EP1986795B1 - Method for suppressing the influence of roll eccentricities - Google Patents

Method for suppressing the influence of roll eccentricities Download PDF

Info

Publication number
EP1986795B1
EP1986795B1 EP07703793.5A EP07703793A EP1986795B1 EP 1986795 B1 EP1986795 B1 EP 1986795B1 EP 07703793 A EP07703793 A EP 07703793A EP 1986795 B1 EP1986795 B1 EP 1986795B1
Authority
EP
European Patent Office
Prior art keywords
rolling
roll
tensile force
run
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07703793.5A
Other languages
German (de)
French (fr)
Other versions
EP1986795B2 (en
EP1986795A1 (en
Inventor
Josef Hofbauer
Martin Niemann
Bernhard Weisshaar
Dietrich Wohld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37886246&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1986795(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL07703793T priority Critical patent/PL1986795T3/en
Publication of EP1986795A1 publication Critical patent/EP1986795A1/en
Publication of EP1986795B1 publication Critical patent/EP1986795B1/en
Application granted granted Critical
Publication of EP1986795B2 publication Critical patent/EP1986795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/66Roll eccentricity compensation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/02Tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/032Rolls for sheets or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/06Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring tension or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/08Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll-force
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/45Scale remover or preventor
    • Y10T29/4517Rolling deformation or deflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49462Gear making
    • Y10T29/49467Gear shaping
    • Y10T29/49471Roll forming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49481Wheel making
    • Y10T29/49492Land wheel
    • Y10T29/49524Rim making
    • Y10T29/49531Roller forming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5197Multiple stations working strip material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5198Continuous strip

Definitions

  • the invention relates to a method for suppressing the influence of roll eccentricities on the outlet thickness of a rolling stock which passes through a roll stand, wherein the roll eccentricities are identified using a process model and taken into account in determining a correction signal for at least one control device for an actuator of the rolling stand.
  • the frequency spectrum of the eccentricities and the disturbances they cause in the band essentially comprises the fundamental frequencies of the upper and lower support rollers; but there are also higher harmonic harmonics, but often occur only with reduced amplitudes in appearance. Due to slightly different diameters and speeds of the upper and lower support roller, the frequencies assigned to the support rollers may differ from one another.
  • the EP 0 170 016 B1 describes a method of the type mentioned above, wherein the influence of roll eccentricities in the position or thickness control of rolling stands is compensated, wherein the roll eccentricities are identified on the basis of a measurement of the rolling force in the roll stand.
  • oil pressure sensors are usually used, the measured values are significantly distorted by friction influences. This requires that no sufficient Reliable and effective suppression of the influence of roller eccentricities can be done with the help of the measuring instruments. More reliable and accurate measuring methods for the rolling force are too expensive and too expensive.
  • JP 04 200 915 A Of the JP 04 200 915 A a similar disclosure can be found.
  • the object of the invention is to provide a method for suppressing the influence of roller eccentricities, which avoids the known from the prior art and in particular the disadvantages described above.
  • the object is achieved by a method for suppressing the influence of Walzenexzentrizticianen on the outlet thickness of a rolling stock having the features of claim 1.
  • Advantageous embodiments of this method are the subject of the dependent claims 2 to 5.
  • FIG. 1 shows schematically and by way of example a rolling mill 1 of a rolling train for rolling a rolled material 10.
  • the rolling mill for rolling the rolling stock 10 has one or more such rolling stands 1 on.
  • a further roll stand, a reel device, a cooling device and / or another device, for example for thermal and / or mechanical Walzgutbeein kgung and / or means for transporting the rolling stock 10 may be provided.
  • the rolling stock 10 is preferably a band, a profile, a wire or a slab.
  • the rolling stock 10 may be a metal strip, for example a steel strip, a non-ferrous metal strip or an aluminum strip.
  • a rolling stand 1 has at least one upper support roller 4 with a radius R o and at least one lower support roller 5 with a radius R u .
  • the rolling stand 1 shown has at least one upper work roll 2 and at least one lower work roll 3, wherein the diameter of the work rolls 2 and 3 is usually smaller than the diameter of the support rollers 4 and 5.
  • an actuatable via a control valve 6 hydraulic adjusting device 7 is provided.
  • an electromechanical adjusting system can also be provided.
  • the adjusting device 7 and the Anstellsystem not shown serve to adjust the roller adjustment s.
  • the hydraulic adjustment 7 is supported on the scaffolding frame.
  • the elastic scaffolding is symbolically represented by a spring with the spring constant C G.
  • the rolling stand 1 is traversed by the rolling stock 10, wherein the thickness of the rolling stock 10 is reduced when passing through the roll gap with the aid of the work rolls 2, 3 of the inlet thickness h e to the outlet thickness h a .
  • the rolling stock 10, which is assigned an equivalent material spring with the spring constant C M in the roll gap, enters the roll gap at the entry speed v SE and leaves the roll gap at the exit speed v SL .
  • the roll eccentricities of the upper back-up roll 4 and the lower back-up roll 5, respectively, may be due to uneven roll wear, deformation due to thermal stresses, and / or the deviations of the geometric cylinder axis of the rolls from the operationally-setting rotation axes.
  • the roll eccentricities are denoted by ⁇ R o or ⁇ R u , ie deviations from the ideal back-up roll radii R o or R u .
  • the measurement of the rolling speed n o or n u of the upper and lower support rollers 4 and 5 is used to determine the fundamental vibration of Walzenexzentrizticianen. Under the simplifying condition that the upper and lower rollers of the roll stand 1 rotate at the same speed, it is sufficient to detect the speed of only one driven roller, eg the lower work roll 3, by means of a tachometer 11.
  • the support rollers 4 and 5, the eccentricity-bearing rollers so in at least one conversion unit 14 and 12, the measured speed of the work roll 2 and 3 on the ratio of the diameter of the Work roll 2 or 3 to the diameter of the support roller 4 and 5 in the speed n o or n u of the support roller 4 and 5 converted. Since in general the speeds of the upper rollers 4, 2 and the lower rollers 5, 3 are different due to slightly different diameters, in the embodiment shown, both a tachometer 13 above the rolling stock 10 and a tachometer 11 below the rolling stock 10, respectively subordinate conversion unit 14 or 12 for detecting the rotational speed n o or n u provided.
  • the roll adjustment s is measured with a position sensor 9 on the adjusting device 7 or on the positioning system.
  • the roller adjustment s is fed to a control device 18.
  • the control device 18 is supplied with at least one roller speed n o or n u .
  • a tension measuring device 8 for measuring the tensile force F z prevailing in the rolling stock 10 is provided in front of the rolling stand 1.
  • the tension measuring device 8 can, as in FIG. 1 indicated, have a measuring roller for tension measurement. This measuring roller may preferably be formed segmented.
  • the tension measuring device 8 can also be designed as a contact-free tension measuring device.
  • a corresponding device for non-contact measurement of the tensile force F z in a rolling stock 10 designed as a metal strip is shown for example in US Pat DE 198 39 286 B4 described.
  • the control device 18 has a process model 27.
  • the process model 27 is based on an observer and models the behavior of the roll gap and the rolls 2 to 5.
  • the process model 27 is frequency guided by means of the rolling speed, ie, for example, using the determined rolling speeds n o or n u .
  • the time course of the disturbances to be modeled is periodic, but not purely sinusoidal. This means that the vibration to be modeled consists of a fundamental vibration and several harmonics.
  • sinusoidal correction target values assigned to the eccentricity frequencies are calculated for an actuator of the roll stand 1 with the appropriate phase position and amplitude for the position of the roll gap control.
  • the correction setpoint values can be given via a control device 19 and optionally via a control valve 6 to the adjusting device 7 or to a positioning system.
  • the required strip thickness ie the outlet thickness h a of the rolling stock 10
  • Thickness deviations caused by the roll eccentricity ⁇ R o or ⁇ R u can thus be avoided.
  • the thickness of the rolling stock 10, for example the outlet thickness h a can be measured by means of a thickness gauge 16.
  • FIG. 2 shows schematically and exemplarily the structure used for the identification of roll eccentricities according to the observer principle.
  • a desired value s * of the setting position both a real process 29, as it expires, for example, in one of a rolling stock 10 continuous rolling stand 1 (see FIG. 1 ), as well as an observer module 30 supplied.
  • the observer module 30 has the process model 27, by means of which roll eccentricities can be identified and with the aid of which the identified roll eccentricities ⁇ R i can be provided for compensation purposes.
  • an identified run-out thickness h ai can preferably be determined, which can be linked to the measured tensile force F z to determine an observer error e.
  • the measured tensile force F z is first fed to a module 21 in the measuring channel, which takes into account the transmission behavior from the outlet thickness to the strip tension inverse. With the aid of the module 21, the measured value of the tensile force F z is thus converted to the outlet thickness and compared with the identified outlet thickness h ai determined with the aid of the process model 27. The difference e resulting from this comparison constitutes the observer error e.
  • the states of the process model 27 are corrected, taking account of the observer error e, until the measurement and the model at least largely coincide and the observer error e is sufficiently low or zero. Then, the roll eccentricities ⁇ R i identified in the process model 27 also agree with those actually in the roll stand 1 (see FIG FIG. 1 ) match existing roll eccentricities.
  • the identified by the observer module 30 identified Walzenexzentrizmaschineen .DELTA.R i allow extremely reliable and accurate eccentricity compensation.
  • FIG. 3 shows by way of example how the transmission behavior from the setting position to the strip tension can be taken into account when using the tensile force F z for identifying and suppressing roll eccentricities.
  • a module 21 is preferably provided in the measuring channel, which takes into account the transmission behavior from the outlet thickness to the strip tension inverse.
  • the measured values of the tensile force F z are linked to the corresponding transfer function H yak . This can be done, for example, by multiplication with a factor which corresponds to the inverse transfer function H zug .
  • an adaptation circuit can be provided which takes into account the dependence on the rolling stock speed V B.
  • the process model 27 is preferably the behavior of the process 29 of the setting position s or from the setpoint s * the setting position to the outlet thickness h a after. If, alternatively or in addition to the tensile force F z, the rolling force F w is to be taken into account in the process model 27, then it is expedient to provide a module 28 in the measuring channel of the rolling force F w , which has a suitable transfer characteristic.
  • FIG. 4 shows an example of the use of an inlet thickness compensation in connection with the method according to the invention.
  • a thickness gauge 17 is provided in front of the roll stand 1, by means of which a measured inlet thickness h em is detected.
  • the shown inlet thickness compensation module 22 has a tape tracking module 23.
  • the tape tracking module 23 By means of the tape tracking module 23, the measured inlet thickness h em is traced to the mill stand 1. With the aid of the inlet velocity v SE , a tracked inlet thickness h ev is determined.
  • the tape tracking module 23 preferably operates model-based.
  • the inlet thickness compensation module 22 has at least one compensation model 24, 25, 26 with the aid of which the influence of the inlet thickness h e on the outlet thickness h a is determined as a function of the measured variable m E or the corresponding measured value. Since the quality of the inlet thickness compensation depends essentially on the compensation model (s) 24, 25, 26 used, in the example shown a compensation model 24 for the use of the outlet thickness h a as the measured variable m E , a compensation model 25 for the use of the rolling force F w as the measured variable m E and a compensation model 24 for the use of the tensile force F z as the measured variable m E provided.
  • the compensation signal given by the inlet thickness compensation module 22 is included in FIG the corresponding measured value of the measured variable m E linked to form a compensated measured variable m K.
  • Periodic thickness variations resulting from the inlet thickness with frequencies nearly equal to the eccentricity frequencies can disturb the identification of the roll eccentricities. Therefore, it is possible to provide an inlet thickness compensation which determines and compensates the influence of the inlet thickness fluctuations on the measured variable m E used and thus eliminates this type of disturbance.

