent de la quantité d'oxygène souhaitée .In this case, the replacement compressor 16 supplies via the valve 13 in the open position, the unit for separating the gases from the air which itself delivers its oxygen through the valves respectively 14 and 15 to the lines of blast furnace 6 and 5 so as to enrich this wind with the desired amount of oxygen.
Lorsque, par contre, l'un et/ou l'autre des deux détecteurs 9 ou 11 détectent une anomalie de débit dans les lignes 5 ou 6, la vanne 13 qui était ouverte est alors fermée ou partiellement fermée dans la ligne 19, les détecteurs 9 et/ou 11 commandant simultanément l'ouverture des vannes 7 et/ou 8 (normalement fermées pendant la période de fonctionnement « normal ») de manière à pouvoir alimenter en air comprimé les lignes 5 et/ou 6 à travers ces vannes 7 et 8.When, on the other hand, one and / or the other of the two detectors 9 or 11 detect a flow anomaly in the lines 5 or 6, the valve 13 which was open is then closed or partially closed in the line 19, the detectors 9 and / or 11 simultaneously controlling the opening of the valves 7 and / or 8 (normally closed during the "normal" operating period) so as to be able to supply compressed air to the lines 5 and / or 6 through these valves 7 and 8.
Selon le choix fait par l'opérateur ou permis par l'installation, les vannes 14 et 15 seront soit complètement fermées (mode préférentiel) , soit partiellement fermées si l'unité de séparation des gaz de l'air 20 peut continuer à fonctionner en mode dégradé. Depending on the choice made by the operator or allowed by the installation, the valves 14 and 15 will be either completely closed (preferential mode) or partially closed if the air separation unit 20 can continue to operate. degraded mode.

