JP2008050636A - Oxygen-enriched blasting method into blast furnace - Google Patents

Oxygen-enriched blasting method into blast furnace Download PDF

Info

Publication number
JP2008050636A
JP2008050636A JP2006226131A JP2006226131A JP2008050636A JP 2008050636 A JP2008050636 A JP 2008050636A JP 2006226131 A JP2006226131 A JP 2006226131A JP 2006226131 A JP2006226131 A JP 2006226131A JP 2008050636 A JP2008050636 A JP 2008050636A
Authority
JP
Japan
Prior art keywords
oxygen
compressed
amount
blast furnace
compressed oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006226131A
Other languages
Japanese (ja)
Other versions
JP4894410B2 (en
Inventor
Takeshi Kayano
猛 栢野
Masanori Kurihara
正典 栗原
Norihiko Sakamoto
徳彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006226131A priority Critical patent/JP4894410B2/en
Publication of JP2008050636A publication Critical patent/JP2008050636A/en
Application granted granted Critical
Publication of JP4894410B2 publication Critical patent/JP4894410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen-enriched blasting method into a blast furnace with which returning compressed oxygen quantity in an oxygen compressor is reduced and energy efficiency can be improved. <P>SOLUTION: The returning compressed oxygen quantity flowing through a returning piping 17 for returning the compressed oxygen to the sucking side from the spouting side in the oxygen compressor 2 is measured, and in the case of exceeding the returning compressed oxygen quantity to a pre-decided prescribed quantity, the opening degree of a second flowing-rate adjusting valve 22 is made to large and the compressed oxygen quantity flowing through the compressed oxygen supplying pipe 16 is increased and also, the opening degree of a first flowing rate adjusting valve 21 is made to little by the increasing quantity of this compressed oxygen to reduce the oxygen quantity for flowing through the oxygen supplying pipe 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高炉への送風空気に酸素を富化して銑鉄の生産量を増大するために行う高炉への酸素富化送風方法に関するものである。   The present invention relates to an oxygen-enriched air blowing method for a blast furnace, which is performed in order to increase oxygen production in blown air to the blast furnace and increase the production amount of pig iron.

従来、製鉄所においては、高炉の出銑量を増加するために、送風空気中に酸素を混合した酸素富化空気を高炉に導くようにしている。   Conventionally, in an ironworks, oxygen-enriched air obtained by mixing oxygen in blown air is guided to a blast furnace in order to increase the amount of blast furnace output.

その際、高炉送風機の吸引側の送風配管へ酸素の供給管を接続して送風空気中に酸素(例えば、ゲージ圧0.1kg/cm)を混合し、その酸素富化空気を高炉送風機(例えば、ゲージ圧4kg/cmに昇圧)により高炉に送風する方法と、高炉送風機の吐出側の送風配管へ酸素圧縮機により昇圧(圧縮)した圧縮酸素の供給管を接続して送風空気中に圧縮酸素(例えば、ゲージ圧20kg/cm)を混合し、その酸素富化空気を高炉に送風する方法が知られている(例えば、特許文献1、2参照。)。 At that time, an oxygen supply pipe is connected to the suction pipe on the suction side of the blast furnace blower, oxygen (eg, gauge pressure 0.1 kg / cm 2 ) is mixed in the blown air, and the oxygen-enriched air is mixed with the blast furnace blower ( For example, a method of blowing air to a blast furnace by increasing the gauge pressure to 4 kg / cm 2 ) and connecting a compressed oxygen supply pipe pressurized (compressed) by an oxygen compressor to a discharge pipe of the discharge side of the blast furnace blower into the blown air A method is known in which compressed oxygen (for example, a gauge pressure of 20 kg / cm 2 ) is mixed and the oxygen-enriched air is blown into a blast furnace (see, for example, Patent Documents 1 and 2).