Description

Die Erfindung betrifft ein Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten auf die Auslaufdicke eines Walzgutes, welches ein Walzgerüst durchläuft, wobei die Walzenexzentrizitäten unter Verwendung eines Prozessmodells identifiziert werden und bei der Ermittlung eines Korrektursignals für mindestens eine Steuervorrichtung für ein Stellglied des Walzgerüstes berücksichtigt werden.The invention relates to a method for suppressing the influence of roll eccentricities on the outlet thickness of a rolling stock which passes through a roll stand, wherein the roll eccentricities are identified using a process model and taken into account in determining a correction signal for at least one control device for an actuator of the rolling stand.

In Walzgerüsten finden sich häufig beispielsweise durch ungenau gearbeitete Stützwalzen oder durch nicht exakte Lagerung der Stützwalzen bedingte Exzentrizitäten der Walzen, die die Qualität des gewalzten Bandes beeinträchtigen, wobei sich je nach Steifigkeit des Walzgerüstes und des Walzgutes die Walzenexzentrizitäten mit der Drehzahl der exzentrizitätsbehafteten Walzen, in der Regel der Stützwalzen, in dem Band abbilden. Das Frequenzspektrum der Exzentrizitäten und der von ihnen hervorgerufenen Störungen im Band beinhaltet im Wesentlichen die Grundfrequenzen der oberen und unteren Stützwalzen; es sind aber auch höhere harmonische Oberschwingungen vorhanden, die allerdings häufig nur mit verminderten Amplituden in Erscheinung treten. Aufgrund geringfügig unterschiedlicher Durchmesser und Drehzahlen der oberen und unteren Stützwalze können die den Stützwalzen zugeordneten Frequenzen voneinander abweichen.In rolling stands are often found, for example, by inaccurately machined support rollers or by non-exact storage of the support rollers conditional eccentricities affecting the quality of the rolled strip, depending on the rigidity of the rolling mill and the rolling Walzenxzentrizitäten with the speed of the eccentric rollers, in the rule of the backup rolls, in the tape map. The frequency spectrum of the eccentricities and the disturbances they cause in the band essentially comprises the fundamental frequencies of the upper and lower support rollers; but there are also higher harmonic harmonics, but often occur only with reduced amplitudes in appearance. Due to slightly different diameters and speeds of the upper and lower support roller, the frequencies assigned to the support rollers may differ from one another.

Die EP 0 170 016 B1 beschreibt ein Verfahren der eingangs genannten Art, wobei der Einfluss von Walzenexzentrizitäten bei der Position- oder Dickenregelung von Walzgerüsten kompensiert wird, wobei die Walzenexzentrizitäten auf Grundlage einer Messung der Walzkraft im Walzgerüst identifiziert werden. Zur Messung der Walzkraft werden in der Regel Öldruckgeber verwendet, deren Messwerte durch Reibungseinflüsse erheblich verfälscht werden. Dies bedingt, dass keine hinreichend zu verlässige und effektive Unterdrückung des Einflusses von Walzenexzentrizitäten mit Hilfe der Messgeräte erfolgen kann. Zuverlässigere und genauere Messmethoden für die Walzkraft sind zu teuer und zu aufwendig.The EP 0 170 016 B1 describes a method of the type mentioned above, wherein the influence of roll eccentricities in the position or thickness control of rolling stands is compensated, wherein the roll eccentricities are identified on the basis of a measurement of the rolling force in the roll stand. To measure the rolling force oil pressure sensors are usually used, the measured values are significantly distorted by friction influences. This requires that no sufficient Reliable and effective suppression of the influence of roller eccentricities can be done with the help of the measuring instruments. More reliable and accurate measuring methods for the rolling force are too expensive and too expensive.

