JP2007512491A - Method and apparatus for concentrating one component of a gas stream - Google Patents
Method and apparatus for concentrating one component of a gas stream Download PDFInfo
- Publication number
- JP2007512491A JP2007512491A JP2006538907A JP2006538907A JP2007512491A JP 2007512491 A JP2007512491 A JP 2007512491A JP 2006538907 A JP2006538907 A JP 2006538907A JP 2006538907 A JP2006538907 A JP 2006538907A JP 2007512491 A JP2007512491 A JP 2007512491A
- Authority
- JP
- Japan
- Prior art keywords
- fraction
- stream
- column
- separation unit
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000000926 separation method Methods 0.000 claims abstract description 53
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims description 38
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 33
- 239000007789 gas Substances 0.000 claims description 33
- 239000001301 oxygen Substances 0.000 claims description 33
- 229910052760 oxygen Inorganic materials 0.000 claims description 33
- 238000004821 distillation Methods 0.000 claims description 14
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 5
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 40
- 229910052757 nitrogen Inorganic materials 0.000 description 20
- 239000007788 liquid Substances 0.000 description 18
- 238000001816 cooling Methods 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/0446—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/0446—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
- F25J3/04466—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04527—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
- F25J3/04551—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
- F25J3/04557—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04593—The air gas consuming unit is also fed by an air stream
- F25J3/046—Completely integrated air feed compression, i.e. common MAC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
- F25J2200/06—Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/42—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
- F25J2240/42—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/40—One fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/42—One fluid being nitrogen
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Separation Of Gases By Adsorption (AREA)
- Blast Furnaces (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
加圧気体流の一の成分(A)を濃縮する方法に関する。本発明方法は次の工程を包含する。該流は少なくとも第1画分及び第2画分(2、3)に分けられる;第1画分の少なくとも一部は分離ユニット(ASU)に送られる;分離ユニットは、分離ユニットに供給される画分(2)よりA含量が高い第1排出(10)を含む少なくとも2つの排出を供給する;第1排出の少なくとも一部は第2画分(3)の少なくとも一部と混合して加圧気体混合物(15)を形成する。第2画分は膨張され、及び次いで第1排出の少なくとも一部と混合する。
【選択図】 図3It relates to a method for concentrating one component (A) of a pressurized gas stream. The method of the present invention includes the following steps. The stream is divided into at least a first fraction and a second fraction (2, 3); at least a part of the first fraction is sent to a separation unit (ASU); the separation unit is fed to the separation unit Supply at least two discharges including a first discharge (10) having a higher A content than fraction (2); at least a portion of the first discharge is mixed with at least a portion of the second fraction (3) A pressurized gas mixture (15) is formed. The second fraction is expanded and then mixed with at least a portion of the first discharge.
[Selection] Figure 3
Description
本発明は、気体流の一成分を濃縮する(enriching)方法及び装置に関する。特に、空気を酸素で濃縮する方法に関する。 The present invention relates to a method and apparatus for enriching one component of a gas stream. In particular, it relates to a method of concentrating air with oxygen.
空気の酸素濃縮は鉄鋼業において必要となっている。 Oxygen enrichment of air is necessary in the steel industry.
高炉における熱コークスの減少又は排除は、一般に石炭粉投入(CPI)の利益のためにこの必要な変化が求められている。 The reduction or elimination of thermal coke in blast furnaces generally requires this necessary change for the benefit of coal powder input (CPI).
この濃縮を経済的に達成するためにEP−A−0531182で知られる手段は、高炉用の空気流の一部の低温(cryogenic)蒸留からなる。得られるのは、窒素に富む流と酸素に富む流であり、後者は次いで空気分離ユニットの下流で空気流に再混合される。 In order to achieve this enrichment economically, the means known from EP-A-0531182 consists of a cryogenic distillation of part of the blast furnace air stream. The result is a stream rich in nitrogen and a stream rich in oxygen, the latter then being remixed into the air stream downstream of the air separation unit.
酸素流の圧力は空気分離ユニット(ASU)に供給される空気流の圧力に近いので、混合カラムを含む方法は特に適当で経済的であることが認められた。 Since the pressure of the oxygen stream is close to the pressure of the air stream supplied to the air separation unit (ASU), a method involving a mixing column has been found to be particularly suitable and economical.
図1は、空気を酸素で濃縮するためのEP−A−0531182に記載された分離ユニットを示す。これは圧力Pで高炉用投入を構成する空気システムから供給される。空気蒸留ユニットは、圧力Pより僅かに高い所定の圧力で、例えば有利には圧力Pより高い1×104Pa abs〜1×105Pa absの圧力で、低純度酸素、例えば80〜97%及び好ましくは85〜95%の純度の酸素を製造することを意図する。 FIG. 1 shows a separation unit described in EP-A-0531182 for concentrating air with oxygen. This is supplied from the air system which constitutes the blast furnace input at pressure P. The air distillation unit has a low purity oxygen, for example 80-97%, at a predetermined pressure slightly higher than the pressure P, for example, preferably at a pressure of 1 × 10 4 Pa abs to 1 × 10 5 Pa abs higher than the pressure P. And preferably is intended to produce oxygen of 85-95% purity.
