EP1991713A2 - Composite metal-aerogel material - Google Patents

Composite metal-aerogel material

Info

Publication number
EP1991713A2
EP1991713A2 EP07726498A EP07726498A EP1991713A2 EP 1991713 A2 EP1991713 A2 EP 1991713A2 EP 07726498 A EP07726498 A EP 07726498A EP 07726498 A EP07726498 A EP 07726498A EP 1991713 A2 EP1991713 A2 EP 1991713A2
Authority
EP
European Patent Office
Prior art keywords
composite
airgel
composite material
metal
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07726498A
Other languages
German (de)
French (fr)
Other versions
EP1991713B1 (en
Inventor
Lorenz Ratke
Sabine BRÜCK
Sonja Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP1991713A2 publication Critical patent/EP1991713A2/en
Application granted granted Critical
Publication of EP1991713B1 publication Critical patent/EP1991713B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • C22C1/081Casting porous metals into porous preform skeleton without foaming
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249981Plural void-containing components

Definitions

  • the present application relates to a composite of a metal matrix with embedded nanostructured materials having macroscopic dimensions (micro to millimeter).
  • Metallic foams are usually produced by gassing a melt or by thermal decomposition of, for example, hydrides.
  • the foam production is in principle a transient, unstable and difficult to control process.
  • the previously known methods are described in detail in the Literature documents (J. Banhart, J. Bauhoff, M.Weber, Metallschaum, Aluminum, 70, 209-211 (1994);
  • Foams according to the invention are largely equated with sponges and are as colloidal systems systems of gas-filled, spherical or polyhedron-shaped cells, which are bounded by solid cell webs.
  • the cell barriers connected by so-called nodal points, form a coherent framework.
  • the foam lamellae (closed-cell foam) stretch between the cell bridges. If the foam lamellae are destroyed or flow back into the cell ridges at the end of foaming, an open-celled foam is obtained.
  • Foams are thermodynamically unstable because surface energy can be obtained by reducing the surface area. The stability and thus the existence of a foam is therefore dependent on how far it succeeds in preventing its self-destruction.
  • DE 40 18 360 C1 describes the foaming of aluminum alloys with the aid of titanium hydride powder.
  • DE 41 Ol 630 C2 describes the foaming of other metals and alloys such as bronze also with the aid of titanium hydride powder.
  • WO 96/19314 A1 describes a composite material as a solder material with high mechanical stability, consisting of a high-melting and a low-melting metal component and a filler component. After brazing, intermetallic phases are formed having a melting point above the processing temperature, which has internal surfaces on the filler components. These internal surfaces improve the mechanical stability of the solder joint.
  • German translation DE 603 01 737 T2 emerges from EP 1 333 222 B1 describes a method for producing a super insulating composite plate which is enclosed as insulating soul a porous superinsulating material with micro or nano cell structure and with a dense barrier jacket under vacuum.
  • the fillers must be removed consuming in an additional step.
  • Object of the present invention is therefore the simplest possible production of metal foams, which have high mechanical stability despite low weight.
  • This object of the invention is achieved in a first embodiment by a pore-containing composite material made of a metal matrix with embedded nanostructured materials.
  • Pores in the sense of the invention are those volume ranges of the composite which are not filled with metal and have a density in a range of 0.001 g / cm 3 to 0.1 g / cm 3 .
  • the pores may be partially or completely filled by the embedded nanostructured materials.
  • the term pores according to the invention which are classically filled with gas, thus deviates deliberately from the previous understanding, since the pores according to the invention can also be filled, for example, with solids such as airgel.
  • Nanostructured materials in the sense of the invention include those which have elevations on their surface, of which at least 80% of the elevations are spaced from adjacent elevations in the range of 5 nm to 500 nm, the elevations themselves having a height in the range of 5 nm have up to 500 nm.
  • materials whose inner structure consists of nanoparticles that is, particles with a diameter in a range of 2 to 100 nm, which are crosslinked. If the nanostructured materials are present as particles, the particle size is advantageously in a range of 0.1 to 5 mm.
  • the porosity of the composite material according to the invention is in a range of 20 to 80%, particularly preferably in a range of 30 to 70%.
  • the porosity according to the invention is the ratio of the weight of a certain predetermined volume of the composite material according to the invention to the weight of a corresponding non-porous metal body of the same volume. If the porosity is too large, this composite material has too low a mechanical strength for many applications. If the porosity is too low, the weight of this composite is too high for many applications. Because the pores may advantageously also be filled by the nanostructured materials, in this case the porosity essentially corresponds to the volume content of the nanostructured materials, in the event that the nanostructured materials are negligibly light.
  • the volume of each filled pore is preferably adjusted so that the volume of at least 80% of the pores is at most 500 mm 3 each. If the volume of more than 80% of the pores is more than 500 mm 3 in each case, then these composite materials are not sufficiently mechanically strong.
  • the pore size of the composite according to the invention can be determined, for example, according to ASTM 3576-77.
  • the nanostructured materials are chemically inert. Chemically inert in the sense of the invention means that the nanostructured materials do not undergo a chemical reaction with molten metal. This is particularly advantageous since such a degradation, for example oxidation, of the metal matrix can be avoided.
  • the nanostructured materials are preferably aerogels or expanded phyllosilicates. Due to the low density of these materials, during production, particles of these materials can be encapsulated with metallic melts to form the pores of the composite of the present invention without the need to remove these materials from the composite.
  • This applies in particular to airgel since the density of the airgel used according to the invention is advantageously in a range of 0.005 to 0.025 g / cm 3 .
  • Airgel is particularly advantageous because it is open-cell, has a high specific surface area and therefore can be used in both open-cell and closed-cell materials. In contrast, closed-cell nanostructured materials could not result in open-cell composites.
  • the nanostructured materials include phyllosilicates, these are advantageously selected from vermiculites, biotites, or zeolites and mixtures thereof (for example, expanded mica).
  • the nanostructured materials according to the invention are aerogels, they advantageously comprise silica aerogels.
  • the composite materials according to the invention can be obtained with hydrophilic aerogels, hydrophobic aerogels are nevertheless preferred, since they are particularly easy to wet with molten metal.
  • the pore diameter of the airgel itself is advantageously in a range from 5 to 50 nm.
  • the specific surface of the aerogels used according to the invention is advantageously in a range from 200 to 1500 m 2 / g.
  • the thermal conductivity of the aerogels is in a range from 0.005 to 0 , 03 W / mK at 25 ° C.
  • the airgel is preferably present as granules, in particular as granules, in which the particle size distribution is such that at least 80% by volume of the airgel granules have a particle size in the range from 0.1 to 5 mm having.
  • the shape of the grains of the airgel is advantageously selected from spherical, polyhedral, cylindrical or platelet-shaped.
  • the metal of the matrix is advantageously selected from aluminum, zinc, tin, copper, magnesium, silicon or an alloy of at least two of these metals.
  • the metal matrix is particularly preferably made of aluminum or an aluminum alloy. Further preferred alloys are, in particular, AISi, AISiMg, AICu, bronze or brass.
  • the melting point of the metal matrix according to the invention is advantageously in a range from 600 to 900 ° C., in particular in a range from 600 to 750 ° C.
  • the composites of the invention advantageously have a compressive strength or compressive strength at a compression of 20% of at least 8 MPa (according to DIN 53577 / ISO 3386).
  • the density of the composite materials according to the invention is advantageously in a range of 0.3 to 2 g / cm 3 , in particular in a range of 1 to 2 g / cm 3 . If the density of the composite is too high, then the composite is unsuitable for many applications where lightweight materials are required. However, if the density is too low, the resulting composites are not sufficiently mechanically stable.
  • the object on which the invention is based is achieved by a method for producing the composite material according to the invention which is characterized in that the following steps are carried out: a) external mixing of the nanostructured material with a molten metal and transfer into a casting mold or a ') Mixing the nanostructured material with a molten metal in the mold, b) allowing it to solidify, and c) removing it from the mold.
  • a) external mixing of the nanostructured material with a molten metal and transfer into a casting mold or a ') Mixing the nanostructured material with a molten metal in the mold b) allowing it to solidify, and c) removing it from the mold.
  • the object is thus achieved, for example, by stirring polyhedral or spherical nanostructured silica airgel particles into an optionally thixotropic molten metal. Since the airgel is advantageously chemically inert, no reaction takes place between the metal and the melt. During stirring, the metal solidifies and encloses the airgel particles. Even in the soft state of the metal composite can be pressed advantageously, so that a desired shape can be done. Thixotropic in the context of the invention, the molten metal is always when the temperature is between the liquidus and solidus.
  • the method may also be advantageously based on backfilling an aggregate of airgel granules with a molten metal.
  • the advantageously pressurized melt penetrates into the interstices and fills the gussets. After solidification, the airgel no longer needs to be removed, since at a density of, for example, about 0.015 g / cm 3 it is only a fraction of the total weight.
  • the pressurization can be advantageously realized in smaller components by the centrifugal force in the centrifugal casting and in larger components in die casting.
  • the object underlying the invention is achieved by the use of composites according to the invention in structural lightweight construction, in particular in applications in motor vehicles or in portable electronic devices.
  • Silica airgel granules were recovered from airgel monoliths by grinding.
  • the thus-obtained hydrophilic polyhedral silica airgel (Airglas ®, Staffanstorp, Sweden) was baked as granules initially at 600 0 C.
  • An AISi alloy (aluminum containing 7% by weight of silicon) was melted and subsequently brought into the thixotropic (semi-solid) state by slow stirring while simultaneously lowering the temperature to the interval between liquidus and solidus temperatures.
  • Airgel granules (grain size 0.1 mm to 5 mm) were added to 40% by volume of the metal by stirring. The mixing was done by hand.
  • the semi-solid metal prevented floating of the extremely lightweight silica airgel granules.
  • Fig. 1 shows the metallic composite material according to Example 1.
  • Example 2 Airgel according to Example 1 was mixed with a 720 0 C hot AlSiMg alloy (aluminum containing 7 wt.% Silicon and 0.6 wt.% Magnesium) backfilled. For this purpose, a mold was filled with a loose bed of airgel granules. The casting took place from below, so that the melt with a slight pressure completely filled the spaces between the particles. In this case, a slight overpressure of 1 atm sufficed. After completion of the casting, a metallic composite of airgel granules and metal was obtained.
  • a 720 0 C hot AlSiMg alloy aluminum containing 7 wt.% Silicon and 0.6 wt.% Magnesium
  • the thermally expanded phyllosilicates vermiculite, biotite and muscovite (3 g) were each added to a 73 O 0 C hot AICu melt (300 g, aluminum containing 9 wt.% Copper) and carefully stirred to solidification. After solidification, a composite of inorganic silicates and a metallic alloy was present. The porosity was 30% for pore diameters in a range of 0.1 to 7 mm.
  • Fig. 2 shows the metallic composite according to Example 4 with coarse particles of expanded biotite.
  • Example 5 The airgel granules as in Example 1 were filled in a heat-resistant mold until complete filling and used in a centrifugal casting plant.
  • the crucible of the centrifugal casting plant (AuT ⁇ 2.0, Linn High-Term, Eschfelden) was filled with an alloy of aluminum containing 7 wt.% Silicon (about 100 g).
  • the voids between the airgel particles were completely filled with metal.
  • the volume content of pores, which are completely filled with airgel could be varied by the particle size distribution of the filler particles between 50 and 80%.

