EP1987655B1 - Méthode et réseau de fourniture d'un mélange de services à un abonné - Google Patents

Méthode et réseau de fourniture d'un mélange de services à un abonné Download PDF

Info

Publication number
EP1987655B1
EP1987655B1 EP07751144.2A EP07751144A EP1987655B1 EP 1987655 B1 EP1987655 B1 EP 1987655B1 EP 07751144 A EP07751144 A EP 07751144A EP 1987655 B1 EP1987655 B1 EP 1987655B1
Authority
EP
European Patent Office
Prior art keywords
subscriber
phone
call
network
service broker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07751144.2A
Other languages
German (de)
English (en)
Other versions
EP1987655A2 (fr
Inventor
Andre Beck
Markus Andreas Hofmann
Kristin Freya Kocan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Publication of EP1987655A2 publication Critical patent/EP1987655A2/fr
Application granted granted Critical
Publication of EP1987655B1 publication Critical patent/EP1987655B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1083In-session procedures
    • H04L65/1095Inter-network session transfer or sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/253Telephone sets using digital voice transmission
    • H04M1/2535Telephone sets using digital voice transmission adapted for voice communication over an Internet Protocol [IP] network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/57Arrangements for indicating or recording the number of the calling subscriber at the called subscriber's set
    • H04M1/575Means for retrieving and displaying personal data about calling party