Claims

Revendicationsclaims
1 - Procédé d'intégration de n ≥ 1 haut-fourneaux et d'au moins une unité de séparation des gaz de l'air dans lequel les n haut-fourneaux et l'unité de séparation de gaz de l'air produisant de l'oxygène sont alimentés en air par au moins n+1 compresseurs, chaque haut-fourneau étant alimenté par au moins un compresseur parmi les au moins n+1 compresseurs disponibles, au moins un des compresseurs n'alimentant pas un haut-fourneau (« second compresseur ») et étant utilisé pour alimenter l'unité de séparation des gaz de l'air, caractérisé en ce que dès que l'un des compresseurs (« premier compresseur ») alimentant un haut- fourneau produit un débit inférieur à un débit Dmin prédéterminé, ledit premier compresseur est déconnecté dudit haut-fourneau et le second compresseur est connecté audit haut-fourneau et de préférence déconnecté de l'unité de séparation des gaz de l'air.1 - Process for integrating n ≥ 1 blast furnace and at least one air separation unit in which the blast furnaces and the gas separation unit producing air oxygen are supplied with air by at least n + 1 compressors, each blast furnace being supplied by at least one of the at least n + 1 compressors available, at least one of the compressors not supplying a blast furnace (" second compressor ") and being used to feed the air separation unit, characterized in that as soon as one of the compressors (" first compressor ") supplying a blast furnace produces a flow rate less than a flow rate Dmin predetermined, said first compressor is disconnected from said blast furnace and the second compressor is connected to said blast furnace and preferably disconnected from the air separation unit.
2 - Procédé selon la revendication 1, caractérisé en ce qu'un compresseur complémentaire fournie de l'air comprimé et/ou de la surpression à l'unité de séparation de gaz de l'air.2 - Process according to claim 1, characterized in that a complementary compressor supplied with compressed air and / or overpressure to the gas separation unit air.
3 - Procédé selon l'une des revendications 1 et 2, caractérisé en ce que les haut-fourneaux sont alimentés en oxygène par l'unité de séparation des gaz de l'air.3 - Process according to one of claims 1 and 2, characterized in that the blast furnaces are supplied with oxygen by the air separation unit.
4 - Procédé selon l'une des revendications 1 et 3, caractérisé en ce qu'une partie au moins de l'oxygène produit par l'unité de séparation des gaz de l'air est utilisé dans au moins un convertisseur. 5 - Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'unité de séparation des gaz de l'air produit de l'oxygène de pureté supérieure à 90 % vol., de préférence supérieure à 95 % vol. d'oxygène.4 - Process according to one of claims 1 and 3, characterized in that at least a portion of the oxygen produced by the air separation unit is used in at least one converter. 5 - Process according to one of claims 1 to 4, characterized in that the unit for separating the air gases produces oxygen of purity greater than 90% vol., Preferably greater than 95% vol. oxygen.
6 - Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'unité de séparation des gaz de l'air présente deux modes d'opération, un mode d'opération régulier produisant de l'oxygène de pureté supérieure à 90 % vol. et un mode d'opération dégradé produisant de l'oxygène de pureté inférieure ou égale à 90 % vol.6 - Process according to one of claims 1 to 4, characterized in that the air gas separation unit has two modes of operation, a regular operating mode producing oxygen of greater purity than 90% vol. and a degraded mode of operation producing oxygen of purity less than or equal to 90% vol.
7 - Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'unité de séparation des gaz de l'air présente deux modes d'opération, un mode d'opération régulier produisant de l'oxygène de pureté supérieure à 95 % vol. et un mode d'opération dégradé produisant de l'oxygène de pureté inférieure ou égale à 95 % vol.7 - Process according to one of claims 1 to 4, characterized in that the air gas separation unit has two modes of operation, a regular operating mode producing oxygen of greater purity than 95% vol. and a degraded mode of operation producing oxygen of purity less than or equal to 95% vol.
8 - Procédé selon l'une des revendications 1 à 7, caractérisé en ce que l'unité de séparation des gaz de l'air présente deux modes d'opération, un mode d'opération régulier produisant un premier débit d'oxygène et un mode d'opération dégradé produisant un débit d'oxygène inférieur au premier débit d'oxygène.8 - Process according to one of claims 1 to 7, characterized in that the air gas separation unit has two modes of operation, a regular operating mode producing a first flow of oxygen and a degraded mode of operation producing an oxygen flow rate lower than the first oxygen flow rate.
9 - Installation de mise en œuvre du procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'elle comporte n ≥ 1 haut-fourneaux (1,2), une unité de séparation des gaz de l'air (20) et au moins n+1 compresseurs (3, 4, 16), chaque haut-fourneau étant relié à au moins un compresseur par des canalisations d'alimentation en air (5, 6), caractérisée en ce que l'installation comporte des canalisations (18, 19) permettant de relier un des compresseurs, dit second compresseur (16), soit à la canalisation d'alimentation en air (5, 6) d'un au moins des hauts-fourneaux (1,2), soit à l'unité de séparation des gaz de l'air (20), soit aux deux. 9 - Installation for implementing the method according to one of claims 1 to 8, characterized in that it comprises n ≥ 1 blast furnace (1,2), an air separation unit (20). ) and at least n + 1 compressors (3, 4, 16), each blast furnace being connected to at least one compressor by air supply lines (5, 6), characterized in that the installation comprises pipes (18, 19) for connecting one of the compressors, said second compressor (16), either to the air supply line (5, 6) of at least one of the blast furnaces (1, 2) or to the air separation unit (20) , or both.
EP07731629A 2006-03-03 2007-02-15 METHOD and APPARATUS OF INTEGRATING A BLAST FURNACE WITH AN AIR GAS SEPARATION UNIT Active EP1994185B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07731629T PL1994185T3 (en) 2006-03-03 2007-02-15 METHOD and APPARATUS OF INTEGRATING A BLAST FURNACE WITH AN AIR GAS SEPARATION UNIT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0650762A FR2898134B1 (en) 2006-03-03 2006-03-03 METHOD FOR INTEGRATING A HIGH-FURNACE AND A GAS SEPARATION UNIT OF THE AIR
PCT/FR2007/050804 WO2007099246A2 (en) 2006-03-03 2007-02-15 Method of integrating a blast furnace with an air gas separation unit

Publications (2)

Publication Number Publication Date
EP1994185A2 true EP1994185A2 (en) 2008-11-26
EP1994185B1 EP1994185B1 (en) 2009-12-09

Family

ID=37229482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07731629A Active EP1994185B1 (en) 2006-03-03 2007-02-15 METHOD and APPARATUS OF INTEGRATING A BLAST FURNACE WITH AN AIR GAS SEPARATION UNIT

Country Status (18)

