JPS61139609A - Oxygen enriching method of industrial furnace - Google Patents

Oxygen enriching method of industrial furnace

Info

Publication number
JPS61139609A
JPS61139609A JP59261746A JP26174684A JPS61139609A JP S61139609 A JPS61139609 A JP S61139609A JP 59261746 A JP59261746 A JP 59261746A JP 26174684 A JP26174684 A JP 26174684A JP S61139609 A JPS61139609 A JP S61139609A
Authority
JP
Japan
Prior art keywords
oxygen
air
blast furnace
blower
blast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59261746A
Other languages
Japanese (ja)
Inventor
Shiro Akamine
志郎 赤嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59261746A priority Critical patent/JPS61139609A/en
Publication of JPS61139609A publication Critical patent/JPS61139609A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To execute adequately and inexpensively oxygen enrichment in accordance with the change of a blast furnace operation by taking out part of blast air from a blast pipe between a blower and a blast furnace, producing oxygen and introducing again the oxygen into the blast pipeline. CONSTITUTION:The atm. air is taken in through an air intake port 1 and is passed through a suction filter 2, then the air is increased in pressure by the blast furnace blower 3 by which the hot wind is fed to the blast furnace 4. Part of the blast air is discharged through a control valve V-3 and is fed to a scrubbing and cooling column 5 where the air is cleaned up and is adiabatially compressed. Such air is supplied to an oxygen producing device 6. The oxygen generated in the device 6 is passed through a flow rate control valve V-4 according to the set purity and is introduced to the suction or discharge side of the blower 3. The oxygen is thoroughly mixed with the air in a mixing device 7 so as to attain the set O2concn. and the pressure thereof is increased by the blower 3 then the air is fed to the furnace 4. The driving power required for the oxygen enriching method is reduced by the above-mentioned method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種の工業用燃焼炉や還元炉等における送風空
気中の酸素富化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for enriching oxygen in blown air in various industrial combustion furnaces, reduction furnaces, etc.

〔従来の技術〕[Conventional technology]

一般に、工業用燃焼炉では燃焼効率を高めるために燃焼
用空気中の酸素を富化したり、還元炉の1つである高炉
では出銑量増加、燃料比の低減、炉頂ガス発生量の増大
を意図して、高炉送風空気の酸素を富化する操業が行わ
れている。高炉酸素富化方法としては従来、例えば特開
昭47−18707に示されるように、原料空気圧縮機
で大気を圧縮し空気分離装置に供給し、空気分離装置で
発生した約99.6%の高純度の酸素を、高炉送風′ 
機入口に吹込み送風機で眉圧し、高炉への酸素富化を行
うことが提案されている。
In general, in industrial combustion furnaces, oxygen is enriched in the combustion air to increase combustion efficiency, and in blast furnaces, which are a type of reduction furnace, the amount of iron tapped is increased, the fuel ratio is reduced, and the amount of gas generated at the top of the furnace is increased. Operations are being carried out to enrich the oxygen of blast furnace air. Conventionally, as shown in Japanese Patent Laid-Open No. 47-18707, a method for enriching oxygen in a blast furnace involves compressing the air using a feed air compressor and supplying it to an air separation device, which absorbs approximately 99.6% of the air generated in the air separation device. High-purity oxygen is blown into the blast furnace
It has been proposed to enrich the blast furnace with oxygen by applying pressure with a blower at the inlet of the blast furnace.

この場合、高炉への空気の酸素富化量の変化に応じ、原
料空気圧縮機の空気量の調整と、酸素が富化された分の
高炉送風機の風量調整が必要で、高炉と酸素製造装置と
富化装置とがそれぞれ独立して別体で構成されているた
め、情報遅れ等による効率悪化を招く。
In this case, it is necessary to adjust the air volume of the feed air compressor and the air volume of the blast furnace blower to account for the oxygen enrichment depending on the change in the amount of oxygen enrichment of the air to the blast furnace. Since the information processing system and the enrichment device are each configured independently and separately, efficiency deteriorates due to information delays and the like.