このユニットは、本質的に熱交換ライン1A、ダブル蒸留カラム2A、ダブル蒸留カラム自体は中圧カラム3A、低圧カラム4A、及び主コンデンサー-リボイラー5Aを具備し、及び混合カラム6Aを具備する。カラム3A及び4Aは典型的にはそれぞれ約5.45×105Pa及び約1.5×105Paで操業する。
This unit essentially comprises a
文献US−A−4022030に詳細に説明されているように、混合カラムは蒸留カラムと同一の構造を有するカラムであるが、可逆性に近い方法で、カラムの底部に導入される相対的に揮発性気体を、カラムの頂部に導入される低揮発性液体に混合するために用いられる。 As described in detail in document US Pat. No. 4,022,030, the mixing column is a column having the same structure as the distillation column, but is relatively volatile which is introduced into the bottom of the column in a nearly reversible manner. The gas is used to mix the low volatility liquid introduced at the top of the column.
このような混合は冷却エネルギーを発生し、従って蒸留に伴うエネルギー消費を減少させる。本件の場合には、後述するように、この混合は圧力Pで直接製造されるべき不純酸素のためにも有利に用いられる。 Such mixing generates cooling energy and thus reduces the energy consumption associated with distillation. In this case, as will be described later, this mixing is also advantageously used for impure oxygen to be produced directly at pressure P.
図1の場合、空気流は、交換ライン1Aで冷却された、圧縮機14Aによって混合カラムの圧力に圧縮され、サブ冷却機21Aでサブ冷却され、及び混合カラム6Aの底部に送られる。
In the case of FIG. 1, the air stream is compressed to the pressure of the mixing column by the
カラム3Aの底部から取出された「リッチ液体」(酸素に富む空気)は、膨張バルブ10Aで膨張した後、カラム4Aに導入される。カラム3Aの中間点11Aから取出された「リーン液体」(不純窒素)は、膨張バルブ12Aで膨張した後、装置の排ガスを構成する。このガスとカラム3Aの頂部で製造され得る中圧の純粋気体状窒素は交換ライン1Aで温められ、装置から排出される。これらの気体は、それぞれ図1においてNI及びNGで示される。
The “rich liquid” (air rich in oxygen) taken out from the bottom of the
液体酸素は、ダブルカラム2Aの設定しだいで高い或いは低い純度で、カラム4Aから取出され、圧力低下(P1−Pは2×105Pa未満)を考慮するため上記圧力Pより僅かに高い圧力P1にあげ、カラム6の頂部に導入される。
Depending on the setting of the
混合カラム6Aから3つの液体流が取出される。底部からは、リッチ液体に類似し及び膨張バルブ15A’を備えたライン15Aを介してリッチ液体と一緒にされる液体、中間点からは、膨張バルブ17Aを備えたライン16Aを介して低圧カラム4Aに送られる酸素及び窒素から本質的になる混合物、及び、頂部からは、熱交換ラインで温められた後に、製造気体OIとしてライン18Aを介して装置から、実質的に圧力Pで放出される不純酸素である。
Three liquid streams are withdrawn from the
図では、装置を循環する流体から利用可能な冷却を回収するための補助熱交換器19A、20A、21Aも示されている。
The figure also shows
図2は、従来技術による高炉用の空気流を濃縮するための統合装置が模式的に示している
空気流は送風機Sで圧縮されて圧縮流を形成する。この流は2つの画分2及び3に分けられる。第1画分2はチラーR、例えば水チラーで冷却し、ブースターCで圧縮し及び空気分離ユニット(ASU)に送る。空気分離ユニットは例えば低温蒸留によって操業し、及び、分離カラムの上流で精製ユニット及び交換ラインを含む。80〜95モル%の酸素を含む酸素流10及び廃流であり得る窒素流11を製造する。酸素に富む流の少なくとも一部は第2空気画分3と混合する。酸素に富む、混合流15はカウパー(cowpers)Wで加熱し高炉BFに送る。
FIG. 2 schematically shows an integrated device for concentrating a blast furnace air flow according to the prior art. The air flow is compressed by a blower S to form a compressed flow. This stream is divided into two
空気分離ユニット(分離ユニットへの高炉風における空気取入と酸素流再注入との間)を包含する回路内の圧力低下を防ぐために、圧縮機Cを設置する。これは空気分離ユニット用の全空気流(図2による)又は(図1の変形として)混合カラムに供給するための空気流(即ち分離ユニットで処理する空気流の約30%)の圧力を上昇することを可能にする。 Compressor C is installed to prevent pressure drop in the circuit including the air separation unit (between air intake and oxygen flow reinjection in the blast furnace wind into the separation unit). This increases the pressure of the total air flow for the air separation unit (according to FIG. 2) or (as a variant of FIG. 1) to the mixing column (ie about 30% of the air flow processed in the separation unit). Make it possible to do.
