JP2007512491A - Method and apparatus for concentrating one component of a gas stream - Google Patents

Method and apparatus for concentrating one component of a gas stream Download PDF

Info

Publication number
JP2007512491A
JP2007512491A JP2006538907A JP2006538907A JP2007512491A JP 2007512491 A JP2007512491 A JP 2007512491A JP 2006538907 A JP2006538907 A JP 2006538907A JP 2006538907 A JP2006538907 A JP 2006538907A JP 2007512491 A JP2007512491 A JP 2007512491A
Authority
JP
Japan
Prior art keywords
fraction
stream
column
separation unit
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006538907A
Other languages
Japanese (ja)
Inventor
ル・ボット、パトリック
ポントヌ、グザビエ
Original Assignee
レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード filed Critical レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Publication of JP2007512491A publication Critical patent/JP2007512491A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Blast Furnaces (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

加圧気体流の一の成分(A)を濃縮する方法に関する。本発明方法は次の工程を包含する。該流は少なくとも第1画分及び第2画分(2、3)に分けられる;第1画分の少なくとも一部は分離ユニット(ASU)に送られる;分離ユニットは、分離ユニットに供給される画分(2)よりA含量が高い第1排出(10)を含む少なくとも2つの排出を供給する;第1排出の少なくとも一部は第2画分(3)の少なくとも一部と混合して加圧気体混合物(15)を形成する。第2画分は膨張され、及び次いで第1排出の少なくとも一部と混合する。
【選択図】 図3
It relates to a method for concentrating one component (A) of a pressurized gas stream. The method of the present invention includes the following steps. The stream is divided into at least a first fraction and a second fraction (2, 3); at least a part of the first fraction is sent to a separation unit (ASU); the separation unit is fed to the separation unit Supply at least two discharges including a first discharge (10) having a higher A content than fraction (2); at least a portion of the first discharge is mixed with at least a portion of the second fraction (3) A pressurized gas mixture (15) is formed. The second fraction is expanded and then mixed with at least a portion of the first discharge.
[Selection] Figure 3

Description

本発明は、気体流の一成分を濃縮する(enriching)方法及び装置に関する。特に、空気を酸素で濃縮する方法に関する。   The present invention relates to a method and apparatus for enriching one component of a gas stream. In particular, it relates to a method of concentrating air with oxygen.

空気の酸素濃縮は鉄鋼業において必要となっている。   Oxygen enrichment of air is necessary in the steel industry.

高炉における熱コークスの減少又は排除は、一般に石炭粉投入(CPI)の利益のためにこの必要な変化が求められている。   The reduction or elimination of thermal coke in blast furnaces generally requires this necessary change for the benefit of coal powder input (CPI).

この濃縮を経済的に達成するためにEP−A−0531182で知られる手段は、高炉用の空気流の一部の低温(cryogenic)蒸留からなる。得られるのは、窒素に富む流と酸素に富む流であり、後者は次いで空気分離ユニットの下流で空気流に再混合される。   In order to achieve this enrichment economically, the means known from EP-A-0531182 consists of a cryogenic distillation of part of the blast furnace air stream. The result is a stream rich in nitrogen and a stream rich in oxygen, the latter then being remixed into the air stream downstream of the air separation unit.

酸素流の圧力は空気分離ユニット(ASU)に供給される空気流の圧力に近いので、混合カラムを含む方法は特に適当で経済的であることが認められた。   Since the pressure of the oxygen stream is close to the pressure of the air stream supplied to the air separation unit (ASU), a method involving a mixing column has been found to be particularly suitable and economical.

図1は、空気を酸素で濃縮するためのEP−A−0531182に記載された分離ユニットを示す。これは圧力Pで高炉用投入を構成する空気システムから供給される。空気蒸留ユニットは、圧力Pより僅かに高い所定の圧力で、例えば有利には圧力Pより高い1×10Pa abs〜1×10Pa absの圧力で、低純度酸素、例えば80〜97%及び好ましくは85〜95%の純度の酸素を製造することを意図する。 FIG. 1 shows a separation unit described in EP-A-0531182 for concentrating air with oxygen. This is supplied from the air system which constitutes the blast furnace input at pressure P. The air distillation unit has a low purity oxygen, for example 80-97%, at a predetermined pressure slightly higher than the pressure P, for example, preferably at a pressure of 1 × 10 4 Pa abs to 1 × 10 5 Pa abs higher than the pressure P. And preferably is intended to produce oxygen of 85-95% purity.

このユニットは、本質的に熱交換ライン1A、ダブル蒸留カラム2A、ダブル蒸留カラム自体は中圧カラム3A、低圧カラム4A、及び主コンデンサー-リボイラー5Aを具備し、及び混合カラム6Aを具備する。カラム3A及び4Aは典型的にはそれぞれ約5.45×10Pa及び約1.5×10Paで操業する。 This unit essentially comprises a heat exchange line 1A, a double distillation column 2A, the double distillation column itself comprises a medium pressure column 3A, a low pressure column 4A, a main condenser-reboiler 5A, and a mixing column 6A. Columns 3A and 4A typically operate at about 5.45 × 10 5 Pa and about 1.5 × 10 5 Pa, respectively.

文献US−A−4022030に詳細に説明されているように、混合カラムは蒸留カラムと同一の構造を有するカラムであるが、可逆性に近い方法で、カラムの底部に導入される相対的に揮発性気体を、カラムの頂部に導入される低揮発性液体に混合するために用いられる。   As described in detail in document US Pat. No. 4,022,030, the mixing column is a column having the same structure as the distillation column, but is relatively volatile which is introduced into the bottom of the column in a nearly reversible manner. The gas is used to mix the low volatility liquid introduced at the top of the column.