また、空気分離装置で発生した酸素を酸素圧縮機で昇圧
した後、高炉送風機出口側に混気し高炉へ酸素富化を行
うことも提案されている。
It has also been proposed to increase the pressure of oxygen generated in an air separation device using an oxygen compressor, and then supply mixed air to the outlet side of a blast furnace blower to enrich the blast furnace with oxygen.

この方法は原料空気圧縮機の空気量の調整、高炉送風機
の風量調整、および酸素圧縮機から送給する酸素吐出し
量の調整が必要であり、かつ情報遅れが不可避であり、
操作要員の必要性や連絡調整の困難を生じ、効率の悲化
を招く。また酸素圧縮機の圧送電力を余分に消費してい
る。
This method requires adjusting the air volume of the raw material air compressor, the air volume of the blast furnace blower, and the amount of oxygen discharged from the oxygen compressor, and information delays are unavoidable.
This creates a need for operating personnel and difficulties in communication and coordination, resulting in a loss of efficiency. Additionally, extra power is consumed for pumping the oxygen compressor.

さらにまた、特開昭51−8103では、高炉送M機の
吸込側に低純度酸素を供給する管路を設けると共に、送
風機と高炉とを結ぶ送風管路に高純度酸素を供給する管
路を設けたものが提案されている。
Furthermore, in JP-A No. 51-8103, a pipe line for supplying low-purity oxygen is provided on the suction side of the blast furnace blower, and a pipe line for supplying high-purity oxygen is installed in the blast pipe line connecting the blower and the blast furnace. The following is proposed.

そしてこの方法もまた、前記2つの方法と同一の問題を
有するほか、低純度酸素と高純度酸素を富化するための
両方の配管および両酸素の富化制御を行う制御機器の諸
設備を要するから酸素富化のコストアップを招来し、実
用的でないという問題を有している。
This method also has the same problems as the above two methods, and also requires piping for enriching low-purity oxygen and high-purity oxygen, as well as control equipment to control the enrichment of both oxygen. This leads to an increase in the cost of oxygen enrichment, making it impractical.

特にに配力法は何れも酸素製造に当っては大気吸込みに
よる空気分離なので、酸素分離収率を向1−することが
できないこと、および高炉送風量の変化に応じた酸素製
造量の増減を迅速にできない等の問題がある。
In particular, all distribution methods involve air separation by suctioning atmospheric air during oxygen production, so it is impossible to improve the oxygen separation yield, and it is difficult to increase or decrease the amount of oxygen produced according to changes in the blast furnace air flow rate. There are problems such as not being able to do it quickly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、従来の高炉酸素富化方法は、高炉への送風
量の変動に応じ酸素プラント(原料空気圧縮機゛)およ
び高炉送風機の調整を同時かつ適切に行う、ことができ
ないばかりか、酸素富化のための設備費や動力費が高価
で、酸素富化および製造原単位の高騰をもたらしている
As described above, the conventional blast furnace oxygen enrichment method not only cannot simultaneously and appropriately adjust the oxygen plant (raw air compressor) and blast furnace blower according to fluctuations in the amount of air blown to the blast furnace, but also Equipment costs and power costs for enrichment are expensive, leading to a rise in oxygen enrichment and production unit costs.

