EP1986975A2 - Mélanges additifs de matériaux de construction contenant des émulsifiants non ioniques - Google Patents

Mélanges additifs de matériaux de construction contenant des émulsifiants non ioniques

Info

Publication number
EP1986975A2
EP1986975A2 EP07704252A EP07704252A EP1986975A2 EP 1986975 A2 EP1986975 A2 EP 1986975A2 EP 07704252 A EP07704252 A EP 07704252A EP 07704252 A EP07704252 A EP 07704252A EP 1986975 A2 EP1986975 A2 EP 1986975A2
Authority
EP
European Patent Office
Prior art keywords
microparticles
polymeric
voided
building material
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07704252A
Other languages
German (de)
English (en)
Inventor
Holger Kautz
Jan Hendrik Schattka
Gerd LÖHDEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Construction Research and Technology GmbH
Roehm GmbH Darmstadt
Original Assignee
Evonik Roehm GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Roehm GmbH filed Critical Evonik Roehm GmbH
Publication of EP1986975A2 publication Critical patent/EP1986975A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • C04B16/082Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons other than polystyrene based, e.g. polyurethane foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • C04B20/0024Hollow or porous granular materials expanded in situ, i.e. the material is expanded or made hollow after primary shaping of the mortar, concrete or artificial stone mixture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance

Definitions

  • the present invention relates to the use of polymeric microparticles in hydraulically setting building material mixtures to improve their Frostg. Freeze-thaw resistance.
  • the concrete has two time-dependent properties. First, it experiences a decrease in volume due to dehydration, which is called shrinkage. However, most of the water is bound as water of crystallization. Concrete does not dry, it binds, that is, the initially low-viscosity cement paste (cement and water) stiffens, solidifies and finally solidifies, depending on the timing and sequence of the chemical-mineralogical reaction of the cement with the water, the hydration. Due to the water-binding capacity of the cement, the concrete, in contrast to calcined lime, can also harden under water and remain firm. Second, concrete deforms under load, the so-called creep.
  • the frost-thaw cycle refers to the climatic change of temperatures around the freezing point of water.
  • the frost-thaw cycle is a damaging mechanism. These materials have a porous, capillary structure and are not waterproof. If such, water-soaked structure exposed to temperatures below 0 0 C, the water freezes in the Pores. Due to the density anomaly of the water, the ice now expands. This leads to damage to the building material. In the very fine pores due to surface effects, the freezing point is lowered. In micro pores, water only freezes below -M 0 C. Since the material itself also expands and contracts due to freeze-thaw cycles, there is an additional capillary pumping effect that further increases water absorption and thus indirectly the damage. The number of freeze-thaw cycles is therefore decisive for the damage.
  • the structure of a cement-bound concrete is traversed by capillary pores (radius: 2 ⁇ m - 2 mm) or gel pores (radius: 2 - 50 nm). Pore water contained therein differs in its state form depending on the pore diameter.
  • a prerequisite for an improved resistance of the concrete during frost and thaw changes is that the distance of each point in the cement stone from the next artificial air pore does not exceed a certain value. This distance is also referred to as the "distance factor” or “powers spacing factor” [TCPowers, The air requirement of frost-resistant concrete, "Proceedings of the Highway Research Board” 29 (1949) 184-202]. Laboratory tests have shown that exceeding the critical "Power spacing factor" of 500 ⁇ m leads to damage to the concrete during frost and thaw cycles. In order to achieve this with a limited air-pore content, the diameter of the artificially introduced air pores must therefore be less than 200-300 ⁇ m [K.Snyder, K. Natesaiyer & K.Hover, The stereological and Statistical properties of entrained air voids in concrete: A mathematical basis for air void system characterization) "Materials Science of Concrete” VI (2001) 129-214].
  • an artificial air pore system depends largely on the composition and grain size of the aggregates, the type and amount of cement, the concrete consistency, the mixer used, the mixing time, the temperature, but also on the type and amount of the air entraining agent. Under consideration of the appropriate manufacturing rules, their effects can indeed be mastered, however, there may be a large number of undesired impairments, which ultimately leads to the desired air content in the concrete can be exceeded or fallen below and thus adversely affected the strength or frost resistance of the concrete ,
  • Such artificial air pores can not be dosed directly, but by the addition of so-called air entraining agents, the air introduced by the mixing is stabilized [L. Du & K.J. Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research” 35 (2005) 1463-71].
  • Conventional air entraining agents are mostly of a surfactant-like structure and break the air introduced by the mixing into small air bubbles with a diameter as small as possible of 300 ⁇ m and stabilize them in the moist concrete structure. One distinguishes between two types.
  • These hydrophobic salts reduce the surface tension of the water and accumulate at the interface between Cement grain, air and water. They stabilize the microbubbles and therefore find themselves in the hardening concrete on the surfaces of these air pores again.
  • the other type e.g. Sodium lauryl sulfate (SDS) or sodium dodecyl phenylsulfonate - on the other hand forms with calcium hydroxide soluble calcium salts, but show an abnormal solution behavior. Below a certain critical temperature these surfactants show a very low solubility, above this temperature they are very soluble. By preferentially accumulating at the air-water interface, they also reduce the surface tension, thus stabilizing the microbubbles, and are preferably found on the surfaces of these air voids in the hardened concrete.
  • SDS Sodium lauryl sulfate
  • sodium dodecyl phenylsulfonate forms with calcium hydroxide soluble calcium salts, but show an abnormal solution behavior. Below a certain critical temperature these surfactants show a very low solubility, above this temperature they are very soluble.
  • the content of fine substances in concrete also affects air entrainment. Also, interactions with defoaming agents can occur, which thus expel air voids, but also can introduce uncontrolled.
  • microparticles described therein have diameters of at least 10 microns (usually much larger) and have air or gas-filled cavities. This also includes porous particles which may be greater than 100 microns and may have a plurality of smaller voids and / or pores.
  • the production costs of hollow microspheres according to the prior art are too high and, on the other hand, only with relatively high dosages can a satisfactory resistance of the concrete to frost and thaw cycles be achieved.
  • the present invention was therefore based on the object to provide a means for improving the frost or freeze-thaw resistance for hydraulically setting building material mixtures, which develops its full effectiveness even at relatively low dosages.
  • An additional object was not or not significantly affect the mechanical strength of the cured construction mixture by this means.