Definitions

  • Exemplary embodiments of the present invention in general, relate to a communication network and method of providing a subscriber with a blend of services of the communication network delivered to the subscriber through a telephone and services delivered to the subscriber through a TV delivery system in communication with the network, and to a method of processing an incoming call to the subscriber.
  • IP Multimedia Subsystem is an IP multimedia and telephony core network defined by the Third Generation Partnership Project (3GPP and 3GPP2) standards and organizations based on Internet Engineering Task Force (IETF) Internet protocols.
  • 3GPP/IMS network is access independent as it supports IP to IP session over wire line IP, 802.11, 802.15, CDMA, packet data along with GSM/EDGE/UMTS and other packet data applications.
  • the 3GPP/IMS services architecture is a unified architecture that supports a wide range of services enabled by the flexibility of Session Initiation Protocol (SIP).
  • SIP is a signalling protocol for Internet conferencing, telephony, event notification and instant messaging.
  • SIP was developed within the IETF Multiparty Multimedia Session Control working group.
  • SIP can also invite participants to already existing sessions, such as multicast conferences. Media can be added to (and removed from) an existing session.
  • SIP transparently supports name mapping and redirection services, which supports personal mobility -- users can maintain a single externally visible identifier regardless of their network location.
  • IPTV Internet Protocol Television
  • US 2003/142802 A1 discloses a method for managing telephone functionality by utilizing a settop box.
  • US 2004/261115 A1 discloses a voice over ip receiver assisted call control.
  • US 5,825,862 discloses a method for altering the destination telephone number of an incoming call.
  • WO 2001/070652 A1 discloses a method for providing service blending to a subscriber.
  • a service broker function may be configured to execute service package information associated with services of the TV delivery system subscription to include obtaining and delivering caller ID information of the calling party.
  • the service broker function may be configured to alter the message request to generate a modified message request in respect to information affecting alerting of the subscriber's phone. The modified message is sent to the subscriber's phone so that, while information of the calling party is displayed on the TV delivery system, alerting of the phone is modified.
  • a method of processing an incoming call to a subscriber of one or more services of a communication network for a phone of the subscriber and one or more services of a TV delivery system in communication with the network is disclosed.
  • a message request is received from a calling party which corresponds to the incoming call to the subscriber's phone.
  • the call may be suspended in the network for a given duration so that ringing of the subscriber's phone due to the incoming call is suppressed.
  • Caller identification information may be displayed on a display of the TV delivery system to enable the subscriber to accept or reject the call.
  • service delivery architectures such as an IMS services architecture of a communication network, and another platform services architecture, such as the content streaming architecture of a TV delivery system such as an IPTV system, may be utilized in order to provide blended services to a subscriber.
  • these service delivery architectures May be configured so as to process an incoming call to a subscriber of both the communication network and TV delivery system.
  • FIG. 1 is a block diagram of an IMS services architecture in accordance with an exemplary embodiment of the present invention.
  • IMS services architecture for an IMS communication network is described below.
  • the IMS services architecture 100 of a communication network such as a 3GPP/IMS core network can support multiple application servers providing traditional telephony services and non-telephony services such as instant messaging, push-to-talk, video streaming, multimedia messaging, etc.
  • the services architecture 100 is a collection of logical functions, which can be divided into three layers: a Transport and Endpoint Layer 110, a Session Control Layer 120 and an Application Server Layer 130.
  • the transport and endpoint layer 110 initiates and terminates SIP signaling to set up sessions and provide bearer services such as conversion of voice from analog or digital formats to IP packets using Realtime Transport Protocol (RTP).
  • RTP Realtime Transport Protocol
  • This layer provides the media gateways for converting the Voice of internet Protocol (VoIP) bearer streams to PSTN TDM format.
  • VoIP Voice of internet Protocol
  • the media server provides many media related services including conferencing, playing announcements, collecting in-band signaling tones, speech recognition, speech synthesis, etc
  • the media server resources are shared across air applications. Consequently, each application that requires playing announcements, or collecting digits, for example, can use a common server. These applications include voicemail, advanced 800, interactive VoiceXML (VXML) services, among others.
  • the media servers can also support non-telephony functions such as replicating media for push-to-talk (PTT) service.
  • PTT push-to-talk
  • the session control layer 120 contains the Call Session Control Function (CSCF) 127, which provides the registration of the endpoints and routing of the SIP signaling messages to the appropriate application server.
  • the (CSCF) 127 is thus a proxy server which provides session control for subscribers accessing services within the IMS.
  • the CSCF 127 may also be referred to as a SIP Server.
  • the CSCF 127 interworks with the transport and endpoint layer 110 to guarantee Quality of Service (QoS) across all services.
  • the session Control layer 120 may communicate with a user database such as a Home Subscriber Server (HSS) database 126 that maintains the unique service profile for each end user.
  • HSS 126 is accessible by the session control layer 120 and also the application server layer 110 (dotted line) for user profile data and or subscribed to services, for example.
  • the end user's service profile stores all of the user service information and preferences in a central location.
  • IP address i.e., IP address
  • roaming information i.e., IP address
  • telephony services i.e., call forwarding information
  • instant messaging service information i.e., buddies list
  • voice mail box options i.e., greetings
  • the session control layer 120 also includes a Media Gateway Control Function (MGCF) 128, which interworks the SIP signaling with the signaling used by the media gateway (i.e., H.248).
  • MGCF Media Gateway Control Function
  • the MGCF 128 manages the distribution of sessions across multiple media gateways.
  • a Media Server Function Control (MSFC) 129 provides a similar function for the media servers.
  • the application server layer 130 contains the application servers, which provide the end-user service logic.
  • the application server layer 130 may also communicate with HSS 126 to access user profile data.
  • Example serves include parlay and SIP application servers.
  • the IMS architecture and SIP signaling is flexible so as to support a variety of telephony and non-telephony application servers. For example, SIP standards have been developed for telephony services and instant messenger (IM) services.
  • IM instant messenger
  • IMS Internet Multimedia Subsystem
  • VoIP endpoints that do not support SIP signaling.
  • IP-PBXs typically use H.323.
  • IADs Integrated Access Devices
  • MGCP MGCP
  • the IMS standards define a function in the sub-layer of the services layer between call/connection control and the services layer proper for feature interaction management. This function is termed "Service Coordination and Interaction Manager” (SCIM).
  • SCIM Service Coordination and Interaction Manager