このような混合は冷却エネルギーを発生し、従って蒸留に伴うエネルギー消費を減少させる。本件の場合には、後述するように、この混合は圧力Pで直接製造されるべき不純酸素のためにも有利に用いられる。   Such mixing generates cooling energy and thus reduces the energy consumption associated with distillation. In this case, as will be described later, this mixing is also advantageously used for impure oxygen to be produced directly at pressure P.

図1の場合、空気流は、交換ライン1Aで冷却された、圧縮機14Aによって混合カラムの圧力に圧縮され、サブ冷却機21Aでサブ冷却され、及び混合カラム6Aの底部に送られる。   In the case of FIG. 1, the air stream is compressed to the pressure of the mixing column by the compressor 14A, cooled in the exchange line 1A, subcooled by the subcooler 21A, and sent to the bottom of the mixing column 6A.

カラム3Aの底部から取出された「リッチ液体」(酸素に富む空気)は、膨張バルブ10Aで膨張した後、カラム4Aに導入される。カラム3Aの中間点11Aから取出された「リーン液体」(不純窒素)は、膨張バルブ12Aで膨張した後、装置の排ガスを構成する。このガスとカラム3Aの頂部で製造され得る中圧の純粋気体状窒素は交換ライン1Aで温められ、装置から排出される。これらの気体は、それぞれ図1においてNI及びNGで示される。   The “rich liquid” (air rich in oxygen) taken out from the bottom of the column 3A is expanded by the expansion valve 10A and then introduced into the column 4A. The “lean liquid” (impure nitrogen) taken out from the intermediate point 11A of the column 3A is expanded by the expansion valve 12A, and then constitutes the exhaust gas of the apparatus. This gas and medium pressure pure gaseous nitrogen that can be produced at the top of the column 3A are warmed in the exchange line 1A and discharged from the apparatus. These gases are denoted by NI and NG in FIG. 1, respectively.

液体酸素は、ダブルカラム2Aの設定しだいで高い或いは低い純度で、カラム4Aから取出され、圧力低下(P1−Pは2×10Pa未満)を考慮するため上記圧力Pより僅かに高い圧力P1にあげ、カラム6の頂部に導入される。 Depending on the setting of the double column 2A, the liquid oxygen is extracted from the column 4A with a high or low purity, and a pressure P1 slightly higher than the pressure P in order to take account of pressure drop (P1-P is less than 2 × 10 5 Pa). And introduced into the top of the column 6.

混合カラム6Aから3つの液体流が取出される。底部からは、リッチ液体に類似し及び膨張バルブ15A’を備えたライン15Aを介してリッチ液体と一緒にされる液体、中間点からは、膨張バルブ17Aを備えたライン16Aを介して低圧カラム4Aに送られる酸素及び窒素から本質的になる混合物、及び、頂部からは、熱交換ラインで温められた後に、製造気体OIとしてライン18Aを介して装置から、実質的に圧力Pで放出される不純酸素である。   Three liquid streams are withdrawn from the mixing column 6A. From the bottom, a liquid similar to the rich liquid and combined with the rich liquid via a line 15A with an expansion valve 15A ′, from the middle point, the low pressure column 4A via a line 16A with an expansion valve 17A The mixture consisting essentially of oxygen and nitrogen sent to the impeller, and from the top, after being warmed in the heat exchange line, impure discharged from the apparatus via line 18A as production gas OI at substantially pressure P It is oxygen.

図では、装置を循環する流体から利用可能な冷却を回収するための補助熱交換器19A、20A、21Aも示されている。   The figure also shows auxiliary heat exchangers 19A, 20A, 21A for recovering available cooling from the fluid circulating through the device.

図2は、従来技術による高炉用の空気流を濃縮するための統合装置が模式的に示している
空気流は送風機Sで圧縮されて圧縮流を形成する。この流は2つの画分2及び3に分けられる。第1画分2はチラーR、例えば水チラーで冷却し、ブースターCで圧縮し及び空気分離ユニット(ASU)に送る。空気分離ユニットは例えば低温蒸留によって操業し、及び、分離カラムの上流で精製ユニット及び交換ラインを含む。80〜95モル%の酸素を含む酸素流10及び廃流であり得る窒素流11を製造する。酸素に富む流の少なくとも一部は第2空気画分3と混合する。酸素に富む、混合流15はカウパー(cowpers)Wで加熱し高炉BFに送る。
FIG. 2 schematically shows an integrated device for concentrating a blast furnace air flow according to the prior art. The air flow is compressed by a blower S to form a compressed flow. This stream is divided into two fractions 2 and 3. The first fraction 2 is cooled with a chiller R, for example a water chiller, compressed with a booster C and sent to an air separation unit (ASU). The air separation unit operates, for example, by cryogenic distillation and includes a purification unit and an exchange line upstream of the separation column. An oxygen stream 10 comprising 80-95 mol% oxygen and a nitrogen stream 11 which can be a waste stream are produced. At least a portion of the oxygen rich stream mixes with the second air fraction 3. The mixed stream 15 rich in oxygen is heated by a cowpers W and sent to the blast furnace BF.

空気分離ユニット(分離ユニットへの高炉風における空気取入と酸素流再注入との間)を包含する回路内の圧力低下を防ぐために、圧縮機Cを設置する。これは空気分離ユニット用の全空気流(図2による)又は(図1の変形として)混合カラムに供給するための空気流(即ち分離ユニットで処理する空気流の約30%)の圧力を上昇することを可能にする。   Compressor C is installed to prevent pressure drop in the circuit including the air separation unit (between air intake and oxygen flow reinjection in the blast furnace wind into the separation unit). This increases the pressure of the total air flow for the air separation unit (according to FIG. 2) or (as a variant of FIG. 1) to the mixing column (ie about 30% of the air flow processed in the separation unit). Make it possible to do.