Abstract

The invention relates to a porous composite material that is made of a metal matrix with embedded nanostructured materials.

Description

Metall-Aeroqel-Verbundwerkstoff Metal composite Aeroqel
Die vorliegende Anmeldung betrifft einen Verbundwerkstoff aus einer Metallmatrix mit eingebetteten nanostrukturierten Materialien mit makroskopischen Abmessungen (Mikro- bis Millimeter).The present application relates to a composite of a metal matrix with embedded nanostructured materials having macroscopic dimensions (micro to millimeter).
Die meisten der in den letzten Jahrzehnten entwickelten Verfahren zur Herstellung von porigen Metallen, liefern geschlossen- oder offenzellige Schäume und Schwämme. Eine schaumartige Morphologie ist notwendig für hohe mechanischen Eigenschaften (Steifigkeit) und damit für strukturelle Anwendungen wie beispielsweise Leichtbauelemente im Fahrzeugbau. Funktionelle Anwendungen wie beispielsweise Filter, Schalldämpfer oder Wärmetauscher benötigen eine offenzellige Struktur, damit ein fluides Medium in den Schaum oder Schwamm eindringen oder diesen auch durchdringen kann. Offenzellige Schäume oder Schwämme werden bislang über den Prozessschritt des Feingusses erzeugt. Dieses Verfahren ist jedoch sehr aufwendig und damit teuer. Ein seit langem bekanntes alternatives Verfahren ist das Umgießen von Füllstoffen mit metallischen Schmelzen. Nach der Entfernung der Füllstoffe liegt ein schwammartiger offenzelliger Körper mit miteinander verbundenen Poren vor. Metallische Schäume werden in der Regel durch Begasung einer Schmelze oder durch thermischen Zerfall von beispielsweise Hydriden hergestellt. Die Schaumherstellung ist prinzipiell ein instationärer, instabiler und schwer zu kontrollierender Prozess. Die bislang bekannten Verfahren sind ausführlich in der Literatur dokumentiert (J. Banhart, J. Baumeister, M.Weber, Metallschaum, Aluminium, 70, 209-211 (1994);Most of the processes developed in recent decades to produce porous metals provide closed or open-celled foams and sponges. A foam-like morphology is necessary for high mechanical properties (rigidity) and thus for structural applications such as lightweight construction elements in vehicle construction. Functional applications such as filters, silencers, or heat exchangers require an open cell structure to allow a fluid medium to penetrate or penetrate the foam or sponge. Open-celled foams or sponges have so far been generated via the process step of precision casting. However, this method is very expensive and therefore expensive. A long-known alternative process is the casting over of fillers with metallic melts. After removal of the fillers, there is a sponge-like open-cell body with interconnected pores. Metallic foams are usually produced by gassing a melt or by thermal decomposition of, for example, hydrides. The foam production is in principle a transient, unstable and difficult to control process. The previously known methods are described in detail in the Literature documents (J. Banhart, J. Baumeister, M.Weber, Metallschaum, Aluminum, 70, 209-211 (1994);
J. Banhart, J. Baumeister, M. Weber: Geschäumte Metalle als neue Leichtbauwerkstoffe, VDI Berichte 1021, 277-284, (1993); H. Cohrt, F. Baumgärtner, D. Brungs, H. Gers: Grundzüge der Herstellung von Aluminiumschaum auf PM-Basis, Tagungsband des ersten deutschsprachigen Symposiums Metallschäume; (Proceedings of the first German Symposium on Metal Foams); Bremen (Germany), 6.-7. March; 91-102, (1997); JJ. Bikerman: Foams: Theory and Industrial Applications, Reinhold, New York, Kap. 4, (1953); M. Weber: Herstellung von Metallschäumen und Beschreibung der Werkstoffeigenschaften, Dissertation, TU Clausthal, (1995)).J. Banhart, J. Baumeister, M. Weber: Foamed Metals as New Lightweight Materials, VDI Berichte 1021, 277-284, (1993); H. Cohrt, F. Baumgärtner, D. Brungs, H. Gers: Principles of the Production of PM-based Aluminum Foam, Proceedings of the First German-Speaking Symposium Metal Foams; (Proceedings of the First German Symposium on Metal Foams); Bremen (Germany), 6.-7. March; 91-102, (1997); JJ. Bikerman: Foams: Theory and Industrial Applications, Reinhold, New York, Ch. 4, (1953); M. Weber: Production of metal foams and description of material properties, dissertation, TU Clausthal, (1995)).
Schäume im Sinne der Erfindung werden mit Schwämmen weitgehend gleichgesetzt und sind als kolloidchemische Systeme Gebilde aus gasgefüllten, kugel- oder polyederförmigen Zellen, welche durch feste Zellstege begrenzt werden. Die Zellstege, verbunden über sogenannte Knotenpunkte, bilden ein zusammenhängendes Gerüst. Zwischen den Zellstegen spannen sich die Schaumlamellen (geschlossenzelliger Schaum). Werden die Schaumlamellen zerstört oder fließen sie am Ende der Schaumbildung in die Zellstege zurück, erhält man einen offenzelligen Schaum. Schäume sind thermodynamisch instabil, da durch Verkleinerung der Oberfläche Oberflächenenergie gewonnen werden kann. Die Stabilität und damit die Existenz eines Schaums ist somit davon abhängig, wieweit es gelingt, seine Selbstzerstörung zu verhindern. DE 40 18 360 Cl beschreibt die Aufschäumung von Aluminiumlegierungen mit Hilfe von Titanhydridpulver. DE 41 Ol 630 C2 beschreibt die Aufschäumung auch von anderen Metallen und Legierungen wie beispielsweise Bronze ebenfalls mit Hilfe von Titanhydridpulver.Foams according to the invention are largely equated with sponges and are as colloidal systems systems of gas-filled, spherical or polyhedron-shaped cells, which are bounded by solid cell webs. The cell barriers, connected by so-called nodal points, form a coherent framework. The foam lamellae (closed-cell foam) stretch between the cell bridges. If the foam lamellae are destroyed or flow back into the cell ridges at the end of foaming, an open-celled foam is obtained. Foams are thermodynamically unstable because surface energy can be obtained by reducing the surface area. The stability and thus the existence of a foam is therefore dependent on how far it succeeds in preventing its self-destruction. DE 40 18 360 C1 describes the foaming of aluminum alloys with the aid of titanium hydride powder. DE 41 Ol 630 C2 describes the foaming of other metals and alloys such as bronze also with the aid of titanium hydride powder.