  • the example IMS services architecture 100 may include a service capabilities interaction manager (SCIM), referred to herein as a service broker 125 (or service broker function) that can share application state and status information between applications.
  • SCIM service capabilities interaction manager
  • the service broker 125 resides at the session control layer 120 and has corresponding interfaces into the interworking applications.
  • the service broker 125 thus provides critical functionality such as integrating multiple applications into meaningful service offerings, allowing participating applications to be unaware of each other, and providing programmability with an application programming interface (API) for combining services.
  • API application programming interface
  • the service broker 125 is fully consistent with this aspect of the IMS architecture as it is inherently endpoint/access neutral.
  • the service broker 125 manages the integration and coordination of services to control service interaction and/or to provide enriched end-user experiences. Further, service broker 125 accommodates users who can span different endpoints, such as analog, softphones, or wireless phones, and can customize service presentation based on the user's endpoint capabilities, such as voice only, voice/data, or voice/data/multimedia.
  • the service broker 125 can save and use variable user data and session context data to achieve multi-session awareness and manage simultaneous and sequential contex-sensitive interactions.
  • the service broker 125 can be used to share network services such as media servers across multiple applications by intercepting their commands and adapting them to a selected media server command interface, although other components in the IMS architecture could provide such sharing. Further, the service broker 125 may, in conjunction with other systems in the maintenance infrastructure, bring about the consolidation of information for billing and operations support systems and an abstracted view to the other elements in the communication network.
  • FIG. 2 is a flow diagram for illustrating a method of providing blending of services to a subscriber in accordance with an exemplary embodiment of the present invention.
  • a subscriber of services provided by a communication network such as a 3GPP/IMS and TV delivery system such as an IPTV may utilize services architectures of these two platforms in order to take advantage of a blending of services.
  • the subscriber's communication network receives a message request (210) from a calling party.
  • the network is a 3GPP/IMS network and the message request is a SIP INVITE message from the calling party.
  • SIP is based on an HTTP-like request/response transaction model.
  • Each transaction consists of a request that invokes a particular method, or function, on the server and at least one response.
  • a transaction may begin with "Alice's" softphone (a softphone is a multi-media application that works in association with VoIP technology enabling the user to make calls direct from their PC or laptop) sending a message request (SIP-INVITE) addressed to "Bob""s uniform resource identifier (URI).
  • SIP-INVITE message request addressed to "Bob""s uniform resource identifier (URI).
  • An INVITE request message (SIP-INVITE) is an example of a SIP method that specifies the action that the requestor (Alice) wants the server (Bob) to take.
  • the SIP-INVITE contains a number of header fields, which are named attributes that provide additional information about a message.
  • the header fields present in a SIP-INVITE may include at least a unique identifier for the call, the destination address, Alice's address, and information about the type of session that Alice wishes to establish with Bob.
  • the message request may be directly received by a service broker function in the communication network.
  • the service broker 125 in the session control layer 120 may receive the message request.
  • a server in the communication network receives the message request from the calling party and directs the message request to a service broker function in the 3GPP/IMS network.
  • this may be a SIP proxy server such as the CSCF 127 in FIG. 1 .
  • the service broker function in addition to executing service package information based on the message request to provide caller ID information to the TV delivery system, alters or modifies information (220) in the message request, and sends (230) (either directly or via a proxy server) the modified message request to a phone of the subscriber so that alerting of the subscriber's phone is modified while caller ID information of the calling party is displayed on the subscriber's TV delivery system.
  • the service broker function has the ability to modify an "Alert Info" header field in the SIP-INVITE header so as to change the alerting (ringing, tones, visual indication or otherwise) of the subscriber's phone.
  • alerting on the subscriber's phone can be suppressed while the caller ID information is being displayed on the subscriber's TV delivery system, so as not to interfere with the sound of a program being viewed by the subscriber.
  • the service broker function such as service broker 125 serves as a SCIM in the communications network and provides the capability to blend services utilizing other service delivery architectures, such as that of a TV delivery system.
  • the service broker 125 is a programmable element and has an API, two example scenarios described with respect to the corresponding relationships betweend different service architectures, in order to convey the range of capabilities of the service broker 125 and its potential to enrich end-user experience.
  • FIGS. 3A and 3B illustrate relationships between the service architectures of a communications network and a TV delivery system.
  • the wireless communications network may be a 3GPP/IMS core network
  • the TV delivery system may be an IPTV system, it being understood that the example methodology may be applied to other platforms besides IPTV for the blending of services.
  • FIGS. 3A and 3B there is shown a streaming architecture part 300 of an IPTV delivery system and a session control layer of IMS 350 of a communication network.
  • the session control layer of IMS 350 includes a service broker 355 in communication with server 357, which may be a SIP server (CSCF 127) or other proxy server, for example.
  • the service broker 355 is configured to execute an IPTV service package 352 based on the services the subscriber has subscribed to, as reflected in a subscriber database 356.
  • the subscriber database 356 may be a Home Subscriber Server (HSS), which may be several physical databases. This depends on the number of subscribers and the extent of the services which need to be supported.
  • HSS holds variables and identities for the support, establishment and maintenance of calls and sessions made by subscribers.
  • the server 357 and/or service broker 355 may have interfaces to endpoints such as the subscriber's handset 304, which may be a WiFi/GSM handset registered with the IMS, and the subscriber's cell phone 354.
  • the content streaming architecture 300 on the IPTV side includes an IPTV server 305 which may process TV stream data for display at IPTV 310 and communicates with a subscriber input device (not shown), such as a remote control or browser interface, to process TV control data.
  • the IPTV system may or may not support an interface between the IPTV server 305 and the service broker 355 for accepting caller ID data for display on IPTV 310.
  • Alice's IPTV delivery system supports an interface to the communication system or network (e.g., IMS 350) that accepts caller ID and displays it on the user's (Alice's) TV.
  • the IPTV Set Top Box (not shown in FIG. 3A ) supports an application such as a browser capability (see browser window 315), whereby the user can click on a link as desired.
  • the IMS 350 includes the service broker 355, which is able to provide originating and terminating service brokering.
