EP1986795B2 - Method for suppressing the influence of roll eccentricities - Google Patents

Method for suppressing the influence of roll eccentricities Download PDF

Info

Publication number
EP1986795B2
EP1986795B2 EP07703793.5A EP07703793A EP1986795B2 EP 1986795 B2 EP1986795 B2 EP 1986795B2 EP 07703793 A EP07703793 A EP 07703793A EP 1986795 B2 EP1986795 B2 EP 1986795B2
Authority
EP
European Patent Office
Prior art keywords
roll
rolling
tensile force
run
eccentricities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07703793.5A
Other languages
German (de)
French (fr)
Other versions
EP1986795A1 (en
EP1986795B1 (en
Inventor
Josef Hofbauer
Martin Niemann
Bernhard Weisshaar
Dietrich Wohld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
Primetals Technologies Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37886246&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1986795(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Primetals Technologies Germany GmbH filed Critical Primetals Technologies Germany GmbH
Priority to PL07703793T priority Critical patent/PL1986795T3/en
Publication of EP1986795A1 publication Critical patent/EP1986795A1/en
Application granted granted Critical
Publication of EP1986795B1 publication Critical patent/EP1986795B1/en
Publication of EP1986795B2 publication Critical patent/EP1986795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/66Roll eccentricity compensation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/02Tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/032Rolls for sheets or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/06Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring tension or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/08Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll-force
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/45Scale remover or preventor
    • Y10T29/4517Rolling deformation or deflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49462Gear making
    • Y10T29/49467Gear shaping
    • Y10T29/49471Roll forming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49481Wheel making
    • Y10T29/49492Land wheel
    • Y10T29/49524Rim making
    • Y10T29/49531Roller forming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5197Multiple stations working strip material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5198Continuous strip

Definitions

  • the invention relates to a method for suppressing the influence of roll eccentricities on the outlet thickness of a rolling stock passing through a roll stand, the roll eccentricities being identified using a process model and being taken into account when determining a correction signal for at least one control device for an actuator of the roll stand.
  • eccentricities of the rolls caused by imprecisely machined back-up rolls or imprecise mounting of the back-up rolls are often found, which impair the quality of the rolled strip, whereby depending on the rigidity of the roll stand and the rolled stock, the roll eccentricities with the speed of the eccentric rolls, in the rule of the backup rolls, map in the belt.
  • the frequency spectrum of the eccentricities and the disturbances caused by them in the strip essentially contains the fundamental frequencies of the upper and lower backup rolls; but there are also higher harmonic oscillations, which, however, often only appear with reduced amplitudes. Because of the slightly different diameters and speeds of the upper and lower backup rollers, the frequencies assigned to the backup rollers can differ from one another.
  • the EP 0 170 016 B1 describes a method of the type mentioned at the outset, wherein the influence of roll eccentricities in the position or thickness control of roll stands is compensated, the roll eccentricities being identified on the basis of a measurement of the rolling force in the roll stand.
  • Oil pressure transducers are generally used to measure the rolling force, the measured values of which are significantly falsified by the effects of friction. This means that the influence of roller eccentricities cannot be suppressed in a sufficiently reliable and effective manner with the aid of the measuring devices. More reliable and more accurate measuring methods for the rolling force are too expensive and too complex.
  • JP 04 200 915 A Of the JP 04 200 915 A a similar disclosure can be found.
  • the object of the invention is to provide a method for suppressing the influence of roll eccentricities which avoids the disadvantages known from the prior art and in particular the disadvantages described above.
  • FIG 1 shows schematically and by way of example a roll stand 1 of a rolling train for rolling a rolling stock 10.
  • the rolling train for rolling the rolling stock 10 has one or more such rolling stands 1.
  • another roll stand, a reel device, a cooling device and / or another device, for example for thermal and / or mechanical influencing of the rolling stock and / or a device for transporting the rolling stock 10 can be provided.
  • the rolling stock 10 is preferably a strip, a profile, a wire or a slab.
  • the rolling stock 10 can be a metal strip, for example a steel strip, a non-ferrous metal strip or an aluminum strip.
  • a roll stand 1 has at least one upper backup roll 4 with a radius R o and at least one lower backup roll 5 with a radius R u .
  • the roll stand 1 shown has at least one upper work roll 2 and at least one lower work roll 3, the diameter of the work rolls 2 and 3, as a rule, being smaller than the diameter of the backup rolls 4 and 5.
  • the setting position is used to regulate of the roll stand 1, a hydraulic adjusting device 7 which can be actuated via a control valve 6 is provided.
  • an electromechanical adjustment system can also be provided.
  • the adjusting device 7 or that not in more detail Adjustment system shown are used to adjust the roll adjustment s.
  • the hydraulic adjustment 7 is supported on the scaffolding frame.
  • the elastic scaffolding frame is symbolically represented by a spring with the spring constant C G.
  • the rolling stand 1 is passed through by the rolling stock 10, the thickness of the rolling stock 10 being reduced from the inlet thickness h e to the outlet thickness h a with the aid of the work rolls 2, 3 as it passes through the roll gap.
  • the roller eccentricities of the upper support roller 4 or the lower support roller 5 can be caused by uneven roller wear, deformations due to thermal stresses and / or the deviations of the geometrical cylinder axis of the rollers from the operationally established rotation axes.
  • the roll eccentricities are denoted by ⁇ R o and ⁇ R u , ie as deviations from the ideal backup roll radii R o and R u .
  • the measurement of the roll speed n o or n u of the upper or lower backup roll 4 or 5 is used to determine the fundamental oscillation of the roll eccentricities. Under the simplifying prerequisite that the upper and lower rolls of the roll stand 1 rotate at the same speed, it is sufficient to detect the speed of only one driven roll, for example the lower work roll 3, by means of a tachometer 11.
  • the back-up rolls 4 and 5 are the eccentric rolls
  • the roll adjustment s is measured with a position sensor 9 on the adjustment device 7 or on the adjustment system.
  • the roll adjustment s is fed to a control device 18.
  • a tensile measuring device 8 for measuring the tensile force F z prevailing in the rolling stock 10 is provided in front of the roll stand 1.
  • the tension measuring device 8 can as in FIG 1 indicated, have a measuring roller for tension measurement. This measuring roller can preferably be segmented.
  • the tension measuring device 8 can also be designed as a contactless tension measuring device.
  • a corresponding device for contactless measurement of the tensile force F z in a rolled stock 10 designed as a metal strip is for example in FIG DE 198 39 286 B4 described.
  • the control device 18 has a process model 27.
  • the process model 27 is based on an observer and models the behavior of the roll gap and the rolls 2 to 5.
  • the process model 27 is controlled in terms of frequency with the help of the rolling speed, ie for example with the help of the determined roll speeds n o or n u .
  • the time course of the disturbances to be modeled is periodic, but not purely sinusoidal. In other words, the oscillation to be modeled consists of a fundamental oscillation and several harmonics.
  • sinusoidal correction setpoints assigned to the eccentricity frequencies are calculated for an actuator of the roll stand 1 with the appropriate phase position and amplitude for the position of the roll gap control.
  • the correction setpoints can be given via a control device 19 and possibly via a control valve 6 to the adjusting device 7 or to a adjusting system.
  • the required strip thickness that is to say the outlet thickness h a of the rolling stock 10
  • the required strip thickness can be set extremely uniformly with the aid of the control device 18. Deviations in thickness caused by the roll eccentricity ⁇ R o or ⁇ R u can be avoided in this way.
  • the thickness of the rolling stock 10, for example the outlet thickness h a can be measured by means of a thickness measuring device 16.
  • FIG 2 shows schematically and by way of example the structure used to identify roller eccentricities according to the observer principle.
  • a setpoint value s * of the setting position is used both in a real process 29, as it runs, for example, in a rolling stand 1 through which a rolling stock 10 passes (see FIG FIG 1 ), as well as an observer module 30.
  • the observer module 30 has the process model 27, with the aid of which roller eccentricities can be identified and with the aid of which the identified roller eccentricities ⁇ R i can be provided for compensation purposes.
  • an identified runout thickness h ai can preferably be determined, which can be linked to the measured tensile force F z in order to determine an observer error e.
  • the measured tensile force F z is first fed to a module 21 in the measuring channel, which inversely takes into account the transmission behavior from the outlet thickness to the strip tension.
  • the measured value of the tensile force F z is converted to the outlet thickness and compared with the identified outlet thickness h ai determined with the aid of the process model 27.
  • the difference e resulting from this comparison forms the observer error e.
  • the states of the process model 27 are corrected taking into account the observer error e until the measurement and model at least largely agree and the observer error e is sufficiently small or zero.
  • the roll eccentricities ⁇ R i identified in the process model 27 also agree with those actually in the roll stand 1 (see FIG 1 ) existing roller eccentricities.
  • the identified roller eccentricities ⁇ R i ascertained in this way by the observer module 30 enable an extremely reliable and precise eccentricity compensation.
  • a selection can be made by means of a switch 20 as to whether the process model 27 should take into account the outlet thickness h a , the rolling force F w or the tensile force F z when identifying roller eccentricities.
  • FIG 3 shows an example of how the transfer behavior from the adjustment position to the strip tension can be taken into account when using the tensile force F z to identify and suppress roller eccentricities.
  • a module 21 is preferably provided in the measuring channel which inversely takes into account the transfer behavior from the outlet thickness to the strip tension.
  • the measured values of the tensile force F z are preferably linked with the corresponding transfer function H yak . This can be done, for example, by multiplication by a factor which corresponds to the inverse transfer function H train .
  • an adaptation circuit can be provided which takes into account the dependence on the rolling stock speed v B.
  • the value present at the output of module 21, which was determined with the aid of tensile force F z is preferably fed to process model 27.
  • the process model 27 preferably simulates the behavior of the process 29 from the contact position s or from the setpoint s * of the contact position up to the outlet thickness h a . If, as an alternative or in addition to the tensile force F z, the rolling force F w is to be taken into account in the process model 27, it is expedient to provide a module 28 in the measuring channel of the rolling force F w which has a suitable transfer characteristic.
  • FIG 4 shows an example of the use of an inlet thickness compensation in connection with the method according to the invention.
  • a thickness measuring sensor 17 is provided in front of the roll stand 1, with the aid of which a measured inlet thickness h em is recorded.
  • the shown inlet thickness compensation module 22 has a strip tracking module 23. With the aid of the strip tracking module 23, the measured inlet thickness h em is tracked down to the roll stand 1. With the aid of the inlet speed v SE , a tracked inlet thickness h ev is determined.
  • the tape tracking module 23 is preferably model-based.
  • the inlet thickness compensation module 22 has at least one compensation model 24, 25, 26 with the aid of which the influence of the inlet thickness h e on the outlet thickness h a is determined as a function of the measured variable m E used or the corresponding measured value. Since the quality of the inlet thickness compensation depends essentially on the compensation model (s) 24, 25, 26 used, in the example shown there are a compensation model 24 for using the outlet thickness h a as the measured variable m E , and a compensation model 25 for the use of the rolling force F w as the measured variable m E and a compensation model 24 for the use of the tensile force F z as measured variable m E is provided.
  • the compensation signal given by the inlet thickness compensation module 22 is linked to the corresponding measured value of the measured variable m E to form a compensated measured variable m K.
  • Periodic thickness fluctuations resulting from the inlet thickness with frequencies that are almost equal to the eccentricity frequencies can interfere with the identification of the roll eccentricities.
  • An inlet thickness compensation can therefore be provided, which determines and compensates for the influence of the inlet thickness fluctuations on the measured variable m E used and thus eliminates this type of disturbance.
  • the tension regulators present in known control concepts of a rolling mill designed as a tandem mill can avoid part of the effects on the thickness caused by the eccentricities due to their limited dynamics only at low rolling speeds and only on the front stands of the tandem mill.
  • a control device 18 designed according to the invention for suppressing the influence of roll eccentricities, to which the tensile force F z measured on the rolling stock 10 is supplied, can compensate for the eccentricity frequencies on a roll stand 1 and thus completely relieve conventional tension regulators.