本発明の目的は、分離ユニットの冷却を維持するための膨張タービンの軸に連結されたもの以外の空気分離ユニットにおける気体流圧縮機を用いることなく、より経済的でより信頼できる方法で製鉄法に空気分離ユニットを統合することである。 It is an object of the present invention to produce iron in a more economical and more reliable manner without using a gas flow compressor in an air separation unit other than that connected to the shaft of an expansion turbine to maintain cooling of the separation unit. Is to integrate an air separation unit.
本発明の主題はその一成分Aで加圧気体流を濃縮する方法であり、次の工程を包含する。
i)該流を少なくとも第1画分及び第2画分に分ける工程、
ii)第1画分の少なくとも一部を分離ユニットに送る工程、
iii)分離ユニットから、少なくとも第1流及び第2流を供給し、第1流は第1画分より高い含量の成分Aを有する工程、
iv)第1流の少なくとも一部を第2画分の少なくとも一部と混合して加圧気体混合物を形成する工程、を具備し、
第1流の少なくとも一部を混合する前に第2画分を膨張させることを特徴とする方法である。
The subject of the present invention is a method for concentrating a pressurized gas stream with its one component A, which comprises the following steps.
i) dividing the stream into at least a first fraction and a second fraction;
ii) sending at least a portion of the first fraction to the separation unit;
iii) supplying from the separation unit at least a first stream and a second stream, the first stream having a higher content of component A than the first fraction;
iv) mixing at least a portion of the first stream with at least a portion of the second fraction to form a pressurized gas mixture;
The method is characterized in that the second fraction is expanded before mixing at least a portion of the first stream.
他の選択的観点によれば、
-加圧気体流及び第1画分は実質的に同一圧力であり及び、特に、圧力低下のみがこれら2つの流体の間の圧力変化の原因である、
-第1流及び膨張した第2画分は実質的に同一圧力であり及び、特に、圧力低下のみがこれら2つの流体の間の圧力変化の原因である、
-分離ユニットは、ユニットで製造され又はユニット用の気体流を圧縮するためのエネルギー需要に関し自律的である、
-加圧気体流は空気であり及び場合により成分Aは酸素である、
-加圧気体流は高炉用の空気である、
-分離ユニットは低温蒸留分離ユニットである、
-分離ユニットは中圧カラム、中圧カラムと熱的に連結された低圧カラム、及び混合カラムを具備する、
-蒸留カラム用の第1画分のいっずれの部分も圧縮されない又は混合カラム用又は中圧カラム用の第1画分のいずれの部分も該流が分れた後に圧縮されない。
According to other optional aspects,
The pressurized gas flow and the first fraction are at substantially the same pressure, and in particular, only the pressure drop is responsible for the pressure change between these two fluids,
The first flow and the expanded second fraction are at substantially the same pressure, and in particular, only the pressure drop is responsible for the pressure change between these two fluids,
The separation unit is autonomous with respect to the energy demand for compressing the gas flow produced by the unit or for the unit;
The pressurized gas stream is air and optionally component A is oxygen,
-The pressurized gas flow is blast furnace air,
-The separation unit is a cryogenic distillation separation unit,
The separation unit comprises an intermediate pressure column, a low pressure column thermally coupled to the intermediate pressure column, and a mixing column;
-No part of the first fraction for the distillation column is compressed or any part of the first fraction for the mixing column or medium pressure column is not compressed after the stream has been separated.
操作の一の特定の方法によれば、i)第1操作において、第1画分の少なくとも一部は圧縮され及び第2画分は第1画分の少なくとも一部がそれと混合される前に膨張されない、及び
ii)第2操作において、(例えば圧縮機Cが作動していない場合)第1画分の少なくとも一部が圧縮されない(第1画分は圧縮されない)及び、第1流の少なくとも一部がそれと混合される前に第2画分は膨張される。
According to one particular method of operation, i) in the first operation, at least part of the first fraction is compressed and the second fraction is before at least part of the first fraction is mixed with it. Ii) In the second operation, at least a portion of the first fraction is not compressed (eg, the first fraction is not compressed) in the second operation (eg, when compressor C is not operating), and at least of the first flow The second fraction is expanded before a part is mixed with it.