  • the service broker 355 provides the caller ID information to an IPTV application at IPTV server 305 when terminating calls to Alice's home phone 304 (which supports SIP and may also be referred to as a SIP phone) and when terminating calls to Alice's WiFi/GSM handset (mobile phone) 354 (i.e., cell phone) when it is registered in the IMS 350.
  • the service broker 355 is able to modify or suppress normal alerting
  • the Alert Info header may be set to result in a "ping" or other less-intrusive alert.
  • Alice turns on her IPTV 310 and selects a program from the IPTV program guide provided via the STB (not shown in FIG. 3A ).
  • a call comes into the IMS 350 for Alice's home phone 304. Since Alice is subscribed to a blended service, the server 357 directs the SIP INVITE message to the service broker 355.
  • the service broker 355 retrieves Alice's terminating service package information from subscriber database 356 (such as an HSS) and begins to execute the IPTV service package 352. If the calling name is not encapsulated in the SIP INVITE message (as it could be for a call coming in from the PSTN), the service broker 355 may query a calling name web server (nor shown) to obtain this information.
  • subscriber database 356 such as an HSS
  • the service broker 355 may query a calling name web server (nor shown) to obtain this information.
  • the service broker 355 sends the SIP INVITE message to Alice's home phone 304 via the server 357, and sends the calling name information (caller ID information 320) to the IPTV application at IPTV server 305 on its proscribed interface.
  • the service broker 355 could be configured to receive this SIP INVITE message directly.
  • the service broker 355 may include an invitation to activate Silent Alerting.
  • the phone 304 rings and Alice simultaneously sees the caller ID on a display of the IPTV 310, along with the invitation to activate Silent Alerting. Since the program is very interesting and the call not urgent, Alice allows the phone 304 to ring until it is diverted to voice mail. Since the ringing was distracting, she brings up her on-screen browser window 315 and clicks the link in her favorites to activate Silent Alerting. It should be noted that the invitation is not required, as Silent Alerting could also have been set prior to the beginning of the program or as a default option.
  • Clicking the link causes an HTTP request to be sent to the service broker 355, which sends a web page where Alice can select a deactivation time or let a default deactivation (such as 2 hours) be in effect. Alice selects her desired deactivation time.
  • a send click on the window 315 sends the HTTP request with this information to the service broker 355.
  • the service broker 355 inputs appropriate information into Alice's user data on the subscriber database 356 to be used for future calls.
  • Another call comes into the IMS for Alice's home phone 304 and the server 357 directs the SIP INVITE message to the service broker 355.
  • the service broker 355 retrieves Alice's terminating service package information from subscriber database 356, which now indicates that Silent Alerting is active, and begins to execute the service package 352. If the calling name is not encapsulated in the SIP INVITE message, the service broker 355 queries a calling name web server to obtain this information.
  • the service broker 355 Since Silent Alerting is active, the service broker 355 sets the Alert-Info in the SIP INVITE message to "0" to alter the field. Then the service broker 355 sends the modified SIP INVITE message to Alice's home phone via the server 357 (or directly if no server 357 present), and sends the caller ID information 320 to the IPTV application at server 305 on its proscribed interface.
  • Alice sees the caller ID on the IPTV 310, but the phone 304 does not ring since Alice's phone 304 received the modified SIP INVITE and interprets the Alert-Info set to "0" as indicating no alerting.
  • the call is urgent, so Alice picks up the phone 304 and answers the call.
  • the call came to the IMS 350 since Alice is at home with her mobile phone 354 and it had registered with the IMS.
  • the server 357 directs the SIP INVITE message to the service broker 355. Alternatively, if no server 357 is present, the service broker 355 could be configured to receive this SIP INVITE message directly.
  • the service broker 355 retrieves Alice's terminating service package information from the subscriber database 356, which now indicates that Silent Alerting is active, and begins to execute the service package 352. As previously discussed, if the calling name is not encapsulated in the SIP INVITE, the service broker 355 may query a calling name web server to obtain this information.
  • the service broker 355 Since Silent Alerting is active, the service broker 355 sets the Alert Info in the header field of the SIP INVITE to "0". Then the service broker 355 sends the modified SIP INVITE to Alice's mobile phone 354 via the server 357, and sends the caller ID information 320 to the IPTV application of server 305 on its proscribed interface. Assuming the interface allows additional text, the service broker 355 includes an indication that it is Alice's mobile phone 354 that is being called.
  • the home phone 304 may also receive the modified SIP-INVITE message when the mobile 354 is registered in the IMS 350 and present at home.
  • Scenario 1 thus illustrates a blended service of TV caller ID with modified alerting (silent alerting) which takes advantage of the SIP Alert-Info header.
  • the SIP VoIP is designed to support and correctly interpret the Alert-Info setting, and the service broker 355 alters the Alert-Info header based on the information it obtains from the user over its HTTP interface.
  • a further feature of this blended service is to provide caller ID and silent alerting for calls to the mobile phone 354. This is possible with GSM/WiFi Roaming and having the service broker 355 send the indication that the call is for the mobile phone 354.
  • both an IMS architecture for communication/session services and an IPTV content streaming architecture participated in this blended service.
  • the IP access (utilizing DSL) is shared by both architectures.
  • the service broker 355 plays the role of the SCIM and serves to meld the two service architectures by sending event data from the IMS 350 to the TV system 300.
  • the service broker 355 is thus configured to receive a specific activation request from a user and to modify SIP messages based on specific application blending logic (including the activation information).
  • the TV delivery system 300 does not support an interface to the communication system (IMS 350) for caller ID.
  • a Set Top Box 320 is used that has a window-like environment that can run an application (client software 325) that is able to set a focus window to receive events from the TV remote control (e.g., the events may map to keystroke events).
  • client software 325) that is able to set a focus window to receive events from the TV remote control (e.g., the events may map to keystroke events).
  • the service broker 355 in the IMS 350 of the network is able to communicate with the client software 325 in the STB 318 and handle incoming SIP INVITE messages, depending on TV remote control events. The scenario is described in more detail below with reference to FIG. 3B .
  • Bob turns on his IPTV 310 and selects a program from the IP TV program guide provided via the STB 318.
  • a call comes into the IMS 350 for Bob's home phone 304.
  • the server 357 directs the SIP INVITE to the service broker 355.
  • the service broker 355 could be configured to receive this SIP INVITE message directly.
  • the service broker 355 retrieves Bob's terminating service package information from the subscriber database 356 (if not cached) and begins to execute the service package 352. If the calling name is not encapsulated in the SIP INVITE (as it could be for a call coming in from the PSTN), the service broker 355 queries a calling name web server to obtain this information.
  • the service broker 355 sends the SIP INVITE message to Bob's home phone 304 via the server 357, and sends caller ID information 320' to the client software application 325 on Bob's STB 318.