Description

Die Erfindung betrifft ein Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten auf die Auslaufdicke eines Walzgutes, welches ein Walzgerüst durchläuft, wobei die Walzenexzentrizitäten unter Verwendung eines Prozessmodells identifiziert werden und bei der Ermittlung eines Korrektursignals für mindestens eine Steuervorrichtung für ein Stellglied des Walzgerüstes berücksichtigt werden.The invention relates to a method for suppressing the influence of roll eccentricities on the outlet thickness of a rolling stock passing through a roll stand, the roll eccentricities being identified using a process model and being taken into account when determining a correction signal for at least one control device for an actuator of the roll stand.

In Walzgerüsten finden sich häufig beispielsweise durch ungenau gearbeitete Stützwalzen oder durch nicht exakte Lagerung der Stützwalzen bedingte Exzentrizitäten der Walzen, die die Qualität des gewalzten Bandes beeinträchtigen, wobei sich je nach Steifigkeit des Walzgerüstes und des Walzgutes die Walzenexzentrizitäten mit der Drehzahl der exzentrizitätsbehafteten Walzen, in der Regel der Stützwalzen, in dem Band abbilden. Das Frequenzspektrum der Exzentrizitäten und der von ihnen hervorgerufenen Störungen im Band beinhaltet im Wesentlichen die Grundfrequenzen der oberen und unteren Stützwalzen; es sind aber auch höhere harmonische Oberschwingungen vorhanden, die allerdings häufig nur mit verminderten Amplituden in Erscheinung treten. Aufgrund geringfügig unterschiedlicher Durchmesser und Drehzahlen der oberen und unteren Stützwalze können die den Stützwalzen zugeordneten Frequenzen voneinander abweichen.In rolling stands, eccentricities of the rolls caused by imprecisely machined back-up rolls or imprecise mounting of the back-up rolls are often found, which impair the quality of the rolled strip, whereby depending on the rigidity of the roll stand and the rolled stock, the roll eccentricities with the speed of the eccentric rolls, in the rule of the backup rolls, map in the belt. The frequency spectrum of the eccentricities and the disturbances caused by them in the strip essentially contains the fundamental frequencies of the upper and lower backup rolls; but there are also higher harmonic oscillations, which, however, often only appear with reduced amplitudes. Because of the slightly different diameters and speeds of the upper and lower backup rollers, the frequencies assigned to the backup rollers can differ from one another.

Die EP 0 170 016 B1 beschreibt ein Verfahren der eingangs genannten Art, wobei der Einfluss von Walzenexzentrizitäten bei der Position- oder Dickenregelung von Walzgerüsten kompensiert wird, wobei die Walzenexzentrizitäten auf Grundlage einer Messung der Walzkraft im Walzgerüst identifiziert werden. Zur Messung der Walzkraft werden in der Regel Öldruckgeber verwendet, deren Messwerte durch Reibungseinflüsse erheblich verfälscht werden. Dies bedingt, dass keine hinreichend zu verlässige und effektive Unterdrückung des Einflusses von Walzenexzentrizitäten mit Hilfe der Messgeräte erfolgen kann. Zuverlässigere und genauere Messmethoden für die Walzkraft sind zu teuer und zu aufwendig.The EP 0 170 016 B1 describes a method of the type mentioned at the outset, wherein the influence of roll eccentricities in the position or thickness control of roll stands is compensated, the roll eccentricities being identified on the basis of a measurement of the rolling force in the roll stand. Oil pressure transducers are generally used to measure the rolling force, the measured values of which are significantly falsified by the effects of friction. This means that the influence of roller eccentricities cannot be suppressed in a sufficiently reliable and effective manner with the aid of the measuring devices. More reliable and more accurate measuring methods for the rolling force are too expensive and too complex.