本発明の目的は、分離ユニットの冷却を維持するための膨張タービンの軸に連結されたもの以外の空気分離ユニットにおける気体流圧縮機を用いることなく、より経済的でより信頼できる方法で製鉄法に空気分離ユニットを統合することである。   It is an object of the present invention to produce iron in a more economical and more reliable manner without using a gas flow compressor in an air separation unit other than that connected to the shaft of an expansion turbine to maintain cooling of the separation unit. Is to integrate an air separation unit.

本発明の主題はその一成分Aで加圧気体流を濃縮する方法であり、次の工程を包含する。
i)該流を少なくとも第1画分及び第2画分に分ける工程、
ii)第1画分の少なくとも一部を分離ユニットに送る工程、
iii)分離ユニットから、少なくとも第1流及び第2流を供給し、第1流は第1画分より高い含量の成分Aを有する工程、
iv)第1流の少なくとも一部を第2画分の少なくとも一部と混合して加圧気体混合物を形成する工程、を具備し、
第1流の少なくとも一部を混合する前に第2画分を膨張させることを特徴とする方法である。
The subject of the present invention is a method for concentrating a pressurized gas stream with its one component A, which comprises the following steps.
i) dividing the stream into at least a first fraction and a second fraction;
ii) sending at least a portion of the first fraction to the separation unit;
iii) supplying from the separation unit at least a first stream and a second stream, the first stream having a higher content of component A than the first fraction;
iv) mixing at least a portion of the first stream with at least a portion of the second fraction to form a pressurized gas mixture;
The method is characterized in that the second fraction is expanded before mixing at least a portion of the first stream.

他の選択的観点によれば、
-加圧気体流及び第1画分は実質的に同一圧力であり及び、特に、圧力低下のみがこれら2つの流体の間の圧力変化の原因である、
-第1流及び膨張した第2画分は実質的に同一圧力であり及び、特に、圧力低下のみがこれら2つの流体の間の圧力変化の原因である、
-分離ユニットは、ユニットで製造され又はユニット用の気体流を圧縮するためのエネルギー需要に関し自律的である、
-加圧気体流は空気であり及び場合により成分Aは酸素である、
-加圧気体流は高炉用の空気である、
-分離ユニットは低温蒸留分離ユニットである、
-分離ユニットは中圧カラム、中圧カラムと熱的に連結された低圧カラム、及び混合カラムを具備する、
-蒸留カラム用の第1画分のいっずれの部分も圧縮されない又は混合カラム用又は中圧カラム用の第1画分のいずれの部分も該流が分れた後に圧縮されない。
According to other optional aspects,
The pressurized gas flow and the first fraction are at substantially the same pressure, and in particular, only the pressure drop is responsible for the pressure change between these two fluids,
The first flow and the expanded second fraction are at substantially the same pressure, and in particular, only the pressure drop is responsible for the pressure change between these two fluids,
The separation unit is autonomous with respect to the energy demand for compressing the gas flow produced by the unit or for the unit;
The pressurized gas stream is air and optionally component A is oxygen,
-The pressurized gas flow is blast furnace air,
-The separation unit is a cryogenic distillation separation unit,
The separation unit comprises an intermediate pressure column, a low pressure column thermally coupled to the intermediate pressure column, and a mixing column;
-No part of the first fraction for the distillation column is compressed or any part of the first fraction for the mixing column or medium pressure column is not compressed after the stream has been separated.

操作の一の特定の方法によれば、i)第1操作において、第1画分の少なくとも一部は圧縮され及び第2画分は第1画分の少なくとも一部がそれと混合される前に膨張されない、及び
ii)第2操作において、(例えば圧縮機Cが作動していない場合)第1画分の少なくとも一部が圧縮されない(第1画分は圧縮されない)及び、第1流の少なくとも一部がそれと混合される前に第2画分は膨張される。
According to one particular method of operation, i) in the first operation, at least part of the first fraction is compressed and the second fraction is before at least part of the first fraction is mixed with it. Ii) In the second operation, at least a portion of the first fraction is not compressed (eg, the first fraction is not compressed) in the second operation (eg, when compressor C is not operating), and at least of the first flow The second fraction is expanded before a part is mixed with it.

本発明の他の主題は加圧気体流をその成分Aで濃縮する装置であり、
i)加圧気体流を少なくとも第1画分及び第2画分に分ける手段、
ii)分離ユニット、
iii)第1画分の少なくとも一部を分離ユニットに送る手段、
iv)分離ユニットで製造され及び第1画分に比較してAが濃縮された第1流の少なくとも一部を、第2画分と混合して加圧気体流に比較してAが濃縮された流を形成する手段、を包含し、
第1流の少なくとも一部を混合する手段の上流、及び気体流を分割する手段の下流で第2画分を膨張する手段を含むことを特徴とする。
Another subject of the invention is an apparatus for concentrating a pressurized gas stream with its component A,
i) means for dividing the pressurized gas stream into at least a first fraction and a second fraction;
ii) separation unit,
iii) means for sending at least part of the first fraction to the separation unit;
iv) At least part of the first stream produced in the separation unit and enriched with A compared to the first fraction is mixed with the second fraction to concentrate A compared with the pressurized gas stream. Means to form a stream,
And means for expanding the second fraction upstream of the means for mixing at least a portion of the first stream and downstream of the means for dividing the gas stream.

他の選択的観点によれば、
-分離ユニットは、中圧カラム、中圧カラムと熱的に連結された低圧カラム、及び混合カラムを包含する空気分離ユニットである、
-該装置は、中圧カラム用又は混合カラム用の空気を圧縮する手段を含まない、及び
-該装置は、第2画分を圧縮するための手段及び膨張手段を介して通過することなく第1流の少なくとも一部と混合される第2画分を送る手段を含む。
According to other optional aspects,
The separation unit is an air separation unit comprising a medium pressure column, a low pressure column thermally coupled to the medium pressure column, and a mixing column;
The device does not include means for compressing air for medium pressure columns or mixing columns; and
The device comprises means for compressing the second fraction and means for sending the second fraction mixed with at least a portion of the first stream without passing through the expansion means;

有利には、分離方法は、追加的空気圧縮手段の必要なしに、中圧カラムの圧力と同一又はより高い圧力で操業する混合カラムを用いる。   Advantageously, the separation method uses a mixing column operating at a pressure equal to or higher than that of the intermediate pressure column without the need for additional air compression means.