  • the phone 304 rings and Bob simultaneously sees the caller ID on a display of the IPTV 310, along with clickable (via the TV remote control) links to reject the call, send the call to voice mail and activate Silent Alerting for a given duration.
  • the service broker 355 could be configured to receive this SIP INVITE message directly.
  • the service broker 355 retrieves Bob's terminating service package information from the subscriber database 356, which now indicates that Silent Alerting is active, and begins to execute the service package 352. If the calling name is not encapsulated in the SIP INVITE, the service broker 355 queries a calling name web server to obtain this information.
  • the service broker 355 Since Silent Alerting is active, the service broker 355 sets the Alert-Info in the SIP INVITE to "0". Then the service broker 355 sends the modified SIP INVITE message to Bob's home phone 304 via the server 357 (or directly if no server 357 present), and sends the caller ID information 320' to the client software application 325 on Bob's STB 318.
  • the TV caller ID service allows independence of the IPTV delivery system, that is, so long as the IPTV client software application 325 can operate in a windows-like environment and the STB 318 supports a windows-like environment.
  • Added capabilities with this version could be based on the client software 325 picking up the TV remote events and sending HTTP messages to the service broker 355 to affect call treatment.
  • more sophisticated capabilities may be possible if the client software 325 on the STB 318 would provide an API so that the software client interacting with the service broker 355 can have more complete information. An example might be indicating what program is being viewed. In such a case, a parental alert and control capability (such as described for incoming and outgoing calls) could be implemented for certain programs.
  • a third scenario is somewhat similar to scenario 2 but provides the ability for a user (subscriber) of an network such as an lMS and an IPTV delivery system to actually prevent the initial ringing of an incoming call, whether or not the subscriber subscribes to the Silent Alerting feature.
  • the user may use his/her television remote control to decide what to do with an incoming call.
  • the phone does not immediately ring. This is because the incoming call may be suspended in the network for a given amount of time to allow the user to make a decision.
  • the call suspension would be done automatically as part of a given subscribed-to service.
  • the service broker 355 may be configured to suspend the forwarding of the SIP message to the next hop in order to suspend the call.
  • the user may be first alerted to the incoming call when the caller's name and number is displayed on the user's television screen.
  • a menu may be presented to the user to enable him/her to determine or select how to treat the incoming call.
  • the user may choose to ignore the call.
  • the Caller ID information is removed from the display on IPTV 310 and a 'no answer' treatment is applied to the call.
  • the user may desire to answer the call. In this case, only then does the phone begin to ring.
  • the Caller ID information may remain on the television display for the duration of the ringing.
  • the TV delivery system 300 does not support an interface to the communication system (IMS 350) for caller ID.
  • the Set Top Box 320 which has a window-like environment that can run an application (client software 325) to set a focus window to receive events from the TV remote control (e.g., the events may map to keystroke events), may be used, as described in scenario 2.
  • the service broker 355 in the IMS 350 of the network is able to communicate with the client software 325 in the STB 318 and handle incoming SIP INVITE messages, depending on TV remote control events. This third scenario is described in more detail below with reference to FIG. 3B .
  • Bob is relaxing and watching TV. Calls come in, but Bob is able to see who the calls are from on the IPTV 310. From his TV remote control (not shown in FIG. 3B ) he is able to either send calls to voice mail or choose to answer the incoming call. In this scenario, Bob may or may not subscribe to Silent Alerting.
  • Bob turns on his IPTV 310 and selects a program from the IP TV program guide provided via the STB 318.
  • a call comes into the IMS 350 for Bob's home phone 304.
  • the server 357 directs the SIP INVITE message (request) to the service broker 355.
  • the service broker 355 could be configured to receive this SIP INVITE message directly.
  • the service broker 355 retrieves Bob's terminating service package information from the subscriber database 356 (if not cached) and begins to execute the service package 352. If the calling name is not encapsulated in the SIP INVITE (as it could be for a call coming in from the PSTN), the service broker 355 queries a calling name web server to obtain this information.
  • the service broker 355 sends the caller ID information 320' to the client software application 325 on Bob's STB 318.
  • the client software application 325 if designed together with the service package 352, could have an interface to the STB 318 to provide a means for the service package 352 to control the caller ID display on the user's TV screen, as well as a means to receive the user's response (i.e. to accept or ignore the call).
  • the client software application 325-could have a published interface that the service package 352 is designed to accommodate. This may be an interface designed by a party other than the party or vendor who provides service package 352. For example, the IPTV 310 vendor or STB 318 vendor could have designed and developed the software running on the STB 318.
  • Another call comes into the IMS 350 for Bob's home phone 304 and the server 357 directs the SIP INVITE message to the service broker 355.
  • the service broker 355 could be configured to receive this SIP INVITE message directly.
  • the service broker 355 retrieves Bob's terminating service package information from the subscriber database 356.
  • the service broker 355 queries a calling name web server to obtain this information.
  • the service broker 355 sends the caller ID information 320' to the client software application 325 on Bob's STB 318.
  • the service broker 355 proxies the SIP INVITE toward Bob's phone 304 via the server 357. If Bob subscribes to Silent Alerting and Bob has Silent Alerting activated, the Service Broker sets the Alert-Info in the SIP INVITE to "0". In other words, should Bob elect to accept the call, then the silent alerting function as described in FIG. 2 and as outlined in scenarios 1 and 2 may be implemented to alter the SIP INVITE message header, so as to modify the phone alerting, for example.
  • the SIP INVITE message gets to Bob's phone 304, if the Alert-Info header is not "0", then at that point the phone 304 will start ringing.
  • the Caller ID information may remain on the television display for the duration of the ringing. Otherwise, the phone 304 will not ring.
  • the call is urgent, so Bob picks up the phone 304 and answers the call.
  • Scenario 3 thus may provide a further option for those who do not subscribe to Silent Alerting.
  • scenario 3 has been described with reference to FIG. 3B
  • the call suspension with ring suppression described therein could also be applicable to an IPTV delivery system that supports an interface to the communication system or network (e.g., IMS 350) which accepts caller ID and displays it on the user's IPTV, as shown in FIG. 3A .
  • scenario 3 is applicable to an IPTV Set Top Box (not shown in FIG. 3A ) that supports an application such as a browser capability (see browser window 315), whereby the user can click on a link as desired to reject or accept the call.
  • an application such as a browser capability (see browser window 315), whereby the user can click on a link as desired to reject or accept the call.
  • the interface to the IPTV server may be configured to provide the appropriate call handling options, i.e., to accept or ignore the call, this feature may also be implemented using the system in FIG. 3A .