Aus der EP 0 698 427 B1 ist es bekannt, bei einem Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten die Auslaufdicke des Walzgutes anstelle der Walzkraft als Messwert zu verwenden. Dickenmessgeber sind jedoch sehr teuer und daher bei mehrgerüstigen Walzstrassen in der Regel nur vor und hinter dem ersten und nach dem letzten Walzgerüst vorgesehen.From the EP 0 698 427 B1 It is known to use in a method for suppressing the influence of Walzenexzentrizitäten the outlet thickness of the rolling stock instead of the rolling force as a measured value. Thickness encoders, however, are very expensive and therefore generally only provided in front of and behind the first and after the last rolling mill in multi-stand rolling trains.

Aus der US 4,656,854 A ist ein Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten auf die Auslaufdicke eines Walzgutes bekannt, wobei das Walzgut ein Walzgerüst durchläuft. Die Walzenexzentrizitäten werden unter Verwendung eines Prozessmodells identifiziert und bei der Ermittlung eines Korrektursignals für eine Steuereinrichtung für ein Stellglied des Walzgerüsts berücksichtigt. Zur Identifizierung der Walzenexzentrizitäten werden dem Prozessmodell Messwerte der im Walzgut herrschenden Zugkraft zugeführt.From the US 4,656,854 A is a method for suppressing the influence of Walzenexzentrizitäten on the outlet thickness of a rolling stock is known, wherein the rolling stock passes through a roll stand. The roll eccentricities are identified using a process model and taken into account in the determination of a correction signal for a control device for an actuator of the mill stand. To identify the roll eccentricities, measured values of the tensile force prevailing in the rolling stock are fed to the process model.

Der JP 04 200 915 A ist ein ähnlicher Offenbarungsgehalt zu entnehmen.Of the JP 04 200 915 A a similar disclosure can be found.

Aufgabe der Erfindung ist es, ein Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten bereitzustellen, welches die aus dem Stand der Technik bekannten und insbesondere die vorangehend beschriebenen Nachteile vermeidet.The object of the invention is to provide a method for suppressing the influence of roller eccentricities, which avoids the known from the prior art and in particular the disadvantages described above.

Die Aufgabe wird durch ein Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten auf die Auslaufdicke eines Walzgutes mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen dieses Verfahrens sind Gegenstand der abhängigen Ansprüche 2 bis 5.The object is achieved by a method for suppressing the influence of Walzenexzentrizitäten on the outlet thickness of a rolling stock having the features of claim 1. Advantageous embodiments of this method are the subject of the dependent claims 2 to 5.

Die der Erfindung zugrunde liegende Aufgabe wird auch gelöst durch ein Computerprogrammprodukt gemäß Patentanspruch 6.The object underlying the invention is also achieved by a computer program product according to claim 6.

Nachfolgend werden Vorteile und Einzelheiten der Erfindung beispielhaft und mit Bezug auf die Zeichnungen beschrieben. Es zeigen:

FIG 1
ein Walzgerüst in Verbindung mit einer Regelvorrichtung mit einem Prozessmodell,
FIG 2
eine schematische Darstellung des zum Identifizieren der Walzenexzentrizitäten verwendeten Beobachter-Prinzips,
FIG 3
die Ankopplung der Zugmessung an das Prozessmodell,
FIG 4
eine Einlaufdickenkompensation für die verwendeten Messwerte.
Hereinafter, advantages and details of the invention will be described by way of example and with reference to the drawings. Show it:
FIG. 1
a rolling stand in conjunction with a control device with a process model,
FIG. 2
a schematic representation of the observer principle used to identify the roller eccentricities,
FIG. 3
the coupling of the tension measurement to the process model,
FIG. 4
an inlet thickness compensation for the measured values used.

FIG 1 zeigt schematisch und beispielhaft ein Walzgerüst 1 einer Walzstrasse zum Walzen eines Walzgutes 10. Die Walzstrasse zum Walzen des Walzgutes 10 weist ein oder mehrere derartige Walzgerüste 1 auf. Vor oder nach dem Walzgerüst 1 kann ein weiteres Walzgerüst, eine Haspelvorrichtung, eine Kühlvorrichtung und/oder eine andere Vorrichtung, z.B. zur thermischen und/oder mechanischen Walzgutbeeinflussung und/oder eine Einrichtung zum Transport des Walzgutes 10 vorgesehen sein. Das Walzgut 10 ist vorzugsweise ein Band, ein Profil, ein Draht oder eine Bramme. Z.B. kann das Walzgut 10 ein Metallband, beispielsweise ein Stahlband, ein Buntmetallband oder ein Aluminiumband sein. FIG. 1 shows schematically and by way of example a rolling mill 1 of a rolling train for rolling a rolled material 10. The rolling mill for rolling the rolling stock 10 has one or more such rolling stands 1 on. Before or after the roll stand 1, a further roll stand, a reel device, a cooling device and / or another device, for example for thermal and / or mechanical Walzgutbeeinflussung and / or means for transporting the rolling stock 10 may be provided. The rolling stock 10 is preferably a band, a profile, a wire or a slab. For example, the rolling stock 10 may be a metal strip, for example a steel strip, a non-ferrous metal strip or an aluminum strip.

Ein Walzgerüst 1 weist mindestens eine obere Stützwalze 4 mit einem Radius Ro und mindestens eine untere Stützwalze 5 mit einem Radius Ru auf. Das gezeigte Walzgerüst 1 weist mindestens eine obere Arbeitswalze 2 und mindestens eine untere Arbeitswalze 3 auf, wobei der Durchmesser der Arbeitswalzen 2 bzw. 3 in der Regel kleiner ist als der Durchmesser der Stützwalzen 4 bzw. 5. Im gezeigten Beispiel ist zur Regelung der Anstellposition des Walzgerüsts 1 eine über ein Steuerventil 6 betätigbare hydraulische Anstellvorrichtung 7 vorgesehen. Alternativ oder zusätzlich kann auch ein elektromechanisches Anstellsystem vorgesehen sein. Die Anstellvorrichtung 7 bzw. das nicht näher dargestellte Anstellsystem dienen zur Einstellung der Walzenanstellung s. Die hydraulische Anstellung 7 stützt sich auf dem Gerüstrahmen ab. Der elastische Gerüstrahmen ist symbolisch durch eine Feder mit der Federkonstanten CG dargestellt.A rolling stand 1 has at least one upper support roller 4 with a radius R o and at least one lower support roller 5 with a radius R u . The rolling stand 1 shown has at least one upper work roll 2 and at least one lower work roll 3, wherein the diameter of the work rolls 2 and 3 is usually smaller than the diameter of the support rollers 4 and 5. In the example shown is for controlling the setting position of the roll stand 1, an actuatable via a control valve 6 hydraulic adjusting device 7 is provided. Alternatively or additionally, an electromechanical adjusting system can also be provided. The adjusting device 7 and the Anstellsystem not shown serve to adjust the roller adjustment s. The hydraulic adjustment 7 is supported on the scaffolding frame. The elastic scaffolding is symbolically represented by a spring with the spring constant C G.