Aus der EP 0 698 427 B1 ist es bekannt, bei einem Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten die Auslaufdicke des Walzgutes anstelle der Walzkraft als Messwert zu verwenden. Dickenmessgeber sind jedoch sehr teuer und daher bei mehrgerüstigen Walzstrassen in der Regel nur vor und hinter dem ersten und nach dem letzten Walzgerüst vorgesehen.From the EP 0 698 427 B1 it is known, in a method for suppressing the influence of roll eccentricities, to use the outlet thickness of the rolling stock instead of the rolling force as a measured value. Thickness gauges are very expensive, however, and are therefore usually only provided in front of and behind the first and after the last roll stand in multi-stand rolling lines.

Aus der US 4,656,854 A ist ein Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten auf die Auslaufdicke eines Walzgutes bekannt, wobei das Walzgut ein Walzgerüst durchläuft. Die Walzenexzentrizitäten werden unter Verwendung eines Prozessmodells identifiziert und bei der Ermittlung eines Korrektursignals für eine Steuereinrichtung für ein Stellglied des Walzgerüsts berücksichtigt. Zur Identifizierung der Walzenexzentrizitäten werden dem Prozessmodell Messwerte der im Walzgut herrschenden Zugkraft zugeführt.From the U.S. 4,656,854 A a method for suppressing the influence of roll eccentricities on the outlet thickness of a rolling stock is known, the rolling stock passing through a roll stand. The roll eccentricities are identified using a process model and taken into account when determining a correction signal for a control device for an actuator of the roll stand. To identify the roll eccentricities, measured values of the tensile force prevailing in the rolling stock are fed to the process model.

Der JP 04 200 915 A ist ein ähnlicher Offenbarungsgehalt zu entnehmen.Of the JP 04 200 915 A a similar disclosure can be found.

Aufgabe der Erfindung ist es, ein Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten bereitzustellen, welches die aus dem Stand der Technik bekannten und insbesondere die vorangehend beschriebenen Nachteile vermeidet.The object of the invention is to provide a method for suppressing the influence of roll eccentricities which avoids the disadvantages known from the prior art and in particular the disadvantages described above.

Die Aufgabe wird durch ein Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten auf die Auslaufdicke eines Walzgutes mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen dieses Verfahrens sind Gegenstand der abhängigen Ansprüche 2 bis 4.The object is achieved by a method for suppressing the influence of roll eccentricities on the outlet thickness of a rolling stock having the features of claim 1. Advantageous refinements of this method are the subject matter of the dependent claims 2 to 4.

Die der Erfindung zugrunde liegende Aufgabe wird auch gelöst durch ein Computerprogrammprodukt gemäß Patentanspruch 5.The object on which the invention is based is also achieved by a computer program product according to patent claim 5.

Nachfolgend werden Vorteile und Einzelheiten der Erfindung beispielhaft und mit Bezug auf die Zeichnungen beschrieben. Es zeigen:

FIG 1
ein Walzgerüst in Verbindung mit einer Regelvorrichtung mit einem Prozessmodell,
FIG 2
eine schematische Darstellung des zum Identifizieren der Walzenexzentrizitäten verwendeten Beobachter-Prinzips,
FIG 3
die Ankopplung der Zugmessung an das Prozessmodell,
FIG 4
eine Einlaufdickenkompensation für die verwendeten Messwerte.
Advantages and details of the invention are described below by way of example and with reference to the drawings. Show it:
FIG 1
a roll stand in connection with a control device with a process model,
FIG 2
a schematic representation of the observer principle used to identify the roller eccentricities,
FIG 3
the coupling of the tension measurement to the process model,
FIG 4
an inlet thickness compensation for the measured values used.

FIG 1 zeigt schematisch und beispielhaft ein Walzgerüst 1 einer Walzstrasse zum Walzen eines Walzgutes 10. Die Walzstrasse zum Walzen des Walzgutes 10 weist ein oder mehrere derartige Walzgerüste 1 auf. Vor oder nach dem Walzgerüst 1 kann ein weiteres Walzgerüst, eine Haspelvorrichtung, eine Kühlvorrichtung und/oder eine andere Vorrichtung, z.B. zur thermischen und/oder mechanischen Walzgutbeeinflussung und/oder eine Einrichtung zum Transport des Walzgutes 10 vorgesehen sein. Das Walzgut 10 ist vorzugsweise ein Band, ein Profil, ein Draht oder eine Bramme. Z.B. kann das Walzgut 10 ein Metallband, beispielsweise ein Stahlband, ein Buntmetallband oder ein Aluminiumband sein. FIG 1 shows schematically and by way of example a roll stand 1 of a rolling train for rolling a rolling stock 10. The rolling train for rolling the rolling stock 10 has one or more such rolling stands 1. Before or after the roll stand 1, another roll stand, a reel device, a cooling device and / or another device, for example for thermal and / or mechanical influencing of the rolling stock and / or a device for transporting the rolling stock 10, can be provided. The rolling stock 10 is preferably a strip, a profile, a wire or a slab. For example, the rolling stock 10 can be a metal strip, for example a steel strip, a non-ferrous metal strip or an aluminum strip.

Ein Walzgerüst 1 weist mindestens eine obere Stützwalze 4 mit einem Radius Ro und mindestens eine untere Stützwalze 5 mit einem Radius Ru auf. Das gezeigte Walzgerüst 1 weist mindestens eine obere Arbeitswalze 2 und mindestens eine untere Arbeitswalze 3 auf, wobei der Durchmesser der Arbeitswalzen 2 bzw. 3 in der Regel kleiner ist als der Durchmesser der Stützwalzen 4 bzw. 5. Im gezeigten Beispiel ist zur Regelung der Anstellposition des Walzgerüsts 1 eine über ein Steuerventil 6 betätigbare hydraulische Anstellvorrichtung 7 vorgesehen. Alternativ oder zusätzlich kann auch ein elektromechanisches Anstellsystem vorgesehen sein. Die Anstellvorrichtung 7 bzw. das nicht näher dargestellte Anstellsystem dienen zur Einstellung der Walzenanstellung s. Die hydraulische Anstellung 7 stützt sich auf dem Gerüstrahmen ab. Der elastische Gerüstrahmen ist symbolisch durch eine Feder mit der Federkonstanten CG dargestellt.A roll stand 1 has at least one upper backup roll 4 with a radius R o and at least one lower backup roll 5 with a radius R u . The roll stand 1 shown has at least one upper work roll 2 and at least one lower work roll 3, the diameter of the work rolls 2 and 3, as a rule, being smaller than the diameter of the backup rolls 4 and 5. In the example shown, the setting position is used to regulate of the roll stand 1, a hydraulic adjusting device 7 which can be actuated via a control valve 6 is provided. Alternatively or in addition, an electromechanical adjustment system can also be provided. The adjusting device 7 or that not in more detail Adjustment system shown are used to adjust the roll adjustment s. The hydraulic adjustment 7 is supported on the scaffolding frame. The elastic scaffolding frame is symbolically represented by a spring with the spring constant C G.

