WO2008049460A1 - PROCÉDÉ POUR RÉGLER LA RUGOSITÉ de surface LORS D'UNE OPÉRATION DE REVÊTEMENT À BASSE TEMPÉRATURE, ET ÉLÉMENT DE CONSTRUCTION - Google Patents

PROCÉDÉ POUR RÉGLER LA RUGOSITÉ de surface LORS D'UNE OPÉRATION DE REVÊTEMENT À BASSE TEMPÉRATURE, ET ÉLÉMENT DE CONSTRUCTION Download PDF

Info

Publication number
WO2008049460A1
WO2008049460A1 PCT/EP2006/067726 EP2006067726W WO2008049460A1 WO 2008049460 A1 WO2008049460 A1 WO 2008049460A1 EP 2006067726 W EP2006067726 W EP 2006067726W WO 2008049460 A1 WO2008049460 A1 WO 2008049460A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
surface roughness
angle
component
incidence
Prior art date
Application number
PCT/EP2006/067726
Other languages
German (de)
English (en)
Inventor
Werner Stamm
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2006/067726 priority Critical patent/WO2008049460A1/fr
Publication of WO2008049460A1 publication Critical patent/WO2008049460A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/312Layer deposition by plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/313Layer deposition by physical vapour deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a method for adjusting the roughness in low-temperature coating method and a component according to claim 14.
  • the object is achieved by a method according to claim 1 and a component according to claim 14.
  • Figure 1, 2 is a schematic arrangement of the component
  • Exemplary embodiment Figure 7 shows a gas turbine
  • FIG. 8 shows in perspective a turbine blade
  • FIG. 9 shows in perspective a combustion chamber
  • FIG. 1 shows a turbine blade 120, 130 (FIGS. 7, 8) or in general a component 1, which is coated by means of a nozzle 13.
  • turbine runner 120 In the case of components for turbine components, e.g. Combustor 155 (FIG. 9), turbine runner 120, or vanes 130 use nickel- or cobalt-based superalloys, which are provided with corrosion and / or oxidation protection layers, such as carbon black.
  • corrosion and / or oxidation protection layers such as carbon black.
  • Such a corrosion and / or oxidation protection layer may represent an outermost layer (overlay) or serve as an intermediate layer for an outer ceramic heat-insulating layer.
  • a fine surface roughness is preferably required, whereas for thermal dam layers applied by plasma spraying (APS, VOPS, LPPS) on the underlying layer a rough surface roughness is advantageous as compared to "overlay"
  • APS, VOPS, LPPS plasma spraying
  • a less rough or fine interlayer is for EB-PVD coated ceramic layers such as yttria stabilized zirconia (YSZ) or PVD or CVD. necessary (Fig. 4).
  • a nozzle 13 generates with a coating material a particle stream 22 which impinges on the surface 3 of the component 1, 120, 130, 155 at a certain angle of incidence ⁇ .
  • the nozzle 13 and / or the component 1, 120, 130, 155 can preferably be pivoted accordingly.
  • This angle of incidence ⁇ is set at about 90 °, ie 90 ° + 2 °, in particular at 90 °, in order to produce coarse surface roughness in low-temperature processes such as HVOF (high velocity oxy fuel) or cold gas spraying.
  • the angle of incidence ⁇ can be related to the surface 3 of the component 1, 120, 130, 155 or to the longitudinal axis 121.
  • Low-temperature process means that the coating material does not melt.
  • the component to be coated (substrate) can be additionally heated, but not so strong that the impinging coating material melts.
  • the method is preferably carried out with metallic layers.
  • the lower limit here is 45 °. Again, this is preferably done with metallic layers.
  • any known measure of roughness can be used.
  • the difference between "coarse” and “fine” is at least 20%, especially at least 30%.
  • Blade sheet 406 coated at the predetermined angle ⁇ if an impact angle ⁇ of about 90 ° is desired, this is done for most of the airfoil 406 and an impact angle ⁇ ⁇ 80 ° is set in the transition 19 and / or on the blade form 403 (shown schematically in FIG. 5).
  • the blade 120 may be coated to the blade tip 415 and / or the blade tip 415 may be coated at an impact angle of about 90 °.