また、上記の両者を組み合わせて、高炉送風機の吸引側の送風配管へ酸素の供給管を接続して送風空気中に酸素を混合するとともに、高炉送風機の吐出側の送風配管へ酸素圧縮機により昇圧した圧縮酸素の供給管を接続して送風空気中に圧縮酸素を混合し、その酸素富化空気を高炉に送風する方法がある。
特開平6−306431号公報 特開平10−245812号公報
In addition, by combining both of the above, an oxygen supply pipe is connected to the blower piping on the suction side of the blast furnace blower to mix oxygen in the blown air, and the oxygen compressor is used to boost the blower piping on the discharge side of the blast furnace blower. There is a method of connecting compressed oxygen supply pipes, mixing compressed oxygen in blown air, and blowing the oxygen-enriched air to a blast furnace.
JP-A-6-306431 JP-A-10-245812

通常、製鉄所においては、空気分離装置によって空気から酸素を分離し、分離した酸素を上記の高炉以外に転炉等にも供給しており、転炉等には酸素圧縮機により昇圧した圧縮酸素が供給される。その際に、高炉での必要酸素量はほぼ一定であるのに対して、転炉等での必要酸素量は操業状況によって変動する。   Usually, in steelworks, oxygen is separated from air by an air separation device, and the separated oxygen is supplied to a converter, etc. in addition to the above blast furnace. Is supplied. At that time, the required amount of oxygen in the blast furnace is substantially constant, whereas the required amount of oxygen in the converter or the like varies depending on the operation status.

そのため、前述した、高炉送風機の吸引側の送風空気中に酸素を混合するとともに、高炉送風機の吐出側の送風空気中に配管酸素圧縮機により昇圧した圧縮酸素を混合し、その酸素富化空気を高炉に送風する方法においては、転炉等での操業状況によって圧縮酸素の必要量が減少し、酸素圧縮機からの圧縮酸素に余剰が生じた場合に、余剰の圧縮酸素を酸素圧縮機の吐出側から吸引側に戻す運転(リターン運転)が行われる。   Therefore, oxygen is mixed in the blast air on the suction side of the blast furnace blower described above, and the compressed oxygen boosted by the piping oxygen compressor is mixed in the blast air on the discharge side of the blast furnace blower, and the oxygen-enriched air is mixed. In the method of blowing air to the blast furnace, when the required amount of compressed oxygen decreases depending on the operation status in the converter, etc., and surplus occurs in the compressed oxygen from the oxygen compressor, the excess compressed oxygen is discharged from the oxygen compressor. The operation of returning from the suction side to the suction side (return operation) is performed.

しかし、そのようなリターン運転を行った場合には、酸素圧縮機の吐出側から吸引側に戻した圧縮酸素量(リターン圧縮酸素量)分の酸素を無駄に昇圧したことになり、エネルギーロスを生じることになる。   However, when such a return operation is performed, the amount of compressed oxygen amount (return compressed oxygen amount) returned from the discharge side of the oxygen compressor to the suction side is unnecessarily increased, and energy loss is reduced. Will occur.

本発明は、上記のような事情に鑑みてなされたものであり、高炉送風機の吸引側の送風空気中に酸素を混合するとともに、高炉送風機の吐出側の送風空気中に配管酸素圧縮機により昇圧した圧縮酸素を混合し、その酸素富化空気を高炉に送風する酸素富化送風方法において、酸素圧縮機でのリターン圧縮酸素量を削減し、エネルギー効率の向上を図ることができる高炉への酸素富化送風方法を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and mixes oxygen in the blown air on the suction side of the blast furnace blower and boosts the pressure in the blown air on the discharge side of the blast furnace blower by a piping oxygen compressor. In the oxygen-enriched air blowing method in which the compressed oxygen is mixed and the oxygen-enriched air is blown to the blast furnace, the oxygen to the blast furnace that can reduce the amount of return compressed oxygen in the oxygen compressor and improve the energy efficiency It aims at providing the enrichment ventilation method.