Das Walzgerüst 1 wird von dem Walzgut 10 durchlaufen, wobei die Dicke des Walzgutes 10 beim Durchlaufen des Walzspalts unter Zuhilfenahme der Arbeitswalzen 2, 3 von der Einlaufdicke he auf die Auslaufdicke ha verringert wird. Das Walzgut 10, dem im Walzspalt eine äquivalente Materialfeder mit der Federkonstanten CM zugeordnet wird, läuft mit der Einlaufgeschwindigkeit vSE in den Walzspalt ein und verlässt den Walzspalt mit der Auslaufgeschwindigkeit vSL.The rolling stand 1 is passed through by the rolling stock 10, the thickness of the rolling stock 10 being reduced from the inlet thickness h e to the outlet thickness h a with the aid of the work rolls 2, 3 as it passes through the roll gap. The rolling stock 10, to which an equivalent material spring with the spring constant C M is assigned in the roll gap, enters the roll gap at the entry speed v SE and leaves the roll gap at the exit speed v SL .

Die Walzenexzentrizitäten der oberen Stützwalze 4 bzw. der unteren Stützwalze 5 können ihre Ursache in ungleichmäßiger Walzenabnutzung, Verformungen durch Wärmespannungen und/oder den Abweichungen der geometrischen Zylinderachse der Walzen von den betrieblich sich einstellenden Rotationsachsen haben. Die Walzenexzentrizitäten sind mit ΔRo bzw. ΔRu, d.h. als Abweichungen von den idealen Stützwalzenradien Ro bzw. Ru bezeichnet.The roller eccentricities of the upper support roller 4 or the lower support roller 5 can be caused by uneven roller wear, deformations due to thermal stresses and / or the deviations of the geometrical cylinder axis of the rollers from the operationally established rotation axes. The roll eccentricities are denoted by ΔR o and ΔR u , ie as deviations from the ideal backup roll radii R o and R u .

Die Messung der Walzendrehzahl no bzw. nu der oberen bzw. der unteren Stützwalze 4 bzw. 5 dient zur Ermittlung der Grundschwingung der Walzenexzentrizitäten. Unter der vereinfachenden Voraussetzung, dass sich die Ober- und Unterwalzen des Walzgerüsts 1 gleich schnell drehen, genügt es, die Drehzahl lediglich einer angetriebenen Walze, z.B. der unteren Arbeitswalze 3 mittels eines Drehzahlmessers 11 zu erfassen.The measurement of the roll speed n o or n u of the upper or lower backup roll 4 or 5 is used to determine the fundamental oscillation of the roll eccentricities. Under the simplifying prerequisite that the upper and lower rolls of the roll stand 1 rotate at the same speed, it is sufficient to detect the speed of only one driven roll, for example the lower work roll 3, by means of a tachometer 11.

Sind, wie in den meisten Fällen, die Stützwalzen 4 und 5 die exzentrizitätsbehafteten Walzen, so wird in mindestens einer Umrechnungseinheit 14 bzw. 12 die gemessene Drehzahl der Arbeitswalze 2 bzw. 3 über das Verhältnis des Durchmessers der Arbeitswalze 2 bzw. 3 zum Durchmesser der Stützwalze 4 bzw. 5 in die Drehzahl no bzw. nu der Stützwalze 4 bzw. 5 umgerechnet. Da in der Regel die Drehzahlen der oberen Walzen 4, 2 und der unteren Walzen 5, 3 aufgrund geringfügig verschiedener Durchmesser unterschiedlich sind, ist bei dem gezeigten Ausführungsbeispiel sowohl ein Drehzahlmesser 13 oberhalb des Walzgutes 10 als auch ein Drehzahlmesser 11 unterhalb des Walzgutes 10 mit jeweils nachgeordneter Umrechnungseinheit 14 bzw. 12 zur Erfassung der Drehzahl no bzw. nu vorgesehen.If, as in most cases, the back-up rolls 4 and 5 are the eccentric rolls, then in at least one conversion unit 14 and 12, the measured speed of the work roll 2 or 3 via the ratio of the diameter of the work roll 2 or 3 to the diameter of the Support roll 4 or 5 converted into the speed n o or n u of the support roll 4 or 5, respectively. Since the speeds of the upper rollers 4, 2 and the lower rollers 5, 3 are usually different due to slightly different diameters, both a tachometer 13 above the rolling stock 10 and a tachometer 11 below the rolling stock 10 are each with downstream conversion unit 14 or 12 for detecting the speed n o or n u .

Die Walzenanstellung s wird mit einem Positionsaufnehmer 9 an der Anstellvorrichtung 7 bzw. am Anstellsystem gemessen. Die Walzenanstellung s wird einer Regelvorrichtung 18 zugeführt. Zur Walzenexzentrizitätsidentifizierung und Unterdrückung wird der Regelvorrichtung 18 mindestens eine Walzendrehzahl no oder nu zugeführt. Des Weiteren ist eine Zugmessvorrichtung 8 zur Messung der im Walzgut 10 herrschenden Zugkraft Fz vor dem Walzgerüst 1 vorgesehen. Die Zugmessvorrichtung 8 kann wie in FIG 1 angedeutet, eine Messrolle zur Zugmessung aufweisen. Diese Messrolle kann vorzugsweise segmentiert ausgebildet sein. Die Zugmessvorrichtung 8 kann auch als berührungslos arbeitende Zugmessvorrichtung ausgebildet sein. Eine entsprechende Einrichtung zur berührungslosen Messung der Zugkraft Fz in einem als Metallband ausgebildeten Walzgut 10 ist beispielsweise in der DE 198 39 286 B4 beschrieben.The roll adjustment s is measured with a position sensor 9 on the adjustment device 7 or on the adjustment system. The roll adjustment s is fed to a control device 18. For roll eccentricity identification and suppression, at least one roll speed n o or n u is fed to the control device 18. Furthermore, a tensile measuring device 8 for measuring the tensile force F z prevailing in the rolling stock 10 is provided in front of the roll stand 1. The tension measuring device 8 can as in FIG 1 indicated, have a measuring roller for tension measurement. This measuring roller can preferably be segmented. The tension measuring device 8 can also be designed as a contactless tension measuring device. A corresponding device for contactless measurement of the tensile force F z in a rolled stock 10 designed as a metal strip is for example in FIG DE 198 39 286 B4 described.

Zur Identifizierung und/oder Unterdrückung von Walzenexzentrizitäten weist die Regelvorrichtung 18 ein Prozessmodell 27 auf. Das Prozessmodell 27 basiert auf einem Beobachter und modelliert das Verhalten des Walzspaltes und der Walzen 2 bis 5. Das Prozessmodell 27 wird dabei frequenzmäßig mit Hilfe der Walzgeschwindigkeit, d.h. z.B. mit Hilfe der ermittelten Walzendrehzahlen no bzw. nu geführt. Der Zeitverlauf der zu modellierenden Störungen ist zwar periodisch, aber nicht rein sinusförmig. D.h. die zu modellierende Schwingung setzt sich aus einer Grundschwingung und mehreren Oberschwingungen zusammen.In order to identify and / or suppress roll eccentricities, the control device 18 has a process model 27. The process model 27 is based on an observer and models the behavior of the roll gap and the rolls 2 to 5. The process model 27 is controlled in terms of frequency with the help of the rolling speed, ie for example with the help of the determined roll speeds n o or n u . The time course of the disturbances to be modeled is periodic, but not purely sinusoidal. In other words, the oscillation to be modeled consists of a fundamental oscillation and several harmonics.