Das Walzgerüst 1 wird von dem Walzgut 10 durchlaufen, wobei die Dicke des Walzgutes 10 beim Durchlaufen des Walzspalts unter Zuhilfenahme der Arbeitswalzen 2, 3 von der Einlaufdicke he auf die Auslaufdicke ha verringert wird. Das Walzgut 10, dem im Walzspalt eine äquivalente Materialfeder mit der Federkonstanten CM zugeordnet wird, läuft mit der Einlaufgeschwindigkeit vSE in den Walzspalt ein und verlässt den Walzspalt mit der Auslaufgeschwindigkeit vSL.The rolling stand 1 is traversed by the rolling stock 10, wherein the thickness of the rolling stock 10 is reduced when passing through the roll gap with the aid of the work rolls 2, 3 of the inlet thickness h e to the outlet thickness h a . The rolling stock 10, which is assigned an equivalent material spring with the spring constant C M in the roll gap, enters the roll gap at the entry speed v SE and leaves the roll gap at the exit speed v SL .

Die Walzenexzentrizitäten der oberen Stützwalze 4 bzw. der unteren Stützwalze 5 können ihre Ursache in ungleichmäßiger Walzenabnutzung, Verformungen durch Wärmespannungen und/oder den Abweichungen der geometrischen Zylinderachse der Walzen von den betrieblich sich einstellenden Rotationsachsen haben. Die Walzenexzentrizitäten sind mit ΔRo bzw. ΔRu, d.h. als Abweichungen von den idealen Stützwalzenradien Ro bzw. Ru bezeichnet.The roll eccentricities of the upper back-up roll 4 and the lower back-up roll 5, respectively, may be due to uneven roll wear, deformation due to thermal stresses, and / or the deviations of the geometric cylinder axis of the rolls from the operationally-setting rotation axes. The roll eccentricities are denoted by ΔR o or ΔR u , ie deviations from the ideal back-up roll radii R o or R u .

Die Messung der Walzendrehzahl no bzw. nu der oberen bzw. der unteren Stützwalze 4 bzw. 5 dient zur Ermittlung der Grundschwingung der Walzenexzentrizitäten. Unter der vereinfachenden Voraussetzung, dass sich die Ober- und Unterwalzen des Walzgerüsts 1 gleich schnell drehen, genügt es, die Drehzahl lediglich einer angetriebenen Walze, z.B. der unteren Arbeitswalze 3 mittels eines Drehzahlmessers 11 zu erfassen.The measurement of the rolling speed n o or n u of the upper and lower support rollers 4 and 5 is used to determine the fundamental vibration of Walzenexzentrizitäten. Under the simplifying condition that the upper and lower rollers of the roll stand 1 rotate at the same speed, it is sufficient to detect the speed of only one driven roller, eg the lower work roll 3, by means of a tachometer 11.

Sind, wie in den meisten Fällen, die Stützwalzen 4 und 5 die exzentrizitätsbehafteten Walzen, so wird in mindestens einer Umrechnungseinheit 14 bzw. 12 die gemessene Drehzahl der Arbeitswalze 2 bzw. 3 über das Verhältnis des Durchmessers der Arbeitswalze 2 bzw. 3 zum Durchmesser der Stützwalze 4 bzw. 5 in die Drehzahl no bzw. nu der Stützwalze 4 bzw. 5 umgerechnet. Da in der Regel die Drehzahlen der oberen Walzen 4, 2 und der unteren Walzen 5, 3 aufgrund geringfügig verschiedener Durchmesser unterschiedlich sind, ist bei dem gezeigten Ausführungsbeispiel sowohl ein Drehzahlmesser 13 oberhalb des Walzgutes 10 als auch ein Drehzahlmesser 11 unterhalb des Walzgutes 10 mit jeweils nachgeordneter Umrechnungseinheit 14 bzw. 12 zur Erfassung der Drehzahl no bzw. nu vorgesehen.Are, as in most cases, the support rollers 4 and 5, the eccentricity-bearing rollers, so in at least one conversion unit 14 and 12, the measured speed of the work roll 2 and 3 on the ratio of the diameter of the Work roll 2 or 3 to the diameter of the support roller 4 and 5 in the speed n o or n u of the support roller 4 and 5 converted. Since in general the speeds of the upper rollers 4, 2 and the lower rollers 5, 3 are different due to slightly different diameters, in the embodiment shown, both a tachometer 13 above the rolling stock 10 and a tachometer 11 below the rolling stock 10, respectively subordinate conversion unit 14 or 12 for detecting the rotational speed n o or n u provided.

Die Walzenanstellung s wird mit einem Positionsaufnehmer 9 an der Anstellvorrichtung 7 bzw. am Anstellsystem gemessen. Die Walzenanstellung s wird einer Regelvorrichtung 18 zugeführt. Zur Walzenexzentrizitätsidentifizierung und Unterdrückung wird der Regelvorrichtung 18 mindestens eine Walzendrehzahl no oder nu zugeführt. Des Weiteren ist eine Zugmessvorrichtung 8 zur Messung der im Walzgut 10 herrschenden Zugkraft Fz vor dem Walzgerüst 1 vorgesehen. Die Zugmessvorrichtung 8 kann wie in FIG 1 angedeutet, eine Messrolle zur Zugmessung aufweisen. Diese Messrolle kann vorzugsweise segmentiert ausgebildet sein. Die Zugmessvorrichtung 8 kann auch als berührungslos arbeitende Zugmessvorrichtung ausgebildet sein. Eine entsprechende Einrichtung zur berührungslosen Messung der Zugkraft Fz in einem als Metallband ausgebildeten Walzgut 10 ist beispielsweise in der DE 198 39 286 B4 beschrieben.The roll adjustment s is measured with a position sensor 9 on the adjusting device 7 or on the positioning system. The roller adjustment s is fed to a control device 18. For roller eccentricity identification and suppression, the control device 18 is supplied with at least one roller speed n o or n u . Furthermore, a tension measuring device 8 for measuring the tensile force F z prevailing in the rolling stock 10 is provided in front of the rolling stand 1. The tension measuring device 8 can, as in FIG. 1 indicated, have a measuring roller for tension measurement. This measuring roller may preferably be formed segmented. The tension measuring device 8 can also be designed as a contact-free tension measuring device. A corresponding device for non-contact measurement of the tensile force F z in a rolling stock 10 designed as a metal strip is shown for example in US Pat DE 198 39 286 B4 described.

Zur Identifizierung und/oder Unterdrückung von Walzenexzentrizitäten weist die Regelvorrichtung 18 ein Prozessmodell 27 auf. Das Prozessmodell 27 basiert auf einem Beobachter und modelliert das Verhalten des Walzspaltes und der Walzen 2 bis 5. Das Prozessmodell 27 wird dabei frequenzmäßig mit Hilfe der Walzgeschwindigkeit, d.h. z.B. mit Hilfe der ermittelten Walzendrehzahlen no bzw. nu geführt. Der Zeitverlauf der zu modellierenden Störungen ist zwar periodisch, aber nicht rein sinusförmig. D.h. die zu modellierende Schwingung setzt sich aus einer Grundschwingung und mehreren Oberschwingungen zusammen.For the identification and / or suppression of roll eccentricities, the control device 18 has a process model 27. The process model 27 is based on an observer and models the behavior of the roll gap and the rolls 2 to 5. The process model 27 is frequency guided by means of the rolling speed, ie, for example, using the determined rolling speeds n o or n u . The time course of the disturbances to be modeled is periodic, but not purely sinusoidal. This means that the vibration to be modeled consists of a fundamental vibration and several harmonics.