上記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]高炉送風機の吸引側の送風配管へ酸素の供給管を接続して送風空気中に酸素を混合するとともに、高炉送風機の吐出側の送風配管へ酸素圧縮機により昇圧した圧縮酸素の供給管を接続して送風空気中に圧縮酸素を混合し、その酸素富化空気を高炉に送風する酸素富化送風方法において、酸素圧縮機の吐出側から吸引側に圧縮酸素を戻すリターン配管を流れる圧縮酸素量を計測し、その圧縮酸素量が所定量を超えている場合には、前記圧縮酸素の供給管を流れる圧縮酸素の量を増加するとともに、その圧縮酸素の増加量分だけ、前記酸素の供給管を流れる酸素の量を低減することを特徴とする高炉への酸素富化送風方法。   [1] An oxygen supply pipe is connected to the suction pipe of the blast furnace blower to mix oxygen in the blown air, and the compressed oxygen supply pipe is pressurized by the oxygen compressor to the blow pipe of the discharge side of the blast furnace blower In the oxygen-enriched air blowing method in which compressed oxygen is mixed in the blown air and the oxygen-enriched air is blown to the blast furnace, the compression flowing through the return pipe that returns the compressed oxygen from the discharge side to the suction side of the oxygen compressor When the amount of oxygen is measured and the amount of compressed oxygen exceeds a predetermined amount, the amount of compressed oxygen flowing through the compressed oxygen supply pipe is increased and the amount of oxygen increased by the amount of increase in compressed oxygen. An oxygen-enriched air blowing method for a blast furnace characterized by reducing the amount of oxygen flowing through a supply pipe.

本発明においては、酸素圧縮機でのリターン圧縮酸素量を削減し、エネルギー効率の向上を図ることができる。   In the present invention, the amount of return compressed oxygen in the oxygen compressor can be reduced, and the energy efficiency can be improved.

本発明の一実施形態を図面に基づいて説明する。   An embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態において用いる高炉への酸素富化送風設備の説明図である。   FIG. 1 is an explanatory diagram of an oxygen-enriched blower facility for a blast furnace used in an embodiment of the present invention.

図1に示すように、この酸素富化送風設備は、空気から酸素を分離する空気分離装置1と、空気分離装置1から送られた酸素を昇圧する酸素圧縮機2(消費電力0.18kWh/Nm)と、高炉31に送風するための高炉送風機4(消費電力0.08kWh/Nm)と、空気分離装置1から送られた酸素を送風空気中に混合するために高炉送風機4の吸引側に設けられた混合器3とを備えている。 As shown in FIG. 1, this oxygen-enriched blower equipment includes an air separation device 1 that separates oxygen from air, and an oxygen compressor 2 that boosts the oxygen sent from the air separation device 1 (power consumption 0.18 kWh / Nm 3 ), a blast furnace blower 4 (power consumption 0.08 kWh / Nm 3 ) for blowing air to the blast furnace 31, and suction of the blast furnace blower 4 to mix oxygen sent from the air separation device 1 into the blown air And a mixer 3 provided on the side.

