EP1986773A2 - Masse d'adsorption et procédé pour éliminer le co présent dans des flux de substances - Google Patents

Masse d'adsorption et procédé pour éliminer le co présent dans des flux de substances

Info

Publication number
EP1986773A2
EP1986773A2 EP07704406A EP07704406A EP1986773A2 EP 1986773 A2 EP1986773 A2 EP 1986773A2 EP 07704406 A EP07704406 A EP 07704406A EP 07704406 A EP07704406 A EP 07704406A EP 1986773 A2 EP1986773 A2 EP 1986773A2
Authority
EP
European Patent Office
Prior art keywords
copper
adsorption
carbon monoxide
adsorption composition
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07704406A
Other languages
German (de)
English (en)
Inventor
Stephan Hatscher
Michael Hesse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP07704406A priority Critical patent/EP1986773A2/fr
Publication of EP1986773A2 publication Critical patent/EP1986773A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/56Use in the form of a bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an adsorption composition and a process for removing CO from material streams.
  • the invention relates to an adsorption composition and method for removing carbon monoxide from hydrocarbon streams.
  • pure means that the material flow is free from constituents which have a disturbing effect on the intended use of the material flow, for example breathable air which must be free of toxic compounds and, for example, in the production of electronic components
  • breathable air which must be free of toxic compounds
  • catalysts are often very sensitive to poisoning
  • metallocene catalysts - olefin streams are needed that contain no more than a few ppb (parts per billion, ie, 10 " 9 parts of impurities per part of desired material) (" polymer grade "olefins).
  • Olefins derived from typical olefins usually contain much higher proportions (ppm or even per thousand) of impurities such as carbon monoxide or oxygen ("chemical grade "), these proportions must be reduced accordingly before use for polymerization.
  • the streams to be purified are air, nitrogen or argon or hydrocarbons such as ethylene, propylene, 1-butene, 2-butene, 1, 3-butadiene or styrene.
  • Typical impurities that usually have to be removed are oxygen and carbon monoxide, and often also water, carbon dioxide, hydrogen, or else sulfur, arsenic or antimony compounds. Methods for removing such contaminants from streams are known.
  • the best known is the removal of carbon monoxide from oxygen-containing gas streams, for example from breathing air. This is usually done by catalytic conversion of carbon monoxide with oxygen, usually copper-containing catalysts.
  • the most widely used catalyst of this reaction is Hopcalit, an original For CO removal from breathing air in breathing masks developed for the conversion of carbon monoxide with oxygen highly active copper-manganese mixed oxide, at which the highly toxic carbon monoxide with oxygen converts to carbon dioxide.
  • WO 98/041 597 A1 discloses a process for the removal of alkynes, mono- or polyunsaturated hydrocarbons, sulfur, antimony or arsenic compounds, oxygen, hydrogen and carbon monoxide from streams by a sequence of two or three specific catalytic and absorptive process steps.
  • EP 662 595 A1 teaches a process for removing hydrogen, carbon monoxide and oxygen from cold liquid nitrogen by contacting them with certain zeolites or other metal oxides, especially hopcalite.
  • EP 750 933 A1 discloses a similar process for the removal of oxygen and carbon monoxide from cold nitrogen or cold noble gases by contacting them with metal oxides, in particular hopcalite. At the applied low temperatures below -40 ° C, however, little or no catalytic reaction takes place, oxygen and carbon monoxide are adsorbed on Hopcalit and react only at higher temperatures, unless they are removed in the cold in a desorption step.
  • EP 820 960 A1 discloses a method for unlocking fernung of oxygen and carbon monoxide from nitrogen or noble gases by contacting with metal oxides such as hopcalite, particularly at temperatures of 5 to 50 0 C.
  • WO 02/094 435 A1 teaches a process for the oxidative removal of CO from ethylene at temperatures in the range from 70 to 110 ° C of catalysts containing copper and zinc.
  • WO 02/026 619 A2 discloses a process for the removal of carbon monoxide by a water gas shift reaction and WO 03/051 493 A2 a process for the selective oxidation of carbon monoxide, in each case in gas streams which contain carbon monoxide, oxygen and hydrogen, in particular Fuel cells, and in each case to catalysts containing copper, a platinum-group metal and a reducible metal oxide on an oxidized support of activated aluminum, zirconia, titania, silica, zeolites or their combinations.
  • the reducible metal oxide is selected from the group of oxides of Cr, V, Mo, Ce, Pr, Nd, Ti, Ni, Mn, Co and their combinations. No.
  • 6,238,640 B1 describes a process for removing carbon monoxide from hydrogen-containing gas streams by reaction with steam and oxygen. erstoff to carbon dioxide and hydrogen in the presence of a catalyst containing copper and aluminum oxide and at least one metal oxide of the group formed by zinc oxide, chromium oxide and magnesium oxide.