このように、混合カラムユニットを、追加の空気圧縮機なしで高炉ブラスターに統合することを提案する。従って、この建設のために必要な投資を最小限にしながら、酸素分子、及び従って濃縮空気の高炉への配達の信頼性を高める。   Thus, it is proposed to integrate the mixing column unit into a blast furnace blaster without an additional air compressor. Thus, increasing the reliability of delivery of oxygen molecules and thus concentrated air to the blast furnace while minimizing the investment required for this construction.

本発明の他の主題は、少なくとも1の中圧カラム、低-中圧カラムに熱的に連結した低圧カラム及び中圧カラムの圧力より高い圧力で操業する混合カラムを包含する装置を用いて空気を分離する方法であり、
i)空気、加圧され及び精製された空気を中圧カラムに送り、
ii)窒素に富み及び酸素に富む流を中圧カラムから低圧カラムに送り、
iii)酸素に富む液体を低圧カラムから混合カラムの頂部に送り、
iv)酸素に富む気体を混合カラムの頂部から取出す方法において、
窒素に富む液体流を中圧カラムから取出し、加圧し及び少なくとも部分的に蒸発し、及び混合カラムの底部に蒸発液体の少なくとも一部を供給することを特徴とする。
Another subject of the present invention is the use of an apparatus comprising at least one medium pressure column, a low pressure column thermally connected to the low-medium pressure column, and a mixing column operating at a pressure higher than that of the medium pressure column. Is a method of separating
i) sending air, pressurized and purified air to a medium pressure column;
ii) sending a nitrogen-rich and oxygen-rich stream from the medium pressure column to the low pressure column;
iii) sending an oxygen rich liquid from the low pressure column to the top of the mixing column;
iv) in a method for removing an oxygen-rich gas from the top of the mixing column;
A nitrogen-rich liquid stream is removed from the medium pressure column, pressurized and at least partially evaporated, and at least a portion of the evaporated liquid is fed to the bottom of the mixing column.

好ましくは、窒素に富む液体を供給空気の一部で熱交換によって蒸発させる。こうして液化した空気は中圧カラム及び低圧カラムの少なくとも一方に送り得る。   Preferably, the nitrogen rich liquid is evaporated by heat exchange with a portion of the supply air. The liquefied air can be sent to at least one of the medium pressure column and the low pressure column.

窒素に富む液体はポンプ及び/又は静圧によって加圧される。   The nitrogen rich liquid is pressurized by a pump and / or static pressure.

本発明の他の主題は、空気分離装置であり、
a)中圧カラム、
b)低-中-圧カラムに熱的に連結された低圧カラム、
c)中圧カラムの圧力より高い圧力で操業する混合カラム、
d)圧縮され精製された空気を中圧カラムに送る手段、
e)窒素に富む流及び酸素に富む流を中圧カラムから低圧カラムに送る手段、
f)酸素に富む液体を低圧カラムから混合カラムの頂部に送る手段、及び
g)酸素に富む気体を混合カラムの頂部から取出す手段を包含し、
該装置が窒素に富む液体流を中圧カラムから取出す手段、該液体を加圧する手段、液体を少なくとも部分的に蒸発させる手段及び蒸発した液体の少なくとも一部分を混合カラムの底部に供給する手段を含むことを特徴とする。
Another subject of the invention is an air separation device,
a) medium pressure column,
b) a low pressure column thermally coupled to a low-medium-pressure column;
c) a mixing column operating at a pressure higher than that of the medium pressure column;
d) means for sending compressed and purified air to the medium pressure column;
e) means for sending a stream rich in nitrogen and a stream rich in oxygen from a medium pressure column to a low pressure column;
f) means for sending an oxygen rich liquid from the low pressure column to the top of the mixing column;
g) includes a means for removing an oxygen rich gas from the top of the mixing column;
The apparatus includes means for removing a liquid stream rich in nitrogen from the medium pressure column, means for pressurizing the liquid, means for at least partially evaporating the liquid, and means for supplying at least a portion of the evaporated liquid to the bottom of the mixing column. It is characterized by that.

本発明を図3、4及び5を参照して詳細に説明する。図3及び5は本発明による気体流を濃縮するユニットを示し、図4は本発明を実施するために特に適した分離ユニットを示す。   The present invention will be described in detail with reference to FIGS. FIGS. 3 and 5 show a unit for concentrating a gas stream according to the invention, and FIG. 4 shows a separation unit particularly suitable for carrying out the invention.

図3は、従来技術による高炉用の空気流の濃縮のための統合したユニットを模式的に示す。   FIG. 3 schematically shows an integrated unit for enrichment of airflow for a blast furnace according to the prior art.

空気の流は送風機Sで圧縮されて圧縮流1を形成する。この流は2つの画分2及び3に分けられる。第1画分2はチラーR、例えば水チラーによって冷却され、チラーと空気分離ユニット(ASU)の入口との間で圧縮されることなく空気分離ユニットに送られる。空気分離ユニットは例えば低温蒸留によって操業し、精製ユニット及び交換ラインを分離カラムの上流に含む。これは80〜95モル%の酸素を含む酸素流10及び廃流であり得る窒素流11を製造する。第2空気画分3は、例えばバルブ、オリフィス、減少直径パイプ又はタービンであり得る膨張手段Vによって膨張される。酸素に富む流10の少なくとも一部は、膨張手段Vの下流で、膨張した第2空気画分3に混合する。酸素に富む混合した流15は、カウパーW内で加熱され、高炉BFに送られる。   The air flow is compressed by the blower S to form a compressed flow 1. This stream is divided into two fractions 2 and 3. The first fraction 2 is cooled by a chiller R, for example a water chiller, and sent to the air separation unit without being compressed between the chiller and the inlet of the air separation unit (ASU). The air separation unit operates, for example, by cryogenic distillation and includes a purification unit and an exchange line upstream of the separation column. This produces an oxygen stream 10 containing 80-95 mol% oxygen and a nitrogen stream 11 which can be a waste stream. The second air fraction 3 is expanded by expansion means V, which can be, for example, a valve, an orifice, a reduced diameter pipe or a turbine. At least a part of the oxygen-rich stream 10 mixes with the expanded second air fraction 3 downstream of the expansion means V. The mixed stream 15 rich in oxygen is heated in the cowper W and sent to the blast furnace BF.