本発明の他の主題は加圧気体流をその成分Aで濃縮する装置であり、
i)加圧気体流を少なくとも第1画分及び第2画分に分ける手段、
ii)分離ユニット、
iii)第1画分の少なくとも一部を分離ユニットに送る手段、
iv)分離ユニットで製造され及び第1画分に比較してAが濃縮された第1流の少なくとも一部を、第2画分と混合して加圧気体流に比較してAが濃縮された流を形成する手段、を包含し、
第1流の少なくとも一部を混合する手段の上流、及び気体流を分割する手段の下流で第2画分を膨張する手段を含むことを特徴とする。
Another subject of the invention is an apparatus for concentrating a pressurized gas stream with its component A,
i) means for dividing the pressurized gas stream into at least a first fraction and a second fraction;
ii) separation unit,
iii) means for sending at least part of the first fraction to the separation unit;
iv) At least part of the first stream produced in the separation unit and enriched with A compared to the first fraction is mixed with the second fraction to concentrate A compared with the pressurized gas stream. Means to form a stream,
And means for expanding the second fraction upstream of the means for mixing at least a portion of the first stream and downstream of the means for dividing the gas stream.
他の選択的観点によれば、
-分離ユニットは、中圧カラム、中圧カラムと熱的に連結された低圧カラム、及び混合カラムを包含する空気分離ユニットである、
-該装置は、中圧カラム用又は混合カラム用の空気を圧縮する手段を含まない、及び
-該装置は、第2画分を圧縮するための手段及び膨張手段を介して通過することなく第1流の少なくとも一部と混合される第2画分を送る手段を含む。
According to other optional aspects,
The separation unit is an air separation unit comprising a medium pressure column, a low pressure column thermally coupled to the medium pressure column, and a mixing column;
The device does not include means for compressing air for medium pressure columns or mixing columns; and
The device comprises means for compressing the second fraction and means for sending the second fraction mixed with at least a portion of the first stream without passing through the expansion means;
有利には、分離方法は、追加的空気圧縮手段の必要なしに、中圧カラムの圧力と同一又はより高い圧力で操業する混合カラムを用いる。 Advantageously, the separation method uses a mixing column operating at a pressure equal to or higher than that of the intermediate pressure column without the need for additional air compression means.
このように、混合カラムユニットを、追加の空気圧縮機なしで高炉ブラスターに統合することを提案する。従って、この建設のために必要な投資を最小限にしながら、酸素分子、及び従って濃縮空気の高炉への配達の信頼性を高める。 Thus, it is proposed to integrate the mixing column unit into a blast furnace blaster without an additional air compressor. Thus, increasing the reliability of delivery of oxygen molecules and thus concentrated air to the blast furnace while minimizing the investment required for this construction.
本発明の他の主題は、少なくとも1の中圧カラム、低-中圧カラムに熱的に連結した低圧カラム及び中圧カラムの圧力より高い圧力で操業する混合カラムを包含する装置を用いて空気を分離する方法であり、
i)空気、加圧され及び精製された空気を中圧カラムに送り、
ii)窒素に富み及び酸素に富む流を中圧カラムから低圧カラムに送り、
iii)酸素に富む液体を低圧カラムから混合カラムの頂部に送り、
iv)酸素に富む気体を混合カラムの頂部から取出す方法において、
窒素に富む液体流を中圧カラムから取出し、加圧し及び少なくとも部分的に蒸発し、及び混合カラムの底部に蒸発液体の少なくとも一部を供給することを特徴とする。
Another subject of the present invention is the use of an apparatus comprising at least one medium pressure column, a low pressure column thermally connected to the low-medium pressure column, and a mixing column operating at a pressure higher than that of the medium pressure column. Is a method of separating
i) sending air, pressurized and purified air to a medium pressure column;
ii) sending a nitrogen-rich and oxygen-rich stream from the medium pressure column to the low pressure column;
iii) sending an oxygen rich liquid from the low pressure column to the top of the mixing column;
iv) in a method for removing an oxygen-rich gas from the top of the mixing column;
A nitrogen-rich liquid stream is removed from the medium pressure column, pressurized and at least partially evaporated, and at least a portion of the evaporated liquid is fed to the bottom of the mixing column.
好ましくは、窒素に富む液体を供給空気の一部で熱交換によって蒸発させる。こうして液化した空気は中圧カラム及び低圧カラムの少なくとも一方に送り得る。 Preferably, the nitrogen rich liquid is evaporated by heat exchange with a portion of the supply air. The liquefied air can be sent to at least one of the medium pressure column and the low pressure column.
窒素に富む液体はポンプ及び/又は静圧によって加圧される。 The nitrogen rich liquid is pressurized by a pump and / or static pressure.