Die WO 96/19314 Al beschreibt einen Verbundwerkstoff als Lotmaterial mit hoher mechanischer Stabilität, bestehend aus einer hochschmelzenden und einer niedrigschmelzenden Metallkomponente sowie einer Füllkomponente. Nach dem Löten bilden sich intermetallische Phasen mit einem Schmelzpunkt oberhalb de Verarbeitungstemperatur, die innere Oberflächen an den Füllkomponenten aufweist. Durch diese inneren Oberflächen wird die mechanische Stabilität der Lötverbindung verbessert.WO 96/19314 A1 describes a composite material as a solder material with high mechanical stability, consisting of a high-melting and a low-melting metal component and a filler component. After brazing, intermetallic phases are formed having a melting point above the processing temperature, which has internal surfaces on the filler components. These internal surfaces improve the mechanical stability of the solder joint.
Die deutsche Übersetzung DE 603 01 737 T2 hervorgegangen aus EP 1 333 222 Bl beschreibt ein Verfahren zur Herstellung einer superisolierenden Verbundplatte die als isolierende Seele einen porigen superisolierenden Werkstoff mit Mikro- oder Nanozellenstruktur und mit einem dichten Barrieremantel unter Vakuum umschlossen ist.The German translation DE 603 01 737 T2 emerges from EP 1 333 222 B1 describes a method for producing a super insulating composite plate which is enclosed as insulating soul a porous superinsulating material with micro or nano cell structure and with a dense barrier jacket under vacuum.
Viele der vorgenannten Verfahren, insbesondere die Aufschäumung von Metallen durch den Einsatz von Hydridpulvern, haben gemeinsam, dass diese metallischen Schäume in ihren Eigenschaften oftmals nicht reproduzierbar sind und eine ungleichmäßige Verteilung der Poren aufweisen. Viele dieser Verfahren resultieren in Metallschäumen mit einer Porosität von mehr als 85 %, womit diese Metallschäume für Anwendungen ungeeignet sind, bei denen eine hohe mechanische Festigkeit und insbesondere eine hohe Druckfestigkeit notwendig ist. - A -Many of the aforementioned methods, in particular the foaming of metals by the use of hydride powders, have in common that these metallic foams are often not reproducible in their properties and have an uneven distribution of the pores. Many of these methods result in metal foams having a porosity of more than 85%, making these metal foams unsuitable for applications requiring high mechanical strength and, in particular, high compressive strength. - A -
Werden die Metallschäume durch Umgießen von Füllstoffen erhalten, so müssen die Füllstoffe in einem zusätzlichen Arbeitsschritt aufwendig entfernt werden.If the metal foams obtained by encapsulation of fillers, the fillers must be removed consuming in an additional step.
Aufgabe der vorliegenden Erfindung ist also die möglichst einfache Herstellung von Metallschäumen, die trotz geringen Gewichts eine hohe mechanische Stabilität aufweisen.Object of the present invention is therefore the simplest possible production of metal foams, which have high mechanical stability despite low weight.
Diese der Erfindung zugrundeliegende Aufgabe wird in einer ersten Ausführungsform gelöst durch einen Poren enthaltenden Verbundwerkstoff aus einer Metallmatrix mit eingebetteten nanostrukturierten Materialien.This object of the invention is achieved in a first embodiment by a pore-containing composite material made of a metal matrix with embedded nanostructured materials.
Poren im Sinne der Erfindung sind solche Volumenbereiche des Verbundwerkstoffs, die nicht von Metall ausgefüllt sind und eine Dichte in einem Bereich von 0,001 g/cm3 bis 0,1 g/cm3 aufweisen. Die Poren können vorteilhafterweise teilweise oder vollständig durch die eingebetteten nanostrukturierten Materialien gefüllt sein. Die erfindungsgemäße Bezeichnung Poren, die klassischerweise mit Gas gefüllt sind, weicht also bewusst vom bisherigen Verständnis ab, da die erfindungsgemäßen Poren auch beispielsweise mit Feststoffen wie Aerogel ausgefüllt sein können.Pores in the sense of the invention are those volume ranges of the composite which are not filled with metal and have a density in a range of 0.001 g / cm 3 to 0.1 g / cm 3 . Advantageously, the pores may be partially or completely filled by the embedded nanostructured materials. The term pores according to the invention, which are classically filled with gas, thus deviates deliberately from the previous understanding, since the pores according to the invention can also be filled, for example, with solids such as airgel.
Nanostrukturierte Materialien im Sinne der Erfindung umfassen solche, die Erhebungen auf ihrer Oberfläche aufweisen, von denen mindestens 80 % der Erhebungen einen Abstand von benachbarten Erhebungen im Bereich von 5 nm bis 500 nm aufweisen, wobei die Erhebungen selbst eine Höhe in einem Bereich von 5 nm bis 500 nm besitzen. Zudem sind darunter Materialien zu verstehen, deren innere Struktur aus Nanoteilchen besteht, also Teilchen mit einem Durchmesser in einem Bereich von 2 bis 100 nm, die vernetzt sind. Liegen die nanostrukturierten Materialien als Teilchen vor, so liegt die Teilchengröße vorteilhafterweise in einem Bereich von 0,1 bis 5 mm.Nanostructured materials in the sense of the invention include those which have elevations on their surface, of which at least 80% of the elevations are spaced from adjacent elevations in the range of 5 nm to 500 nm, the elevations themselves having a height in the range of 5 nm have up to 500 nm. In addition are including materials whose inner structure consists of nanoparticles, that is, particles with a diameter in a range of 2 to 100 nm, which are crosslinked. If the nanostructured materials are present as particles, the particle size is advantageously in a range of 0.1 to 5 mm.
Vorteilhafterweise liegt die Porosität des erfindungsgemäßen Verbundwerkstoffs in einem Bereich von 20 bis 80 %, insbesondere bevorzugt in einem Bereich von 30 bis 70 %. Die Porosität im Sinne der Erfindung ist das Verhältnis des Gewichts eines bestimmten vorgegebenen Volumens des erfindungsgemäßen Verbundwerkstoffs zu dem Gewicht eines entsprechend porenfreien Metallkörpers desselben Volumens. Ist die Porosität zu groß, so weist dieser Verbundwerkstoff eine für viele Anwendungen zu geringe mechanische Festigkeit auf. Ist die Porosität zu gering, so ist das Gewicht dieses Verbundwerkstoffes für viele Anwendungen zu hoch. Dadurch dass die Poren vorteilhafterweise auch durch die nanostrukturierten Materialien gefüllt sein können, entspricht in diesem Fall die Porosität also im Wesentlichen dem Volumengehalt der nanostrukturierten Materialien, für den Fall, dass die nanostrukturierten Materialien vernachlässigbar leicht sind.Advantageously, the porosity of the composite material according to the invention is in a range of 20 to 80%, particularly preferably in a range of 30 to 70%. The porosity according to the invention is the ratio of the weight of a certain predetermined volume of the composite material according to the invention to the weight of a corresponding non-porous metal body of the same volume. If the porosity is too large, this composite material has too low a mechanical strength for many applications. If the porosity is too low, the weight of this composite is too high for many applications. Because the pores may advantageously also be filled by the nanostructured materials, in this case the porosity essentially corresponds to the volume content of the nanostructured materials, in the event that the nanostructured materials are negligibly light.