この解決は、空気分離ユニットの上流の圧力を上げるための空気ブースターを不要にする。従って全システムのエネルギーの消費は良好になる。   This solution eliminates the need for an air booster to increase the pressure upstream of the air separation unit. Therefore, the energy consumption of the whole system is good.

図4は、詳細には説明しないが、同一の参照番号を有する図1の要素を採用する。   FIG. 4 employs the elements of FIG. 1 that have the same reference numbers, although not described in detail.

高炉風用の主空気圧縮機又は膨張タービンからくる5.45バールの中圧の精製した空気7aは中圧カラム2Aに入る前に少なくとも2つの分離流に分かれる。   The 5.45 bar medium pressure purified air 7a coming from the main air compressor or expansion turbine for blast furnace wind is split into at least two separate streams before entering the medium pressure column 2A.

第1流100は気体状で中圧カラム2Aの底部に直接供給される。   The first stream 100 is in a gaseous state and is supplied directly to the bottom of the intermediate pressure column 2A.

第2流200は熱交換器101Aで少なくとも部分的に凝縮する。液化部分は蒸留カラムの一(中圧カラム2A又は低圧カラム4Aのいずれか)に導入される。図4において、流204は中圧カラムの底部に送られるが、流204は交換器19Aでサブ冷却された後に低圧カラムに送られる。   The second stream 200 is at least partially condensed in the heat exchanger 101A. The liquefied part is introduced into one of the distillation columns (either the medium pressure column 2A or the low pressure column 4A). In FIG. 4, stream 204 is sent to the bottom of the medium pressure column, but stream 204 is sent to the low pressure column after being subcooled in exchanger 19A.

空気に比較して窒素に富む液体流300は中圧カラム3Aから取出され、ポンプ400によって又は単なる静水高で圧縮され、熱交換器101A内で中圧空気の凝縮に対して蒸発されて気体窒素流500を形成し次いで混合カラム6Aの底部に供給される。こうして、空気と窒素に富む流との間の組成の差を利用して、混合カラム6Aのための供給が中圧カラム3Aを供給する空気100の圧力以上の圧力で行われ、追加の圧縮機を使用することなく行われる。   A liquid stream 300 rich in nitrogen compared to air is taken from the intermediate pressure column 3A, compressed by the pump 400 or at a mere hydrostatic height and evaporated in the heat exchanger 101A against the condensation of medium pressure air to form gaseous nitrogen A stream 500 is formed and then fed to the bottom of the mixing column 6A. Thus, using the difference in composition between the air and the nitrogen-rich stream, the supply for the mixing column 6A takes place at a pressure above the pressure of the air 100 supplying the intermediate pressure column 3A, and the additional compressor Done without using.

混合カラムに導入する前に主交換ライン内で気体状窒素500を温めることも考えることができる。   It is also conceivable to warm the gaseous nitrogen 500 in the main exchange line before introducing it into the mixing column.

5.9バールの気体状窒素流500を製造するために熱交換器101Aは0.6℃の△Tを有する。   In order to produce a gaseous nitrogen stream 500 of 5.9 bar, the heat exchanger 101A has a ΔT of 0.6 ° C.

混合カラム6Aの底部から来る流15Aは、図1のものより窒素に富み、低圧カラム4Aの頂部のすぐ下に送られる。   Stream 15A coming from the bottom of mixing column 6A is richer in nitrogen than that of FIG. 1 and is sent directly below the top of low pressure column 4A.

サブクーラー21Aは省略され、中圧気体状窒素NGの取出しはない。   The subcooler 21A is omitted, and the medium-pressure gaseous nitrogen NG is not taken out.

場合によって、空気の第3流はブースター8Aに送られ、交換ライン1Aで冷却され、吹出しタービン9Aで膨張されるが、中圧カラム用の空気の膨張を含む、他の冷却手段も考えられる。   Optionally, the third stream of air is sent to booster 8A, cooled in exchange line 1A, and expanded in blown turbine 9A, although other cooling means are contemplated, including expansion of air for medium pressure columns.

このブースターが存在する場合は、本発明の利点は混合カラム用又は中圧カラム用の空気のための空気圧縮工程の必要がないことである。   When this booster is present, an advantage of the present invention is that there is no need for an air compression step for air for mixing columns or medium pressure columns.

図4の場合には、抽出効率は減少し、システムの分離エネルギーは基礎の場合より優れている。   In the case of FIG. 4, the extraction efficiency is reduced and the separation energy of the system is superior to the basic case.

然しながら、図4の空気分離ユニットの図3に示された変形に開示された計画への統合はバルブにおける圧力低下を著しく低下することを可能にする。   However, the integration of the air separation unit of FIG. 4 into the scheme disclosed in the variant shown in FIG. 3 makes it possible to significantly reduce the pressure drop in the valve.

図5は、従来技術による高炉用の空気流を濃縮するための統合ユニットを模式的に示す。   FIG. 5 schematically shows an integrated unit for concentrating the air flow for a blast furnace according to the prior art.