そして、空気分離装置1からの酸素を酸素圧縮機2に供給するための酸素供給管11と、空気分離装置1からの酸素を混合器3に供給するために酸素供給管11から分岐した酸素供給管12と、高炉送風機4の吸引側の送風配管13(混合器3の上流側の送風配管13aと、混合器3−高炉送風機4間の送風配管13b)と、高炉送風機4の吐出側の送風配管14と、酸素圧縮機2からの圧縮酸素を転炉32に供給するための圧縮酸素供給管15と、酸素圧縮機2からの圧縮酸素を高炉送風機4の吐出側の送風配管14に導くために圧縮酸素供給管15から分岐した圧縮酸素供給管16と、酸素圧縮機2の吐出側から吸引側に圧縮酸素を戻すために、酸素圧縮機2の吐出側の圧縮酸素供給管15から分岐して酸素圧縮機2の吸引側の酸素供給管11に接続したリターン配管17が設けられている。   An oxygen supply pipe 11 for supplying oxygen from the air separation apparatus 1 to the oxygen compressor 2 and an oxygen supply branched from the oxygen supply pipe 11 for supplying oxygen from the air separation apparatus 1 to the mixer 3 The pipe 12, the suction pipe 13 on the suction side of the blast furnace blower 4 (the blow pipe 13 a on the upstream side of the mixer 3, and the blow pipe 13 b between the mixer 3 and the blast furnace blower 4), and the discharge on the discharge side of the blast furnace blower 4 In order to guide the compressed oxygen from the piping 14, the compressed oxygen supply pipe 15 for supplying the compressed oxygen from the oxygen compressor 2 to the converter 32, and the discharge side blowing pipe 14 of the blast furnace blower 4. The compressed oxygen supply pipe 16 branched from the compressed oxygen supply pipe 15 and the compressed oxygen supply pipe 15 branched from the discharge side of the oxygen compressor 2 to return the compressed oxygen from the discharge side of the oxygen compressor 2 to the suction side. The oxygen supply on the suction side of the oxygen compressor 2 The return pipe 17 is provided which is connected to 11.

そして、酸素供給管12には第1流量調整弁21、圧縮酸素供給管16には第2流量調整弁22、リターン配管17には第3流量調整弁23がそれぞれ取り付けられている。   A first flow rate adjustment valve 21 is attached to the oxygen supply pipe 12, a second flow rate adjustment valve 22 is attached to the compressed oxygen supply pipe 16, and a third flow rate adjustment valve 23 is attached to the return pipe 17.

上記のように構成された酸素富化送風設備を用いて、空気分離装置1からの酸素(ここでは、ゲージ圧0.1kg/cm)を混合器3に導いて、高炉送風機4の吸引側の送風配管13を流れる送風空気(ここでは、ゲージ圧8kg/cm)中に酸素を混合するとともに、高炉送風機4の吐出側の送風配管14を流れる送風空気中に酸素圧縮機2からの圧縮酸素(ここでは、ゲージ圧18kg/cm)を混合し、その酸素富化空気を高炉31に送風する。また、酸素圧縮機2からの圧縮酸素を転炉32にも供給する。 Using the oxygen-enriched blower equipment configured as described above, oxygen (here, gauge pressure 0.1 kg / cm 2 ) from the air separation device 1 is guided to the mixer 3, and the suction side of the blast furnace blower 4 Oxygen is mixed in the blown air flowing through the blower pipe 13 (here, the gauge pressure is 8 kg / cm 2 ) and compressed from the oxygen compressor 2 into the blown air flowing through the blower pipe 14 on the discharge side of the blast furnace blower 4. Oxygen (here, gauge pressure 18 kg / cm 2 ) is mixed, and the oxygen-enriched air is blown to the blast furnace 31. Further, the compressed oxygen from the oxygen compressor 2 is also supplied to the converter 32.

そして、転炉32での操業状況によって必要圧縮酸素量が減少し、酸素圧縮機2からの圧縮酸素に余剰が生じた場合に、従来は、単に、余剰の圧縮酸素を酸素圧縮機2の吐出側から吸引側に戻すリターン運転が行われるだけであったのに対して、この実施形態においては、酸素圧縮機2の吐出側から吸引側に圧縮酸素を戻すリターン配管17を流れる圧縮酸素量(リターン圧縮酸素量)を計測し、そのリターン圧縮酸素量が予め定めた所定量(リターン圧縮酸素量上限値)を超えている場合には、第2流量調整弁22の開度を大きくして圧縮酸素供給管16を流れる圧縮酸素量を増加するとともに、その圧縮酸素の増加量分だけ、第1流量調整弁21の開度を小さくして酸素供給管12を流れる酸素量を低減する。   When the amount of compressed oxygen required decreases depending on the operation status in the converter 32 and surplus occurs in the compressed oxygen from the oxygen compressor 2, conventionally, the surplus compressed oxygen is simply discharged from the oxygen compressor 2. In this embodiment, the return operation for returning the compressed oxygen from the discharge side of the oxygen compressor 2 to the suction side is performed (return operation for returning from the suction side to the suction side). When the return compressed oxygen amount exceeds a predetermined amount (return compressed oxygen amount upper limit value), the opening of the second flow rate adjustment valve 22 is increased and compressed. While the amount of compressed oxygen flowing through the oxygen supply pipe 16 is increased, the amount of oxygen flowing through the oxygen supply pipe 12 is reduced by reducing the opening of the first flow rate adjustment valve 21 by the amount of increase in the compressed oxygen.

