EP1990580A1 - Composants d'un brûleur pour un brûleur de turbine à gaz - Google Patents

Composants d'un brûleur pour un brûleur de turbine à gaz Download PDF

Info

Publication number
EP1990580A1
EP1990580A1 EP07009447A EP07009447A EP1990580A1 EP 1990580 A1 EP1990580 A1 EP 1990580A1 EP 07009447 A EP07009447 A EP 07009447A EP 07009447 A EP07009447 A EP 07009447A EP 1990580 A1 EP1990580 A1 EP 1990580A1
Authority
EP
European Patent Office
Prior art keywords
burner
carrier
component
burner component
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07009447A
Other languages
German (de)
English (en)
Inventor
Andreas Dr. Böttcher
Jens Kleinfeld
Tobias Krieger
Claus Dr. Krusch
Elmar Pfeiffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07009447A priority Critical patent/EP1990580A1/fr
Priority to PCT/EP2008/055586 priority patent/WO2008138815A1/fr
Publication of EP1990580A1 publication Critical patent/EP1990580A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2211/00Thermal dilatation prevention or compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/20Burner material specifications metallic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2213/00Burner manufacture specifications

Definitions

  • the present invention relates to a burner component for a gas turbine combustor.
  • the invention relates to a gas turbine burner.
  • US 6,672,073 B2 discloses a gas turbine combustor having a number of fuel nozzles attached to a support with fuel supply channels. During operation of the burner in the gas turbine occur at the burner temperatures of up to about 400 ° C.
  • As a material for producing the carrier as well as the fuel nozzles therefore find heat-resistant and corrosion-resistant nickel-based alloys such as the well-known under the name Hastelloy X alloy use.
  • a burner component for a gas turbine burner according to the invention is made of a ferritic material having a thermal conductivity of more than 18J / (Kms) at 400 ° C, a specific heat capacity of more than 510kJ / (KgK) and a thermal expansion coefficient of less than 14.8 ( 1 / K).
  • the invention is based on the finding that, instead of a material with high high-temperature strength and relatively poor thermal properties, it is also possible to use a material which has more favorable thermal properties and, for that, a lower high-temperature strength.
  • a material which has an increased thermal conductivity, an increased heat capacity and a reduced coefficient of thermal expansion compared to, for example, Hastelloy X. Due to the high thermal conductivity and the high heat capacity, lower temperature-induced component stresses occur in the material. Likewise, the lower coefficient of thermal expansion compared with the materials used hitherto also leads to lower component stresses in the temperatures prevailing during operation. Due to the lower component stresses compared to the materials used hitherto, the material may have lower high-temperature strength. Overall, it is possible to achieve the same, if not a longer, service life of the burner component in comparison with the materials used hitherto.
  • the burner component according to the invention With the burner component according to the invention, a considerable reduction in material costs compared with the materials used hitherto is possible, in particular when using 16Mo3.
  • the processing costs for the burner component can be reduced because this material can be easily machined.
  • materials with the stated good thermal properties and reduced high-temperature strength are more readily available than high-temperature superalloys.
  • Another advantage of the material 16Mo3 in particular is the simplified weldability compared to the materials used hitherto. This creates less Waste during the manufacture of the burner component by welding distortion, which in turn reduce manufacturing costs.
  • the fuel component may in particular comprise a carrier and at least one fuel nozzle attached to the carrier.
  • the carrier is then equipped with a fuel distribution system with which the at least one fuel nozzle is supplied with fuel.
  • the fuel distribution system of the burner component in a specific embodiment of the invention, may have at least one, for example, a milled or eroded channel and a cover strip designed to cover the channel.
  • the cover strip is then made of the same material as the carrier.
  • at least one fuel nozzle may be attached to the carrier, wherein the fuel nozzle is made of the same material as the carrier. The fact that the cover strip and / or the fuel nozzle are made of the same material as the carrier, thermal stresses between the individual components can be avoided.
  • the carrier and possibly the cover strip and possibly the fuel nozzle (s) are or are provided with an oxidation- and / or corrosion-inhibiting coating, for example with a coating comprising aluminum oxide (Al 2 O 3 ).
  • the alumina may in this case be in particular alpha-alumina ( ⁇ -Al 2 O 3 ).
  • the alpha-alumina is characterized by a rhombohedral (trigonal) crystal structure and is also known as corundum and sapphire. It is generally insoluble in acids and in bases and is therefore particularly suitable as oxidation and / or corrosion protection.