Im Prozessmodell 27 werden den Exzentrizitätsfrequenzen zugeordnete sinusförmige Korrektursollwerte für ein Stellglied des Walzgerüstes 1 mit der passenden Phasenlage und Amplitude für die Position der Walzspaltregelung berechnet. Wie in FIG 1 gezeigt, können die Korrektursollwerte über eine Steuervorrichtung 19 und gegebenenfalls über ein Steuerventil 6 an die Anstellvorrichtung 7 bzw. an ein Anstellsystem gegeben werden. Durch die Verwendung der gemessenen Zugkraft Fz kann die geforderte Banddicke, d.h. die Auslaufdicke ha des Walzgutes 10, mit Hilfe der Regelvorrichtung 18 äußerst gleichmäßig eingestellt werden. Durch die Walzenexzentrizität ΔRo bzw. ΔRu bedingte Dickenabweichungen können derart vermieden werden.In the process model 27, sinusoidal correction setpoints assigned to the eccentricity frequencies are calculated for an actuator of the roll stand 1 with the appropriate phase position and amplitude for the position of the roll gap control. As in FIG 1 As shown, the correction setpoints can be given via a control device 19 and possibly via a control valve 6 to the adjusting device 7 or to a adjusting system. By using the measured tensile force F z , the required strip thickness, that is to say the outlet thickness h a of the rolling stock 10, can be set extremely uniformly with the aid of the control device 18. Deviations in thickness caused by the roll eccentricity ΔR o or ΔR u can be avoided in this way.

Alternativ oder zusätzlich ist es möglich, beispielsweise mittels eines Druckfühlers 15 die Walzkraft Fw zu messen und bei der Identifizierung und Unterdrückung von Walzenexzentrizitäten zu berücksichtigen.Alternatively or additionally, it is possible, for example, to measure the rolling force F w by means of a pressure sensor 15 and to take it into account when identifying and suppressing roll eccentricities.

Mittels eines Dickenmessgerätes 16 kann alternativ oder zusätzlich die Dicke des Walzgutes 10, beispielsweise die Auslaufdicke ha, gemessen werden.As an alternative or in addition, the thickness of the rolling stock 10, for example the outlet thickness h a , can be measured by means of a thickness measuring device 16.

FIG 2 zeigt schematisch und beispielhaft die zur Identifizierung von Walzenexzentrizitäten verwendete Struktur gemäß dem Beobachter-Prinzip. Dabei wird ein Sollwert s* der Anstellposition sowohl einem realen Prozess 29, wie er z.B. in einem von einem Walzgut 10 durchlaufenen Walzgerüst 1 abläuft (siehe FIG 1), als auch einem Beobachtermodul 30 zugeführt. Das Beobachtermodul 30 weist das Prozessmodell 27 auf, mit Hilfe dessen Walzenexzentrizitäten identifiziert werden können und mit Hilfe dessen die identifizierten Walzenexzentrizitäten ΔRi für Kompensationszwecke bereitgestellt werden können. Unter Zuhilfenahme des Prozessmodells 27 kann vorzugsweise eine identifizierte Auslaufdicke hai ermittelt werden, welche zur Ermittlung eines Beobachterfehlers e mit der gemessenen Zugkraft Fz verknüpft werden kann. Die gemessene Zugkraft Fz wird dabei zunächst einem Modul 21 im Messkanal zugeführt, welches das Übertragungsverhalten von der Auslaufdicke bis zum Bandzug invers berücksichtigt. Mit Hilfe des Moduls 21 wird derart der Messwert der Zugkraft Fz auf die Auslaufdicke umgerechnet und mit der mit Hilfe des Prozessmodells 27 ermittelten identifizierte Auslaufdicke hai verglichen. Die aus diesem Vergleich resultierende Differenz e bildet den Beobachterfehler e. Die Zustände des Prozessmodells 27 werden unter Berücksichtigung des Beobachterfehlers e solange korrigiert, bis Messung und Modell zumindest weitestgehend übereinstimmen und der Beobachterfehler e hinreichend gering bzw. null ist. Dann stimmen auch die im Prozessmodell 27 identifizierten Walzenexzentrizitäten ΔRi mit den tatsächlich im Walzgerüst 1 (siehe FIG 1) vorhandenen Walzenexzentrizitäten überein. Die vom Beobachtermodul 30 derart ermittelten identifizierten Walzenexzentrizitäten ΔRi ermöglichen eine äußerst zuverlässige und genaue Exzentrizitätskompensation. FIG 2 shows schematically and by way of example the structure used to identify roller eccentricities according to the observer principle. In this case, a setpoint value s * of the setting position is used both in a real process 29, as it runs, for example, in a rolling stand 1 through which a rolling stock 10 passes (see FIG FIG 1 ), as well as an observer module 30. The observer module 30 has the process model 27, with the aid of which roller eccentricities can be identified and with the aid of which the identified roller eccentricities ΔR i can be provided for compensation purposes. With the aid of the process model 27, an identified runout thickness h ai can preferably be determined, which can be linked to the measured tensile force F z in order to determine an observer error e. The measured tensile force F z is first fed to a module 21 in the measuring channel, which inversely takes into account the transmission behavior from the outlet thickness to the strip tension. With With the help of the module 21, the measured value of the tensile force F z is converted to the outlet thickness and compared with the identified outlet thickness h ai determined with the aid of the process model 27. The difference e resulting from this comparison forms the observer error e. The states of the process model 27 are corrected taking into account the observer error e until the measurement and model at least largely agree and the observer error e is sufficiently small or zero. Then the roll eccentricities ΔR i identified in the process model 27 also agree with those actually in the roll stand 1 (see FIG 1 ) existing roller eccentricities. The identified roller eccentricities ΔR i ascertained in this way by the observer module 30 enable an extremely reliable and precise eccentricity compensation.

Wie im in FIG 3 gezeigten Beispiel dargestellt, kann mittels eines Umschalters 20 eine Auswahl dahingehend erfolgen, ob das Prozessmodell 27 die Auslaufdicke ha, die Walzkraft Fw oder die Zugkraft Fz bei der Identifizierung von Walzenexzentrizitäten berücksichtigen soll.As in the in FIG 3 As shown in the example shown, a selection can be made by means of a switch 20 as to whether the process model 27 should take into account the outlet thickness h a , the rolling force F w or the tensile force F z when identifying roller eccentricities.

FIG 3 zeigt beispielhaft, wie das Übertragungsverhalten von der Anstellposition bis zum Bandzug bei der Verwendung der Zugkraft Fz zur Identifizierung und Unterdrückung von Walzenexzentrizitäten berücksichtigt werden kann. So ist im gezeigten Beispiel vorzugsweise im Messkanal ein Modul 21 vorgesehen, welches das Übertragungsverhalten von der Auslaufdicke bis zum Bandzug invers berücksichtigt. Vorzugsweise werden dabei die Messwerte der Zugkraft Fz mit der entsprechenden Übertragungsfunktion Hzug verknüpft. Dies kann beispielsweise durch Multiplikation mit einem Faktor erfolgen, welcher der inversen Übertragungsfunktion Hzug entspricht. Zusätzlich kann eine Adaptionsschaltung vorgesehen sein, die die Abhängigkeit von der Walzgutgeschwindigkeit vB berücksichtigt. Vorzugsweise wird der am Ausgang des Moduls 21 vorliegende Wert, der unter Zuhilfenahme der Zugkraft Fz ermittelt wurde, dem Prozessmodell 27 zugeführt. FIG 3 shows an example of how the transfer behavior from the adjustment position to the strip tension can be taken into account when using the tensile force F z to identify and suppress roller eccentricities. In the example shown, a module 21 is preferably provided in the measuring channel which inversely takes into account the transfer behavior from the outlet thickness to the strip tension. The measured values of the tensile force F z are preferably linked with the corresponding transfer function H zug . This can be done, for example, by multiplication by a factor which corresponds to the inverse transfer function H train . In addition, an adaptation circuit can be provided which takes into account the dependence on the rolling stock speed v B. The value present at the output of module 21, which was determined with the aid of tensile force F z , is preferably fed to process model 27.