Das Volumen der einzelnen gefüllten Poren ist bevorzugt so eingestellt, dass das Volumen von mindestens 80 % der Poren höchstens jeweils 500 mm3 beträgt. Beträgt das Volumen von mehr als 80 % der Poren jeweils mehr als 500 mm3, so sind diese Verbundwerkstoffe nicht hinreichend mechanisch belastbar. Die Porengröße des erfindungsgemäßen Verbundwerkstoffs kann beispielsweise nach ASTM 3576-77 bestimmt werden. Vorteilhafterweise sind die nanostrukturierten Materialien chemisch inert. Chemisch inert im Sinne der Erfindung bedeutet, dass die nanostrukturierten Materialien keine chemische Reaktion mit geschmolzenem Metall eingehen. Dies ist besonders vorteilhaft, da so eine Degradierung, beispielsweise Oxidation, der Metallmatrix vermieden werden kann.The volume of each filled pore is preferably adjusted so that the volume of at least 80% of the pores is at most 500 mm 3 each. If the volume of more than 80% of the pores is more than 500 mm 3 in each case, then these composite materials are not sufficiently mechanically strong. The pore size of the composite according to the invention can be determined, for example, according to ASTM 3576-77. Advantageously, the nanostructured materials are chemically inert. Chemically inert in the sense of the invention means that the nanostructured materials do not undergo a chemical reaction with molten metal. This is particularly advantageous since such a degradation, for example oxidation, of the metal matrix can be avoided.
Die nanostrukturierten Materialien sind vorzugsweise Aerogele oder expandierte Schichtsilikate. Durch die geringe Dichte dieser Materialien können bei der Herstellung Partikel dieser Materialien mit metallischen Schmelzen umgössen werden und bilden so die Poren des erfindungsgemäßen Verbundwerkstoffs, ohne Notwendigkeit, diese Materialien aus dem Verbundwerkstoff zu entfernen. Dies gilt insbesondere für Aerogel, da die Dichte des erfindungsgemäß eingesetzten Aerogels vorteilhafterweise in einem Bereich von 0,005 bis 0,025 g/cm3 liegt. Aerogel ist besonders vorteilhaft, da es offenzellig ist, eine hohe spezifische Oberfläche besitzt und deshalb sowohl in offenzelligen als auch geschlossenzelligen Materialien eingesetzt werden kann. Im Gegensatz hierzu könnten nämlich geschlossenzellige nanostrukturierte Materialien nicht in offenzelligen Verbundwerkstoffen resultieren.The nanostructured materials are preferably aerogels or expanded phyllosilicates. Due to the low density of these materials, during production, particles of these materials can be encapsulated with metallic melts to form the pores of the composite of the present invention without the need to remove these materials from the composite. This applies in particular to airgel, since the density of the airgel used according to the invention is advantageously in a range of 0.005 to 0.025 g / cm 3 . Airgel is particularly advantageous because it is open-cell, has a high specific surface area and therefore can be used in both open-cell and closed-cell materials. In contrast, closed-cell nanostructured materials could not result in open-cell composites.
Für den Fall, dass die nanostrukturierten Materialien Schichtsilikate umfassen, sind diese vorteilhafterweise ausgewählt aus Vermiculiten, Biotiten, oder Zeolithen sowie deren Gemische (beispielsweise Blähglimmer). Sind die erfindungsgemäß enthaltenen nanostrukturierten Materialien Aerogele, so umfassen diese vorteilhafterweise Silica-Aerogele. Auch wenn die erfindungsgemäßen Verbundwerkstoffe mit hydrophilen Aerogelen erhalten werden können, so sind hydrophobe Aerogele doch bevorzugt, da diese sich besonders leicht mit Metallschmelze benetzen lassen. Der Porendurchmesser des Aerogels selbst liegt vorteilhafterweise in einem Bereich von 5 bis 50 nm. Die spezifische Oberfläche der eingesetzten erfindungsgemäßen Aerogele liegt vorteilhafterweise in einem Bereich von 200 bis 1500 m2/g- Vorteilhafterweise liegt die Wärmeleitfähigkeit der Aerogele in einem Bereich von 0,005 bis 0,03 W/mK bei 25 0C. Das Aerogel liegt vorzugsweise als Granulat vor, insbesondere als Granulat, bei dem die Korngrößenverteilung dergestalt ist, dass mindestens 80 Vol.-% des Aerogelgranulats eine Körnung in einem Bereich von 0,1 bis 5 mm aufweist. Die Form der Körner des Aerogels ist vorteilhafterweise ausgewählt aus kugelförmig, polyedrisch, zylindrisch oder plättchenförmig.In the event that the nanostructured materials include phyllosilicates, these are advantageously selected from vermiculites, biotites, or zeolites and mixtures thereof (for example, expanded mica). If the nanostructured materials according to the invention are aerogels, they advantageously comprise silica aerogels. Although the composite materials according to the invention can be obtained with hydrophilic aerogels, hydrophobic aerogels are nevertheless preferred, since they are particularly easy to wet with molten metal. The pore diameter of the airgel itself is advantageously in a range from 5 to 50 nm. The specific surface of the aerogels used according to the invention is advantageously in a range from 200 to 1500 m 2 / g. Advantageously, the thermal conductivity of the aerogels is in a range from 0.005 to 0 , 03 W / mK at 25 ° C. The airgel is preferably present as granules, in particular as granules, in which the particle size distribution is such that at least 80% by volume of the airgel granules have a particle size in the range from 0.1 to 5 mm having. The shape of the grains of the airgel is advantageously selected from spherical, polyhedral, cylindrical or platelet-shaped.