Im Prozessmodell 27 werden den Exzentrizitätsfrequenzen zugeordnete sinusförmige Korrektursollwerte für ein Stellglied des Walzgerüstes 1 mit der passenden Phasenlage und Amplitude für die Position der Walzspaltregelung berechnet. Wie in FIG 1 gezeigt, können die Korrektursollwerte über eine Steuervorrichtung 19 und gegebenenfalls über ein Steuerventil 6 an die Anstellvorrichtung 7 bzw. an ein Anstellsystem gegeben werden. Durch die Verwendung der gemessenen Zugkraft Fz kann die geforderte Banddicke, d.h. die Auslaufdicke ha des Walzgutes 10, mit Hilfe der Regelvorrichtung 18 äußerst gleichmäßig eingestellt werden. Durch die Walzenexzentrizität ΔRo bzw. ΔRu bedingte Dickenabweichungen können derart vermieden werden.In the process model 27 sinusoidal correction target values assigned to the eccentricity frequencies are calculated for an actuator of the roll stand 1 with the appropriate phase position and amplitude for the position of the roll gap control. As in FIG. 1 The correction setpoint values can be given via a control device 19 and optionally via a control valve 6 to the adjusting device 7 or to a positioning system. By using the measured tensile force F z , the required strip thickness, ie the outlet thickness h a of the rolling stock 10, can be set extremely uniformly with the aid of the regulating device 18. Thickness deviations caused by the roll eccentricity ΔR o or ΔR u can thus be avoided.

Alternativ oder zusätzlich ist es möglich, beispielsweise mittels eines Druckfühlers 15 die Walzkraft Fw zu messen und bei der Identifizierung und Unterdrückung von Walzenexzentrizitäten zu berücksichtigen.Alternatively or additionally, it is possible to measure, for example by means of a pressure sensor 15, the rolling force F w and to take into account in the identification and suppression of rolling eccentricities.

Mittels eines Dickenmessgerätes 16 kann alternativ oder zusätzlich die Dicke des Walzgutes 10, beispielsweise die Auslaufdicke ha, gemessen werden.Alternatively or additionally, the thickness of the rolling stock 10, for example the outlet thickness h a , can be measured by means of a thickness gauge 16.

FIG 2 zeigt schematisch und beispielhaft die zur Identifizierung von Walzenexzentrizitäten verwendete Struktur gemäß dem Beobachter-Prinzip. Dabei wird ein Sollwert s* der Anstellposition sowohl einem realen Prozess 29, wie er z.B. in einem von einem Walzgut 10 durchlaufenen Walzgerüst 1 abläuft (siehe FIG 1), als auch einem Beobachtermodul 30 zugeführt. Das Beobachtermodul 30 weist das Prozessmodell 27 auf, mit Hilfe dessen Walzenexzentrizitäten identifiziert werden können und mit Hilfe dessen die identifizierten Walzenexzentrizitäten ΔRi für Kompensationszwecke bereitgestellt werden können. Unter Zuhilfenahme des Prozessmodells 27 kann vorzugsweise eine identifizierte Auslaufdicke hai ermittelt werden, welche zur Ermittlung eines Beobachterfehlers e mit der gemessenen Zugkraft Fz verknüpft werden kann. Die gemessene Zugkraft Fz wird dabei zunächst einem Modul 21 im Messkanal zugeführt, welches das Übertragungsverhalten von der Auslaufdicke bis zum Bandzug invers berücksichtigt. Mit Hilfe des Moduls 21 wird derart der Messwert der Zugkraft Fz auf die Auslaufdicke umgerechnet und mit der mit Hilfe des Prozessmodells 27 ermittelten identifizierte Auslaufdicke hai verglichen. Die aus diesem Vergleich resultierende Differenz e bildet den Beobachterfehler e. Die Zustände des Prozessmodells 27 werden unter Berücksichtigung des Beobachterfehlers e solange korrigiert, bis Messung und Modell zumindest weitestgehend übereinstimmen und der Beobachterfehler e hinreichend gering bzw. null ist. Dann stimmen auch die im Prozessmodell 27 identifizierten Walzenexzentrizitäten ΔRi mit den tatsächlich im Walzgerüst 1 (siehe FIG 1) vorhandenen Walzenexzentrizitäten überein. Die vom Beobachtermodul 30 derart ermittelten identifizierten Walzenexzentrizitäten ΔRi ermöglichen eine äußerst zuverlässige und genaue Exzentrizitätskompensation. FIG. 2 shows schematically and exemplarily the structure used for the identification of roll eccentricities according to the observer principle. In this case, a desired value s * of the setting position both a real process 29, as it expires, for example, in one of a rolling stock 10 continuous rolling stand 1 (see FIG. 1 ), as well as an observer module 30 supplied. The observer module 30 has the process model 27, by means of which roll eccentricities can be identified and with the aid of which the identified roll eccentricities ΔR i can be provided for compensation purposes. With the aid of the process model 27, an identified run-out thickness h ai can preferably be determined, which can be linked to the measured tensile force F z to determine an observer error e. The measured tensile force F z is first fed to a module 21 in the measuring channel, which takes into account the transmission behavior from the outlet thickness to the strip tension inverse. With the aid of the module 21, the measured value of the tensile force F z is thus converted to the outlet thickness and compared with the identified outlet thickness h ai determined with the aid of the process model 27. The difference e resulting from this comparison constitutes the observer error e. The states of the process model 27 are corrected, taking account of the observer error e, until the measurement and the model at least largely coincide and the observer error e is sufficiently low or zero. Then, the roll eccentricities ΔR i identified in the process model 27 also agree with those actually in the roll stand 1 (see FIG FIG. 1 ) match existing roll eccentricities. The identified by the observer module 30 identified Walzenexzentrizitäten .DELTA.R i allow extremely reliable and accurate eccentricity compensation.

Wie im in FIG 3 gezeigten Beispiel dargestellt, kann mittels eines Umschalters 20 eine Auswahl dahingehend erfolgen, ob das Prozessmodell 27 die Auslaufdicke ha, die Walzkraft Fw oder die Zugkraft Fz bei der Identifizierung von Walzenexzentrizitäten berücksichtigen soll.As in the FIG. 3 shown example, can be made by means of a switch 20 to see whether the process model 27, the outlet thickness h a , the rolling force F w or the tensile force F z should be considered in the identification of Walzenexzentrizitäten.

FIG 3 zeigt beispielhaft, wie das Übertragungsverhalten von der Anstellposition bis zum Bandzug bei der Verwendung der Zugkraft Fz zur Identifizierung und Unterdrückung von Walzenexzentrizitäten berücksichtigt werden kann. So ist im gezeigten Beispiel vorzugsweise im Messkanal ein Modul 21 vorgesehen, welches das Übertragungsverhalten von der Auslaufdicke bis zum Bandzug invers berücksichtigt. Vorzugsweise werden dabei die Messwerte der Zugkraft Fz mit der entsprechenden Übertragungsfunktion Hzug verknüpft. Dies kann beispielsweise durch Multiplikation mit einem Faktor erfolgen, welcher der inversen Übertragungsfunktion Hzug entspricht. Zusätzlich kann eine Adaptionsschaltung vorgesehen sein, die die Abhängigkeit von der Walzgutgeschwindigkeit vB berücksichtigt. Vorzugsweise wird der am Ausgang des Moduls 21 vorliegende Wert, der unter Zuhilfenahme der Zugkraft Fz ermittelt wurde, dem Prozessmodell 27 zugeführt. FIG. 3 shows by way of example how the transmission behavior from the setting position to the strip tension can be taken into account when using the tensile force F z for identifying and suppressing roll eccentricities. Thus, in the example shown, a module 21 is preferably provided in the measuring channel, which takes into account the transmission behavior from the outlet thickness to the strip tension inverse. Preferably, the measured values of the tensile force F z are linked to the corresponding transfer function H zug . This can be done, for example, by multiplication with a factor which corresponds to the inverse transfer function H zug . In addition, an adaptation circuit can be provided which takes into account the dependence on the rolling stock speed V B. Preferably, the value present at the output of the module 21, the was determined with the aid of the tensile force F z , the process model 27 supplied.