そこで本発明では、高炉操業の変化に対応して適切に操
業でき、かつ安価な酸素富化が行えるようにしたもので
ある。
Therefore, in the present invention, the blast furnace can be operated appropriately in response to changes in blast furnace operation, and oxygen enrichment can be performed at low cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、 (1)  高炉送風用として富化する酸素は必ずしも高
純度酸素である必要はないこと、 ■ 原料空気圧縮のために圧力を通常は例えば5.2 
k g/ cm’Gまで高めているが、高炉送風機でも
3.7〜4.0 k g / c m” Gの圧力まで
高めて高炉へ送風していること、 ■ 空気中で約21%の酸素を富化装置で約23%まで
高めて送風しているから、このような大気よりも2%高
い酸素の送風用空気を圧縮してやれば、さらに空気中か
ら酸素を分離するための空気分離装置における圧縮動力
費用が少なくて済むということ。
The present invention has the following features: (1) The oxygen enriched for blast furnace ventilation does not necessarily have to be high-purity oxygen; (2) The pressure for compressing the raw material air is usually, for example, 5.2
kg/cm'G, but the blast furnace blower is also blowing air into the blast furnace at a pressure of 3.7 to 4.0 kg/cm'G. Since the oxygen enrichment equipment is used to increase the oxygen content to approximately 23% before blowing air, if the air used for the ventilation is compressed and has an oxygen content of 2% higher than that of the atmosphere, an air separation equipment will be used to further separate oxygen from the air. This means that the compression power cost is low.

を基本的知見としてなされたものである。This was done as a basic finding.

未発−では、酸素分離装置からの酸素の純度を80%程
度の酸素含有のものとし、酸素分離収率の向−ヒと、高
炉送風量の変化に応じた酸素製造量の増減調整を迅速に
行うべく、高炉送風機と高炉とを連絡する送風量に送風
空気の一部を取出して酸素を製造し、これを再び送風管
路に導入するようにした。
In the case of unexploded oxygen, the purity of the oxygen from the oxygen separator is made to contain approximately 80% oxygen, which improves the oxygen separation yield and quickly adjusts the amount of oxygen produced according to changes in blast furnace air flow. In order to do this, a part of the blown air was taken out to the amount of air flowing between the blast furnace blower and the blast furnace to produce oxygen, and this was reintroduced into the blast duct.

本発明の酸素の高炉富化プロセスは、第1図に示すよう
に、既存の高炉送風機用空気取入口lから大気を取入れ
、吸′込みフィルター2を通して、高炉送風機3にて昇
圧し、高炉へ熱−を送風する。この途中から酸素製造装
置(空気分離装置)6への取り出し管および調節弁V−
3を介して抜き出し水洗冷却塔5で取入空気を清浄化し
、かつ約150〜200℃程度に断熱圧縮された空気を
約25℃程度に冷却洗浄した後番乙酸素製造装置(空気
分離装置)6へ供給する。この場合、高炉送風機3を原
料空気圧縮機としてそのまま活用する。従来の空気分離
装置では酸素濃度99.6%程度とするために必要な精
溜段数が多く空気分離装置の入口圧力を高く保つ必要が
あったが、酸素濃度80%程度ではこれを下げることが
でき、一定量の空気を原料空気圧縮機の吐出圧力から高
炉送風機の吐出圧力に下げることによって原料空気圧縮
機を省略できると共に、消費動力を大幅に下げることが
できることになる。
As shown in Fig. 1, the oxygen enrichment process in a blast furnace of the present invention takes in air from an existing air intake port 1 for a blast furnace blower, passes through an intake filter 2, increases the pressure in a blast furnace blower 3, and supplies the air to the blast furnace. Blow out heat. A take-out pipe and control valve V- from this midway to the oxygen production device (air separation device) 6
3, the intake air is purified in the water washing cooling tower 5, and the air that has been adiabatically compressed to about 150 to 200°C is cooled and washed to about 25°C. Supply to 6. In this case, the blast furnace blower 3 is used as it is as a raw material air compressor. Conventional air separation equipment requires a large number of rectification stages to achieve an oxygen concentration of around 99.6%, making it necessary to maintain a high inlet pressure of the air separation equipment, but this cannot be lowered when the oxygen concentration is around 80%. By lowering a certain amount of air from the discharge pressure of the raw material air compressor to the discharge pressure of the blast furnace blower, the raw material air compressor can be omitted and the power consumption can be significantly reduced.