これによって、この実施形態においては、リターン圧縮酸素量を所定のリターン圧縮酸素量上限値以下に抑えることができるようになり、リターン圧縮酸素量を削減して、エネルギー効率を向上させることが可能となる。   As a result, in this embodiment, it becomes possible to suppress the return compressed oxygen amount to be equal to or lower than the predetermined return compressed oxygen amount upper limit value, and it is possible to reduce the return compressed oxygen amount and improve the energy efficiency. Become.

すなわち、削減されたリターン圧縮酸素量(高炉側に供給される圧縮酸素の増加量)の分だけ、高炉送風機4(消費電力0.08kWh/Nm)で昇圧する酸素量が減少し、それによって、リターン圧縮酸素の削減量1Nm/hあたり0.08kWh/hの省電力になる。 That is, the amount of oxygen boosted by the blast furnace blower 4 (power consumption 0.08 kWh / Nm 3 ) is reduced by the reduced amount of return compressed oxygen (the amount of increase in compressed oxygen supplied to the blast furnace side), thereby Thus, the amount of return compressed oxygen is 0.08 kWh / h per 1 Nm 3 / h.

ちなみに、上記において、リターン圧縮酸素量上限値を0Nm/hとする、すなわち、リターン圧縮酸素が生じたら、直ちに第2流量調整弁22と第1流量調整弁21の開度を調整するようにしてもよい。 Incidentally, in the above, the upper limit value of the return compressed oxygen amount is set to 0 Nm 3 / h, that is, when the return compressed oxygen is generated, the opening amounts of the second flow rate adjustment valve 22 and the first flow rate adjustment valve 21 are adjusted immediately. May be.

例えば、圧縮酸素供給管16を流れる圧縮酸素量が1000Nm/h、酸素供給管12を流れる酸素量が1000Nm/h、リターン配管17を流れる圧縮酸素量(リターン圧縮酸素量)が1000Nm/hであったとすれば、第2流量調整弁22の開度を大きくして圧縮酸素供給管16を流れる圧縮酸素量を2000Nm/hとするともに、第1流量調整弁21の開度を小さくして酸素供給管12を流れる酸素量を0Nm/hにする。これによって、リターン配管17を流れる圧縮酸素量(リターン圧縮酸素量)が0Nm/hとなる。 For example, compressed oxygen amount flowing compressed oxygen supply pipe 16 is 1000 Nm 3 / h, amount of oxygen flowing through the oxygen supply pipe 12 is 1000 Nm 3 / h, the compression amount of oxygen flowing through the return pipe 17 (return compressed oxygen amount) is 1000 Nm 3 / If h, the opening amount of the second flow rate adjustment valve 22 is increased so that the amount of compressed oxygen flowing through the compressed oxygen supply pipe 16 is 2000 Nm 3 / h, and the opening amount of the first flow rate adjustment valve 21 is decreased. Thus, the amount of oxygen flowing through the oxygen supply pipe 12 is set to 0 Nm 3 / h. As a result, the amount of compressed oxygen flowing through the return pipe 17 (return compressed oxygen amount) becomes 0 Nm 3 / h.