Country Link
US (2) US20100230872A1 (en)
EP (1) EP1994185B1 (en)
JP (1) JP2009528448A (en)
KR (1) KR101344102B1 (en)
CN (1) CN101448960B (en)
AT (1) ATE451480T1 (en)
AU (1) AU2007220388B8 (en)
BR (1) BRPI0702906B1 (en)
CA (1) CA2644535C (en)
DE (1) DE602007003698D1 (en)
EA (1) EA013661B1 (en)
FR (1) FR2898134B1 (en)
MX (1) MX2008011089A (en)
MY (1) MY156426A (en)
PL (1) PL1994185T3 (en)
UA (1) UA91589C2 (en)
WO (1) WO2007099246A2 (en)
ZA (1) ZA200807151B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2969175B1 (en) 2010-12-21 2013-01-04 Air Liquide PROCESS FOR OPERATING A HIGH-FURNACE INSTALLATION WITH RECYCLING OF GUEULARD GAS
AT510565B1 (en) * 2011-06-21 2012-05-15 Siemens Vai Metals Tech Gmbh DEVICE FOR REGULATING PROCESS GASES IN A PLANT FOR PRODUCING DIRECTLY REDUCED METAL ORCHES
CN103194553B (en) * 2013-04-07 2014-11-05 昆明理工大学 Oxygen usage amount control method for steel smelting blast furnace based on least square support vector machine
JP6341148B2 (en) * 2015-07-06 2018-06-13 Jfeスチール株式会社 Compressed air recovery device and compressed air operation method
ES2910082T3 (en) 2017-07-03 2022-05-11 Air Liquide Method of operating an iron or steel manufacturing plant

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3143412A (en) * 1960-11-28 1964-08-04 Dravo Corp Method of enriching the oxygen content of air supplied to blast furnaces
JPS5547313A (en) * 1978-09-27 1980-04-03 Nippon Kokan Kk <Nkk> Manufacturing and supplying apparatus for oxygen gas
JPS59212676A (en) * 1983-05-17 1984-12-01 株式会社神戸製鋼所 Quantity-reduction operation method in air separator
JPS61139609A (en) * 1984-12-13 1986-06-26 Kawasaki Steel Corp Oxygen enriching method of industrial furnace
JPS63166916A (en) * 1986-12-27 1988-07-11 Nkk Corp Utilizing method for oxygen blast furnace gas
FR2677667A1 (en) * 1991-06-12 1992-12-18 Grenier Maurice METHOD FOR SUPPLYING AN OXYGEN-ENRICHED AIR STOVE, AND CORRESPONDING IRON ORE REDUCTION INSTALLATION.
FR2680114B1 (en) 1991-08-07 1994-08-05 Lair Liquide METHOD AND INSTALLATION FOR AIR DISTILLATION, AND APPLICATION TO THE GAS SUPPLY OF A STEEL.
GB9208647D0 (en) * 1992-04-22 1992-06-10 Boc Group Plc Air separation
JP3496233B2 (en) * 1993-04-26 2004-02-09 Jfeスチール株式会社 Oxygen mixing equipment for blast furnace oxygen-enriched blast
FR2712383B1 (en) * 1993-11-12 1995-12-22 Air Liquide Combined installation of a metal production unit and an air separation unit.
EP0793069A1 (en) * 1996-03-01 1997-09-03 Air Products And Chemicals, Inc. Dual purity oxygen generator with reboiler compressor
GB9609099D0 (en) * 1996-05-01 1996-07-03 Boc Group Plc Oxygen steelmaking
FR2753638B1 (en) * 1996-09-25 1998-10-30 PROCESS FOR SUPPLYING A GAS CONSUMER UNIT
US5855648A (en) * 1997-06-05 1999-01-05 Praxair Technology, Inc. Solid electrolyte system for use with furnaces
FR2765889B1 (en) * 1997-07-08 1999-08-13 Air Liquide METHOD AND INSTALLATION FOR SUPPLYING A BLAST FURNACE
FR2774308B1 (en) 1998-02-05 2000-03-03 Air Liquide COMBINED PROCESS AND PLANT FOR PRODUCING COMPRESSED AIR AND AT LEAST ONE AIR GAS
JP2001131616A (en) * 1999-11-11 2001-05-15 Nkk Corp Method of operating blast and method of operating sintering furnace
US6745573B2 (en) * 2001-03-23 2004-06-08 American Air Liquide, Inc. Integrated air separation and power generation process
JP4699643B2 (en) * 2001-06-26 2011-06-15 大陽日酸株式会社 Air liquefaction separation method and apparatus
US6568207B1 (en) * 2002-01-18 2003-05-27 L'air Liquide-Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated process and installation for the separation of air fed by compressed air from several compressors
FR2866900B1 (en) * 2004-02-27 2006-05-26 Air Liquide METHOD FOR RENOVATING A COMBINED INSTALLATION OF A HIGH STOVE AND A GAS SEPARATION UNIT OF THE AIR
FR2857028A3 (en) * 2004-09-09 2005-01-07 Air Liquide RENOVATION PROCESS OF A HAUT-FOURNEAU