すなわち、高炉へ酸素を富化するにあたっては、従来の
ような99.6%程度の高純度のものは必要がなく、8
0%程度の低純度酸素でも高炉操業には充分であるから
、酸素濃度を99.6%から80%にすることによって
、第3図のような精溜塔における精溜段数X、Yを減ら
すことができる。
In other words, when enriching oxygen to a blast furnace, there is no need for oxygen with a high purity of around 99.6% as in the past;
Since even low-purity oxygen of about 0% is sufficient for blast furnace operation, by increasing the oxygen concentration from 99.6% to 80%, the number of rectification stages X and Y in the rectification column as shown in Figure 3 can be reduced. be able to.

従ってその固有抵抗派により、原料空気の圧力を下げる
ことが可能となる。このため、従来は、原料空気を5.
2kg/crn’G程度に圧縮していたものを、高炉送
風機の4.0 k g / c tn’ G程度の圧力
を利用することが可能である。
Therefore, its specific resistance makes it possible to lower the pressure of the raw air. For this reason, conventionally, the raw material air was
It is possible to use the pressure of about 4.0 kg/ctn'G of a blast furnace blower for what was previously compressed to about 2 kg/crn'G.

故に、この圧力低下に比例して、消費動力を減らすこと
ができる。
Therefore, power consumption can be reduced in proportion to this pressure drop.

さらに酸素純度が99.6%を80%に下げられること
により、第4図に示す如く、酸素INrn”当りの所要
空気量が下げられるので、その処理風量減少に比例して
消費動力が減少する。
Furthermore, by lowering the oxygen purity from 99.6% to 80%, as shown in Figure 4, the amount of air required per oxygen INrn is lowered, so the power consumption is reduced in proportion to the reduction in the processing air volume. .

また、原料空気中に2%の酸素が富化されているものを
分離器に供給することで、第5図に示す如く、空気量が
減ると共に、それに伴って消費動力(電力原単位kW 
h / Nm’02 )を減らすことができる。
In addition, by supplying feed air enriched with 2% oxygen to the separator, as shown in Figure 5, the amount of air is reduced and power consumption (power consumption unit kW) is reduced.
h/Nm'02).

これらによって従来消費していた動力原単位は0、64
7 kW h / Nm”02 テあったものが、上記
効果により、 0、647− (0,277+ 0.04 )= 0.
33 kW h / Nm’02まで低減できることに
なる。
Due to these, the power consumption unit that was conventionally consumed is 0.64
What used to be 7 kW h / Nm"02, due to the above effect, becomes 0,647-(0,277+0.04)=0.
This means that it can be reduced to 33 kW h / Nm'02.

酸素製造装置(空気分離装置)6に供給された原料空気
は、経済的に最も大なる効果をもたらすであろう所望の
純度の酸素に分離される。
The raw air supplied to the oxygen production device (air separation device) 6 is separated into oxygen of a desired purity that will provide the greatest economic effect.

発生された酸素は、設定された純度に応じて流量調整弁
V−4を通して、高炉送風機3の入口に送られ、設定さ
れた02濃度になるようミキシング装置7で十分混合さ
れ、高炉送風機3で昇圧後、高炉4に送風される。
The generated oxygen is sent to the inlet of the blast furnace blower 3 through the flow rate adjustment valve V-4 according to the set purity, is sufficiently mixed in the mixing device 7 to reach the set 02 concentration, and is then sent to the inlet of the blast furnace blower 3. After increasing the pressure, air is blown into the blast furnace 4.

また、高炉4の送風量の変化に応じ、高炉送風f&3の
大口弁V−tで風量調整を行うと同時に酸素製造装置(
空気分離装置)6への供給原料空気量の調整を行い、酸
素製造装置(空気分離装置)6の酸素発生量の増減をよ
り効率的に行えるようにした。
In addition, depending on the change in the air flow rate of the blast furnace 4, the air flow rate is adjusted using the large mouth valve V-t of the blast furnace air blower f&3, and at the same time, the oxygen production device (
By adjusting the amount of feed air to the air separation device (air separation device) 6, the amount of oxygen generated by the oxygen production device (air separation device) 6 can be increased or decreased more efficiently.