そして、上記において、転炉32での操業状況によって必要圧縮酸素量が回復(増加)した場合は、第2流量調整弁22の開度を小さくして圧縮酸素供給管16に流れる圧縮酸素量を減少させるとともに、その圧縮酸素の減少量分だけ、第1流量調整弁21の開度を大きくして酸素供給管12に流れる酸素量を増加させる。   In the above, when the required compressed oxygen amount is recovered (increased) depending on the operation status in the converter 32, the amount of compressed oxygen flowing through the compressed oxygen supply pipe 16 is reduced by reducing the opening of the second flow rate adjustment valve 22. While decreasing, the opening amount of the 1st flow regulating valve 21 is enlarged by the amount of the amount of compressed oxygen reduction, and the amount of oxygen which flows into the oxygen supply pipe 12 is increased.

なお、上記の実施形態においては、図1に示すように、酸素圧縮機2を1台としているが、1台の酸素圧縮機では必要圧縮酸素量が最大になった時に能力的に対応できない場合があるので、必要圧縮酸素量の最大値に対応できるように、空気分離装置1の下流側に複数台の酸素圧縮機を並列に設置することが多い。その場合には、転炉の操業状況によって必要圧縮酸素量が増減した際に、必要に応じて、稼動させる酸素圧縮機の台数を増減させることになるが、稼動させる酸素圧縮機の能力の合計が必要圧縮酸素量と一致しない時は、稼動させた酸素圧縮機からの圧縮酸素に余剰が生じ、余剰の圧縮酸素を任意の酸素圧縮機の吐出側から吸引側に戻す運転(リターン運転)を行うことになる。   In the above embodiment, as shown in FIG. 1, the number of oxygen compressors 2 is one. However, when one oxygen compressor cannot cope with the capacity when the required amount of compressed oxygen is maximized. Therefore, a plurality of oxygen compressors are often installed in parallel on the downstream side of the air separation device 1 so as to correspond to the maximum value of the required compressed oxygen amount. In that case, when the required amount of compressed oxygen increases or decreases depending on the operation status of the converter, the number of oxygen compressors to be operated will be increased or decreased as necessary, but the total capacity of the oxygen compressors to be operated will be increased. When the amount of compressed oxygen does not match the required amount of compressed oxygen, surplus is generated in the compressed oxygen from the operated oxygen compressor, and an operation (return operation) for returning surplus compressed oxygen from the discharge side of any oxygen compressor to the suction side is performed. Will do.

したがって、そのように複数台の酸素圧縮機が設置されている場合においても、上記の実施形態と同様に、リターン圧縮酸素量が予め定めたリターン圧縮酸素量上限値を超えている場合には、第2流量調整弁22の開度を大きくして圧縮酸素供給管16を流れる圧縮酸素量を増加するとともに、その圧縮酸素の増加量分だけ、第1流量調整弁21の開度を小さくして酸素供給管12を流れる酸素量を低減するようにすればよい。   Therefore, even when such a plurality of oxygen compressors are installed, as in the above embodiment, when the return compressed oxygen amount exceeds a predetermined return compressed oxygen amount upper limit value, The opening amount of the second flow rate adjustment valve 22 is increased to increase the amount of compressed oxygen flowing through the compressed oxygen supply pipe 16, and the opening amount of the first flow rate adjustment valve 21 is decreased by the amount of increase in the compressed oxygen amount. The amount of oxygen flowing through the oxygen supply pipe 12 may be reduced.

それによって、リターン圧縮酸素量を所定のリターン圧縮酸素量上限値以下に抑えることができるようになり、リターン圧縮酸素量を削減して、エネルギー効率を向上させることが可能となる。   Accordingly, the return compressed oxygen amount can be suppressed to be equal to or lower than a predetermined return compressed oxygen amount upper limit value, and the return compressed oxygen amount can be reduced and the energy efficiency can be improved.

まず、従来例として、図1に示した酸素富化送風設備において、余剰圧縮酸素が生じた場合に、単にリターン運転を行いながら、高炉に酸素富化空気を送風した。   First, as a conventional example, when excess compressed oxygen is generated in the oxygen-enriched blower facility shown in FIG. 1, oxygen-enriched air is blown into the blast furnace while simply performing a return operation.