  • Titanium nitride has a thermal conductivity of 29.1 J / (Kms) has a high thermal conductivity, which ensures that the coating does not chip off due to thermal shocks.
  • the application of the oxidation- and / or corrosion-inhibiting coating can be carried out, for example, by means of chemical vapor deposition (chemical vapor deposition, CVD).
  • a gas turbine burner according to the invention comprises a burner component according to the invention.
  • a gas turbine burner according to the invention has the advantages described with reference to the burner component and can in particular be produced more cost-effectively than gas turbine burners made of the materials previously used.
  • FIG. 3 shows the coating of the burner component in a highly schematic representation.
  • FIG. 1 shows a cross section through the burner component 1 in a schematic representation, shows FIG. 2 a top view of the in FIG. 1 top side of the burner component 1.
  • the burner component 1 comprises a carrier 3 with connections 5 for fuel nozzles 7, which are formed in the present embodiment as gas nozzles. Basically you can however, there may also be nozzles for liquid fuels such as oil.
  • the nozzles 7 protrude into an air supply channel 9 of the burner, where they are mostly surrounded by swirl vanes 11.
  • the swirl blades 11 are arranged so that nozzle openings 13 of the nozzles 7 are downstream of them with respect to the air flow through the air supply channel 9.
  • the gas is injected into the swirling through the swirl vanes 11 airflow.
  • the swirl vanes 11 and the air supply channels 9 are in FIG. 1 indicated by dashed lines.
  • the carrier 3 has a fuel distribution system, which serves in the present embodiment for the distribution of a gaseous fuel to the fuel nozzles 7.
  • the fuel supply system therefore comprises in the present embodiment, a gas supply channel 15 which is supplied via a gas inlet port 17 with fuel gas. From the gas supply channel 15 go out gas lines 19, which extend through a portion of the carrier 3 and through the terminals 5. They open into gas ducts 21 of the nozzles 7 fastened to the connections 5. The gas ducts 21 of the nozzles 7 finally terminate in the nozzle openings 13.
  • the gas supply channel 15 is usually milled into the body of the carrier 3 and is therefore open at the top 23 of the carrier 3. It is therefore closed with a cover plate, which is formed in the present embodiment as a metal strip 25.
  • any admissible 16Mo3 composition is suitable.
  • the material chosen is a ferritic material which has a thermal conductivity of more than 18 J / (Kms) at 400 ° C, a specific heat capacity of more than 510 J / (kgK) and a thermal expansion coefficient of less than (1 / K).
  • suitable base materials include grades 15MiCuMoNb5S, 20MnMONi55, 34CrMiMo6S, c22.8S, GS-18NiMoCr37, GS-C25S, WStE255S, WStE285S, WStE315S, WStE355S.
  • the material used for the carrier 3, the nozzles 7 and the cover plate 25 is provided for corrosion and / or oxidation protection with a corrosion and / or oxidation-inhibiting coating.
  • the coating is two-ply.
  • the coating is highly schematized in FIG. 3 shown.
  • the FIG shows a section through the carrier 3.
  • TiN titanium nitride layer
  • ⁇ -Al 2 O 3 alpha-aluminum oxide layer
  • both layers can be applied to the carrier 3, the nozzle 7 or the cover plate 25 by means of chemical vapor deposition (CVD).
  • the first material sample (Sample 1) consisted of uncoated Hastelloy X
  • the second sample of material (Sample 2) of uncoated 16Mo3
  • the third sample of material (Sample 3) of 16Mo3 CVD coated with TiN / ⁇ -Al 2 O 3 . All three samples were exposed to 6% sulfuric acid (H 2 SO 3 ) to test the corrosion resistance of each material. While Sample 2 already showed significant corrosion in the sulphurous acid after 30 seconds, both Sample 1 and Sample 3 showed no corrosion even after 100 hours in the sulphurous acid. This shows that with the coating the 16Mo3 material has comparable good corrosion properties as Hastelloy X. By coating the 16Mo3 material, corrosion of the burner component during operation of the gas turbine can therefore be reliably avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP07009447A 2007-05-10 2007-05-10 Composants d'un brûleur pour un brûleur de turbine à gaz Withdrawn EP1990580A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07009447A EP1990580A1 (fr) 2007-05-10 2007-05-10 Composants d'un brûleur pour un brûleur de turbine à gaz
PCT/EP2008/055586 WO2008138815A1 (fr) 2007-05-10 2008-05-07 Composant de brûleur pour brûleur de turbine à gaz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07009447A EP1990580A1 (fr) 2007-05-10 2007-05-10 Composants d'un brûleur pour un brûleur de turbine à gaz

Publications (1)

Publication Number Publication Date
EP1990580A1 true EP1990580A1 (fr) 2008-11-12

Family

ID=38561698

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07009447A Withdrawn EP1990580A1 (fr) 2007-05-10 2007-05-10 Composants d'un brûleur pour un brûleur de turbine à gaz

Country Status (2)