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephonic Communication Services (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Claims (6)

  1. Procédé de traitement d'un appel entrant vers un abonné à un ou plusieurs services d'un réseau de communication (350) pour un téléphone (304) de l'abonné et à un ou plusieurs services d'un système de diffusion télévisuelle (300) en communication avec le réseau, comprenant les étapes suivantes :
    recevoir une requête de message provenant d'une partie appelante correspondant à l'appel entrant vers le téléphone de l'abonné ;
    suspendre l'appel dans le réseau pendant une durée donnée de sorte que la sonnerie du téléphone de l'abonné due à l'appel entrant soit supprimée ;
    afficher des informations d'identification d'appelant sur un dispositif d'affichage du système de diffusion télévisuelle pour permettre à l'abonné d'accepter ou de rejeter l'appel ;
    dans lequel si l'abonné choisit d'accepter l'appel, le procédé comprend en outre l'étape suivante :
    modifier la requête de message en fonction des informations affectant l'avertissement du téléphone de l'abonné, afin de générer une requête de message modifiée utilisée pour transférer la requête de message, de sorte que, lorsque des informations de la partie appelante (320, 320') sont affichées sur le système de diffusion télévisuelle, l'avertissement du téléphone soit modifié.
  2. Procédé selon la revendication 1, comprenant en outre les étapes suivantes :
    envoyer l'appel entrant directement à un système de messagerie vocale du téléphone, si l'abonné choisit de rejeter l'appel, dans lequel le téléphone ne sonne jamais, sinon
    transférer la requête de message vers le téléphone de l'abonné, si l'abonné choisit d'accepter l'appel, dans lequel le téléphone commence à sonner à la réception de la requête de message.
  3. Réseau de communication (350) pour traiter un appel entrant vers un abonné à un ou plusieurs services d'un réseau de communication (350) pour un téléphone (304) de l'abonné et à un ou plusieurs services d'un système de diffusion télévisuelle (300) en communication avec le réseau, comprenant :
    un serveur (357) pour recevoir une requête de message provenant d'une partie appelante et diriger la requête de message, et
    un courtier de services (355) en communication avec le serveur pour partager des informations entre des applications du réseau et le système de diffusion télévisuelle, dans lequel le serveur est adapté pour diriger la requête de message vers le courtier de services, et le courtier de services est adapté pour
    suspendre, à la réception de la requête de message, l'appel dans le réseau pendant une durée donnée de sorte que la sonnerie du téléphone de l'abonné due à l'appel entrant soit supprimée,
    envoyer les informations d'identification d'appelant de la partie appelante à une application (305, 325) du système de diffusion télévisuelle afin d'être affichées pour permettre à l'abonné d'accepter ou de rejeter l'appel, et
    modifier des informations dans la requête de message pour générer une requête de message modifiée qui est envoyée par l'intermédiaire du serveur au téléphone de l'abonné pour modifier l'avertissement du téléphone de l'abonné, si l'abonné choisit d'accepter l'appel.
  4. Réseau selon la revendication 3, dans lequel la requête de message est un message SIP INVITE et le courtier de services est adapté pour changer un champ d'en-tête du message SIP INVITE.
  5. Réseau selon la revendication 3, dans lequel le champ d'en-tête contient des informations d'avertissement spécifiant des tonalités d'avertissement ou d'appel pour le téléphone de l'abonné, et le courtier de services est adapté pour changer le champ d'entête des informations d'avertissement dans le message SIP INVITE pour une valeur donnée afin de modifier une tonalité d'appel actuellement sélectionnée ou pour supprimer la sonnerie sur le téléphone de l'abonné.
  6. Réseau selon la revendication 3, dans lequel le champ d'en-tête contient des informations d'avertissement spécifiant des tonalités d'avertissement ou d'appel pour le téléphone de l'abonné et le courtier de services est adapté pour régler le champ d'en-tête des informations d'avertissement dans le message SIP INVITE sur « 0 » pour supprimer l'avertissement du téléphone de l'abonné.
EP07751144.2A 2006-02-21 2007-02-20 Méthode et réseau de fourniture d'un mélange de services à un abonné Not-in-force EP1987655B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/357,144 US7693270B2 (en) 2005-12-15 2006-02-21 Method and network for providing service blending to a subscriber
PCT/US2007/004363 WO2007098155A2 (fr) 2006-02-21 2007-02-20 Méthode et réseau de fourniture d'un mélange de services à un abonné