Das Metall der Matrix ist vorteilhafterweise ausgewählt aus Aluminium, Zink, Zinn, Kupfer, Magnesium, Silizium oder einer Legierung aus mindestens zweien dieser Metalle. Die Metallmatrix besteht besonders bevorzugt aus Aluminium oder einer Aluminiumlegierung. Als Legierungen sind insbesondere darüber hinaus bevorzugt AISi, AISiMg, AICu, Bronze oder Messing. Der Schmelzpunkt der erfindungsgemäßen Metallmatrix liegt vorteilhafterweise in einem Bereich von 600 bis 900 0C, insbesondere in einem Bereich von 600 bis 750 0C.The metal of the matrix is advantageously selected from aluminum, zinc, tin, copper, magnesium, silicon or an alloy of at least two of these metals. The metal matrix is particularly preferably made of aluminum or an aluminum alloy. Further preferred alloys are, in particular, AISi, AISiMg, AICu, bronze or brass. The melting point of the metal matrix according to the invention is advantageously in a range from 600 to 900 ° C., in particular in a range from 600 to 750 ° C.
Obwohl Aerogel bislang als mechanisch sehr unstabil angesehen worden ist, ist es bei der vorliegenden Erfindung erstmals überraschenderweise gelungen, Aerogel unter Erhalt der Struktur mit einer Metallschmelze zu einem Verbundwerkstoff zu verarbeiten. Durch die Wahl der Aerogele kann so zum ersten Mal eine Zellmorphologie mit definierten Porengrößen in Metallschaum eingestellt werden. Das Aerogel muss als Füllstoff aufgrund seines geringen Gewichts anders als bei der konventionellen Herstellung eines metallischen Schaums nicht mehr entfernt werden.Although airgel has hitherto been regarded as very unstable mechanically, in the present invention it is surprising for the first time managed to process airgel to a composite material while retaining the structure with a molten metal. By choosing the aerogels, a cell morphology with defined pore sizes in metal foam can be set for the first time. The airgel as a filler due to its light weight, unlike the conventional production of a metallic foam must not be removed.
Die erfindungsgemäßen Verbundwerkstoffe weisen vorteilhafterweise eine Stauchhärte beziehungsweise Druckfestigkeit bei einer Stauchung von 20 % von mindestens 8 MPa auf (nach DIN 53577 / ISO 3386). Das Raumgewicht der erfindungsgemäßen Verbundwerkstoffe liegt vorteilhafterweise in einem Bereich von 0,3 bis 2 g/cm3, insbesondere in einem Bereich von 1 bis 2 g/cm3. Ist die Dichte des Verbundwerkstoffs zu hoch, so ist der Verbundwerkstoff für viele Anwendungen, bei denen leichte Werkstoffe notwenig sind, ungeeignet. Ist die Dichte jedoch zu gering, so sind die resultierenden Verbundwerkstoffe nicht genügend mechanisch stabil.The composites of the invention advantageously have a compressive strength or compressive strength at a compression of 20% of at least 8 MPa (according to DIN 53577 / ISO 3386). The density of the composite materials according to the invention is advantageously in a range of 0.3 to 2 g / cm 3 , in particular in a range of 1 to 2 g / cm 3 . If the density of the composite is too high, then the composite is unsuitable for many applications where lightweight materials are required. However, if the density is too low, the resulting composites are not sufficiently mechanically stable.
In einer weiteren Ausführungsform wird die der Erfindung zugrundeliegende Aufgabe gelöst durch ein Verfahren zur Herstellung des erfindungsgemäßen Verbundwerkstoffs, das dadurch gekennzeichnet ist, dass man folgende Schritte durchführt: a) externes Mischen des nanostrukturierten Materials mit einer Metallschmelze und Überführen in eine Gussform oder a') Mischen des nanostrukturierten Materials mit einer Metallschmelze in der Gussform, b) Erstarren lassen, und c) Entnahme aus der Form. Alternativ ist es auch möglich, die nanostrukturierten Materialien mit einem Metallpulver zu mischen und anschließend das Metall zu schmelzen.In a further embodiment, the object on which the invention is based is achieved by a method for producing the composite material according to the invention which is characterized in that the following steps are carried out: a) external mixing of the nanostructured material with a molten metal and transfer into a casting mold or a ') Mixing the nanostructured material with a molten metal in the mold, b) allowing it to solidify, and c) removing it from the mold. Alternatively, it is also possible to mix the nanostructured materials with a metal powder and then to melt the metal.
Die Aufgabe wird also dadurch gelöst, dass beispielsweise polyedrische oder kugelige nanostrukturierte Silica-Aerogelteilchen in eine gegebenenfalls thixotrope Metallschmelze eingerührt werden. Da das Aerogel vorteilhafterweise chemisch inert ist, findet keine Reaktion zwischen dem Metall und der Schmelze statt. Während des Rührens erstarrt das Metall und schließt die Aerogelteilchen ein. Noch im weichen Zustand kann der Metallverbund vorteilhafterweise gepresst werden, so dass eine gewünschte Formgebung erfolgen kann. Thixotrop im Sinne der Erfindung ist die Metallschmelze immer dann, wenn deren Temperatur zwischen der Liquidus- und Solidustemperatur liegt.The object is thus achieved, for example, by stirring polyhedral or spherical nanostructured silica airgel particles into an optionally thixotropic molten metal. Since the airgel is advantageously chemically inert, no reaction takes place between the metal and the melt. During stirring, the metal solidifies and encloses the airgel particles. Even in the soft state of the metal composite can be pressed advantageously, so that a desired shape can be done. Thixotropic in the context of the invention, the molten metal is always when the temperature is between the liquidus and solidus.
Das Verfahren kann auch vorteilhafterweise auf dem Hinterfüllen einer Anhäufung von Aerogelgranulat mit einer Metallschmelze beruhen. Die vorteilhafterweise druckbeaufschlagte Schmelze dringt in die Zwischenräume ein und füllt die Zwickel aus. Nach der Erstarrung muss das Aerogel nicht mehr entfernt werden, da es mit einer Dichte von beispielsweise etwa 0,015 g/cm3 nur einen Bruchteil des Gesamtgewichts ausmacht. Die Druckbeaufschlagung kann vorteilhafterweise bei kleineren Bauteilen durch die Zentrifugalkraft im Schleuderguß realisiert werden und bei größeren Bauteilen im Druckguß.The method may also be advantageously based on backfilling an aggregate of airgel granules with a molten metal. The advantageously pressurized melt penetrates into the interstices and fills the gussets. After solidification, the airgel no longer needs to be removed, since at a density of, for example, about 0.015 g / cm 3 it is only a fraction of the total weight. The pressurization can be advantageously realized in smaller components by the centrifugal force in the centrifugal casting and in larger components in die casting.