Wie auch dem in FIG 2 dargestellten Beispiel entnehmbar ist, bildet das Prozessmodell 27 vorzugsweise das Verhalten des Prozesses 29 von der Anstellposition s bzw. von dem Sollwert s* der Anstellposition bis zur Auslaufdicke ha nach. Soll alternativ oder zusätzlich zur Zugkraft Fz die Walzkraft Fw im Prozessmodell 27 berücksichtigt werden, so ist es zweckmäßig ein Modul 28 im Messkanal der Walzkraft Fw vorzusehen, welches eine geeignete Übertragungscharakteristik aufweist.Like the one in FIG 2 As can be seen in the example shown, the process model 27 preferably simulates the behavior of the process 29 from the contact position s or from the setpoint s * of the contact position up to the outlet thickness h a . If, as an alternative or in addition to the tensile force F z, the rolling force F w is to be taken into account in the process model 27, it is expedient to provide a module 28 in the measuring channel of the rolling force F w which has a suitable transfer characteristic.

FIG 4 zeigt ein Beispiel für die Verwendung einer Einlaufdickenkompensation in Verbindung mit dem erfindungsgemäßen Verfahren. Dabei ist ein Dickenmessgeber 17 vor dem Walzgerüst 1 vorgesehen, mit Hilfe dessen eine gemessene Einlaufdicke hem erfasst wird. Das gezeigte Einlaufdickenkompensationsmodul 22 weist ein Bandverfolgungsmodul 23 auf. Mit Hilfe des Bandverfolgungsmoduls 23 wird die gemessene Einlaufdicke hem bis in das Walzgerüst 1 wegverfolgt. Unter Zuhilfenahme der Einlaufgeschwindigkeit vSE wird eine wegverfolgte Einlaufdicke hev ermittelt. Das Bandverfolgungsmodul 23 arbeitet vorzugsweise modellbasiert. FIG 4 shows an example of the use of an inlet thickness compensation in connection with the method according to the invention. A thickness measuring sensor 17 is provided in front of the roll stand 1, with the aid of which a measured inlet thickness h em is recorded. The shown inlet thickness compensation module 22 has a strip tracking module 23. With the aid of the strip tracking module 23, the measured inlet thickness h em is tracked down to the roll stand 1. With the aid of the inlet speed v SE , a tracked inlet thickness h ev is determined. The tape tracking module 23 is preferably model-based.

Im gezeigten Beispiel weist das Einlaufdickenkompensationsmodul 22 mindestens ein Kompensationsmodell 24, 25, 26 auf, mit Hilfe dessen in Abhängigkeit von der verwendeten Messgröße mE bzw. des entsprechenden Messwerts der Einfluss der Einlaufdicke he auf die Auslaufdicke ha ermittelt wird. Da die Güte der Einlaufdickenkompensation wesentlich von dem oder den verwendeten Kompensationsmodellen 24, 25, 26 abhängt, sind im gezeigten Beispiel ein Kompensationsmodell 24 für die Verwendung der Auslaufdicke ha als Messgröße mE, ein Kompensationsmodell 25 für die Verwendung der Walzkraft Fw als Messgröße mE und ein Kompensationsmodell 24 für die Verwendung der Zugkraft Fz als Messgröße mE vorgesehen. Das vom Einlaufdickenkompensationsmodul 22 gegebene Kompensationssignal wird mit dem entsprechenden Messwert der Messgröße mE zur Bildung einer kompensierten Messgröße mK verknüpft.In the example shown, the inlet thickness compensation module 22 has at least one compensation model 24, 25, 26 with the aid of which the influence of the inlet thickness h e on the outlet thickness h a is determined as a function of the measured variable m E used or the corresponding measured value. Since the quality of the inlet thickness compensation depends essentially on the compensation model (s) 24, 25, 26 used, in the example shown there are a compensation model 24 for using the outlet thickness h a as the measured variable m E , and a compensation model 25 for the use of the rolling force F w as the measured variable m E and a compensation model 24 for the use of the tensile force F z as measured variable m E is provided. The compensation signal given by the inlet thickness compensation module 22 is linked to the corresponding measured value of the measured variable m E to form a compensated measured variable m K.

Ein wesentlicher der Erfindung zugrunde liegender Gedanke lässt sich wie folgt zusammenfassen:

  • Die Erfindung betrifft ein Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten auf die Auslaufdicke ha eines Walzgutes 10, welches ein Walzgerüst 1 durchläuft, wobei die Walzenexzentrizitäten unter Verwendung eines Prozessmodells 27 identifiziert werden und bei der Ermittlung eines Korrektursignals für mindestens ein Stellglied, vorzugsweise ein Stellglied für die Anstellposition, des Walzgerüstes 1 berücksichtigt werden, wobei zur Identifizierung der Walzenexzentrizitäten dem Prozessmodell 27 die gemessene Zugkraft Fz im Walzgut 10 zugeführt wird. Erfindungsgemäß werden Zugkraftschwankungen zielgerichtet zur Reduktion der Auswirkungen periodischer Walzenexzentrizitäten auf das Walzgut 10 zurückgeführt, wohingegen alle anderen Schwankungsquellen ausgeschlossen werden. Das auf dem Beobachter-Prinzip basierende Prozessmodell 27 des Walzspaltes und der Walzen 2 bis 5 erzeugt, z.B. unter Zuhilfenahme der gemessenen Zugkraft Fz, der Walzenanstellung s und der Walzengeschwindigkeit bzw. der Walzendrehzahl, zuverlässige Daten über die Walzenexzentrizitäten. Erfindungsgemäß werden vorgegebene Abmessungen des Walzguts 10 gleichmäßiger als bisher erreicht. Zugmessvorrichtungen 8 arbeiten im Vergleich zu Messvorrichtungen für die Dicke he bzw. ha des Walzgutes 10 und im Vergleich zu Messvorrichtungen für die Walzkraft Fw sehr genau und dynamisch. Vorzugsweise werden die in der Zugkraftschwankung enthaltenen und von der Walzenexzentrizität verursachten periodischen Schwingungsanteile gezielt zur Reduktion der exzentrizitätsbedingten, ungewünschten Dickenveränderung im Walzgut 10 verwendet. Auf Schwankungsanteile mit anderen Frequenzen ungleich der Exzentrizitätsfrequenzen wird nicht reagiert.
An essential idea on which the invention is based can be summarized as follows:
  • The invention relates to a method for suppressing the influence of roll eccentricities on the outlet thickness h a of a rolling stock 10 which passes through a roll stand 1, the roll eccentricities being identified using a process model 27 and when determining a correction signal for at least one actuator, preferably one actuator for the setting position of the roll stand 1, the measured tensile force F z in the rolling stock 10 being fed to the process model 27 to identify the roll eccentricities. According to the invention, fluctuations in the tensile force are returned in a targeted manner in order to reduce the effects of periodic roll eccentricities on the rolling stock 10, whereas all other sources of fluctuation are excluded. The process model 27 of the roll gap and rolls 2 to 5 based on the observer principle generates reliable data on the roll eccentricities, for example with the aid of the measured tensile force F z , the roll pitch s and the roll speed or the roll speed. According to the invention, predetermined dimensions of the rolling stock 10 are achieved more evenly than before. Tension measuring devices 8 work very precisely and dynamically in comparison to measuring devices for the thickness h e or h a of the rolling stock 10 and in comparison to measuring devices for the rolling force F w . Preferably, the periodic vibration components contained in the tensile force fluctuation and caused by the roll eccentricity are targeted to reduce the undesired change in thickness caused by the eccentricity used in rolling stock 10. There is no reaction to fluctuations with other frequencies unequal to the eccentricity frequencies.