  • CA 2 045 060 A1 teaches a process for removing carbon monoxide, carbon dioxide, hydrogen, oxygen and water vapor from inert gas streams at a temperature in the range of -30 ° C to + 40 ° C, especially -30 ° C and 0 ° C, wherein carbon monoxide is reacted to transition metal oxides such as hopcalite or copper-cobalt oxide to carbon dioxide and the latter is removed by adsorption on copper on an alumina support or nickel on an alumina or silica support.
  • transition metal oxides such as hopcalite or copper-cobalt oxide to carbon dioxide
  • carbon monoxide needs to be removed other than by reaction with oxygen or water, for example, when carbon monoxide, but no oxygen, water, or just a stoichiometric excess thereof is present in the stream to be purified.
  • oxygen must be removed from the carbon monoxide, especially if in addition to the formation of carbon dioxide and other disturbing by-products can be formed.
  • Oxygen can be removed before the removal of carbon monoxide, and carbon monoxide can not be removed by oxidation.
  • German Offenlegungsschrift DE 1 929 977 teaches 20 to 60 parts of CuO per 100 parts of ZnO-containing catalysts and their use for removing CO from ethylene and propylene streams at a temperature in the range of 50 to 200 ° C.
  • US Pat. No. 3,676,516 specifically teaches a supported Cu catalyst, the copper of which is present as 20 to 95% Cu 2+ , and its use for CO removal from ethylene or propylene streams at a temperature below about 200 ° C, in the examples at around 93 ° C.
  • No. 4,917,711 discloses an adsorbent which contains a copper compound on a high surface area support but also adsorbs olefins and is therefore only suitable for purifying nitrogen, noble gases and saturated hydrocarbons is.
  • WO 01/007 383 A1 teaches a process for the purification of olefin streams by oil transfer over porous adsorbents such as carbon black or aluminum and / or silicon oxides.
  • JP 02 144 125 A2 (CAS Abstract 1 13: 177 506) teaches a process for the removal of carbon monoxide and metal carbonyls from exhaust gases produced during semiconductor production by adsorption on manganese oxide and copper oxide-containing adsorption compositions.
  • JP 05 337 363 A2 discloses adsorbents for removing carbon monoxide, which contain palladium and further oxides on a carrier, the oxides consisting of the oxides of the elements of groups 1 1, 2 and 12 (without Be, Cd, Hg and Ra), 13 (without Al, Tl and the actinides), 14 (without C, Si, Pb and Hf), 5 and 15 (without N, P, As and the "Pa series”), 6 and 16 (without O, S, Se and U), 7 and 8 of the Periodic Table of the Elements.
  • WO 95/021 146 A1 teaches a process for the removal of carbon monoxide and, if present, also arsine from liquid hydrocarbon streams by contacting with a sorbent, depending on the embodiment of disperse copper in the Oxidati- onkyn 0, +1 or +2, and in certain cases also contains manganese dioxide.
  • EP 537 628 A1 discloses a process for removing carbon monoxide from alpha-olefins and saturated hydrocarbons by contacting them with a catalyst system based on at least one oxide of a metal selected from Cu, Fe, Ni, Co, Pt and Pd and at least one oxide of Groups 5, 6 or 7 of the Periodic Table of the Elements of Selected Metal at 0 to 150 ° C.
  • US 4713 090 describes an adsorbent for recovering high purity carbon monoxide by pressure or temperature swing adsorption.
  • the adsorbent comprises a composite support having a core of silicon or alumina and an outer layer of activated carbon on which a copper compound is supported.
  • WO 2004/022 223 A2 teaches a copper, zinc, zirconium and optionally aluminum-containing adsorption composition and their use for the removal of CO from streams in a completely reduced state.
  • Copper-containing catalysts are also known for applications other than the removal of CO from inert gases or hydrocarbons.
  • U.S. 4,593,148 and U.S. 4,871,710 disclose desulfurization and de-sizing and Cu / Zn catalysts.
  • WO 95/023 644 A1 teaches a copper catalyst for the hydrogenation of carbon oxides, for example to methanol, or for the so-called shift reaction of carbon monoxide with water to carbon dioxide and hydrogen, in addition to disperse copper and stabilizers such as silica, alumina, chromium oxide, magnesium oxide and / or zinc oxide and optionally also a carrier such as aluminum oxide, zirconium oxide, magnesium oxide and / or silicon dioxide, and its activation and passivation.
  • EP 804 959 A1 discloses a NO x - decomposition catalyst, which additionally also SiO 2, Al 2 O 3, SiO 2 / Al 2 O 3, MgO, ZrO 2 and the like as well as any other elements such as the transition elements Pt, Rh, Cr, Co, Y, Zr, V, Mn, Fe and Zn as well as Ga, to copper and an MFI zeolite.