Publications (2)

Publication Number Publication Date
EP1987655A2 EP1987655A2 (fr) 2008-11-05
EP1987655B1 true EP1987655B1 (fr) 2015-07-01

Family

ID=38325479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07751144.2A Not-in-force EP1987655B1 (fr) 2006-02-21 2007-02-20 Méthode et réseau de fourniture d'un mélange de services à un abonné

Country Status (3)

Country Link
US (1) US7693270B2 (fr)
EP (1) EP1987655B1 (fr)
WO (1) WO2007098155A2 (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9008293B2 (en) 2005-11-25 2015-04-14 At&T Intellectual Property I, L.P. Caller ID information to internet protocol television displays
US20070250884A1 (en) * 2006-04-10 2007-10-25 Sbc Knowledge Ventures, Lp System and method of providing call source information
US8654943B2 (en) 2006-04-14 2014-02-18 At&T Intellectual Property I, L.P. System and method of enhanced caller-ID display using a personal address book
US8631078B2 (en) * 2006-07-07 2014-01-14 Google Inc. Method and system for embedded personalized communication
US7912070B1 (en) 2006-07-12 2011-03-22 Nextel Communications Inc. System and method for seamlessly switching a half-duplex session to a full-duplex session
US20080056473A1 (en) * 2006-08-30 2008-03-06 Bellsouth Intellectual Property Corporation Establishing telephone communications
US8437460B2 (en) 2006-08-30 2013-05-07 At&T Intellectual Property I, L.P. User supervision and notification
US20080075241A1 (en) * 2006-08-30 2008-03-27 Bellsouth Intellectual Property Corporation Call notification
US8090081B2 (en) 2006-08-30 2012-01-03 At&T Intellectual Property I, L.P. Maintaining a call log
US8363560B2 (en) * 2006-11-01 2013-01-29 Inceptia Llc System and method for enhanced proxy component
US8266664B2 (en) 2007-01-31 2012-09-11 At&T Intellectual Property I, Lp Methods and apparatus to provide messages to television users
US9258427B2 (en) * 2007-04-18 2016-02-09 At&T Intellectual Property I, Lp System and method for forwarding calls
US8175885B2 (en) * 2007-07-23 2012-05-08 Verizon Patent And Licensing Inc. Controlling a set-top box via remote speech recognition
CN101855883A (zh) * 2007-10-19 2010-10-06 皇家Kpn公司 用于管理服务交互的系统
CN101197832B (zh) * 2007-12-13 2012-01-25 华为技术有限公司 一种实现iptv业务的方法、系统、装置
US8307402B2 (en) * 2008-01-22 2012-11-06 At&T Intellectual Property I, L.P. Method and apparatus for merging voice and data features with internet protocol television
WO2009102250A1 (fr) 2008-02-15 2009-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Affichage d'informations d'appelant sur un dispositif connecté à un réseau local sans fil
US8726323B2 (en) 2008-03-25 2014-05-13 At&T Intellectual Property I, Lp System and method for presenting support services
CN101981930A (zh) * 2008-03-28 2011-02-23 三星电子株式会社 针对提供iptv通信服务的应用的信息接收方法及装置
EP2269364A4 (fr) * 2008-04-25 2016-12-28 ERICSSON TELEFON AB L M (publ) Procédés et agencements interactifs pour des services d'informations d'appelant dans un réseau de communication
KR101661210B1 (ko) * 2008-07-24 2016-09-29 삼성전자주식회사 Iptv 통신 서비스 수행 방법 및 장치
GB2463104A (en) 2008-09-05 2010-03-10 Skype Ltd Thumbnail selection of telephone contact using zooming
GB2463108B (en) 2008-09-05 2012-08-29 Skype Communication system and method
GB2463107A (en) 2008-09-05 2010-03-10 Skype Ltd A remote control unit of a media device for placing/receiving calls, comprising activating one of the two wireless transceivers when needed.
GB2463124B (en) 2008-09-05 2012-06-20 Skype Ltd A peripheral device for communication over a communications sytem
GB2463110B (en) 2008-09-05 2013-01-16 Skype Communication system and method
GB2463105A (en) * 2008-09-05 2010-03-10 Skype Ltd Viewer activity dependent video telephone call ringing
JP2010147646A (ja) * 2008-12-17 2010-07-01 Nippon Telegr & Teleph Corp <Ntt> 通信制御方法および通信システム
US8584188B2 (en) * 2009-01-22 2013-11-12 Centurylink Intellectual Property Llc System and method for displaying call status on TV
US8433304B2 (en) * 2009-01-22 2013-04-30 Centurylink Intellectual Property Llc System and method for displaying cellular caller ID on TV
US8898723B2 (en) 2010-08-20 2014-11-25 Sony Corporation Virtual channel declarative script binding
SI23819A (sl) 2011-07-12 2013-01-31 RC IKT d.o.o. Povezovanje storitvenega posrednika in postopek za podporo centreks internih klicev
US8767719B2 (en) * 2011-09-23 2014-07-01 Avaya Inc. System and method for split SIP
US9037122B2 (en) 2012-02-29 2015-05-19 Alcatel Lucent Fixed line extension for mobile telephones
US9042874B2 (en) * 2012-02-29 2015-05-26 Alcatel Lucent System and/or method for using mobile telephones as extensions
KR20140099359A (ko) * 2013-02-01 2014-08-12 (주)휴맥스 콘텐츠 재생 방법 및 장치
WO2014176406A1 (fr) * 2013-04-26 2014-10-30 LeoNovus USA Système infonuagique et procédé basé sur des dispositifs électroniques de consommateurs distribués
US10200418B2 (en) 2014-01-31 2019-02-05 Avaya Inc. Call context conveyance
US10089083B2 (en) * 2016-12-14 2018-10-02 General Electric Company Service broker code generator
US10673962B2 (en) * 2017-11-28 2020-06-02 Sap Se Service cross-consumption based on an open service broker application programming interface
EP4231617A1 (fr) * 2022-02-22 2023-08-23 Deutsche Telekom AG Procédé de gestion et/ou de signalisation d'au moins un appel voip et système de communication