本発明の他の主題は、空気分離装置であり、
a)中圧カラム、
b)低-中-圧カラムに熱的に連結された低圧カラム、
c)中圧カラムの圧力より高い圧力で操業する混合カラム、
d)圧縮され精製された空気を中圧カラムに送る手段、
e)窒素に富む流及び酸素に富む流を中圧カラムから低圧カラムに送る手段、
f)酸素に富む液体を低圧カラムから混合カラムの頂部に送る手段、及び
g)酸素に富む気体を混合カラムの頂部から取出す手段を包含し、
該装置が窒素に富む液体流を中圧カラムから取出す手段、該液体を加圧する手段、液体を少なくとも部分的に蒸発させる手段及び蒸発した液体の少なくとも一部分を混合カラムの底部に供給する手段を含むことを特徴とする。
Another subject of the invention is an air separation device,
a) medium pressure column,
b) a low pressure column thermally coupled to a low-medium-pressure column;
c) a mixing column operating at a pressure higher than that of the medium pressure column;
d) means for sending compressed and purified air to the medium pressure column;
e) means for sending a stream rich in nitrogen and a stream rich in oxygen from a medium pressure column to a low pressure column;
f) means for sending an oxygen rich liquid from the low pressure column to the top of the mixing column;
g) includes a means for removing an oxygen rich gas from the top of the mixing column;
The apparatus includes means for removing a liquid stream rich in nitrogen from the medium pressure column, means for pressurizing the liquid, means for at least partially evaporating the liquid, and means for supplying at least a portion of the evaporated liquid to the bottom of the mixing column. It is characterized by that.
本発明を図3、4及び5を参照して詳細に説明する。図3及び5は本発明による気体流を濃縮するユニットを示し、図4は本発明を実施するために特に適した分離ユニットを示す。 The present invention will be described in detail with reference to FIGS. FIGS. 3 and 5 show a unit for concentrating a gas stream according to the invention, and FIG. 4 shows a separation unit particularly suitable for carrying out the invention.
図3は、従来技術による高炉用の空気流の濃縮のための統合したユニットを模式的に示す。 FIG. 3 schematically shows an integrated unit for enrichment of airflow for a blast furnace according to the prior art.
空気の流は送風機Sで圧縮されて圧縮流1を形成する。この流は2つの画分2及び3に分けられる。第1画分2はチラーR、例えば水チラーによって冷却され、チラーと空気分離ユニット(ASU)の入口との間で圧縮されることなく空気分離ユニットに送られる。空気分離ユニットは例えば低温蒸留によって操業し、精製ユニット及び交換ラインを分離カラムの上流に含む。これは80〜95モル%の酸素を含む酸素流10及び廃流であり得る窒素流11を製造する。第2空気画分3は、例えばバルブ、オリフィス、減少直径パイプ又はタービンであり得る膨張手段Vによって膨張される。酸素に富む流10の少なくとも一部は、膨張手段Vの下流で、膨張した第2空気画分3に混合する。酸素に富む混合した流15は、カウパーW内で加熱され、高炉BFに送られる。
The air flow is compressed by the blower S to form a compressed flow 1. This stream is divided into two
この解決は、空気分離ユニットの上流の圧力を上げるための空気ブースターを不要にする。従って全システムのエネルギーの消費は良好になる。 This solution eliminates the need for an air booster to increase the pressure upstream of the air separation unit. Therefore, the energy consumption of the whole system is good.
図4は、詳細には説明しないが、同一の参照番号を有する図1の要素を採用する。 FIG. 4 employs the elements of FIG. 1 that have the same reference numbers, although not described in detail.
高炉風用の主空気圧縮機又は膨張タービンからくる5.45バールの中圧の精製した空気7aは中圧カラム2Aに入る前に少なくとも2つの分離流に分かれる。
The 5.45 bar medium pressure purified air 7a coming from the main air compressor or expansion turbine for blast furnace wind is split into at least two separate streams before entering the
第1流100は気体状で中圧カラム2Aの底部に直接供給される。
The
第2流200は熱交換器101Aで少なくとも部分的に凝縮する。液化部分は蒸留カラムの一(中圧カラム2A又は低圧カラム4Aのいずれか)に導入される。図4において、流204は中圧カラムの底部に送られるが、流204は交換器19Aでサブ冷却された後に低圧カラムに送られる。
The
空気に比較して窒素に富む液体流300は中圧カラム3Aから取出され、ポンプ400によって又は単なる静水高で圧縮され、熱交換器101A内で中圧空気の凝縮に対して蒸発されて気体窒素流500を形成し次いで混合カラム6Aの底部に供給される。こうして、空気と窒素に富む流との間の組成の差を利用して、混合カラム6Aのための供給が中圧カラム3Aを供給する空気100の圧力以上の圧力で行われ、追加の圧縮機を使用することなく行われる。
A
混合カラムに導入する前に主交換ライン内で気体状窒素500を温めることも考えることができる。
It is also conceivable to warm the
5.9バールの気体状窒素流500を製造するために熱交換器101Aは0.6℃の△Tを有する。
In order to produce a
混合カラム6Aの底部から来る流15Aは、図1のものより窒素に富み、低圧カラム4Aの頂部のすぐ下に送られる。
サブクーラー21Aは省略され、中圧気体状窒素NGの取出しはない。 The subcooler 21A is omitted, and the medium-pressure gaseous nitrogen NG is not taken out.