〔作用〕[Effect]

酸素製造装置の発生酸素濃度を80%程度とすることに
より酸素製造装置の精溜塔の段数を大幅に減少でき、従
って、酸素製造装置への送入圧力を減少できるので、高
炉送風機の出口空気を直ちに酸素製造装置に導入するこ
とができる。従って、圧縮動力の減少、吸入空気の酸素
濃度増による酸素製造装置の負荷減少等により、酸素富
化に要する動力を大幅に減少することができる。
By setting the concentration of oxygen generated in the oxygen production equipment to about 80%, the number of stages in the rectification column of the oxygen production equipment can be significantly reduced, and therefore the pressure fed to the oxygen production equipment can be reduced, so that the outlet air of the blast furnace blower can be reduced. can be immediately introduced into the oxygen production equipment. Therefore, the power required for oxygen enrichment can be significantly reduced by reducing the compression power and reducing the load on the oxygen production device due to an increase in the oxygen concentration of the intake air.

〔実施例〕〔Example〕

この酸素の高炉富化プロセスは、高炉の生産状況に応じ
て高炉送風量の変花調整を高炉送風機人口弁V−1で行
った時に、酸素製造装置(空気分離装置)6に供給され
る原料空気量が比例調整でき、かつ高炉4への酸素富化
濃度を自動的に調整できるよう、酸素製造装置(空気分
離装置)6の酸素発生量の調整を同時に、効率的に行う
ことができる。制御方法は、 l) 高炉4への送風量FIC−1より、酸素製造装置
(空気分離装置)6へ供給する原料空気量FIc−2を
v−3で比率制御させる。
In this oxygen enrichment process, the raw material supplied to the oxygen production device (air separation device) 6 is produced when the blast furnace air flow rate is adjusted in accordance with the production status of the blast furnace using the blast furnace blower artificial valve V-1. The amount of oxygen generated by the oxygen production device (air separation device) 6 can be adjusted simultaneously and efficiently so that the air amount can be adjusted proportionally and the oxygen enrichment concentration to the blast furnace 4 can be automatically adjusted. The control method is as follows: l) The ratio of the feed air amount FIc-2 supplied to the oxygen production device (air separation device) 6 is controlled by v-3 from the air blow amount FIC-1 to the blast furnace 4.

2) 高炉酸素富化の送風空気中の酸素濃度計Aおよび
送風空気jiF I C−1で酸素製造装置(空気分離
装置)6の酸素発生量(純度一定)FIC−3を制御さ
せる。
2) The oxygen generation amount (constant purity) FIC-3 of the oxygen production device (air separation device) 6 is controlled by the oxygen concentration meter A in the blast furnace oxygen-enriched blast air and the blast air jiF I C-1.

この方法は、既存の高炉送風機に酸素製造装置(空気分
離装H)6を設置することによって、最少の設備投資で
効率的な酸素製造装置を特徴とした高炉酸素富化プロセ
スである。
This method is a blast furnace oxygen enrichment process that features an efficient oxygen production device with minimal capital investment by installing an oxygen production device (air separation device H) 6 in an existing blast furnace blower.

実施例として、空気中21%02を23%02にアップ
した高炉送風空気402.OOONm”/Hのうちの操
業に支障のない23,20ONm’/Hを酸素製造装置
(空気分離装置)6で80%濃度、6,25ONm’/
Hの耐電とし、これをミキシング装置7を介して高炉送
風空気に富化することで、従来の酸素製造装置で製造し
た酸素を富化する際の消費動力が0.647 k w、
H/ Nm”02 テあったのを、約半分0’)0.3
3 k wH/ Nrn’02まで低下させることがで
きた。
As an example, blast furnace blast air 402. Of the OOONm"/H, 23,20ONm'/H, which does not affect operation, is used in the oxygen production equipment (air separation equipment) 6 at a concentration of 80%, 6,25ONm'/H.
By enriching blast furnace blast air with this through the mixing device 7, the power consumption when enriching oxygen produced with a conventional oxygen production device is 0.647 kW,
H/Nm”02 About half of the time was 0’) 0.3
It was possible to reduce it to 3 kwH/Nrn'02.