Von der Einlaufdicke herrührende periodische Dickenschwankungen mit Frequenzen, die nahezu gleich den Exzentrizitätsfrequenzen sind, können die Identifikation der Walzenexzentrizitäten stören. Deshalb kann eine Einlaufdickenkompensation vorgesehen werden, welche den Einfluss der Einlaufdickenschwankungen auf die verwendete Messgröße mE ermittelt und kompensiert und derart diese Art von Störung beseitigt.Periodic thickness fluctuations resulting from the inlet thickness with frequencies that are almost equal to the eccentricity frequencies can interfere with the identification of the roll eccentricities. An inlet thickness compensation can therefore be provided, which determines and compensates for the influence of the inlet thickness fluctuations on the measured variable m E used and thus eliminates this type of disturbance.

Die in bekannten Regelkonzepten einer beispielsweise als Tandemstraße ausgebildeten Walzstrasse vorhandenen Zugregler können auf Grund ihrer eingeschränkten Dynamik nur bei geringer Walzgeschwindigkeit und nur an den vorderen Gerüsten der Tandemstrasse einen Teil der von den Exzentrizitäten verursachten Auswirkungen auf die Dicke vermeiden. Eine erfindungsgemäß ausgebildete Regelvorrichtung 18 zur Unterdrückung des Einflusses von Walzenexzentrizitäten, der die am Walzgut 10 gemessene Zugkraft Fz zugeführt wird, kann an einem Walzgerüst 1 die Kompensation der Exzentrizitätsfrequenzen übernehmen und somit konventionelle Zugregler komplett entlasten.The tension regulators present in known control concepts of a rolling mill designed as a tandem mill, for example, can avoid part of the effects on the thickness caused by the eccentricities due to their limited dynamics only at low rolling speeds and only on the front stands of the tandem mill. A control device 18 designed according to the invention for suppressing the influence of roll eccentricities, to which the tensile force F z measured on the rolling stock 10 is supplied, can compensate for the eccentricity frequencies on a roll stand 1 and thus completely relieve conventional tension regulators.

Claims (5)

  1. Method for suppressing the influence of roll eccentricities on the run-out thickness (ha) of a rolling stock item (10), which passes through a rolling stand (1), wherein the roll eccentricities are identified by the use of a process model (27) and are taken into account in the determination of a correction signal for at least one control device (19) for a final control element of the rolling stand (1), wherein measured values (mE) for the tensile force (Fz) prevailing in the rolling stock item (10) are fed to said at least one process model (27) to identify the roll eccentricities, wherein a run-in thickness compensation is effected on the measured values (mE) used to identify the roll eccentricities, wherein the process model (27) describes at least the rolling nip and the rolls of the rolling stand (1).
  2. Method according to claim 1, wherein the tensile force (Fz) is measured upstream or downstream of the rolling stand (1).
  3. Method according to claim 1 or 2,
    - wherein a target value (s*) for the screwdown position (s) is fed to a real process (29), such as e.g. takes place in the rolling stand (1),
    - wherein the target value (s*) for the screwdown position is also fed to the model (27),
    - wherein the model (27) determines an identified run-out thickness (hai) by taking account of the identified roll eccentricities,
    - wherein the measured values (mE) for the tensile force (Fz) are fed to a module (21) which takes inverse account of the transfer behaviour of the tensile force (Fz) prevailing in the rolling stock item (10) as a function of the screwdown position (s), so that a run-out thickness (ha) of the rolling stock item (10) is determined on the basis of the captured tensile force (Fz),
    - wherein an observer error (e) is determined on the basis of the difference between the identified run-out thickness (hai) determined on the basis of the model (27) and the run-out thickness (ha) determined on the basis of the captured tensile force (FZ),
    - wherein the observer error (e) is fed to the model (27),
    - wherein the roll eccentricities are corrected on the basis of the observer error (e), until the observer error (e) is sufficiently small or zero.
  4. Method according to claim 3, wherein the dependency on the strip speed (vB) is taken into account in an adaptive manner in the determination of the determined run-out thickness (ha).
  5. Computer program product encompassing program code means suitable for carrying out all the steps of a method according to one of the preceding claims whenever the computer program product is executed on a data processing system.
EP07703793.5A 2006-02-22 2007-01-11 Method for suppressing the influence of roll eccentricities Active EP1986795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07703793T PL1986795T3 (en) 2006-02-22 2007-01-11 Method for suppressing the influence of roll eccentricities

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006008574A DE102006008574A1 (en) 2006-02-22 2006-02-22 Reducing the influence of roller excentricity on the thickness of a rolled material, comprises identifying the roller excentricity and determining a correction signal for a control unit
PCT/EP2007/050248 WO2007096204A1 (en) 2006-02-22 2007-01-11 Method for suppressing the influence of roll eccentricities

Publications (3)

Publication Number Publication Date
EP1986795A1 EP1986795A1 (en) 2008-11-05
EP1986795B1 EP1986795B1 (en) 2013-09-18
EP1986795B2 true EP1986795B2 (en) 2020-08-19

Family

ID=37886246

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07703793.5A Active EP1986795B2 (en) 2006-02-22 2007-01-11 Method for suppressing the influence of roll eccentricities

Country Status (8)

Country Link
US (1) US8386066B2 (en)
EP (1) EP1986795B2 (en)
CN (1) CN101443136B (en)
DE (1) DE102006008574A1 (en)
PL (1) PL1986795T3 (en)
RU (1) RU2429925C2 (en)
UA (1) UA95794C2 (en)
WO (1) WO2007096204A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007050911A1 (en) * 2007-10-23 2009-04-30 Eras Entwicklung Und Realisation Adaptiver Systeme Gmbh Method and apparatus for suppressing the chattering of work rolls of a rolling stand
AT507087B1 (en) * 2008-12-05 2010-02-15 Siemens Vai Metals Tech Gmbh METHOD AND DEVICE FOR THE SEMI-ACTIVE REDUCTION OF PRESSURE VIBRATIONS IN A HYDRAULIC SYSTEM
CN101927271B (en) * 2010-08-23 2012-07-04 中冶南方工程技术有限公司 Roll eccentricity compensation method based on on-line recursive parameter estimation and equipment thereof
CN101927272B (en) * 2010-08-23 2012-09-05 中冶南方工程技术有限公司 Online recursive parameter estimation-based roll eccentricity compensation equipment
DE102012200936A1 (en) 2012-01-23 2013-07-25 Converteam Gmbh Method for operating rolling mill e.g. cold-rolling mill, involves determining error value for specific roller from discrete values having rotational frequency periodicity of thickness variation of rolled material
US20180161839A1 (en) * 2016-12-09 2018-06-14 Honeywell International Inc. Metal thickness control model based inferential sensor
EP3974073B1 (en) * 2020-09-28 2023-07-19 Primetals Technologies Germany GmbH Rolling taking into account frequency behaviour