場合によって、空気の第3流はブースター8Aに送られ、交換ライン1Aで冷却され、吹出しタービン9Aで膨張されるが、中圧カラム用の空気の膨張を含む、他の冷却手段も考えられる。
Optionally, the third stream of air is sent to
このブースターが存在する場合は、本発明の利点は混合カラム用又は中圧カラム用の空気のための空気圧縮工程の必要がないことである。 When this booster is present, an advantage of the present invention is that there is no need for an air compression step for air for mixing columns or medium pressure columns.
図4の場合には、抽出効率は減少し、システムの分離エネルギーは基礎の場合より優れている。 In the case of FIG. 4, the extraction efficiency is reduced and the separation energy of the system is superior to the basic case.
然しながら、図4の空気分離ユニットの図3に示された変形に開示された計画への統合はバルブにおける圧力低下を著しく低下することを可能にする。 However, the integration of the air separation unit of FIG. 4 into the scheme disclosed in the variant shown in FIG. 3 makes it possible to significantly reduce the pressure drop in the valve.
図5は、従来技術による高炉用の空気流を濃縮するための統合ユニットを模式的に示す。 FIG. 5 schematically shows an integrated unit for concentrating the air flow for a blast furnace according to the prior art.
空気流は送風機Sで圧縮され圧縮流1を形成する。この流は2つの画分2及び3に分けられる。第1画分2はチラーR、例えば水チラーによって冷却され、ブースターCで圧縮され、空気分離ユニット(ASU)に送られる。この空気分離ユニットは例えば低温蒸留によって操業し、精製ユニット及び交換ラインを分離ユニットの上流に含む。これは80〜95モル%の酸素を含む酸素流10及び廃流になり得る窒素流11を製造する。第2空気画分3は、例えばバルブ、オリフィス、減少直径パイプ又はタービンであり得る膨張手段Vによって膨張される。酸素に富む流10の少なくとも一部は、膨張手段Vの下流で膨張した第2空気画分と混合される。酸素に富む混合流15はカウパーWで加熱され、及び高炉BFに送られる。ブースターC及びバルブVは短い巡回手段を有する。ユニットの第1操業において、第1画分は圧縮され、第2画分は膨張されない。第2操業において、第1画分の少なくとも一部分は圧縮されない及び第2画分は第1流の少なくとも一部分が混合される前に膨張される。
The air flow is compressed by the blower S to form a compressed flow 1. This stream is divided into two
変形の評価
従来技術
Conventional technology
膨張バルブ(図3)による変形1
膨張バルブ(図3)及び図4の空気分離法による変形2
Claims (14)
i)流(1)を少なくとも第1画分及び第2画分(2、3)に分ける工程、
ii)第1画分(2)の少なくとも一部を分離ユニット(ASU)に送る工程、
iii)分離ユニットから少なくとも第1及び第2流を供給し、その第1流(10)は第1画分より高い含量の成分Aを有する工程、
iv)第1流の少なくとも一部を第2画分の少なくとも一部と混合して加圧気体混合物(15)を形成する工程を包含する方法において、
第1流の少なくとも一部が混合される前に第2画分を膨張させることを特徴とする方法。 A method of concentrating one component of a pressurized gas stream,
i) dividing the stream (1) into at least a first fraction and a second fraction (2, 3);
ii) sending at least a portion of the first fraction (2) to the separation unit (ASU);
iii) supplying at least first and second streams from the separation unit, the first stream (10) having a higher content of component A than the first fraction;
iv) in a method comprising mixing at least a portion of the first stream with at least a portion of the second fraction to form a pressurized gas mixture (15),
Expanding the second fraction before at least a portion of the first stream is mixed.
ii)第2操作において、第1画分の少なくとも一部が圧縮されない(第1画分が圧縮されない)、及び第1流の少なくとも一部が混合される前に第2画分が膨張される、
請求項1〜9のいずれかに記載の方法。 i) in the first operation, at least a portion of the first fraction is compressed and the second fraction is not expanded before at least a portion of the first fraction is mixed; and ii) in the second operation At least a portion of the first fraction is not compressed (the first fraction is not compressed), and the second fraction is expanded before at least a portion of the first stream is mixed;
The method according to claim 1.