  • Sn, Pb, P, Sb, Mg and Ba may preferably contain P.
  • A1 teaches a spinel monolith catalyst for NOx decomposition having the general formula A x B (i- X ) E 2 O 4, in which A is Cu up to half of which may be replaced by Co, Fe, Ni, Mn or Cr; B at least is an element selected from Zn, Mg, Ca, Zr, Ce, Sn, Ti, V, Mo and W, and E is Al, which may be replaced in half by Fe, Cr, Ga, La or mixtures thereof.
  • US Pat. No. 4,552,861 teaches a preparation process for catalysts comprising Cu, Zn, Al and at least one rare earth-zirconium element and their use for methanol synthesis. The methanol catalysts disclosed in US Pat. No.
  • 4,780,481 contain Cu, Zn and at least one alkali metal or alkaline earth metal, noble metals and / or rare earths, it being possible for Zn to be partially replaced by Zr.
  • WO 96/014 280 A1 teaches catalysts comprising Cu, Zn and at least one
  • EP 434 062 A1 also teaches a process for the hydrogenation of carboxylic acid esters on a catalyst comprising Cu, Al and a metal selected from the group consisting of Mg, Zn, Ti, Zr, Sn, Ni, Co and their mixtures. No.
  • 4,835,132 describes CO shift catalysts which are produced from a precursor of the formula (Cu + Zn) 6Al x R y (CO 3) (x + y) / 2 ⁇ Hi 2 + 2 (x + y) nH 2 O with a layer structure by calcination where R is La, Ce or Zr, x is at least 1 and at most 4, y is at least 0.01 and at most 1.5, and n is about 4.
  • Patent DD 0 153 761 relates to a process for activating or reactivating iron molybdate redox catalysts, which may also contain copper, wherein the catalysts are first calcined in a non-oxidizing atmosphere and then brought into contact with an oxidizing gas.
  • DE 199 63 441 A1 teaches a process for the regeneration of copper-containing hydrogenation catalysts by first oxidizing and then reducing treatment, wherein the reduction is preferably carried out only in the hydrogenation reactor.
  • WO 02/068 1 19 A1 discloses copper-containing hydrogenation and dehydrogenation catalysts which are used in a reduced state and passivated for transport by partial oxidation of the copper.
  • EP 296 734 A1 describes copper-containing shift or methanol catalysts which, by reduction at a temperature below 250 ° C., have a Cu surface area of at least 70 m 2 / g, based on copper exhibit.
  • Such activation, regeneration and passivation processes are also known for other catalysts, for example JP 55/003 856 A (WPI Abstract No. WP198013664C) discloses a process for activating palladium-based catalysts by reduction with methanol, oxidation with oxygen, then with acetic acid and oxygen and final reduction with hydrogen.
  • WO 03/002 252 A1 describes an activation process for a cobalt-containing catalyst by treatment with hydrocarbon.
  • an adsorption composition comprising copper, zinc and zirconium oxides was found, which is characterized in that the proportion containing its copper has a degree of reduction, expressed as the weight ratio of metallic copper to the sum of metallic copper and copper oxides, calculated as CuO, of at least 90% and at most 97%.
  • processes have been found for the removal of carbon monoxide from streams which are characterized by the use of the adsorption composition according to the invention as Adsorptionsmasse, but alternatively also by their use as a catalyst of the reaction of carbon monoxide with oxygen or as a reaction partner of carbon monoxide.
  • a process for the removal of carbon monoxide from streams by adsorption, which comprises bringing the carbon monoxide-containing stream into contact with an adsorbent mass containing copper, zinc and zirconium oxides characterized as containing copper contains a degree of reduction, expressed as a weight ratio of metallic copper to the sum of metallic copper and copper oxides, calculated as CuO, of at least 90% and at most 97%.
  • the adsorption composition according to the invention is well suited for use in processes for the purification of streams, in particular for the removal of carbon monoxide (CO) from liquid hydrocarbons such as propylene.
  • CO carbon monoxide
  • a particular advantage of the adsorption composition according to the invention is its extraordinarily high adsorption capacity. It is thus particularly well suited for liberating streams with a low and constant CO content from CO, without the need for double-sided adsorber systems.
  • the degree of reduction is a measure of the oxide content of the copper contained in the adsorption composition according to the invention.
  • Pure CU2O ie copper in the oxidation state +1
  • CU2O is formally an equimolar mixture of Cu and CuO and therefore has a degree of reduction of 44.4%.
  • the degree of reduction is determined by any method capable of quantitating copper in its various oxidation states. Particularly simple, however, is the complete oxidation of the copper in a sample of the adsorption by contacting with air at a temperature of at least 250 ° C and at most 500 ° C to constant weight, which should normally be achieved after at least 10 minutes and at most 12 hours.