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE592289A (en) * 1959-06-27
GB1204335A (en) * 1967-11-21 1970-09-03 Davy & United Eng Co Ltd Rolling mills
US4126027A (en) * 1977-06-03 1978-11-21 Westinghouse Electric Corp. Method and apparatus for eccentricity correction in a rolling mill
JPS5666315A (en) * 1979-10-31 1981-06-04 Sumitomo Metal Ind Ltd Controlling method for sheet thickness in strip mill
ATE46464T1 (en) * 1983-09-08 1989-10-15 Lysaght Australia Ltd STRIP THICKNESS CONTROLLER FOR A ROLLING MILL.
EP0170016B1 (en) * 1984-07-05 1988-12-07 Siemens Aktiengesellschaft Method to compensate the influence of roll excentricities
JPS6213209A (en) * 1985-07-09 1987-01-22 Mitsubishi Electric Corp Elongation control device
US4656854A (en) * 1985-09-06 1987-04-14 Aluminum Company Of America Rolling mill eccentricity compensation using measurement of sheet tension
DE3935434A1 (en) * 1989-10-25 1991-05-02 Schloemann Siemag Ag METHOD FOR COMPENSATING DISTURBANCES CAUSED BY ROLLER Eccentricities
JPH0732926B2 (en) * 1990-11-30 1995-04-12 住友軽金属工業株式会社 Plate thickness control method in rolling mill
JPH05200420A (en) * 1992-01-28 1993-08-10 Toshiba Corp Plate thickness controller for rolling mat roll
DE4231615A1 (en) * 1992-09-22 1994-03-24 Siemens Ag Method for suppressing the influence of roll eccentricities on the control of the rolling stock thickness in a roll stand
DE59501395D1 (en) * 1994-03-29 1998-03-12 Siemens Ag Method for suppressing the influence of roll eccentricities on the control of the rolling stock thickness in a roll stand
NL9400674A (en) * 1994-04-27 1995-12-01 Hoogovens Groep Bv Device and method for manufacturing DKG strip steel.
DE59501064D1 (en) * 1994-07-28 1998-01-15 Siemens Ag Method for suppressing the influence of roller eccentricities
DE19511801A1 (en) * 1995-03-30 1996-10-02 Schloemann Siemag Ag Method and device for thickness control in film rolling
JP3405499B2 (en) * 1996-03-18 2003-05-12 川崎製鉄株式会社 Thickness and tension control method in tandem rolling mill
DE19618712B4 (en) * 1996-05-09 2005-07-07 Siemens Ag Control method for a roll stand for rolling a strip
DE19642918C2 (en) * 1996-10-17 2003-04-24 Siemens Ag System for calculating the final thickness profile of a rolled strip
US5809817A (en) * 1997-03-11 1998-09-22 Danieli United, A Division Of Danieli Corporation Corporation Optimum strip tension control system for rolling mills
DE19839286B4 (en) 1998-08-28 2004-12-02 Siemens Ag Method and device for measuring the tension distribution in a metal strip
JP2002018507A (en) * 2000-07-06 2002-01-22 Mitsubishi Electric Corp Method for controlling eccentricity of roll in rolling plant
FR2846579B1 (en) * 2002-11-05 2006-05-05 Vai Clecim METHOD FOR EXTENDING THE RANGE OF PRODUCTION OF A PLANT ROLLING PLANT FOR METAL PRODUCTS AND INSTALLATION FOR CARRYING OUT THE METHOD
DE102004039829B3 (en) * 2004-08-17 2006-03-09 Siemens Ag Method for compensation of periodic disturbances
US7849722B2 (en) * 2006-03-08 2010-12-14 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
DE102007003243A1 (en) * 2007-01-23 2008-07-31 Siemens Ag Control arrangement for a roll stand and herewith corresponding objects
DE102007050891A1 (en) * 2007-10-24 2009-04-30 Siemens Ag Adaptation of a controller in a rolling mill based on the scattering of an actual size of a rolling stock
DE102008014304A1 (en) * 2008-03-14 2009-09-24 Siemens Aktiengesellschaft Operating procedure for a cold rolling mill with improved dynamics

Also Published As

Publication number Publication date
DE102006008574A1 (en) 2007-08-30
RU2008137605A (en) 2010-03-27
PL1986795T3 (en) 2014-03-31
EP1986795A1 (en) 2008-11-05
UA95794C2 (en) 2011-09-12
CN101443136A (en) 2009-05-27
US20090210085A1 (en) 2009-08-20
RU2429925C2 (en) 2011-09-27
WO2007096204A1 (en) 2007-08-30
EP1986795B1 (en) 2013-09-18
US8386066B2 (en) 2013-02-26
CN101443136B (en) 2012-11-14

Similar Documents

Publication Publication Date Title
EP1986795B2 (en) Method for suppressing the influence of roll eccentricities
EP2548665B1 (en) Method for determining the wear on a roller dependent on relative movement
DE10065351A1 (en) Compensation system for periodic variations in strength
DE3413269C2 (en)
EP2252416B1 (en) Regulation method for a cold-rolling train with complete mass flow regulation
EP2259882B1 (en) Operating method for a multi-stand rolling mill train comprising a strip thickness detection means that utilizes the continuity equation
DE69818236T2 (en) METHOD AND DEVICE FOR CONTROLLING THE THICKNESS OF A TAPE IN A TWO-ROLL CASTING DEVICE
EP2603337A1 (en) Method for producing rolling stock by means of a combined continuous casting and rolling system, control device for a combined continuous casting and rolling system, and combined continuous casting and rolling system
EP1488863B1 (en) System and method for optimizing the control of the quality of thickness in a rolling process
EP1711283B1 (en) Control method and control device for a roll stand
EP0173045B1 (en) Flatness control in strip rolling stands
EP3437748B1 (en) Mass flow rate regulation in rolling mill plants
EP2195126B1 (en) Rolling device and method for the operation thereof
DE69913538T2 (en) Method and device for flatness control
EP2268427B1 (en) Operating method for a cold-rolling line with improved dynamics
EP2258492A1 (en) Method for producing a milling product with a mill train, control and/or regulating device for a mill assembly for producing milled products, mill assembly for producing milled products, machine readable program code and storage medium
EP2828012A1 (en) Method for processing rolling stock and rolling mill
DE2836595A1 (en) METHOD FOR CONTROLLING THE THICKNESS OF A FLAT PRODUCT DURING ROLLING AND DEVICE FOR CARRYING OUT THE METHOD
DE69917169T2 (en) Method and device for active compensation of periodic disturbances during hot or cold rolling
EP1491268B1 (en) Method for cold rolling metal strip
DE102005053489C5 (en) Regulatory system and regulatory procedure for an industrial facility
DE4411313C2 (en) Process for filtering out the influence of eccentricity during rolling
WO2007022841A1 (en) Method for thickness regulation during a hot-rolling process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090924

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 632456

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012306

Country of ref document: DE

Effective date: 20131114

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130918

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140120

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SMS SIEMAG AG

Effective date: 20140618

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007012306

Country of ref document: DE

Effective date: 20140618

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20131220

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

RIN2 Information on inventor provided after grant (corrected)

Inventor name: HOFBAUER, JOSEF

Inventor name: NIEMANN, MARTIN

Inventor name: WEISSHAAR, BERNHARD

Inventor name: WOHLD, DIETRICH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 632456

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007012306

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AG, 80333 MUENCHEN, DE

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH

R26 Opposition filed (corrected)

Opponent name: SMS GROUP GMBH

Effective date: 20140618

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Effective date: 20151105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070111

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160901 AND 20160907

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170120

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170119

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180111

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007012306

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20200819

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502007012306

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220107

Year of fee payment: 16

Ref country code: SE

Payment date: 20220119

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230120

Year of fee payment: 17

Ref country code: DE

Payment date: 20230123

Year of fee payment: 17

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230112