  • a guide blade 130 in which two platforms 403, 403 '(FIG. 2) are present likewise only a partial region 27 of the blade 406 is coated with an impact angle ⁇ .
  • this can be set for the entire surface to be coated 403, 403 ', 406, 415 by the angle of incidence ⁇ ⁇ 90 °.
  • FIG. 3 shows a substrate of a component 1, 120, 130, 155, on which an intermediate layer 43 is applied.
  • the intermediate layer 43 has a rough surface roughness on which an outer layer 46 is then applied.
  • the intermediate layer 43 is preferably metallic, whereas the outer layer 46 is ceramic. Particularly in the case of plasma-sprayed ceramic layers, a coarse surface roughness of the underlying layer 43 is necessary.
  • FIG. 5 once again schematically shows that the intermediate layer has two different surface areas, here identified by 406, 19, which have different surface roughnesses.
  • Figure 6 a component 1, 120, 130, 155 is shown, wherein the layer 43 produced by the method represents the outermost layer having a fine surface roughness.
  • the method is not applicable to PVD, CVD or galvanic processes, and plasma spraying (APS, LPPS, VPS) is to be excluded from the invention. On the other hand, these methods can be used as a subsequent coating method
  • FIG. 7 shows by way of example a gas turbine 100 in a long partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings.
  • a series of guide vanes 115 follows a series of vanes 120 in the hot gas duct 111 of a row of vanes 115.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the rotor blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands on the rotor blades 120 in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and this drives the working machine coupled to it ,
  • the components exposed to the hot working medium 113 are subject to thermal loads during the operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only slow grains (DS structure).
  • iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; These documents are part of the disclosure regarding the chemical composition of the alloys.
  • a thermal insulation layer On the MCrAlX may still be present a thermal insulation layer, and consists for example of Zr ⁇ 2 , Y 2 ⁇ 3 Zr ⁇ 2 , that is, it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Suitable coating processes such as electron beam evaporation (EB-PVD), are used to produce protuberant grains in the thermal insulation layer.
  • the vane 130 has a Leitschaufelfuß facing the réellegehause 138 of the turbine 108 (not shown here) and a Leitschaufelfuß the opposite vane head on.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 8 shows a perspective view of a moving blade 120 or guide blade 130 of a flow machine, which extends along a longitudinal axis 121 and which are coated by means of the method according to the invention.
  • the flow machine may be a gas turbine of an aircraft or a power plant to produce electricity, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 in succession a fastening region 400, an adjacent blade platform 403 and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as fir tree or Schissebwschwanzfuß are possible.
  • the blade 120, 130 has a flow-on edge 409 and a downstream edge 412 for a medium that flows past the blade 406.
  • conventional blades 120, 130 for example, solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; These documents are part of the disclosure regarding the chemical composition of the alloy.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a Fras vide or combinations thereof.
  • Single-crystalline structures or structures are used as components for machines that are subject to high mechanical, thermal and / or chemical stresses during operation.
  • the production of such monocrystalline workpieces takes place, for example. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the warm flow and form either a prismatic crystalline
  • Grain structure (columnar, i.e. grain which run the whole length of the workpiece and here, in common usage, are referred to as directionally solidified) or a monocrystalline structure, i.
  • the whole work consists of a single crystal.
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni),
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