なお、実施例では、酸素富化を送風機の吸込側で行った
例を示したが、送風機吐出側の酸素富化用管路に富化し
てもよい。
In addition, in the embodiment, an example was shown in which oxygen enrichment was performed on the suction side of the blower, but it may be enriched in the oxygen enrichment conduit on the blower discharge side.

さらにまた、実施例では高炉の例について説明したが、
各種工業炉の燃焼用空気中に酸素を富化する場合などで
も適用できる。
Furthermore, in the examples, an example of a blast furnace was explained, but
It can also be applied when enriching oxygen in the combustion air of various industrial furnaces.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高炉送風系に酸素製造用の酸素製造装
置(空気分離装置)6を有しているので、高炉の操業状
態に即応した酸素富化を迅速かつ適切に行うことができ
る。; さらに、高炉送風機の圧縮力を利用すると共に、酸素の
富化された空気を圧縮して酸素を製造した後、この酸素
を送風管へ戻してこの工程を循環yせるから、酸素富化
のための動力費および原単位を大幅に低減させることが
可能となった。この効果は、高炉送風管路に酸素製造装
置(空気分離装置)6を設置して富化する諸費用を遥か
に上回る大きな効果をもたらす。
According to the present invention, since the blast furnace ventilation system includes the oxygen production device (air separation device) 6 for oxygen production, oxygen enrichment can be performed quickly and appropriately in response to the operational status of the blast furnace. Furthermore, the compressive force of the blast furnace blower is used, and after compressing the oxygen-enriched air to produce oxygen, the oxygen is returned to the blast pipe and circulated through this process, making it possible to achieve oxygen enrichment. It has become possible to significantly reduce power costs and unit consumption. This effect brings about a great effect that far exceeds the various costs incurred by installing the oxygen production device (air separation device) 6 in the blast furnace blast pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の酸素の高炉富化系統図、第2
図は従来の高炉富化系統図、第3図は酸素分離装置の精
溜塔の模式断面図、第4図は酸素純度と所要空気酸の関
係を示すグラフ、第5図は原料空気中の酸素濃度と原料
空気量との関係を示すグラフである。 ■・・・空気取入口    2・・・吸込フィルタ3・
・・高炉送風機    4・・・高炉5・・・水洗冷却
塔 6・・・酸素製造装置(空気分離装置) ′7・・・ミ
キシング装置 V−t・・・高炉送風機人口弁 V−2・・・高炉送風機出目弁 V−3・・・原料空気調節弁 V−4・・・酸素流量調節弁 FIC−1・・・高炉送風流量計 FI C−2・・・原料空気風量計 FTC−3・・・酸素発生量流量計 A・・・酸素濃度計
Figure 1 is an oxygen enrichment system diagram in a blast furnace according to an embodiment of the present invention;
The figure is a conventional blast furnace enrichment system diagram, Figure 3 is a schematic cross-sectional view of a rectification column in an oxygen separation device, Figure 4 is a graph showing the relationship between oxygen purity and required air acid, and Figure 5 is a graph showing the relationship between oxygen purity and required air acid. It is a graph showing the relationship between oxygen concentration and raw material air amount. ■... Air intake port 2... Suction filter 3.
...Blast furnace blower 4...Blast furnace 5...Water cooling tower 6...Oxygen production device (air separation device) '7...Mixing device V-t...Blast furnace blower population valve V-2...・Blast furnace blower outlet valve V-3...Feed air control valve V-4...Oxygen flow rate control valve FIC-1...Blast furnace air flow meter FI C-2...Feed air flow meter FTC-3 ...Oxygen generation flow meter A...Oxygen concentration meter