In einer weiteren Ausführungsform wird die der Erfindung zugrundeliegende Aufgabe gelöst durch die Verwendung der erfindungsgemäßen Verbundwerkstoffe im Strukturleichtbau, insbesondere bei Anwendungen in Kraftfahrzeugen oder in tragbaren elektronischen Geräten.In a further embodiment, the object underlying the invention is achieved by the use of composites according to the invention in structural lightweight construction, in particular in applications in motor vehicles or in portable electronic devices.
Ausführunqsbeispiele:EXEMPLARY EMBODIMENTS:
Beispiel 1 :Example 1 :
Silica-Aerogelgranulat wurde aus Aerogelmonolithen durch Zermahlen gewonnen. Das so erhaltene hydrophile polyedrische Silica-Aerogel (Airglas®, Staffanstorp, Schweden) wurde als Granulat zunächst bei 6000C ausgeheizt. Eine AISi Legierung (Aluminium enthaltend 7 Gew.% Silizium) wurde aufgeschmolzen und nachfolgend durch langsames Rühren bei gleichzeitiger Absenkung der Temperatur in das Intervall zwischen Liquidus- und Solidustemperatur in den thixotropen (halbfesten) Zustand gebracht. Aerogelgranulat (Körnung 0,1 mm bis 5 mm) wurde zu 40 Vol.% dem Metall durch Rühren beigefügt. Das Mischen erfolgte von Hand. Das halbfeste Metall verhinderte ein Aufschwimmen des extrem leichten Silica-Aerogelgranulates. Sobald ein Rühren aufgrund der fortgeschrittenen Erstarrung nicht mehr möglich war, wurde die noch weiche Verbindung mit Druck beaufschlagt und konnte so in jede beliebige Form gebracht werden. Die Porosität betrug 40 % bei Porendurchmessern in einem Bereich von 0,1 bis 5 mm. Fig. 1 zeigt den metallischen Verbundwerkstoff gemäß Beispiel 1.Silica airgel granules were recovered from airgel monoliths by grinding. The thus-obtained hydrophilic polyhedral silica airgel (Airglas ®, Staffanstorp, Sweden) was baked as granules initially at 600 0 C. An AISi alloy (aluminum containing 7% by weight of silicon) was melted and subsequently brought into the thixotropic (semi-solid) state by slow stirring while simultaneously lowering the temperature to the interval between liquidus and solidus temperatures. Airgel granules (grain size 0.1 mm to 5 mm) were added to 40% by volume of the metal by stirring. The mixing was done by hand. The semi-solid metal prevented floating of the extremely lightweight silica airgel granules. As soon as stirring was no longer possible due to the advanced solidification, the still soft connection was pressurized and could thus be brought into any desired shape. The porosity was 40% for pore diameters in a range of 0.1 to 5 mm. Fig. 1 shows the metallic composite material according to Example 1.
Beispiel 2: Aerogelgranulat gemäß Beispiel 1 wurde mit einer 7200C heißen AISiMg Legierung (Aluminium enthaltend 7 Gew.% Silizium und 0,6 Gew.% Magnesium) hinterfüllt. Dazu wurde eine Gießform mit einer losen Schüttung des Aerogelgranulats gefüllt. Der Abguss erfolgte von unten, so dass die Schmelze mit einem leichten Druck die Zwischenräume zwischen den Partikeln vollständig ausfüllte. In diesem Fall genügte ein schwacher Überdruck von 1 Atm. Nach Beendigung des Abgusses erhielt man eine metallischen Verbund aus Aerogelgranulat und Metall.Example 2: Airgel according to Example 1 was mixed with a 720 0 C hot AlSiMg alloy (aluminum containing 7 wt.% Silicon and 0.6 wt.% Magnesium) backfilled. For this purpose, a mold was filled with a loose bed of airgel granules. The casting took place from below, so that the melt with a slight pressure completely filled the spaces between the particles. In this case, a slight overpressure of 1 atm sufficed. After completion of the casting, a metallic composite of airgel granules and metal was obtained.
Beispiel 3:Example 3:
Die in Beispiel 1 und 2 genannten Verfahren wurden auch mit kugeligem Aerogelgranulat, sog. Aerogel Beads der Cabot Corp., durchgeführt. Bei Wahl dieses Füllstoffes wurde die spätere Zellmorphologie eindeutig vorgegeben.The processes mentioned in Examples 1 and 2 were also carried out with spherical airgel granules, so-called airgel beads from Cabot Corp. When choosing this filler, the later cell morphology was clearly specified.
Beispiel 4:Example 4:
Die thermisch expandierten Schichtsilikate Vermiculit, Biotit und Muskovit (3g) wurden jeweils in eine 73O0C heiße AICu Schmelze (300 g; Aluminium enthaltend 9 Gew.% Kupfer) gegeben und vorsichtig bis zu Erstarrung untergerührt. Nach der Erstarrung lag ein Verbund aus anorganischen Silikaten und einer metallischen Legierung vor. Die Porosität betrug 30 % bei Porendurchmessern in einem Bereich von 0,1 bis 7 mm. Fig. 2 zeigt den metallischen Verbund gemäß Beispiel 4 mit groben Partikeln aus expandiertem Biotit.The thermally expanded phyllosilicates vermiculite, biotite and muscovite (3 g) were each added to a 73 O 0 C hot AICu melt (300 g, aluminum containing 9 wt.% Copper) and carefully stirred to solidification. After solidification, a composite of inorganic silicates and a metallic alloy was present. The porosity was 30% for pore diameters in a range of 0.1 to 7 mm. Fig. 2 shows the metallic composite according to Example 4 with coarse particles of expanded biotite.
Beispiel 5: Die Aerogelgranulate wie in Beispiel 1 wurden in eine wärmebeständige Gussform bis zur vollständigen Raumausfüllung gefüllt und in eine Schleudergussanlage eingesetzt. Der Tiegel der Schleudergussanlage (AuTϊ2,0, Linn High-Term, Eschfelden) wurde mit einer Legierung aus Aluminium enthaltend 7 Gew.% Silizium gefüllt (etwa 100 g). Durch den normalen Prozess des Schleudergießens wurden die Hohlräume zwischen den Aerogelpartikeln vollständig mit Metall gefüllt. Der Volumengehalt an Poren, die mit Aerogel vollständig ausgefüllt sind, konnte durch die Teilchengrößenverteilung der Füllpartikel zwischen 50 und 80 % variiert werden. Example 5: The airgel granules as in Example 1 were filled in a heat-resistant mold until complete filling and used in a centrifugal casting plant. The crucible of the centrifugal casting plant (AuTϊ 2.0, Linn High-Term, Eschfelden) was filled with an alloy of aluminum containing 7 wt.% Silicon (about 100 g). Through the normal process of centrifugal casting, the voids between the airgel particles were completely filled with metal. The volume content of pores, which are completely filled with airgel, could be varied by the particle size distribution of the filler particles between 50 and 80%.