これに対して、本発明例として、上述した本発明の一実施形態に基づいて、高炉に酸素富化空気を送風した。その際、リターン圧縮酸素量上限値は0Nm/hとした。 In contrast, as an example of the present invention, oxygen-enriched air was blown into the blast furnace based on the above-described embodiment of the present invention. At that time, the upper limit value of the return compressed oxygen amount was set to 0 Nm 3 / h.

その結果、従来例では1000Nm/hであったリターン圧縮酸素量が、本発明例では、ほぼ0Nm/hに減少し、それによって、80kWh/h(1000Nm/h×0.08kWh/Nm)の省電力効果が得られた。 As a result, return compressed oxygen content was 1000 Nm 3 / h in the conventional example, in the present invention example, it reduced to approximately 0 Nm 3 / h, thereby, 80kWh / h (1000Nm 3 /h×0.08kWh/Nm 3 ) Power saving effect was obtained.

本発明の一実施形態において用いる酸素富化送風設備の説明図である。It is explanatory drawing of the oxygen enriched ventilation equipment used in one Embodiment of this invention.

符号の説明Explanation of symbols

1 空気分離装置
2 酸素圧縮機
3 混合器
4 高炉送風機
11 酸素供給管
12 酸素供給管
13、13a、13b 送風配管
14 送風配管
15 圧縮酸素供給管
16 圧縮酸素供給管
17 リターン配管
21 第1流量調整弁
22 第2流量調整弁
23 第3流量調整弁
31 高炉
32 転炉
DESCRIPTION OF SYMBOLS 1 Air separation apparatus 2 Oxygen compressor 3 Mixer 4 Blast furnace blower 11 Oxygen supply pipe 12 Oxygen supply pipe 13, 13a, 13b Blower pipe 14 Blower pipe 15 Compressed oxygen supply pipe 16 Compressed oxygen supply pipe 17 Return pipe 21 First flow rate adjustment Valve 22 Second flow control valve 23 Third flow control valve 31 Blast furnace 32 Converter

Claims (1)

高炉送風機の吸引側の送風配管へ酸素の供給管を接続して送風空気中に酸素を混合するとともに、高炉送風機の吐出側の送風配管へ酸素圧縮機により昇圧した圧縮酸素の供給管を接続して送風空気中に圧縮酸素を混合し、その酸素富化空気を高炉に送風する酸素富化送風方法において、酸素圧縮機の吐出側から吸引側に圧縮酸素を戻すリターン配管を流れる圧縮酸素量を計測し、その圧縮酸素量が所定量を超えている場合には、前記圧縮酸素の供給管を流れる圧縮酸素の量を増加するとともに、その圧縮酸素の増加量分だけ、前記酸素の供給管を流れる酸素の量を低減することを特徴とする高炉への酸素富化送風方法。   The oxygen supply pipe is connected to the air supply pipe on the suction side of the blast furnace blower to mix oxygen in the air, and the air supply pipe on the discharge side of the blast furnace blower is connected to the supply pipe for compressed oxygen boosted by the oxygen compressor. In the oxygen-enriched air blowing method in which compressed oxygen is mixed in the blown air and the oxygen-enriched air is blown to the blast furnace, the amount of compressed oxygen flowing through the return pipe that returns the compressed oxygen from the discharge side of the oxygen compressor to the suction side is determined. When the amount of compressed oxygen exceeds a predetermined amount, the amount of compressed oxygen flowing through the compressed oxygen supply pipe is increased and the oxygen supply pipe is increased by the amount of increase in the compressed oxygen. An oxygen-enriched air blowing method for a blast furnace, characterized by reducing the amount of flowing oxygen.
JP2006226131A 2006-08-23 2006-08-23 Oxygen-enriched air blowing method to blast furnace Active JP4894410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006226131A JP4894410B2 (en) 2006-08-23 2006-08-23 Oxygen-enriched air blowing method to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006226131A JP4894410B2 (en) 2006-08-23 2006-08-23 Oxygen-enriched air blowing method to blast furnace