空気流は送風機Sで圧縮され圧縮流1を形成する。この流は2つの画分2及び3に分けられる。第1画分2はチラーR、例えば水チラーによって冷却され、ブースターCで圧縮され、空気分離ユニット(ASU)に送られる。この空気分離ユニットは例えば低温蒸留によって操業し、精製ユニット及び交換ラインを分離ユニットの上流に含む。これは80〜95モル%の酸素を含む酸素流10及び廃流になり得る窒素流11を製造する。第2空気画分3は、例えばバルブ、オリフィス、減少直径パイプ又はタービンであり得る膨張手段Vによって膨張される。酸素に富む流10の少なくとも一部は、膨張手段Vの下流で膨張した第2空気画分と混合される。酸素に富む混合流15はカウパーWで加熱され、及び高炉BFに送られる。ブースターC及びバルブVは短い巡回手段を有する。ユニットの第1操業において、第1画分は圧縮され、第2画分は膨張されない。第2操業において、第1画分の少なくとも一部分は圧縮されない及び第2画分は第1流の少なくとも一部分が混合される前に膨張される。   The air flow is compressed by the blower S to form a compressed flow 1. This stream is divided into two fractions 2 and 3. The first fraction 2 is cooled by a chiller R, for example a water chiller, compressed by a booster C and sent to an air separation unit (ASU). This air separation unit operates, for example, by cryogenic distillation and includes a purification unit and an exchange line upstream of the separation unit. This produces an oxygen stream 10 containing 80-95 mol% oxygen and a nitrogen stream 11 that can be a waste stream. The second air fraction 3 is expanded by expansion means V, which can be, for example, a valve, an orifice, a reduced diameter pipe or a turbine. At least a portion of the oxygen-rich stream 10 is mixed with the second air fraction expanded downstream of the expansion means V. The oxygen rich mixed stream 15 is heated by the cowper W and sent to the blast furnace BF. Booster C and valve V have short circuiting means. In the first operation of the unit, the first fraction is compressed and the second fraction is not expanded. In the second operation, at least a portion of the first fraction is not compressed and the second fraction is expanded before at least a portion of the first stream is mixed.

変形の評価
従来技術

Figure 2007512491
Deformation evaluation
Conventional technology
Figure 2007512491

膨張バルブ(図3)による変形1

Figure 2007512491
Deformation 1 with expansion valve (Fig. 3)
Figure 2007512491

膨張バルブ(図3)及び図4の空気分離法による変形2

Figure 2007512491
Modification 2 by expansion method (Fig. 3) and air separation method of Fig. 4
Figure 2007512491

従来技術による濃縮方法を示す図。The figure which shows the concentration method by a prior art. 従来技術による高炉用空気流を濃縮する装置を統合した装置を模式的に示す図。The figure which shows typically the apparatus which integrated the apparatus which concentrates the airflow for blast furnaces by a prior art. 本発明による気体流を濃縮する統合ユニットを示す図。FIG. 3 shows an integrated unit for concentrating a gas stream according to the invention. 本発明を実施するために特に適した分離ユニットを示す図。1 shows a separation unit that is particularly suitable for carrying out the present invention. FIG. 本発明による気体流を濃縮するユニットを示す図。The figure which shows the unit which concentrates the gas flow by this invention.

Claims (14)