Claims (1)

【特許請求の範囲】 1 工業炉の送風機と炉とを連絡する送風管から送風用
空気の一部を取り出し、該空気を酸素製造装置に導いて
酸素を製造し、該酸素を前記送風機の吸込側もしくは吐
出側に導入することを特徴とする工業炉の酸素富化方 法。
[Scope of Claims] 1. A part of the air for blowing is taken out from a blow pipe that connects the blower of an industrial furnace and the furnace, the air is guided to an oxygen production device to produce oxygen, and the oxygen is sucked into the blower. A method for enriching oxygen in an industrial furnace, characterized by introducing oxygen into the side or the discharge side.
JP59261746A 1984-12-13 1984-12-13 Oxygen enriching method of industrial furnace Pending JPS61139609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261746A JPS61139609A (en) 1984-12-13 1984-12-13 Oxygen enriching method of industrial furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261746A JPS61139609A (en) 1984-12-13 1984-12-13 Oxygen enriching method of industrial furnace

Publications (1)

Publication Number Publication Date
JPS61139609A true JPS61139609A (en) 1986-06-26

Family

ID=17366131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261746A Pending JPS61139609A (en) 1984-12-13 1984-12-13 Oxygen enriching method of industrial furnace

Country Status (1)

Country Link
JP (1) JPS61139609A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368288A2 (en) * 1988-11-09 1990-05-16 Union Carbide Corporation Method for carrying out an oxidation reaction
FR2677667A1 (en) * 1991-06-12 1992-12-18 Grenier Maurice METHOD FOR SUPPLYING AN OXYGEN-ENRICHED AIR STOVE, AND CORRESPONDING IRON ORE REDUCTION INSTALLATION.
FR2753638A1 (en) * 1996-09-25 1998-03-27 Air Liquide PROCESS FOR SUPPLYING A GAS CONSUMER UNIT
USRE37014E1 (en) 1993-11-12 2001-01-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Combined installation of a metal production unit and a unit for the separation of air gas
FR2866900A1 (en) * 2004-02-27 2005-09-02 Air Liquide Procedure for the renovation of a combined vertical furnace and gas separation unit, the fluid supply to the furnace being pure or air-diluted oxygen
JP2007512491A (en) * 2003-11-10 2007-05-17 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for concentrating one component of a gas stream
JP2008050636A (en) * 2006-08-23 2008-03-06 Jfe Steel Kk Oxygen-enriched blasting method into blast furnace
JP2008309446A (en) * 2007-06-18 2008-12-25 Jfe Steel Kk Manufacturing and supply method for nitrogen and/or oxygen and compressed air
JP2009528448A (en) * 2006-03-03 2009-08-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for integrating a blast furnace and an air separation device
JP2016191110A (en) * 2015-03-31 2016-11-10 Jfeスチール株式会社 Blast furnace ventilation method and blast furnace ventilation facility