i)加圧気体流(1)を少なくとも第1画分及び第2画分(2、3)に分ける手段、
ii)分離ユニット(ASU)、
iii)第1画分(2)の少なくとも一部を分離ユニットに送る手段、及び
iv)分離ユニットで製造され及び第1画分に比較してAが濃縮された第1流(10)の少なくとも一部を第2画分と混合して、加圧気体流に比較してAが濃縮された流(15)を形成する手段を具備する装置において、
第1流の少なくとも一部と混合する手段の上流及び気体流を分割する手段の下流で第2画分を膨張させる手段(V)を含むことを特徴とする装置。 An apparatus for concentrating one component A of a pressurized gas flow,
i) means for dividing the pressurized gas stream (1) into at least a first fraction and a second fraction (2, 3);
ii) separation unit (ASU),
iii) means for sending at least part of the first fraction (2) to the separation unit; and iv) at least of the first stream (10) produced in the separation unit and enriched with A compared to the first fraction. In an apparatus comprising means for mixing a portion with a second fraction to form a stream (15) enriched in A compared to a pressurized gas stream,
An apparatus comprising means (V) for expanding the second fraction upstream of the means for mixing with at least a portion of the first stream and downstream of the means for dividing the gas stream.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0350819A FR2862004B3 (en) | 2003-11-10 | 2003-11-10 | METHOD AND INSTALLATION FOR ENRICHING A GASEOUS FLOW IN ONE OF ITS CONSTITUENTS |
PCT/FR2004/050570 WO2005047790A2 (en) | 2003-11-10 | 2004-11-05 | Method and installation for enriching a gas stream with one of the components thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007512491A true JP2007512491A (en) | 2007-05-17 |
Family
ID=34508749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006538907A Pending JP2007512491A (en) | 2003-11-10 | 2004-11-05 | Method and apparatus for concentrating one component of a gas stream |
Country Status (7)
Country | Link |
---|---|
US (2) | US20080034790A1 (en) |
EP (1) | EP1697690A2 (en) |
JP (1) | JP2007512491A (en) |
CN (1) | CN100543388C (en) |
BR (1) | BRPI0416327A (en) |
FR (1) | FR2862004B3 (en) |
WO (1) | WO2005047790A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2884305A1 (en) * | 2005-04-08 | 2006-10-13 | Air Liquide | Carbon dioxide separating method for iron and steel industry, involves receiving flow enriched in carbon dioxide from absorption unit, sending it towards homogenization unit and subjecting carbon dioxide to intermediate compression stage |
CZ302279B6 (en) * | 2005-07-04 | 2011-01-26 | Cervenka@Jan | Balancing method of fluctuating concentration of component or components in flowing gas |
FR2960555A1 (en) * | 2010-05-31 | 2011-12-02 | Air Liquide | Integrated installation comprises an air separation apparatus, a blast furnace, a unit for preheating the air, an adiabatic air compressor, a first pipe to introduce the air towards the preheating unit, and a unit for heating water |
US20130000352A1 (en) * | 2011-06-30 | 2013-01-03 | General Electric Company | Air separation unit and systems incorporating the same |
US9920987B2 (en) * | 2015-05-08 | 2018-03-20 | Air Products And Chemicals, Inc. | Mixing column for single mixed refrigerant (SMR) process |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5077206A (en) * | 1973-09-25 | 1975-06-24 | ||
JPS61139609A (en) * | 1984-12-13 | 1986-06-26 | Kawasaki Steel Corp | Oxygen enriching method of industrial furnace |
JPH05179322A (en) * | 1991-06-12 | 1993-07-20 | L'air Liquide | Method for feeding oxygen-enriched air to blast furnace and iron ore reduction installation using this method |
JPH08100995A (en) * | 1994-08-17 | 1996-04-16 | Boc Group Inc:The | Air separation method and air separation device for obtaining gaseous oxygen product at supply pressure |
JPH10180082A (en) * | 1996-09-25 | 1998-07-07 | L'air Liquide | Supply method to gas consumption unit and device therefor |
JP2001516439A (en) * | 1998-01-23 | 2001-09-25 | レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Combined furnace and air distillation apparatus and method of use |
JP2002155321A (en) * | 2000-09-18 | 2002-05-31 | L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude | Process and plant for supplying oxygen-enriched air into nonferrous metal manufacturing equipment |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3126265A (en) * | 1964-03-24 | Process and apparatus for separating | ||
US3731495A (en) * | 1970-12-28 | 1973-05-08 | Union Carbide Corp | Process of and apparatus for air separation with nitrogen quenched power turbine |
IT961138B (en) * | 1971-02-01 | 1973-12-10 | Air Liquide | PLANT FOR COMPRESSING A FLUID BY EXPANSION OF ANOTHER FLUID |
FR2680114B1 (en) * | 1991-08-07 | 1994-08-05 | Lair Liquide | METHOD AND INSTALLATION FOR AIR DISTILLATION, AND APPLICATION TO THE GAS SUPPLY OF A STEEL. |
FR2712383B1 (en) * | 1993-11-12 | 1995-12-22 | Air Liquide | Combined installation of a metal production unit and an air separation unit. |
FR2758621B1 (en) * | 1997-01-22 | 1999-02-12 | Air Liquide | METHOD AND INSTALLATION FOR SUPPLYING AN AIR GAS CONSUMER UNIT |
FR2774159B1 (en) * | 1998-01-23 | 2000-03-17 | Air Liquide | COMBINED INSTALLATION OF AN OVEN AND AN AIR DISTILLATION APPARATUS AND METHOD OF IMPLEMENTING IT |