  • the object has been achieved by the use of polymeric microparticles having a cavity in hydraulically setting building material mixtures, characterized in that the microparticles are stabilized by nonionic emulsifiers.
  • non-ionic emulsifiers significantly reduced the foaming tendency in the dispersion as well as in the building material mixture.
  • a reduced foaming tendency is advantageous because thus less air is introduced into the building material mixtures, which in turn leads to a smaller impairment of the mechanical strength of the cured building material mixture.
  • Nonionic emulsifiers are surface-active substances (surfactants) with an uncharged, in the neutral pH range no ion charge-carrying, polar, hydrophilic water-solubilizing group (s) adsorbing at interfaces and aggregating above the critical micelle concentration to neutral micelles.
  • the nonionic emulsifiers used are preferably selected from the group of emulsifiers whose hydrophilic group (s) belong to the alcohols, amine oxides, or (oligo) oxyalkylenes or mixtures thereof.
  • the alkyl polyglucosides sucrose esters, sorbitan esters, acetylenediols, alkanediols and fatty acid N-methylglucamides are preferred.
  • the alkyldimethylamine oxides are preferred from the group of amine oxides.
  • the (oligo) oxyethylene groups are particularly preferred. These include in particular fatty alcohol polyglycol ethers (fatty alcohol ethoxylates), alkylphenol polyglycol ethers and fatty acid ethoxylates, fatty amine ethoxylates, ethoxylated triglycerides and mixed ethers (polyethylene alkylated on both sides).
  • block copolymers which can be used according to the invention are for example: linear systems such as AB, ABA, BAB or AB) n , star-shaped systems such as A (B) n , B (A) n or (A) n -BA- (B) m , dendrimer systems such as ((A) n -B) 1n A, ((B) n -A) 1n B, (((A) m -B) n A) p B or (((B) m -A) n B) p A or comb-like systems such as ((A) n -A (B)) q , or ((B) n -B (A)) q , where m, n, p and q symbolize integers greater than 1.
  • hydrophobic blocks are poly (propylene oxide), poly (siloxanes) and poly (alkanes) e.
  • the nonionic emulsifiers according to the invention are used in amounts of ⁇ 5% by weight, more preferably of ⁇ 3% by weight and most preferably ⁇ 1% by weight, based on the polymer content of the microparticles.
  • microparticles according to the invention can preferably be prepared by emulsion polymerization and preferably have an average particle size of 100 to 5000 nm; particularly preferred is a average particle size of 200 to 2000 nm. Most preferred are average particle sizes of 250 to 1000 nm.
  • the mean particle size is determined, for example, by counting a statistically significant amount of particles on the basis of transmission electron micrographs.
  • the microparticles When prepared by emulsion polymerization, the microparticles are obtained in the form of an aqueous dispersion. Accordingly, the addition of the microparticles to the building material mixture preferably also takes place in this form, with nonionic emulsifiers in particular being present in the dispersion.
  • nonionic emulsifiers are added to the dispersion during or after the preparation.
  • microparticles are already known according to the prior art and are described in the publications EP 22 633 B1, EP 73 529 B1 and EP 188 325 B1.
  • these microparticles are commercially sold under the brand name ROPAQUE® by Rohm & Haas. These products have heretofore been mainly used in inks and inks to improve the opacity and opacity of paints or prints on paper, board and other materials.
  • the cavities of the microparticles are water-filled. Without limiting the invention to the effect, it is assumed that the water, the particles in setting the Building material mixture - at least partially - loses, according to which gas or air-filled hollow spheres are present.
  • This process takes place e.g. also in the use of such microparticles in paints instead.
  • the microparticles used consist of polymer particles which have a polymer core (A) which has been swollen with the aid of an aqueous base and at least one polymer shell or shell (B).
  • the core (A) of the particle contains one or more ethylenically unsaturated carboxylic acid (derivative) monomers which allow swelling of the core; these monomers are preferably selected from the group of acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid and crotonic acid and mixtures thereof. Acrylic acid and methacrylic acid are particularly preferred.
  • the shell (B) consists predominantly of nonionic, ethylenically unsaturated monomers. As such, preference is given to using styrene, butadiene, vinyltoluene, ethylene, vinyl acetate, vinyl chloride, vinylidene chloride, acrylonitrile, acrylamide, methacrylamide, C1-C12-alkyl esters of (meth) acrylic acid or mixtures thereof.
  • the polymer content of the microparticles used may vary depending on e.g. from the diameter, the core / shell ratio and the efficiency of swelling - are 2 to 98 wt .-%.
  • the water-filled, polymeric microparticles are used in the form of an aqueous dispersion. It is also possible within the scope of the present invention to add the water-filled microparticles directly as a solid to the building material mixture.
  • the microparticles are coagulated, for example, with calcium dichloride (CaCl 2) and isolated from the aqueous dispersion by methods known to those skilled in the art (eg filtration, centrifuging, sedimentation and decanting) and the particles subsequently dried, whereby the hydrous core can be retained ,
  • the water-filled microparticles are added to the building material mixture in a preferred amount of 0.01 to 5% by volume, in particular 0.1 to 0.5% by volume.
  • the building material mixture for example in the form of concrete or mortar can here the usual hydraulically setting binder such. As cement, lime, gypsum or anhydrite.
  • the air introduced into the building material mixture can be kept extremely low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