  • the density is preferably 95% of the theoretical density.
  • Warmedamm can still be present, which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially ⁇ or fully stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal insulation layer covers the entire MCrAlX layer. Suitable coating processes, such as electron beam evaporation (EB-PVD), are used to produce protuberant grains in the thermal insulation layer. Other coating methods are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS or CVD.
  • APS atmospheric plasma spraying
  • LPPS LPPS
  • VPS VPS
  • CVD chemical vapor deposition
  • the thermal insulation layer may have porous, micro- or macro-cracked grains for better thermal shock resistance. The Warmedammtik is therefore preferably more porous than the MCrAlX layer.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130, in particular using the method according to the invention and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. When the blade 120, 130 is to be cooled, it is hollow and possibly still has film cooling holes 418 (indicated by dashed lines).
  • FIG. 9 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is designed, for example, as a so-called annular combustion chamber, in which a multiplicity of burners 107 arranged in the circumferential direction around a rotation axis 102 pass into a common combustion chamber space 154, which produce flames 156.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C. to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M with an inner lining formed of heat shield elements 155, which are coated with the method according to the invention.
  • Each heat shield element 155 made of an alloy is equipped on the working medium side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
  • ceramic maintenance may be medamm Mrs, consisting for example of ZrO> 2, ZrO 2 Y2Ü3-ie, it is not partially full text or ⁇ dig stabilized by yttrium oxide and / or calcium and / or magnesium oxide.
  • Electron Beam Evaporation produces proton grains in the thermal insulation layer.
  • Other coating methods are conceivable, e.g. atmospheric plasma spraying (APS), LPPS, VPS or CVD.
  • APS atmospheric plasma spraying
  • LPPS LPPS
  • VPS VPS
  • CVD chemical vapor deposition
  • the thermal insulation layer may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • Refurbishment means that heat shield elements 155 may be replaced after use by heat shielding elements 155
  • Protective layers must be freed (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, cracks in the heat shield element 155 are also repaired. This is followed by a recoating of the heat shield elements 155 and a renewed use of the heat shield elements 155. Due to the high temperatures in the interior of the combustion chamber 110, a cooling system can additionally be provided for the heat shield elements 155 or for their holding elements. The heat shield elements 155 are then, for example, hollow and possibly still have cooler holes (not shown) which still touch the combustion chamber space 154.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne un procédé de revêtement à basse température, les procédés de ce type n'étant pas encore suffisamment optimisés pour la réalisation de systèmes de couches. D'après le procédé selon l'invention, on règle de manière contrôlée l'angle d'impact (16) entre le flux de particules (22) et la surface (3) de l'élément de construction à revêtir (1, 120, 130), afin d'obtenir une rugosité de surface souhaitée.
PCT/EP2006/067726 2006-10-24 2006-10-24 PROCÉDÉ POUR RÉGLER LA RUGOSITÉ de surface LORS D'UNE OPÉRATION DE REVÊTEMENT À BASSE TEMPÉRATURE, ET ÉLÉMENT DE CONSTRUCTION WO2008049460A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2006/067726 WO2008049460A1 (fr) 2006-10-24 2006-10-24 PROCÉDÉ POUR RÉGLER LA RUGOSITÉ de surface LORS D'UNE OPÉRATION DE REVÊTEMENT À BASSE TEMPÉRATURE, ET ÉLÉMENT DE CONSTRUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2006/067726 WO2008049460A1 (fr) 2006-10-24 2006-10-24 PROCÉDÉ POUR RÉGLER LA RUGOSITÉ de surface LORS D'UNE OPÉRATION DE REVÊTEMENT À BASSE TEMPÉRATURE, ET ÉLÉMENT DE CONSTRUCTION