加圧気体流の1成分を濃縮化する方法であって、
i)流(1)を少なくとも第1画分及び第2画分(2、3)に分ける工程、
ii)第1画分(2)の少なくとも一部を分離ユニット(ASU)に送る工程、
iii)分離ユニットから少なくとも第1及び第2流を供給し、その第1流(10)は第1画分より高い含量の成分Aを有する工程、
iv)第1流の少なくとも一部を第2画分の少なくとも一部と混合して加圧気体混合物(15)を形成する工程を包含する方法において、
第1流の少なくとも一部が混合される前に第2画分を膨張させることを特徴とする方法。
A method of concentrating one component of a pressurized gas stream,
i) dividing the stream (1) into at least a first fraction and a second fraction (2, 3);
ii) sending at least a portion of the first fraction (2) to the separation unit (ASU);
iii) supplying at least first and second streams from the separation unit, the first stream (10) having a higher content of component A than the first fraction;
iv) in a method comprising mixing at least a portion of the first stream with at least a portion of the second fraction to form a pressurized gas mixture (15),
Expanding the second fraction before at least a portion of the first stream is mixed.
該加圧気体流(1)及び第1画分(2)が実質的に同一圧力であり、及び、特に、圧力低下のみがこれらの2つの流体の圧力の間の変化の原因である請求項1に記載の方法。 The pressurized gas stream (1) and the first fraction (2) are at substantially the same pressure, and in particular, only the pressure drop is responsible for the change between the pressures of these two fluids. The method according to 1. 第1流及び膨張した第2画分が実質的に同一の圧力であり、及び、特に、圧力低下のみがこれらの2つの流体の圧力の変化の原因である請求項1及び2のいずれかに記載の方法。 The first stream and the expanded second fraction are at substantially the same pressure, and in particular, only the pressure drop is responsible for the change in pressure of these two fluids. The method described. 分離ユニット(ASU)が、該ユニットで生じる又は該ユニット用の気体流の圧縮のためのエネルギー需要に関して自律性である請求項1〜3項のいずれかに記載の方法。 4. A method according to any one of the preceding claims, wherein the separation unit (ASU) is autonomous with respect to the energy demand arising in the unit or for compression of the gas flow for the unit. 加圧気体流(1)が空気であり及び場合によって成分Aが酸素である請求項1〜4のいずれかに記載の方法。 A process according to any of claims 1 to 4, wherein the pressurized gas stream (1) is air and optionally component A is oxygen. 加圧気体流が高炉(BF)用の空気である請求項5に記載の方法。 6. The method of claim 5, wherein the pressurized gas stream is blast furnace (BF) air. 分離ユニットが低温蒸留分離ユニット(ASU)である請求項1〜6のいずれかに記載の方法。 The method according to claim 1, wherein the separation unit is a cryogenic distillation separation unit (ASU). 分離ユニット(ASU)が中圧カラム(2A)、中圧カラムに熱的に連結された低圧カラム(4A)、及び混合カラムを包含する請求項7に記載の方法。 The method according to claim 7, wherein the separation unit (ASU) comprises an intermediate pressure column (2A), a low pressure column (4A) thermally connected to the intermediate pressure column, and a mixing column. 蒸留カラム用の第1画分のいずれの部分も圧縮されないか又は混合カラム用又は中圧カラム用の第1画分のいずれの部分も該流が工程i)で分割された後に圧縮されない請求項8に記載の方法。 No part of the first fraction for the distillation column is compressed or any part of the first fraction for the mixing column or medium pressure column is not compressed after the stream has been divided in step i). 9. The method according to 8. i)第1操作において、第1画分の少なくとも一部が圧縮され、及び第1画分の少なくとも一部が混合される前に第2画分が膨張されない、及び
ii)第2操作において、第1画分の少なくとも一部が圧縮されない(第1画分が圧縮されない)、及び第1流の少なくとも一部が混合される前に第2画分が膨張される、
請求項1〜9のいずれかに記載の方法。
i) in the first operation, at least a portion of the first fraction is compressed and the second fraction is not expanded before at least a portion of the first fraction is mixed; and ii) in the second operation At least a portion of the first fraction is not compressed (the first fraction is not compressed), and the second fraction is expanded before at least a portion of the first stream is mixed;
The method according to claim 1.
加圧気体流の1成分Aを濃縮する装置であって、
i)加圧気体流(1)を少なくとも第1画分及び第2画分(2、3)に分ける手段、
ii)分離ユニット(ASU)、
iii)第1画分(2)の少なくとも一部を分離ユニットに送る手段、及び
iv)分離ユニットで製造され及び第1画分に比較してAが濃縮された第1流(10)の少なくとも一部を第2画分と混合して、加圧気体流に比較してAが濃縮された流(15)を形成する手段を具備する装置において、
第1流の少なくとも一部と混合する手段の上流及び気体流を分割する手段の下流で第2画分を膨張させる手段(V)を含むことを特徴とする装置。
An apparatus for concentrating one component A of a pressurized gas flow,
i) means for dividing the pressurized gas stream (1) into at least a first fraction and a second fraction (2, 3);
ii) separation unit (ASU),
iii) means for sending at least part of the first fraction (2) to the separation unit; and iv) at least of the first stream (10) produced in the separation unit and enriched with A compared to the first fraction. In an apparatus comprising means for mixing a portion with a second fraction to form a stream (15) enriched in A compared to a pressurized gas stream,
An apparatus comprising means (V) for expanding the second fraction upstream of the means for mixing with at least a portion of the first stream and downstream of the means for dividing the gas stream.
分離ユニットが、中圧カラム(3A)、中圧カラムと熱的に連結した低圧カラム(4A)、及び混合カラム(6A)を具備する空気分離ユニット(ASU)である請求項11に記載の装置。 The apparatus according to claim 11, wherein the separation unit is an air separation unit (ASU) comprising an intermediate pressure column (3A), a low pressure column (4A) thermally connected to the intermediate pressure column, and a mixing column (6A). . 中圧カラム用又は気体流を分割する手段の下流の混合カラム用の空気を圧縮する手段を含まない請求項12に記載の装置。 13. The apparatus of claim 12, wherein the apparatus does not include means for compressing air for a medium pressure column or for a mixing column downstream of the means for dividing the gas stream. 第2画分を圧縮する手段及び膨張手段を介して通過することなく第1流の少なくとも一部と混合すべき第2画分を送る手段を含む請求項11及び12のいずれかに記載の装置。 13. Apparatus according to any of claims 11 and 12, comprising means for compressing the second fraction and means for sending the second fraction to be mixed with at least a portion of the first stream without passing through the expansion means. .
JP2006538907A 2003-11-10 2004-11-05 Method and apparatus for concentrating one component of a gas stream Pending JP2007512491A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350819A FR2862004B3 (en) 2003-11-10 2003-11-10 METHOD AND INSTALLATION FOR ENRICHING A GASEOUS FLOW IN ONE OF ITS CONSTITUENTS
PCT/FR2004/050570 WO2005047790A2 (en) 2003-11-10 2004-11-05 Method and installation for enriching a gas stream with one of the components thereof

Publications (1)

Publication Number Publication Date
JP2007512491A true JP2007512491A (en) 2007-05-17

Family

ID=34508749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006538907A Pending JP2007512491A (en) 2003-11-10 2004-11-05 Method and apparatus for concentrating one component of a gas stream

Country Status (7)