Claims

Patentansprüche:claims:
1. Poren enthaltender Verbundwerkstoff aus einer Metallmatrix mit eingebetteten nanostrukturierten Materialien.1. Pore-containing composite of a metal matrix with embedded nanostructured materials.
2. Verbundwerkstoff gemäß Anspruch 1, dadurch gekennzeichnet, dass die Metallmatrix Aluminium oder eine Aluminiumlegierung umfasst.2. Composite material according to claim 1, characterized in that the metal matrix comprises aluminum or an aluminum alloy.
3. Verbundwerkstoff nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die nanostrukturierten Materialien chemisch inert sind.3. Composite material according to one of claims 1 to 2, characterized in that the nanostructured materials are chemically inert.
4. Verbundwerkstoff gemäß einem der vorherigen Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die nanostrukturierten Materialien Aerogele oder Schichtsilicate sind.4. Composite material according to one of the preceding claims 1 to 3, characterized in that the nanostructured materials are aerogels or phyllosilicates.
5. Verbundwerkstoff gemäß Anspruch 4, dadurch gekennzeichnet, dass das Aerogel ein Silica-Aerogel ist.5. Composite material according to claim 4, characterized in that the airgel is a silica airgel.
6. Verbundwerkstoff gemäß Anspruch 4, dadurch gekennzeichnet, dass die Schichtsilicate ausgewählt sind aus expandierten Vermiculiten oder Biotiten.6. The composite according to claim 4, characterized in that the layered silicates are selected from expanded vermiculites or biotites.
7. Verbundwerkstoff gemäß Anspruch 1, dadurch gekennzeichnet, dass die Porosität in einem Bereich von 20 bis 80 % liegt. 7. Composite material according to claim 1, characterized in that the porosity is in a range of 20 to 80%.
8. Verfahren zur Herstellung eines Verbundwerkstoffs gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man folgende Schritte durchführt: a) externes Mischen des nanostrukturierten Materials mit einer Metallschmelze und Überführen in eine Gussform oder a')Mischen des nanostrukturierten Materials mit einer Metallschmelze in der Gussform, b) Erstarren lassen, und c) Entnahme aus der Form.8. A method for producing a composite material according to any one of claims 1 to 7, characterized by carrying out the following steps: a) external mixing of the nanostructured material with a molten metal and into a casting mold or a ') mixing of the nanostructured material with a molten metal in the mold, b) solidify, and c) removal from the mold.
10. Verwendung der Verbundwerkstoffe gemäß einem der Ansprüche 1 bis 7 im Strukturleichtbau, insbesondere bei Anwendungen in Kraftfahrzeugen oder in tragbaren elektronischen Geräten. 10. Use of the composite materials according to one of claims 1 to 7 in structural lightweight construction, in particular in applications in motor vehicles or in portable electronic devices.
EP07726498.4A 2006-03-03 2007-02-26 Composite metal-aerogel material Active EP1991713B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200610009917 DE102006009917B4 (en) 2006-03-03 2006-03-03 Metal airgel metal foam composite
PCT/EP2007/051792 WO2007101799A2 (en) 2006-03-03 2007-02-26 Composite metal-aerogel material

Publications (2)

Publication Number Publication Date
EP1991713A2 true EP1991713A2 (en) 2008-11-19
EP1991713B1 EP1991713B1 (en) 2019-10-16

Family

ID=38222318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07726498.4A Active EP1991713B1 (en) 2006-03-03 2007-02-26 Composite metal-aerogel material

Country Status (6)