Publications (1)

Publication Number Publication Date
WO2008049460A1 true WO2008049460A1 (fr) 2008-05-02

Family

ID=38134113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/067726 WO2008049460A1 (fr) 2006-10-24 2006-10-24 PROCÉDÉ POUR RÉGLER LA RUGOSITÉ de surface LORS D'UNE OPÉRATION DE REVÊTEMENT À BASSE TEMPÉRATURE, ET ÉLÉMENT DE CONSTRUCTION

Country Status (1)

Country Link
WO (1) WO2008049460A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128300A1 (fr) * 2008-05-29 2009-12-02 Siemens Aktiengesellschaft Procédé destiné à l'injection de flammes à vitesse élevée
WO2009144109A1 (fr) * 2008-05-29 2009-12-03 Siemens Aktiengesellschaft Procédé de projection à la flamme supersonique
EP2145974A1 (fr) * 2008-07-16 2010-01-20 Siemens Aktiengesellschaft Procédé destiné à l'injection de flammes à vitesse élevée
DE102009010109A1 (de) * 2009-02-21 2010-09-23 Mtu Aero Engines Gmbh Herstellung einer Turbinenblisk mit einer Oxikations- bzw. Korrosionsschutzschicht
EP2444590A1 (fr) * 2010-10-19 2012-04-25 Siemens Aktiengesellschaft Procédé de revêtement de trous de refroidissement
EP2450118A1 (fr) * 2010-11-04 2012-05-09 Linde Aktiengesellschaft Procédé destiné à la fabrication d'un tuyau
EP2592174A1 (fr) * 2011-11-14 2013-05-15 Siemens Aktiengesellschaft Système de couche doté d'une surface de substrat structurée et son procédé de fabrication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023877A1 (fr) * 1994-03-02 1995-09-08 Sermatech International, Inc. Ajutage de projection thermique produisant des revêtements bruts par projection thermique, leur procede de production et revêtements ainsi produits
US20020102360A1 (en) * 2001-01-30 2002-08-01 Siemens Westinghouse Power Corporation Thermal barrier coating applied with cold spray technique
US20030035968A1 (en) * 2001-08-14 2003-02-20 Gordon Anderson Process for treating a coated gas turbine part, and coated gas turbine part
WO2006073585A2 (fr) * 2004-11-24 2006-07-13 Applied Materials, Inc. Composant de chambre de traitement a revetement stratifie et procede associe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023877A1 (fr) * 1994-03-02 1995-09-08 Sermatech International, Inc. Ajutage de projection thermique produisant des revêtements bruts par projection thermique, leur procede de production et revêtements ainsi produits
US20020102360A1 (en) * 2001-01-30 2002-08-01 Siemens Westinghouse Power Corporation Thermal barrier coating applied with cold spray technique
US20030035968A1 (en) * 2001-08-14 2003-02-20 Gordon Anderson Process for treating a coated gas turbine part, and coated gas turbine part
WO2006073585A2 (fr) * 2004-11-24 2006-07-13 Applied Materials, Inc. Composant de chambre de traitement a revetement stratifie et procede associe

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE COMPENDEX [online] ENGINEERING INFORMATION, INC., NEW YORK, NY, US; STROCK E ET AL: "The Effect of Off-Angle Spraying on the Structure and Properties of HVOF WC/CoCr Coatings", XP008080153, Database accession no. E2004128065944 *
PROC. INT. THERM. SPRAY CONF.; PROCEEDINGS OF THE INTERNATIONAL THERMAL SPRAY CONFERENCE 2001, 2001, pages 671 - 676, XP008080153 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128300A1 (fr) * 2008-05-29 2009-12-02 Siemens Aktiengesellschaft Procédé destiné à l'injection de flammes à vitesse élevée
WO2009144109A1 (fr) * 2008-05-29 2009-12-03 Siemens Aktiengesellschaft Procédé de projection à la flamme supersonique
EP2145974A1 (fr) * 2008-07-16 2010-01-20 Siemens Aktiengesellschaft Procédé destiné à l'injection de flammes à vitesse élevée
DE102009010109A1 (de) * 2009-02-21 2010-09-23 Mtu Aero Engines Gmbh Herstellung einer Turbinenblisk mit einer Oxikations- bzw. Korrosionsschutzschicht
DE102009010109A8 (de) * 2009-02-21 2011-01-05 Mtu Aero Engines Gmbh Herstellung einer Turbinenblisk mit einer Oxidations- bzw. Korrosionsschutzschicht
EP2444590A1 (fr) * 2010-10-19 2012-04-25 Siemens Aktiengesellschaft Procédé de revêtement de trous de refroidissement
US8920882B2 (en) 2010-10-19 2014-12-30 Siemens Aktiengesellschaft Setting the quantity of cooling air for a turbine blade or vane by controlled overspray
EP2450118A1 (fr) * 2010-11-04 2012-05-09 Linde Aktiengesellschaft Procédé destiné à la fabrication d'un tuyau
US8316916B2 (en) 2010-11-04 2012-11-27 Linde Aktiengesellschaft Method for producing a pipe
EP2592174A1 (fr) * 2011-11-14 2013-05-15 Siemens Aktiengesellschaft Système de couche doté d'une surface de substrat structurée et son procédé de fabrication
WO2013072092A1 (fr) * 2011-11-14 2013-05-23 Siemens Aktiengesellschaft Système stratifié à surface de substrat structurée et procédé de fabrication
US10371004B2 (en) 2011-11-14 2019-08-06 Siemens Aktiengesellschaft Layer system with a structured substrate surface and production process