Country Link
US (2) US20080034790A1 (en)
EP (1) EP1697690A2 (en)
JP (1) JP2007512491A (en)
CN (1) CN100543388C (en)
BR (1) BRPI0416327A (en)
FR (1) FR2862004B3 (en)
WO (1) WO2005047790A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884305A1 (en) * 2005-04-08 2006-10-13 Air Liquide Carbon dioxide separating method for iron and steel industry, involves receiving flow enriched in carbon dioxide from absorption unit, sending it towards homogenization unit and subjecting carbon dioxide to intermediate compression stage
CZ302279B6 (en) * 2005-07-04 2011-01-26 Cervenka@Jan Balancing method of fluctuating concentration of component or components in flowing gas
FR2960555A1 (en) * 2010-05-31 2011-12-02 Air Liquide Integrated installation comprises an air separation apparatus, a blast furnace, a unit for preheating the air, an adiabatic air compressor, a first pipe to introduce the air towards the preheating unit, and a unit for heating water
US20130000352A1 (en) * 2011-06-30 2013-01-03 General Electric Company Air separation unit and systems incorporating the same
US9920987B2 (en) * 2015-05-08 2018-03-20 Air Products And Chemicals, Inc. Mixing column for single mixed refrigerant (SMR) process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077206A (en) * 1973-09-25 1975-06-24
JPS61139609A (en) * 1984-12-13 1986-06-26 Kawasaki Steel Corp Oxygen enriching method of industrial furnace
JPH05179322A (en) * 1991-06-12 1993-07-20 L'air Liquide Method for feeding oxygen-enriched air to blast furnace and iron ore reduction installation using this method
JPH08100995A (en) * 1994-08-17 1996-04-16 Boc Group Inc:The Air separation method and air separation device for obtaining gaseous oxygen product at supply pressure
JPH10180082A (en) * 1996-09-25 1998-07-07 L'air Liquide Supply method to gas consumption unit and device therefor
JP2001516439A (en) * 1998-01-23 2001-09-25 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Combined furnace and air distillation apparatus and method of use
JP2002155321A (en) * 2000-09-18 2002-05-31 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Process and plant for supplying oxygen-enriched air into nonferrous metal manufacturing equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126265A (en) * 1964-03-24 Process and apparatus for separating
US3731495A (en) * 1970-12-28 1973-05-08 Union Carbide Corp Process of and apparatus for air separation with nitrogen quenched power turbine
IT961138B (en) * 1971-02-01 1973-12-10 Air Liquide PLANT FOR COMPRESSING A FLUID BY EXPANSION OF ANOTHER FLUID
FR2680114B1 (en) * 1991-08-07 1994-08-05 Lair Liquide METHOD AND INSTALLATION FOR AIR DISTILLATION, AND APPLICATION TO THE GAS SUPPLY OF A STEEL.
FR2712383B1 (en) * 1993-11-12 1995-12-22 Air Liquide Combined installation of a metal production unit and an air separation unit.
FR2758621B1 (en) * 1997-01-22 1999-02-12 Air Liquide METHOD AND INSTALLATION FOR SUPPLYING AN AIR GAS CONSUMER UNIT
FR2774159B1 (en) * 1998-01-23 2000-03-17 Air Liquide COMBINED INSTALLATION OF AN OVEN AND AN AIR DISTILLATION APPARATUS AND METHOD OF IMPLEMENTING IT
US5979183A (en) * 1998-05-22 1999-11-09 Air Products And Chemicals, Inc. High availability gas turbine drive for an air separation unit
US6568207B1 (en) * 2002-01-18 2003-05-27 L'air Liquide-Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated process and installation for the separation of air fed by compressed air from several compressors
US20060266048A1 (en) * 2005-05-27 2006-11-30 Bell Leonard E Fluid catalytic cracking flue gas utility optimizing system and process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077206A (en) * 1973-09-25 1975-06-24
JPS61139609A (en) * 1984-12-13 1986-06-26 Kawasaki Steel Corp Oxygen enriching method of industrial furnace
JPH05179322A (en) * 1991-06-12 1993-07-20 L'air Liquide Method for feeding oxygen-enriched air to blast furnace and iron ore reduction installation using this method
JPH08100995A (en) * 1994-08-17 1996-04-16 Boc Group Inc:The Air separation method and air separation device for obtaining gaseous oxygen product at supply pressure
JPH10180082A (en) * 1996-09-25 1998-07-07 L'air Liquide Supply method to gas consumption unit and device therefor
JP2001516439A (en) * 1998-01-23 2001-09-25 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Combined furnace and air distillation apparatus and method of use
JP2002155321A (en) * 2000-09-18 2002-05-31 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude Process and plant for supplying oxygen-enriched air into nonferrous metal manufacturing equipment

Also Published As

Publication number Publication date
WO2005047790A3 (en) 2005-08-11
WO2005047790A8 (en) 2006-06-01
WO2005047790A2 (en) 2005-05-26
FR2862004A1 (en) 2005-05-13
US20110192193A1 (en) 2011-08-11
FR2862004B3 (en) 2005-12-23
CN100543388C (en) 2009-09-23
EP1697690A2 (en) 2006-09-06
CN1878999A (en) 2006-12-13
BRPI0416327A (en) 2007-01-09
US20080034790A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
RU2387934C2 (en) Method to separate air into components by cryogenic distillation
KR101275364B1 (en) Cryogenic air separation system
US6336345B1 (en) Process and apparatus for low temperature fractionation of air
US20220325952A1 (en) Method and apparatus for producing product nitrogen gas and product argon
JP4728219B2 (en) Method and system for producing pressurized air gas by cryogenic distillation of air
JPH08210769A (en) Cryogenic rectification system with side column for forming low-purity oxygen
CA1283846C (en) Air separation process with modified single distillation columnnitrogen generator
JP2002327981A (en) Cryogenic air-separation method of three-tower type
EP2634517B1 (en) Process and apparatus for the separation of air by cryogenic distillation
US20060075779A1 (en) Process for the cryogenic distillation of air
JPH05231765A (en) Air separation
JPS63500329A (en) Air distillation method and plant
KR100501056B1 (en) Process for feeding a gas-consuming unit
JPH0694361A (en) Separation of air
JPH07198249A (en) Method and equipment for separating air
US6568207B1 (en) Integrated process and installation for the separation of air fed by compressed air from several compressors
JP7451532B2 (en) Apparatus and method for separating air by cryogenic distillation
US20110192193A1 (en) Method And Installation For Enriching A Gas Stream With One Of The Components Thereof
JP2002235982A (en) Tri-tower type low air temperature rectifier system
JP2000310481A (en) Method and device for separating cryogenic air
US6536232B2 (en) Method for plant and separating air by cryogenic distillation
US6434973B2 (en) Process and unit for the production of a fluid enriched in oxygen by cryogenic distillation
JPH0682157A (en) Separation of air
JP2003519349A (en) Air separation process and plant
JP2001165566A (en) Air separation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100308

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110126

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529