Country Link
EP (1) EP1990580A1 (fr)
WO (1) WO2008138815A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003816A1 (fr) * 2008-07-11 2010-01-14 Siemens Aktiengesellschaft Procédé de revêtement et revêtement de protection anti-corrosion pour des éléments de turbines
EP2189720A1 (fr) * 2008-11-21 2010-05-26 Siemens Aktiengesellschaft Agencement de brûleur
EP2402652A1 (fr) * 2010-07-01 2012-01-04 Siemens Aktiengesellschaft Brûleur

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29511790U1 (de) * 1995-07-21 1996-11-14 Robert Bosch Gmbh, 70469 Stuttgart Atmosphärischer Gasbrenner
EP0990845A2 (fr) * 1998-10-02 2000-04-05 Robert Bosch Gmbh Brûleur atmosphérique à gaz refroidi par eau

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29511790U1 (de) * 1995-07-21 1996-11-14 Robert Bosch Gmbh, 70469 Stuttgart Atmosphärischer Gasbrenner
EP0990845A2 (fr) * 1998-10-02 2000-04-05 Robert Bosch Gmbh Brûleur atmosphérique à gaz refroidi par eau

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003816A1 (fr) * 2008-07-11 2010-01-14 Siemens Aktiengesellschaft Procédé de revêtement et revêtement de protection anti-corrosion pour des éléments de turbines
EP2189720A1 (fr) * 2008-11-21 2010-05-26 Siemens Aktiengesellschaft Agencement de brûleur
WO2010057709A1 (fr) * 2008-11-21 2010-05-27 Siemens Aktiengesellschaft Agencement de brûleur
EP2402652A1 (fr) * 2010-07-01 2012-01-04 Siemens Aktiengesellschaft Brûleur

Also Published As

Publication number Publication date
WO2008138815A1 (fr) 2008-11-20

Similar Documents

Publication Publication Date Title
DE68911363T2 (de) Mit Keramik beschichteter hitzebeständiger Legierungsbestandteil.
EP1287571B1 (fr) Materiau pour hautes temperatures
DE19741223C2 (de) Als Hitzesperre fungierendes Überzugselement und Verfahren zu dessen Herstellung
DE69719701T2 (de) Wärmesperrschichtsysteme und -materialien
DE19918900B4 (de) Hochtemperatur-Komponente für eine Gasturbine und Verfahren zu deren Herstellung
EP1082216B1 (fr) Produit pourvu d'une couche de protection anticorrosion, et procede de realisation d'une couche de protection anticorrosion
DE60132144T2 (de) Hoch hitze- und oxidationsbeständige Beschichtung und hoch hitze- und oxidationsbeständiger, mehrschichtiger Werkstoff
DD146305A5 (de) Superlegierung mit einem gehalt an metallen der platingruppe
EP2251457B1 (fr) Revêtement en NiCoCrAl ou CoCrAl avec Re
DE69916167T2 (de) Hochtemperaturschutzschicht
EP3645762B1 (fr) Alliage d'acier présentant une meilleure résistance à la corrosion lorsqu'il est soumis à de hautes températures et procédé de fabrication d'une bande d'acier à partir de cet alliage d'acier
EP1541808A1 (fr) Elément de turbine avec une couche résistante à la chaleur et l'érosion
EP1247941A1 (fr) Aube de turbine à gaz
WO2010079049A1 (fr) Couche de mcralx avec teneurs différentes en chrome et en aluminium
DE69622810T2 (de) Oxidationsbeständiges metallisches material
CH670835A5 (fr)
EP1990580A1 (fr) Composants d'un brûleur pour un brûleur de turbine à gaz
DE10157749A1 (de) Eisen-Chrom-Aluminium-Legierung
EP1382707A1 (fr) Systeme stratifie
DE3036206A1 (de) Verschleissfester, vor oxidation und korrosion schuetzender ueberzug, korrosions- und verschleissfeste ueberzugslegierung, mit einem solchen ueberzug versehener gegenstand und verfahren zum herstellen eines solchen ueberzugs
CH616960A5 (en) Components resistant to high-temperature corrosion.
DE2456857B2 (de) Verwendung einer Nickelbasislegierung für unbeschichtete Bauteile im Heißgasteil von Turbinen
WO2008049460A1 (fr) PROCÉDÉ POUR RÉGLER LA RUGOSITÉ de surface LORS D'UNE OPÉRATION DE REVÊTEMENT À BASSE TEMPÉRATURE, ET ÉLÉMENT DE CONSTRUCTION
DE2414641A1 (de) Korrosionsbestaendige turbinenschaufeln und verfahren zu deren herstellung
EP0397731B1 (fr) Objet metallique, notamment aube de turbine a gaz pourvue d'un revetement de protection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090513

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566