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007099246A3 *

Also Published As

Publication number Publication date
AU2007220388B8 (en) 2011-01-20
US20100230872A1 (en) 2010-09-16
KR101344102B1 (en) 2013-12-20
BRPI0702906A2 (en) 2011-03-22
MX2008011089A (en) 2008-09-05
EP1994185B1 (en) 2009-12-09
EA013661B1 (en) 2010-06-30
CA2644535C (en) 2014-06-03
FR2898134B1 (en) 2008-04-11
WO2007099246A3 (en) 2009-01-29
AU2007220388B2 (en) 2010-09-16
CN101448960A (en) 2009-06-03
PL1994185T3 (en) 2010-05-31
AU2007220388A1 (en) 2007-09-07
JP2009528448A (en) 2009-08-06
KR20080106418A (en) 2008-12-05
WO2007099246A2 (en) 2007-09-07
BRPI0702906B1 (en) 2014-06-10
ATE451480T1 (en) 2009-12-15
ZA200807151B (en) 2009-06-24
EA200870311A1 (en) 2009-02-27
US20120280436A1 (en) 2012-11-08
FR2898134A1 (en) 2007-09-07
UA91589C2 (en) 2010-08-10
DE602007003698D1 (en) 2010-01-21
MY156426A (en) 2016-02-26
CN101448960B (en) 2011-05-11
US8702837B2 (en) 2014-04-22
CA2644535A1 (en) 2007-09-07

Similar Documents

Publication Publication Date Title
EP1994185B1 (en) METHOD and APPARATUS OF INTEGRATING A BLAST FURNACE WITH AN AIR GAS SEPARATION UNIT
EP2655671B1 (en) Process for operating a blast furnace installation with top gas recycling and blast furnace
EP0568431B1 (en) Gas turbine working in combination with air separation plant
JP4611373B2 (en) Gas turbine equipment, fuel gas supply equipment, and fuel gas calorie increase suppressing method
JP4503612B2 (en) Gas turbine equipment, low calorie gas supply equipment, and method for suppressing calorie rise of the gas
JP5888435B2 (en) Equipment for blowing oxygen from blast furnace tuyere and blast furnace operating method
JP4546482B2 (en) Gas turbine equipment, low calorie gas supply equipment, and method for suppressing calorie rise of the gas
EP1721016B1 (en) Method for renovating a combined blast furnace and air/gas separation unit system
JP2010159444A (en) Apparatus for preventing backflow in metallurgical lance having burner function
JP4294963B2 (en) Method and facility for supplying air separation device by gas turbine
JP4445479B2 (en) Waste melting furnace tuyer purging method and apparatus
KR100340578B1 (en) Device for preventing collapse of the fluidized bed in the coal and fine ore based ironmaking process
FR2857028A1 (en) Refreshment of a blast furnace by replacing the compressed air injected by oxygen with a content greater than 50 percent by volume of oxygen
EP4324800A2 (en) Method for calcining mineral rock in a vertical right furnace with regenerative parallel flow and furnace used
CN112410543A (en) Sintering oxygen enrichment device
KR101042216B1 (en) Ironmaking apparatus
JPH08277406A (en) Method for blowing pulverized coal into blast furnace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080829

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

R17D Deferred search report published (corrected)

Effective date: 20090129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD AND APPARATUS OF INTEGRATING A BLAST FURNACE WITH AN AIR GAS SEPARATION UNIT

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007003698

Country of ref document: DE

Date of ref document: 20100121

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 6902

Country of ref document: SK

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100409

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100409

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100309

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: LINDE AG

Effective date: 20100909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110501

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100215

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602007003698

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20140410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602007003698

Country of ref document: DE

Effective date: 20140410

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230216

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230220

Year of fee payment: 17

Ref country code: AT

Payment date: 20230217

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230214

Year of fee payment: 17

Ref country code: SK

Payment date: 20230208

Year of fee payment: 17

Ref country code: SE

Payment date: 20230216

Year of fee payment: 17

Ref country code: PL

Payment date: 20230203

Year of fee payment: 17

Ref country code: IT

Payment date: 20230217

Year of fee payment: 17

Ref country code: GB

Payment date: 20230220

Year of fee payment: 17

Ref country code: DE

Payment date: 20230216

Year of fee payment: 17

Ref country code: BE

Payment date: 20230216

Year of fee payment: 17