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825862A (en) * 1995-11-30 1998-10-20 Bell Atlantic Network Services, Inc. Method of altering the destination telephone number of an incoming call
US6427003B1 (en) * 2000-05-05 2002-07-30 Joseph C. Corbett Video caller identification systems and methods
DE60024750D1 (de) * 1999-10-01 2006-01-19 Nortel Networks Ltd Aufbau von Verbindungen über ein Kommunikationsnetzwerk
WO2001070652A1 (fr) 2000-03-23 2001-09-27 Abb Research Ltd. Synthese de combustible
KR20010109966A (ko) * 2000-06-05 2001-12-12 구자홍 Ip를 기반으로 하지 않는 네트워크에서 인터넷 서비스를제공하는 장치 및 방법
WO2002049298A1 (fr) * 2000-12-14 2002-06-20 Powerhouse Technology, Inc. Reselection de telephone mobile entre un reseau cellulaire commute par circuit et internet et utilisation d'internet pour coupler des centres de commutation mobile a des antennes
US20030055981A1 (en) * 2001-09-20 2003-03-20 Requena Jose Costa Provision of call features
US6678362B2 (en) * 2002-01-31 2004-01-13 Sony Corporation System and method for effectively managing telephone functionality by utilizing a settop box
US6707893B1 (en) * 2002-07-10 2004-03-16 At&T Corp. Call progress information in cable telephony
US20040261115A1 (en) * 2003-06-23 2004-12-23 Eyal Bartfeld Voice over IP receiver assisted call control
JP4540706B2 (ja) * 2004-04-13 2010-09-08 リサーチ イン モーション リミテッド インターネットプロトコルプッシュツートークネットワークサーバへ応答動作モードを指示するためのセッション開始プロトコルプッシュツートーク端末用の方法
US7532712B2 (en) * 2004-12-01 2009-05-12 Time Warner Cable, Inc. System and method for providing caller ID service in a multi-region cable network
US20070140299A1 (en) 2005-12-15 2007-06-21 Hofmann Markus A Method and network for providing service blending to a subscriber

Also Published As

Publication number Publication date
WO2007098155A2 (fr) 2007-08-30
EP1987655A2 (fr) 2008-11-05
US20070140150A1 (en) 2007-06-21
WO2007098155A3 (fr) 2007-10-25
US7693270B2 (en) 2010-04-06

Similar Documents

Publication Publication Date Title
EP1987655B1 (fr) Méthode et réseau de fourniture d&#39;un mélange de services à un abonné
EP1961190B1 (fr) Procede et reseau pour proposer un eventail de services a un abonne
US9071880B2 (en) System and method for control of a set top box
US10623556B2 (en) Displaying call log information on a display device
US7458084B2 (en) Methods and systems for converged service creation and execution environment applications
US8098805B2 (en) System and method for providing telephone call notification and management in a network environment
EP1263244B1 (fr) Service de présentation du profil de l&#39;appelant dans un réseau multimédia
US7103644B1 (en) Systems for an integrated data network voice-oriented service and non-voice-oriented service converged creation and execution environment
EP1263242B1 (fr) Service d&#39;attente d&#39;appels dans un réseau multimédia
US7440445B1 (en) Method and apparatus for storing and activating universal resource locators and phone numbers
US8072968B2 (en) Method and apparatus for supporting multiple active sessions on a per user basis
KR20110050439A (ko) 원격통신 네트워크에서 매체 속성들에 기초한 선택적 호 포워딩을 위한 방법 및 시스템
KR20070051235A (ko) 통신 시스템에서 서비스 메뉴 제공 방법 및 시스템
US8625754B1 (en) Method and apparatus for providing information associated with embedded hyperlinked images
US8867524B1 (en) Method and apparatus for activating an incoming call voice session on a video display device
US8737271B2 (en) Graphical user-interface for terminals with visual call progress indicator
US20080031232A1 (en) Web services and plug-in framework in VOIP environment
Ensor et al. Blending IPTV Services

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080731

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090331

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LUCENT TECHNOLOGIES INC.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

DAX Request for extension of the european patent (deleted)
111Z Information provided on other rights and legal means of execution

Free format text: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Effective date: 20130410

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

D11X Information provided on other rights and legal means of execution (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04M 1/253 20060101ALN20150129BHEP

Ipc: H04L 29/08 20060101ALN20150129BHEP

Ipc: H04L 29/06 20060101AFI20150129BHEP

Ipc: H04M 1/57 20060101ALN20150129BHEP

INTG Intention to grant announced

Effective date: 20150219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 734525

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007041942

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 734525

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150701

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151002

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151101

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007041942

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

26N No opposition filed

Effective date: 20160404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160220

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070220

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007041942

Country of ref document: DE

Representative=s name: MENZIETTI WETZEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007041942

Country of ref document: DE

Owner name: PROVENANCE ASSET GROUP LLC, PITTSFORD, US

Free format text: FORMER OWNER: ALCATEL LUCENT, BOULOGNE BILLANCOURT, FR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190418 AND 20190426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210226

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210322

Year of fee payment: 15

Ref country code: GB

Payment date: 20210301

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602007041942

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04L0029060000

Ipc: H04L0065000000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007041942

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220220

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901