Country Link
US (1) US20090226700A1 (en)
EP (1) EP1991713B1 (en)
DE (1) DE102006009917B4 (en)
ES (1) ES2764075T3 (en)
MX (1) MX2008011003A (en)
WO (1) WO2007101799A2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7729108B2 (en) * 2007-12-11 2010-06-01 Dell Products, Lp Information handling systems having coatings with porous particles and processes of forming the same
DE102009005031A1 (en) 2009-01-17 2010-07-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Isoelastic, biocompatible implant materials
DE102011008554A1 (en) 2011-01-13 2012-07-19 Sören Grießbach Preparing three-dimensional objects from ceramic metallic composite materials, comprises mixing metal and ceramic powders to a homogeneous blend using a blender, and processing the blend using a layer construction method
US9068476B2 (en) 2011-12-22 2015-06-30 Pratt & Whitney Canada Corp. Hybrid metal/composite link rod for turbofan gas turbine engine
WO2015061243A1 (en) 2013-10-23 2015-04-30 United Technologies Corporation Nanocellular foam damper
CN106544539A (en) * 2015-09-16 2017-03-29 弘大科技(北京)股份公司 A kind of aeroge-metallic composite and its preparation method and application
WO2017075554A1 (en) * 2015-10-29 2017-05-04 Golfetto Michael Methods freeze drying and composite materials
CN107099692A (en) * 2016-02-20 2017-08-29 金承黎 A kind of fibre-reinforced aerogel-metallic composite and preparation method thereof
CN106756312A (en) * 2017-01-26 2017-05-31 苏州思创源博电子科技有限公司 A kind of preparation method of aluminium base brake disc composite
WO2018237337A1 (en) * 2017-06-23 2018-12-27 Lawrence Livermore National Security, Llc Ultralight conductive metallic aerogels
CN108466706B (en) * 2018-03-29 2020-02-18 北京卫星环境工程研究所 Open cell foam structure space debris trapping apparatus of aerogel equipment
CN109702221A (en) * 2019-02-01 2019-05-03 北京弘微纳金科技有限公司 A kind of preparation method of aerosil load carbon/carbon-copper composite material
WO2020135582A1 (en) * 2018-12-26 2020-07-02 北京弘微纳金科技有限公司 Aerogel-reinforced metal matrix composite material, preparation method and application thereof
CN111979453A (en) * 2019-05-23 2020-11-24 北京弘微纳金科技有限公司 High-strength high-conductivity aluminum-based composite material and preparation method thereof
CN109628801A (en) * 2019-02-01 2019-04-16 北京弘微纳金科技有限公司 Be carbonized silica aerogel reinforced aluminium based composites and its fusion cast process preparation method
CN111378863B (en) * 2018-12-27 2021-09-03 有研工程技术研究院有限公司 Silicon dioxide aerogel reinforced copper-based composite material and preparation method thereof
CN110317977B (en) * 2019-01-17 2021-04-20 杭州电缆股份有限公司 Preparation method of graphene aerogel aluminum composite material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4101630A1 (en) * 1990-06-08 1991-12-12 Fraunhofer Ges Forschung METHOD FOR PRODUCING FOAMABLE METAL BODIES AND USE THEREOF
DE4018360C1 (en) * 1990-06-08 1991-05-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
US5679041A (en) * 1994-09-29 1997-10-21 General Motors Corporation Metal matrix composite and preform therefor
US5632801A (en) * 1994-10-11 1997-05-27 Loyalty Founder Enterprise Co., Ltd. Process for making metal-matrix composites mixed with reinforcing materials by forced drafting
WO1996019314A1 (en) * 1994-12-22 1996-06-27 Siemens Aktiengesellschaft Solder and its use for making a soldered joint between two objects
WO1999013681A2 (en) * 1997-09-05 1999-03-18 1... Ipr Limited Aerogels, piezoelectric devices, and uses therefor
US6080219A (en) * 1998-05-08 2000-06-27 Mott Metallurgical Corporation Composite porous media
AU2001274863A1 (en) * 2000-06-02 2001-12-17 Simpson, Randall L. Metal-oxide-based energetic material synthesis using sol-gel chemistry
FR2835216B1 (en) * 2002-01-28 2004-04-02 Usinor COMPOSITE STRUCTURE WITH HIGH RIGIDITY FACING, VERY LOW THICKNESS AND INTEGRATED SUPER VACUUM INSULATION
ATE336320T1 (en) * 2002-12-20 2006-09-15 Ceramtec Ag METHOD FOR PRODUCING COMPOSITE MATERIALS
US6852273B2 (en) * 2003-01-29 2005-02-08 Adma Products, Inc. High-strength metal aluminide-containing matrix composites and methods of manufacture the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007101799A2 *

Also Published As

Publication number Publication date
WO2007101799A2 (en) 2007-09-13
EP1991713B1 (en) 2019-10-16
DE102006009917A1 (en) 2008-01-17
WO2007101799A3 (en) 2008-03-13
WO2007101799B1 (en) 2008-04-24
US20090226700A1 (en) 2009-09-10
MX2008011003A (en) 2008-11-06
ES2764075T3 (en) 2020-06-02
DE102006009917B4 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
DE102006009917B4 (en) Metal airgel metal foam composite
EP1915226B1 (en) Process for the powder metallurgy production of metal foam and of parts made from metal foam
EP1212160A1 (en) Mixture of two particulate phases used in the production of a green compact that can be sintered at higher temperatures
WO2003000942A1 (en) Method for producing metal/metal foam composite elements
EP2044230B1 (en) Method for the production of metal foams
WO2002061160A2 (en) Production of flat, metallic integral foam
DE4424157C2 (en) Process for the production of porous metallic materials with anisotropic thermal and electrical conductivities
EP1557819A1 (en) Sound absorbing structure
DE202006019983U1 (en) Screening component to act as a heat shield has an insulating layer with a cellular structure for extending along a covering layer of sheet metal
EP2427284B1 (en) Powder-metallurgical method for producing metal foam
DE102007044565B4 (en) Method of making a metal matrix nanocomposite, metal matrix nanocomposite and its application
DE102005001056B4 (en) Sorption storage element and method for its preparation
DE602004005885T2 (en) METHOD FOR PRODUCING COMPOSITE BODILIES FROM BLUE GRAPHITE AND VERMICULITE
DE102005037069B4 (en) Porous composites based on a metal and process for their preparation
WO2019053184A1 (en) Method for foaming metal in a liquid bath
DE102014006370A1 (en) Hydrogen storage with a hydrogenatable material and a method
DE102014006375A1 (en) Granules of a hydrogenatable material
DE102014209216B4 (en) Catalytically active porous element and process for its preparation
DE102011118295A1 (en) Producing an aluminum foam body, comprises providing a microporous body made of aluminum alloy reinforced with hard material particles, and melting the microporous body and then treating a melt under vacuum by acting upon with vibrations
DE10301175B4 (en) Process for the powder metallurgical production of components
WO2009030208A1 (en) Component and use of same
DE10247409B4 (en) Ceramic substrate body and method for its production
DE10336657B4 (en) Composite material, in particular for heat exchangers, heat conductors and heat storage
WO2005000502A1 (en) Component made of metal foam components and method for the production thereof
EP4234126A1 (en) Metallic foams and methods for producing them

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080814

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090114

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1191310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016792

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191016

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2764075

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200602

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016792

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007016792

Country of ref document: DE

26N No opposition filed

Effective date: 20200717

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200226

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1191310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220125

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220119

Year of fee payment: 16

Ref country code: ES

Payment date: 20220310

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230226

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230227