Wie auch dem in FIG 2 dargestellten Beispiel entnehmbar ist, bildet das Prozessmodell 27 vorzugsweise das Verhalten des Prozesses 29 von der Anstellposition s bzw. von dem Sollwert s* der Anstellposition bis zur Auslaufdicke ha nach. Soll alternativ oder zusätzlich zur Zugkraft Fz die Walzkraft Fw im Prozessmodell 27 berücksichtigt werden, so ist es zweckmäßig ein Modul 28 im Messkanal der Walzkraft Fw vorzusehen, welches eine geeignete Übertragungscharakteristik aufweist.As well as in FIG. 2 illustrated example, the process model 27 is preferably the behavior of the process 29 of the setting position s or from the setpoint s * the setting position to the outlet thickness h a after. If, alternatively or in addition to the tensile force F z, the rolling force F w is to be taken into account in the process model 27, then it is expedient to provide a module 28 in the measuring channel of the rolling force F w , which has a suitable transfer characteristic.

FIG 4 zeigt ein Beispiel für die Verwendung einer Einlaufdickenkompensation in Verbindung mit dem erfindungsgemäßen Verfahren. Dabei ist ein Dickenmessgeber 17 vor dem Walzgerüst 1 vorgesehen, mit Hilfe dessen eine gemessene Einlaufdicke hem erfasst wird. Das gezeigte Einlaufdickenkompensationsmodul 22 weist ein Bandverfolgungsmodul 23 auf. Mit Hilfe des Bandverfolgungsmoduls 23 wird die gemessene Einlaufdicke hem bis in das Walzgerüst 1 wegverfolgt. Unter Zuhilfenahme der Einlaufgeschwindigkeit vSE wird eine wegverfolgte Einlaufdicke hev ermittelt. Das Bandverfolgungsmodul 23 arbeitet vorzugsweise modellbasiert. FIG. 4 shows an example of the use of an inlet thickness compensation in connection with the method according to the invention. In this case, a thickness gauge 17 is provided in front of the roll stand 1, by means of which a measured inlet thickness h em is detected. The shown inlet thickness compensation module 22 has a tape tracking module 23. By means of the tape tracking module 23, the measured inlet thickness h em is traced to the mill stand 1. With the aid of the inlet velocity v SE , a tracked inlet thickness h ev is determined. The tape tracking module 23 preferably operates model-based.

Im gezeigten Beispiel weist das Einlaufdickenkompensationsmodul 22 mindestens ein Kompensationsmodell 24, 25, 26 auf, mit Hilfe dessen in Abhängigkeit von der verwendeten Messgröße mE bzw. des entsprechenden Messwerts der Einfluss der Einlaufdicke he auf die Auslaufdicke ha ermittelt wird. Da die Güte der Einlaufdickenkompensation wesentlich von dem oder den verwendeten Kompensationsmodellen 24, 25, 26 abhängt, sind im gezeigten Beispiel ein Kompensationsmodell 24 für die Verwendung der Auslaufdicke ha als Messgröße mE, ein Kompensationsmodell 25 für die Verwendung der Walzkraft Fw als Messgröße mE und ein Kompensationsmodell 24 für die Verwendung der Zugkraft Fz als Messgröße mE vorgesehen. Das vom Einlaufdickenkompensationsmodul 22 gegebene Kompensationssignal wird mit dem entsprechenden Messwert der Messgröße mE zur Bildung einer kompensierten Messgröße mK verknüpft.In the example shown, the inlet thickness compensation module 22 has at least one compensation model 24, 25, 26 with the aid of which the influence of the inlet thickness h e on the outlet thickness h a is determined as a function of the measured variable m E or the corresponding measured value. Since the quality of the inlet thickness compensation depends essentially on the compensation model (s) 24, 25, 26 used, in the example shown a compensation model 24 for the use of the outlet thickness h a as the measured variable m E , a compensation model 25 for the use of the rolling force F w as the measured variable m E and a compensation model 24 for the use of the tensile force F z as the measured variable m E provided. The compensation signal given by the inlet thickness compensation module 22 is included in FIG the corresponding measured value of the measured variable m E linked to form a compensated measured variable m K.

Ein wesentlicher der Erfindung zugrunde liegender Gedanke lässt sich wie folgt zusammenfassen:

  • Die Erfindung betrifft ein Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten auf die Auslaufdicke ha eines Walzgutes 10, welches ein Walzgerüst 1 durchläuft, wobei die Walzenexzentrizitäten unter Verwendung eines Prozessmodells 27 identifiziert werden und bei der Ermittlung eines Korrektursignals für mindestens ein Stellglied, vorzugsweise ein Stellglied für die Anstellposition, des Walzgerüstes 1 berücksichtigt werden, wobei zur Identifizierung der Walzenexzentrizitäten dem Prozessmodell 27 die gemessene Zugkraft Fz im Walzgut 10 zugeführt wird. Erfindungsgemäß werden Zugkraftschwankungen zielgerichtet zur Reduktion der Auswirkungen periodischer Walzenexzentrizitäten auf das Walzgut 10 zurückgeführt, wohingegen alle anderen Schwankungsquellen ausgeschlossen werden. Das auf dem Beobachter-Prinzip basierende Prozessmodell 27 des Walzspaltes und der Walzen 2 bis 5 erzeugt, z.B. unter Zuhilfenahme der gemessenen Zugkraft Fz, der Walzenanstellung s und der Walzengeschwindigkeit bzw. der Walzendrehzahl, zuverlässige Daten über die Walzenexzentrizitäten. Erfindungsgemäß werden vorgegebene Abmessungen des Walzguts 10 gleichmäßiger als bisher erreicht. Zugmessvorrichtungen 8 arbeiten im Vergleich zu Messvorrichtungen für die Dicke he bzw. ha des Walzgutes 10 und im Vergleich zu Messvorrichtungen für die Walzkraft Fw sehr genau und dynamisch. Vorzugsweise werden die in der Zugkraftschwankung enthaltenen und von der Walzenexzentrizität verursachten periodischen Schwingungsanteile gezielt zur Reduktion der exzentrizitätsbedingten, ungewünschten Dickenveränderung im Walzgut 10 verwendet. Auf Schwankungsanteile mit anderen Frequenzen ungleich der Exzentrizitätsfrequenzen wird nicht reagiert.
An essential idea underlying the invention can be summarized as follows:
  • The invention relates to a method for suppressing the influence of roll eccentricities on the outlet thickness h a of a rolling stock 10, which passes through a roll stand 1, wherein the roll eccentricities are identified using a process model 27 and in determining a correction signal for at least one actuator, preferably an actuator are taken into account for the setting position of the roll stand 1, wherein the process model 27, the measured tensile force F z in the rolling stock 10 is supplied to identify the Walzenexzentrizitäten. According to the invention, traction fluctuations are purposefully attributed to the reduction of the effects of periodic rolling eccentricities on the rolling stock 10, whereas all other sources of fluctuation are excluded. Based on the observer principle, the process model 27 of the roll gap and the rolls 2 to 5 generates reliable data about the roll eccentricities, eg with the aid of the measured tensile force F z , the roll adjustment s and the roll speed or the roll speed. According to the invention, predetermined dimensions of the rolling stock 10 are achieved more uniformly than hitherto. Tensile measuring devices 8 work very accurately and dynamically compared to measuring devices for the thickness h e and h a of the rolling stock 10 and compared to measuring devices for the rolling force F w . Preferably, the periodic vibration components contained in the tension fluctuation and caused by the roll eccentricity are used specifically for reducing the eccentricity-related, unwanted change in thickness in the rolling stock 10. On fluctuation parts with other frequencies not equal to the eccentricity frequencies is not reacted.