La présente invention concerne l'utilisation de microparticules polymériques contenant des émulsifiants non ioniques dans des mélanges de matériaux de construction à prise hydraulique pour améliorer leur résistance au gel et au gel-dégel.
EP07704252A 2006-02-23 2007-01-30 Mélanges additifs de matériaux de construction contenant des émulsifiants non ioniques Withdrawn EP1986975A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006008970A DE102006008970A1 (de) 2006-02-23 2006-02-23 Additive Baustoffmischungen mit nichtionischen Emulgatoren
PCT/EP2007/050905 WO2007096234A2 (fr) 2006-02-23 2007-01-30 Mélanges additifs de matériaux de construction contenant des émulsifiants non ioniques

Publications (1)

Publication Number Publication Date
EP1986975A2 true EP1986975A2 (fr) 2008-11-05

Family

ID=38319876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07704252A Withdrawn EP1986975A2 (fr) 2006-02-23 2007-01-30 Mélanges additifs de matériaux de construction contenant des émulsifiants non ioniques

Country Status (11)

Country Link
US (1) US20070197689A1 (fr)
EP (1) EP1986975A2 (fr)
JP (1) JP2009527447A (fr)
KR (1) KR20080112204A (fr)
CN (1) CN101024559A (fr)
BR (1) BRPI0708216A2 (fr)
CA (1) CA2642800A1 (fr)
DE (1) DE102006008970A1 (fr)
MX (1) MX2008010791A (fr)
RU (1) RU2008137546A (fr)
WO (1) WO2007096234A2 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498373B2 (en) * 2001-02-07 2009-03-03 Roehm Gmbh & Co. Kg Hot sealing compound for aluminum foils applied to polypropylene and polystyrene
DE10350786A1 (de) * 2003-10-29 2005-06-02 Röhm GmbH & Co. KG Mischungen zur Herstellung von Reaktivschmelzklebstoffen sowie daraus erhältliche Reaktivschmelzklebstoffe
DE102004035937A1 (de) * 2004-07-23 2006-02-16 Röhm GmbH & Co. KG Plastisole mit verringerter Wasseraufnahme
DE102005042389A1 (de) * 2005-06-17 2006-12-28 Röhm Gmbh Heißversiegelungsmasse für Aluminium- und Polyethylenterephthalatfolien gegen Polypropylen-Polyvinylchlorid- und Polystyrolbehälter
DE102005045458A1 (de) * 2005-09-22 2007-03-29 Röhm Gmbh Verfahren zur Herstellung von ABA-Triblockcopolymeren auf (Meth)acrylatbasis
DE102005052130A1 (de) * 2005-10-28 2007-05-03 Röhm Gmbh Spritzbare Akustikmassen
DE102006008969A1 (de) * 2006-02-23 2007-08-30 Röhm Gmbh Additive Baustoffmischungen mit Mikropartikeln mit sehr dünnen Schalen
DE102006008964A1 (de) * 2006-02-23 2007-08-30 Röhm Gmbh Additive Baustoffmischungen mit ionischen Emulgatoren
CN102695688A (zh) * 2010-01-08 2012-09-26 株式会社日本触媒 混凝土组合物
JP2018162214A (ja) * 2018-07-11 2018-10-18 鹿島建設株式会社 コンクリート硬化体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611583A (en) * 1970-05-28 1971-10-12 Dow Chemical Co Method for expanding and drying expandable microspheres
US3900307A (en) * 1973-04-05 1975-08-19 Akzona Inc Composition and method for controlling suckers in tobacco
FR2258458B1 (fr) * 1974-01-18 1976-10-29 Shell France
NL7505525A (nl) * 1975-05-12 1976-11-16 Akzo Nv Werkwijze voor de bereiding van een vorstbesten- dig beton.
US4594363A (en) * 1985-01-11 1986-06-10 Rohm And Haas Company Production of core-sheath polymer particles containing voids, resulting product and use
EP0445069A1 (fr) * 1990-02-16 1991-09-04 Ciba-Geigy Ag Composés hétérocycliques
DE4308794C1 (de) * 1993-03-18 1994-04-21 Henkel Kgaa Verfahren zur Herstellung von festen Esterquats mit verbesserter Wasserdispergierbarkeit
AU2005254196B2 (en) * 2004-06-15 2009-11-19 Construction Research & Technology Gmbh Providing freezing and thawing resistance to cementitious compositions
DE102005046681A1 (de) * 2005-09-29 2007-04-05 Construction Research & Technology Gmbh Verwendung von polymeren Mikropartikeln in Baustoffmischungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007096234A2 *

Also Published As

Publication number Publication date
WO2007096234A2 (fr) 2007-08-30
JP2009527447A (ja) 2009-07-30
BRPI0708216A2 (pt) 2011-05-17
CN101024559A (zh) 2007-08-29
US20070197689A1 (en) 2007-08-23
DE102006008970A1 (de) 2007-08-30
RU2008137546A (ru) 2010-03-27
CA2642800A1 (fr) 2007-08-30
MX2008010791A (es) 2008-09-01
KR20080112204A (ko) 2008-12-24
WO2007096234A3 (fr) 2007-12-06

Similar Documents

Publication Publication Date Title
WO2007096233A1 (fr) Mélanges additifs de matériaux de construction contenant des microparticules dont les coques sont poreuses et/ou hydrophiles
EP1986975A2 (fr) Mélanges additifs de matériaux de construction contenant des émulsifiants non ioniques
EP1928801A1 (fr) Utilisations de microparticules polymeres dans des melanges de materiaux de construction
WO2007096238A2 (fr) Mélanges additifs de matériaux de construction ayant des microparticules de différentes tailles
EP1986976A1 (fr) Mélanges additifs de matériaux de construction contenant des microparticules séchées par pulvérisation
WO2007099005A1 (fr) Mélanges de matériaux de construction contenant des additifs sous forme de microparticules gonflant dans le mélange de matériaux
EP2021299A2 (fr) Mélanges additifs de matériaux de construction contenant des microparticules ayant de très minces coques
EP1991510A2 (fr) Mélanges de matériaux de construction additifs contenant des structures polymères gonflables
WO2007096231A2 (fr) Mélanges additifs de matériaux de construction contenant des microparticules présentant une coque apolaire
EP1986977A2 (fr) Mélanges additifs de matériaux de construction contenant, dans la coque des microparticules, des monomères de répulsion stérique ou électrostatique
WO2007099004A1 (fr) Mélanges de matériaux de construction contenant des additifs sous forme de microparticules à gonflement ionique
WO2007096232A2 (fr) Mélanges additifs de matériaux de construction contenant des émulsifiants ioniques
WO2007099009A1 (fr) Microparticule polymere en tant qu'additif pour melanges pour materiaux de construction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080519

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTRUCTION RESEARCH & TECHNOLOGY GMBH

Owner name: EVONIK ROEHM GMBH

17Q First examination report despatched

Effective date: 20101216

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110427