US5979183A (en) * | 1998-05-22 | 1999-11-09 | Air Products And Chemicals, Inc. | High availability gas turbine drive for an air separation unit |
US6568207B1 (en) * | 2002-01-18 | 2003-05-27 | L'air Liquide-Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Integrated process and installation for the separation of air fed by compressed air from several compressors |
US20060266048A1 (en) * | 2005-05-27 | 2006-11-30 | Bell Leonard E | Fluid catalytic cracking flue gas utility optimizing system and process |
-
2003
- 2003-11-10 FR FR0350819A patent/FR2862004B3/en not_active Expired - Lifetime
-
2004
- 2004-11-05 CN CN200480033075.4A patent/CN100543388C/en not_active Expired - Fee Related
- 2004-11-05 WO PCT/FR2004/050570 patent/WO2005047790A2/en active Application Filing
- 2004-11-05 BR BRPI0416327-3A patent/BRPI0416327A/en not_active IP Right Cessation
- 2004-11-05 EP EP04805813A patent/EP1697690A2/en not_active Withdrawn
- 2004-11-05 US US10/577,621 patent/US20080034790A1/en not_active Abandoned
- 2004-11-05 JP JP2006538907A patent/JP2007512491A/en active Pending
-
2011
- 2011-03-11 US US13/046,141 patent/US20110192193A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5077206A (en) * | 1973-09-25 | 1975-06-24 | ||
JPS61139609A (en) * | 1984-12-13 | 1986-06-26 | Kawasaki Steel Corp | Oxygen enriching method of industrial furnace |
JPH05179322A (en) * | 1991-06-12 | 1993-07-20 | L'air Liquide | Method for feeding oxygen-enriched air to blast furnace and iron ore reduction installation using this method |
JPH08100995A (en) * | 1994-08-17 | 1996-04-16 | Boc Group Inc:The | Air separation method and air separation device for obtaining gaseous oxygen product at supply pressure |
JPH10180082A (en) * | 1996-09-25 | 1998-07-07 | L'air Liquide | Supply method to gas consumption unit and device therefor |
JP2001516439A (en) * | 1998-01-23 | 2001-09-25 | レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Combined furnace and air distillation apparatus and method of use |
JP2002155321A (en) * | 2000-09-18 | 2002-05-31 | L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude | Process and plant for supplying oxygen-enriched air into nonferrous metal manufacturing equipment |
Also Published As
Publication number | Publication date |
---|---|
WO2005047790A3 (en) | 2005-08-11 |
WO2005047790A8 (en) | 2006-06-01 |
WO2005047790A2 (en) | 2005-05-26 |
FR2862004A1 (en) | 2005-05-13 |
US20110192193A1 (en) | 2011-08-11 |
FR2862004B3 (en) | 2005-12-23 |
CN100543388C (en) | 2009-09-23 |
EP1697690A2 (en) | 2006-09-06 |
CN1878999A (en) | 2006-12-13 |
BRPI0416327A (en) | 2007-01-09 |
US20080034790A1 (en) | 2008-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2387934C2 (en) | Method to separate air into components by cryogenic distillation | |
KR101275364B1 (en) | Cryogenic air separation system | |
US6336345B1 (en) | Process and apparatus for low temperature fractionation of air | |
US20220325952A1 (en) | Method and apparatus for producing product nitrogen gas and product argon | |
JP4728219B2 (en) | Method and system for producing pressurized air gas by cryogenic distillation of air | |
JPH08210769A (en) | Cryogenic rectification system with side column for forming low-purity oxygen | |
CA1283846C (en) | Air separation process with modified single distillation columnnitrogen generator | |
JP2002327981A (en) | Cryogenic air-separation method of three-tower type | |
EP2634517B1 (en) | Process and apparatus for the separation of air by cryogenic distillation | |
US20060075779A1 (en) | Process for the cryogenic distillation of air | |
JPH05231765A (en) | Air separation | |
JPS63500329A (en) | Air distillation method and plant | |
KR100501056B1 (en) | Process for feeding a gas-consuming unit | |
JPH0694361A (en) | Separation of air | |
JPH07198249A (en) | Method and equipment for separating air | |
US6568207B1 (en) | Integrated process and installation for the separation of air fed by compressed air from several compressors | |
JP7451532B2 (en) | Apparatus and method for separating air by cryogenic distillation | |
US20110192193A1 (en) | Method And Installation For Enriching A Gas Stream With One Of The Components Thereof | |
JP2002235982A (en) | Tri-tower type low air temperature rectifier system | |
JP2000310481A (en) | Method and device for separating cryogenic air | |
US6536232B2 (en) | Method for plant and separating air by cryogenic distillation | |
US6434973B2 (en) | Process and unit for the production of a fluid enriched in oxygen by cryogenic distillation | |
JPH0682157A (en) | Separation of air | |
JP2003519349A (en) | Air separation process and plant | |
JP2001165566A (en) | Air separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091208 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20100308 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20100317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101026 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110126 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110207 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120515 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120529 |