Von der Einlaufdicke herrührende periodische Dickenschwankungen mit Frequenzen, die nahezu gleich den Exzentrizitätsfrequenzen sind, können die Identifikation der Walzenexzentrizitäten stören. Deshalb kann eine Einlaufdickenkompensation vorgesehen werden, welche den Einfluss der Einlaufdickenschwankungen auf die verwendete Messgröße mE ermittelt und kompensiert und derart diese Art von Störung beseitigt.Periodic thickness variations resulting from the inlet thickness with frequencies nearly equal to the eccentricity frequencies can disturb the identification of the roll eccentricities. Therefore, it is possible to provide an inlet thickness compensation which determines and compensates the influence of the inlet thickness fluctuations on the measured variable m E used and thus eliminates this type of disturbance.

Die in bekannten Regelkonzepten einer beispielsweise als Tandemstraße ausgebildeten Walzstrasse vorhandenen Zugregler können auf Grund ihrer eingeschränkten Dynamik nur bei geringer Walzgeschwindigkeit und nur an den vorderen Gerüsten der Tandemstrasse einen Teil der von den Exzentrizitäten verursachten Auswirkungen auf die Dicke vermeiden. Eine erfindungsgemäß ausgebildete Regelvorrichtung 18 zur Unterdrückung des Einflusses von Walzenexzentrizitäten, der die am Walzgut 10 gemessene Zugkraft Fz zugeführt wird, kann an einem Walzgerüst 1 die Kompensation der Exzentrizitätsfrequenzen übernehmen und somit konventionelle Zugregler komplett entlasten.Due to their limited dynamics, only a small rolling speed and only at the front stands of the tandem road can avoid some of the effects on the thickness caused by the eccentricities in known control concepts of a rolling train designed as a tandem mill. An inventively designed control device 18 for suppressing the influence of Walzenexzentrizitäten, which is fed to the rolling stock 10 measured tensile force F z , can take on a rolling stand 1, the compensation of the eccentricity and thus completely relieve conventional tension regulator.

Claims (6)

  1. Method for suppressing the influence of roll eccentricities on the run-out thickness (ha) of a rolling stock item (10), which passes through a rolling stand (1), wherein the roll eccentricities are identified by the use of a process model (27) and are taken into account in the determination of a correction signal for at least one control device (19) for a final control element of the rolling stand (1), wherein measured values (mE) for the tensile force (Fz) prevailing in the rolling stock item (10) are fed to said at least one process model (27) to identify the roll eccentricities, wherein a run-in thickness compensation is effected on the measured values (mE) used to identify the roll eccentricities.
  2. Method according to claim 1, wherein the tensile force (Fz) is measured upstream or downstream of the rolling stand (1).
  3. Method according to claim 1 or 2,
    - wherein a target value (s*) for the screwdown position (s) is fed to a real process (29), such as e.g. takes place in the rolling stand (1),
    - wherein the target value (s*) for the screwdown position (s) is also fed to the model (27),
    - wherein the model (27) determines an identified run-out thickness (hai) by taking account of the identified roll eccentricities,
    - wherein the measured values (mE) for the tensile force (Fz) are fed to a module (21) which takes inverse account of the transfer behaviour of the tensile force (Fz) prevailing in the rolling stock item (10) as a function of the screwdown position (s), so that a run-out thickness (hai) of the rolling stock item (10) is determined on the basis of the captured tensile force (Fz),
    - wherein an observer error (e) is determined on the basis of the difference between the identified run-out thickness (hai) determined on the basis of the model (27) and the run-out thickness (ha) determined on the basis of the captured tensile force (Fz),
    - wherein the observer error (e) is fed to the model (27),
    - wherein the roll eccentricities are corrected on the basis of the observer error (e), until the observer error (e) is sufficiently small or zero.
  4. Method according to claim 3, wherein the dependency on the strip speed (vB) is taken into account in an adaptive manner in the determination of the determined run-out thickness (ha).
  5. Method according to one of claims 1 to 4, wherein the process model (27) describes at least the rolling nip and the rolls of the rolling stand (1).
  6. Computer program product encompassing program code means suitable for carrying out all the steps of a method according to one of the preceding claims whenever the computer program product is executed on a data processing system.
EP07703793.5A 2006-02-22 2007-01-11 Method for suppressing the influence of roll eccentricities Active EP1986795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07703793T PL1986795T3 (en) 2006-02-22 2007-01-11 Method for suppressing the influence of roll eccentricities

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006008574A DE102006008574A1 (en) 2006-02-22 2006-02-22 Reducing the influence of roller excentricity on the thickness of a rolled material, comprises identifying the roller excentricity and determining a correction signal for a control unit
PCT/EP2007/050248 WO2007096204A1 (en) 2006-02-22 2007-01-11 Method for suppressing the influence of roll eccentricities

Publications (3)

Publication Number Publication Date
EP1986795A1 EP1986795A1 (en) 2008-11-05
EP1986795B1 true EP1986795B1 (en) 2013-09-18
EP1986795B2 EP1986795B2 (en) 2020-08-19

Family

ID=37886246

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07703793.5A Active EP1986795B2 (en) 2006-02-22 2007-01-11 Method for suppressing the influence of roll eccentricities

Country Status (8)

Country Link
US (1) US8386066B2 (en)
EP (1) EP1986795B2 (en)
CN (1) CN101443136B (en)
DE (1) DE102006008574A1 (en)
PL (1) PL1986795T3 (en)
RU (1) RU2429925C2 (en)
UA (1) UA95794C2 (en)
WO (1) WO2007096204A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007050911A1 (en) * 2007-10-23 2009-04-30 Eras Entwicklung Und Realisation Adaptiver Systeme Gmbh Method and apparatus for suppressing the chattering of work rolls of a rolling stand
AT507087B1 (en) * 2008-12-05 2010-02-15 Siemens Vai Metals Tech Gmbh METHOD AND DEVICE FOR THE SEMI-ACTIVE REDUCTION OF PRESSURE VIBRATIONS IN A HYDRAULIC SYSTEM
CN101927271B (en) * 2010-08-23 2012-07-04 中冶南方工程技术有限公司 Roll eccentricity compensation method based on on-line recursive parameter estimation and equipment thereof
CN101927272B (en) * 2010-08-23 2012-09-05 中冶南方工程技术有限公司 Online recursive parameter estimation-based roll eccentricity compensation equipment
DE102012200936A1 (en) 2012-01-23 2013-07-25 Converteam Gmbh Method for operating rolling mill e.g. cold-rolling mill, involves determining error value for specific roller from discrete values having rotational frequency periodicity of thickness variation of rolled material
US20180161839A1 (en) * 2016-12-09 2018-06-14 Honeywell International Inc. Metal thickness control model based inferential sensor
EP3974073B1 (en) * 2020-09-28 2023-07-19 Primetals Technologies Germany GmbH Rolling taking into account frequency behaviour