Similar Documents

Publication Publication Date Title
EP2436798B1 (fr) Matériel de masquage, couche de masquage et procédé de masquage d'un substrat
EP1790754A1 (fr) Système de revêtement contenant un phase pyrochlor mixte de Gadolinium.
WO2008080655A1 (fr) Élément structurel ayant dans sa surface des évidements s'étendant en oblique, et procédé d'exploitation d'une turbine
EP1816316B1 (fr) Procédé de réparation de composants
EP2907888A1 (fr) Aube de compresseur dotée d'un revêtement dur résistant à la corrosion
WO2008049460A1 (fr) PROCÉDÉ POUR RÉGLER LA RUGOSITÉ de surface LORS D'UNE OPÉRATION DE REVÊTEMENT À BASSE TEMPÉRATURE, ET ÉLÉMENT DE CONSTRUCTION
WO2012007320A1 (fr) Système stratifié céramique poreux
WO2014075947A1 (fr) Surface modifiée autour d'un trou
WO2009138299A1 (fr) Procédé de réalisation d'une couche promotrice d'adhésion optimisée par évaporation partielle de la couche promotrice d'adhésion et système de revêtement
EP1798299B1 (fr) Alliage, couche de protection et élément de construction
EP2373824A1 (fr) Procédé pour recouvrir un composant pourvu de trous de refroidissement pelliculaire et composant
EP2227346A2 (fr) Brasage de trous, procédé de revêtement et baguettes de brasure
WO2008087084A1 (fr) Mélange poudreux comprenant de la poudre en blocs, procédé d'utilisation du mélange poudreux et éléments de construction
WO2006103125A1 (fr) Systeme de couches et procede pour realiser un systeme de couches
EP1839801A1 (fr) Méthode de réparation pour la remise en état de pièces
WO2011107167A1 (fr) Système de couche d'isolation thermique céramique à couche de liaison modifiée
EP1963043A1 (fr) Procede de soudage et dispositif de soudage
WO2007080058A1 (fr) Composant compact en ceramique, couche ceramique a tres forte porosite, utilisation de cette couche et composant la contenant
EP2082076A1 (fr) Procédé d'optimisation de revêtement par un coupon et composant avec coupon
EP1818505B2 (fr) Procédé de fabrication d'un revêtement d'échantillons
EP2086715A1 (fr) Poudre de brasage composite constituée d'une âme et d'une enveloppe métallique, pour le brasage d'éléments de turbine
EP1867749A1 (fr) Procédé de revêtement d'un matériau à une pièce
EP1806419B1 (fr) Alliage, couche protectrice pour proteger un élément structurel contre la corrosion et l'oxydation aux temperatures hautes, et élément structurel
EP1932935A1 (fr) Procédé de fabrication d'une aube de turbine avec une couche d'oxide, une aube de turbine et son utilisation, et procédé de fonctionnement d'une turbine
WO2009089840A1 (fr) Procédé et dispositif d'usinage par électro-érosion régulé

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06819134

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06819134

Country of ref document: EP

Kind code of ref document: A1