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368288A2 (en) * 1988-11-09 1990-05-16 Union Carbide Corporation Method for carrying out an oxidation reaction
FR2677667A1 (en) * 1991-06-12 1992-12-18 Grenier Maurice METHOD FOR SUPPLYING AN OXYGEN-ENRICHED AIR STOVE, AND CORRESPONDING IRON ORE REDUCTION INSTALLATION.
US5244489A (en) * 1991-06-12 1993-09-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for supplying a blast furnace with air enriched in oxygen, and corresponding installation for the reduction of iron ore
BE1006334A3 (en) * 1991-06-12 1994-07-26 Air Liquide Power process of blast furnace air increased oxygen and installation thereof iron ore reduction.
DE4219160C2 (en) * 1991-06-12 2002-07-18 Air Liquide Process and plant for supplying a blast furnace with oxygen-rich air
USRE37014E1 (en) 1993-11-12 2001-01-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Combined installation of a metal production unit and a unit for the separation of air gas
CN1068050C (en) * 1996-09-25 2001-07-04 液体空气乔治洛德方法利用和研究有限公司 Process for feeding gas-consuming unit
US6062043A (en) * 1996-09-25 2000-05-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for feeding a gas-consuming unit
EP0833120A1 (en) * 1996-09-25 1998-04-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for supplying gas to a consumption unit
FR2753638A1 (en) * 1996-09-25 1998-03-27 Air Liquide PROCESS FOR SUPPLYING A GAS CONSUMER UNIT
JP2007512491A (en) * 2003-11-10 2007-05-17 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for concentrating one component of a gas stream
FR2866900A1 (en) * 2004-02-27 2005-09-02 Air Liquide Procedure for the renovation of a combined vertical furnace and gas separation unit, the fluid supply to the furnace being pure or air-diluted oxygen
WO2005085727A3 (en) * 2004-02-27 2006-01-12 N Des Procedes Georges Claude Method for renovating a combined blast furnace and air/gas separation unit system
US7645319B2 (en) 2004-02-27 2010-01-12 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for renovating a combined blast furnace and air/gas separation unit system
JP2009528448A (en) * 2006-03-03 2009-08-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for integrating a blast furnace and an air separation device
JP2008050636A (en) * 2006-08-23 2008-03-06 Jfe Steel Kk Oxygen-enriched blasting method into blast furnace
JP2008309446A (en) * 2007-06-18 2008-12-25 Jfe Steel Kk Manufacturing and supply method for nitrogen and/or oxygen and compressed air
JP2016191110A (en) * 2015-03-31 2016-11-10 Jfeスチール株式会社 Blast furnace ventilation method and blast furnace ventilation facility

Similar Documents

Publication Publication Date Title
US5244489A (en) Process for supplying a blast furnace with air enriched in oxygen, and corresponding installation for the reduction of iron ore
EP3759322B9 (en) Systems and methods for power production using a carbon dioxide working fluid
JPS61139609A (en) Oxygen enriching method of industrial furnace
CN103608089B (en) To the device that the process gas be used in the equipment of the metallic ore manufacturing direct-reduction regulates
JPH10180082A (en) Supply method to gas consumption unit and device therefor
CN112815719A (en) On-site oxygen generation and supply device and method for kiln of cement plant
JPH08109009A (en) Method and apparatus for formation of nitrogen
CN104677052B (en) Air separation fractionating tower system and technology utilizing air separation fractioning tower system to prepare low-purity oxygen
KR101829088B1 (en) Method and device for producing a fluid enriched with carbon dioxide from a waste gas of a ferrous-metallurgy unit
AU2005218215B2 (en) Method for revamping a combined blast furnace and air gas separation unit system
CA2375570A1 (en) Process and apparatus for separating a gas mixture with emergency operation
JPH11239709A (en) Method for separation of gas by adsorption at variable manufacturing rate
AU2010215728B2 (en) Method and apparatus for separating a gaseous component
CA2259857A1 (en) Combined plant of a furnace and an air distillation device, and implementation process
CN111607672A (en) Oxygen enrichment process in front of blast furnace
US2079019A (en) Process for enriching blower blast with oxygen
CN114159940A (en) Membrane separation system and oxygen-enriched air preparation system and method
JP3988332B2 (en) Oxygen enrichment method for blast furnace
US20020108377A1 (en) Process for supplying air to at least one gas turbine unit and at least one air distillation unit, an installation for practicing the same
US20040020239A1 (en) Method of producing an oxygen-enriched air stream
EP3671086A1 (en) A method and apparatus for reducing process disturbances during pressurization of an adsorber in an air separation unit
CN202849472U (en) Oxygen-enriched dry gas supply device
CN1467299A (en) Oxygen supplying flow of oxygen-rich coal injection in blast furnace iron making
KR20140123594A (en) Method and device for reducing iron-oxide-containing feedstocks in a high-pressure reducing unit
US20240053098A1 (en) Air separation unit