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE592289A (en) * 1959-06-27
GB1204335A (en) 1967-11-21 1970-09-03 Davy & United Eng Co Ltd Rolling mills
US4126027A (en) * 1977-06-03 1978-11-21 Westinghouse Electric Corp. Method and apparatus for eccentricity correction in a rolling mill
JPS5666315A (en) * 1979-10-31 1981-06-04 Sumitomo Metal Ind Ltd Controlling method for sheet thickness in strip mill
EP0155301B1 (en) * 1983-09-08 1989-09-20 John Lysaght (Australia) Limited Rolling mill strip thickness controller
EP0170016B1 (en) * 1984-07-05 1988-12-07 Siemens Aktiengesellschaft Method to compensate the influence of roll excentricities
JPS6213209A (en) * 1985-07-09 1987-01-22 Mitsubishi Electric Corp Elongation control device
US4656854A (en) * 1985-09-06 1987-04-14 Aluminum Company Of America Rolling mill eccentricity compensation using measurement of sheet tension
DE3935434A1 (en) * 1989-10-25 1991-05-02 Schloemann Siemag Ag METHOD FOR COMPENSATING DISTURBANCES CAUSED BY ROLLER Eccentricities
JPH0732926B2 (en) 1990-11-30 1995-04-12 住友軽金属工業株式会社 Plate thickness control method in rolling mill
JPH05200420A (en) * 1992-01-28 1993-08-10 Toshiba Corp Plate thickness controller for rolling mat roll
DE4231615A1 (en) * 1992-09-22 1994-03-24 Siemens Ag Method for suppressing the influence of roll eccentricities on the control of the rolling stock thickness in a roll stand
EP0684090B1 (en) * 1994-03-29 1998-02-04 Siemens Aktiengesellschaft Method of suppressing the influence of roll eccentricity on the adjustment of the thickness of rolling stock in a roll stand
NL9400674A (en) * 1994-04-27 1995-12-01 Hoogovens Groep Bv Device and method for manufacturing DKG strip steel.
DE59501064D1 (en) * 1994-07-28 1998-01-15 Siemens Ag Method for suppressing the influence of roller eccentricities
DE19511801A1 (en) * 1995-03-30 1996-10-02 Schloemann Siemag Ag Method and device for thickness control in film rolling
JP3405499B2 (en) * 1996-03-18 2003-05-12 川崎製鉄株式会社 Thickness and tension control method in tandem rolling mill
DE19618712B4 (en) * 1996-05-09 2005-07-07 Siemens Ag Control method for a roll stand for rolling a strip
DE19642918C2 (en) * 1996-10-17 2003-04-24 Siemens Ag System for calculating the final thickness profile of a rolled strip
US5809817A (en) * 1997-03-11 1998-09-22 Danieli United, A Division Of Danieli Corporation Corporation Optimum strip tension control system for rolling mills
DE19839286B4 (en) * 1998-08-28 2004-12-02 Siemens Ag Method and device for measuring the tension distribution in a metal strip
JP2002018507A (en) * 2000-07-06 2002-01-22 Mitsubishi Electric Corp Method for controlling eccentricity of roll in rolling plant
FR2846579B1 (en) * 2002-11-05 2006-05-05 Vai Clecim METHOD FOR EXTENDING THE RANGE OF PRODUCTION OF A PLANT ROLLING PLANT FOR METAL PRODUCTS AND INSTALLATION FOR CARRYING OUT THE METHOD
DE102004039829B3 (en) * 2004-08-17 2006-03-09 Siemens Ag Method for compensation of periodic disturbances
US7849722B2 (en) * 2006-03-08 2010-12-14 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
DE102007003243A1 (en) * 2007-01-23 2008-07-31 Siemens Ag Control arrangement for a roll stand and herewith corresponding objects
DE102007050891A1 (en) * 2007-10-24 2009-04-30 Siemens Ag Adaptation of a controller in a rolling mill based on the scattering of an actual size of a rolling stock
DE102008014304A1 (en) * 2008-03-14 2009-09-24 Siemens Aktiengesellschaft Operating procedure for a cold rolling mill with improved dynamics

Also Published As

Publication number Publication date
CN101443136A (en) 2009-05-27
CN101443136B (en) 2012-11-14
UA95794C2 (en) 2011-09-12
EP1986795B2 (en) 2020-08-19
DE102006008574A1 (en) 2007-08-30
PL1986795T3 (en) 2014-03-31
WO2007096204A1 (en) 2007-08-30
US20090210085A1 (en) 2009-08-20
EP1986795A1 (en) 2008-11-05
US8386066B2 (en) 2013-02-26
RU2008137605A (en) 2010-03-27
RU2429925C2 (en) 2011-09-27

Similar Documents

Publication Publication Date Title
EP1986795B1 (en) Method for suppressing the influence of roll eccentricities
EP2548665B1 (en) Method for determining the wear on a roller dependent on relative movement
EP2252416B1 (en) Regulation method for a cold-rolling train with complete mass flow regulation
EP2259882B1 (en) Operating method for a multi-stand rolling mill train comprising a strip thickness detection means that utilizes the continuity equation
EP2603337A1 (en) Method for producing rolling stock by means of a combined continuous casting and rolling system, control device for a combined continuous casting and rolling system, and combined continuous casting and rolling system
EP1711283B1 (en) Control method and control device for a roll stand
EP0173045B1 (en) Flatness control in strip rolling stands
DE4136013C2 (en) Method and device for controlling a rolling mill
DE10327663A1 (en) System and method for optimizing control of the thickness quality in a rolling process
EP2195126B1 (en) Rolling device and method for the operation thereof
DE69913538T2 (en) Method and device for flatness control
EP3437748A1 (en) Mass flow rate regulation in rolling mill plants
EP2268427B1 (en) Operating method for a cold-rolling line with improved dynamics
EP2258492A1 (en) Method for producing a milling product with a mill train, control and/or regulating device for a mill assembly for producing milled products, mill assembly for producing milled products, machine readable program code and storage medium
EP2188074B1 (en) Method for operating a rolling mill train with curvature recognition
EP2662158A1 (en) Method for processing milled goods and milling system
DE3422766C2 (en)
DE2836595A1 (en) METHOD FOR CONTROLLING THE THICKNESS OF A FLAT PRODUCT DURING ROLLING AND DEVICE FOR CARRYING OUT THE METHOD
EP2305393B1 (en) Method and device for regulating a drive
DE69917169T2 (en) Method and device for active compensation of periodic disturbances during hot or cold rolling
DE102005053489C5 (en) Regulatory system and regulatory procedure for an industrial facility
EP1919638A1 (en) Method for thickness regulation during a hot-rolling process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090924

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 632456

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012306

Country of ref document: DE

Effective date: 20131114

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130918

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140120

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SMS SIEMAG AG

Effective date: 20140618

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007012306

Country of ref document: DE

Effective date: 20140618

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20131220

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

RIN2 Information on inventor provided after grant (corrected)

Inventor name: HOFBAUER, JOSEF

Inventor name: NIEMANN, MARTIN

Inventor name: WEISSHAAR, BERNHARD

Inventor name: WOHLD, DIETRICH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 632456

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007012306

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AG, 80333 MUENCHEN, DE

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH

R26 Opposition filed (corrected)

Opponent name: SMS GROUP GMBH

Effective date: 20140618

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Effective date: 20151105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070111

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160901 AND 20160907

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170120

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170119

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180111

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007012306

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20200819

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502007012306

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220107

Year of fee payment: 16

Ref country code: SE

Payment date: 20220119

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230120

Year of fee payment: 17

Ref country code: DE

Payment date: 20230123

Year of fee payment: 17

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230112