Publications (2)

Publication Number Publication Date
JP2008050636A true JP2008050636A (en) 2008-03-06
JP4894410B2 JP4894410B2 (en) 2012-03-14

Family

ID=39234960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006226131A Active JP4894410B2 (en) 2006-08-23 2006-08-23 Oxygen-enriched air blowing method to blast furnace

Country Status (1)

Country Link
JP (1) JP4894410B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095527A (en) * 2016-12-15 2018-06-21 Jfeスチール株式会社 Oxygen feeding device in iron manufacture process and method thereof
JP2018172713A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Blowing method of blowing oxygen-rich air into furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518103A (en) * 1974-07-12 1976-01-22 Kawasaki Steel Co Korosofuhe sansoofukasuruhoho
JPS61139609A (en) * 1984-12-13 1986-06-26 Kawasaki Steel Corp Oxygen enriching method of industrial furnace
JPH11226344A (en) * 1997-06-05 1999-08-24 Praxair Technol Inc Solid electrolyte membrane system used in furnace
JP2006283093A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Oxygen-enriching facility for blasting into blast furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518103A (en) * 1974-07-12 1976-01-22 Kawasaki Steel Co Korosofuhe sansoofukasuruhoho
JPS61139609A (en) * 1984-12-13 1986-06-26 Kawasaki Steel Corp Oxygen enriching method of industrial furnace
JPH11226344A (en) * 1997-06-05 1999-08-24 Praxair Technol Inc Solid electrolyte membrane system used in furnace
JP2006283093A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Oxygen-enriching facility for blasting into blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095527A (en) * 2016-12-15 2018-06-21 Jfeスチール株式会社 Oxygen feeding device in iron manufacture process and method thereof
JP2018172713A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Blowing method of blowing oxygen-rich air into furnace

Also Published As

Publication number Publication date
JP4894410B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
US10054366B2 (en) Process for operating a blast furnace installation with top gas recycling
JP4894410B2 (en) Oxygen-enriched air blowing method to blast furnace
CN106322111A (en) Gas storage and distribution pressure-adjusting system
US8702837B2 (en) Method of integrating a blast furnace with an air gas separation unit
CN2440150Y (en) Oxygen-supplying device capable of realizing multi-stage differentical pressure operation
WO2005085727A3 (en) Method for renovating a combined blast furnace and air/gas separation unit system
JP2006283093A (en) Oxygen-enriching facility for blasting into blast furnace
CN107489886B (en) Oxygen control system for metallurgical industry
CN104060005A (en) Oxygen enrichment system of blast furnace blower
AU2013220670B2 (en) Method and device for reducing iron-oxide-containing feedstocks in a high-pressure reducing unit
JP6962351B2 (en) Oxygen supply method in the steelmaking process
CN106222343A (en) A kind of blast furnace blower oxygen enrichment system and method
JP3988332B2 (en) Oxygen enrichment method for blast furnace
CN1195073C (en) Oxygen supplying flow of oxygen-rich coal injection in blast furnace iron making
CN206184280U (en) Hydrogen nitrogen of improvement mixes machine
CN106029912A (en) Method and device for providing reducing gas under constant conditions
CN102978308B (en) Energy-saving oxygen-enriching method for blast furnace iron making
CN110645475A (en) Blast furnace oxygen conveying system and working method
JP4932886B2 (en) Gas processing equipment
CN217587931U (en) Wind pressure stabilizing control device for side-blown smelting production system
CN216404433U (en) Control device for blast furnace taphole oxygen lance air source
US20220259685A1 (en) Sealing a reduction assembly
US20190137173A1 (en) Method and System for Using a Target Gas Provided by a Gas Decomposition Device
CN2812068Y (en) Real-time oxygen regulator for electric furnace
JP2000304198A (en) Fluid feeding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250