  • the degree of reduction of the sample is calculated from the weight gain of the sample assuming that the added weight is exclusively oxygen and assuming a stoichiometry of the oxidation of
  • the degree of reduction is generally at least 90%, preferably at least 91% and more preferably at least 92% and generally at most 97%, preferably at most 96% and most preferably at most 95%.
  • suitable, particularly preferred degrees of reduction are 93% or 94%.
  • the adsorption composition according to the invention acts by adsorption in the adsorptive process according to the invention.
  • Adsorption is the addition of an adsorbate to the surface of an adsorbent mass ("adsorbent"), which is generally reversible by desorption.
  • the adsorbate can also be chemically reacted on the adsorbent, leaving the adsorbent chemically essentially unchanged, this is called catalysis (Example: the known method for the reaction of CO with oxygen on a metallic copper catalyst to carbon dioxide), the adsorbate chemically with the adsorbent, of absorption (examples: the known method for removing oxygen from gas streams by contacting with metallic copper under Formation of copper (I) oxide and / or copper (II) oxide; or the known method for removing carbon monoxide from gas streams by contacting with copper (I) oxide and / or copper (I) oxide to form carbon dioxide and metallic copper).
  • the adsorbate or its reaction product is removed by desorption again from the surface, in the absorption is usually a chemical regeneration of the absorbent necessary.
  • the initial step is adsorption, and whether or not an adsorptive purification process ultimately (eg, regeneration of the adsorption mass) results in a catalytic or absorptive step or a purely adsorptive process is involved from the individual case.
  • adsorptive means that during the removal of CO from the stream to be purified, no reaction product of the carbon monoxide is released into the stream, and the adsorption composition used remains chemically essentially unchanged, that is, its composition is not or only insignificantly
  • carbon monoxide or a reaction product thereof are released during the regeneration of the adsorbent according to the invention, ie, catalysis takes place or not, is irrelevant to the invention.
  • Adsorption or absorption masses are colloquially often referred to as "catalysts" without actually acting catalytically in their intended use.
  • the adsorption composition according to the invention contains copper, zinc and zirconium oxides. Copper can also be partly present as metallic copper and is otherwise present in the form of Cu (I) and Cu (II) oxides.
  • the adsorption composition according to the invention generally contains copper in an amount which, calculated as CuO, is at least 30% by weight, preferably at least 50% by weight and more preferably at least 60% by weight, and generally at most 99.8 Wt .-%, preferably at most 90 wt .-% and in a particularly preferred manner at most 80% by weight of copper oxide CuO, in each case based on the total amount of the adsorption composition.
  • the adsorption composition according to the invention generally contains in pure form zinc oxide ZnO in an amount of at least 0.1% by weight, preferably at least 5% by weight and more preferably at least 10% by weight and generally at most 69.9% by weight. -%, preferably at most 40 wt .-% and in a particularly preferred manner at most 30 wt .-%, each based on the total amount of the adsorption. It also generally contains in pure form zirconia ZrO 2 in an amount of at least 0.1% by weight, preferably at least 3% by weight and more preferably at least 5% by weight and generally at most 69.9% by weight.
  • the zirconium dioxide content in the adsorption composition can be partially replaced by aluminum oxide Al 2 O 3.
  • at least 1%, at least at least 10% or at least 30% and at most 90%, not more than 80% or not more than 70% of the zirconium dioxide content in the adsorption mass is replaced by aluminum oxide.
  • Pure form in the context of this invention means that in addition to the copper (oxide) - Zinkoxid- and zirconium dioxide (this optionally partially replaced by alumina) shares contain no other ingredients, apart from insignificant components, for example, still from Such as remnants of starting materials and reagents, auxiliaries for shaping and the like, "pure form” means that the adsorption composition essentially consists of the named components.
  • the percentage amounts of the components of the adsorption mass always add up to 100 wt .-%.
  • a very suitable adsorption composition consists in pure form, for example, from about 70 wt .-% CuO, about 20 wt .-% ZnO and about 10 wt .-% ZrO 2 , with their shares add up to 100 wt .-%.
  • the adsorption composition of the invention may, but need not necessarily be in pure form. It is possible to mix them with excipients or apply them to an inert carrier.
  • Suitable inert carriers are the known catalyst carriers such as alumina, silica, zirconia, aluminosilicates, clays, zeolites, kieselguhr and the like.
  • the adsorption composition of the invention is prepared as known oxidic catalysts.
  • a convenient and preferred method for producing the adsorption composition according to the invention comprises the following method steps in the order mentioned:
  • a solution of the components of the adsorption composition is prepared in the usual manner, for example by dissolving in an acid such as nitric acid.
  • an acid such as nitric acid.
  • their starting compounds are also used, for example the nitrates, carbonates, hydroxycarbonates of the metals in an aqueous solution which may also be acidic, for example nitric acid.
  • the quantitative ratio of the salts in the solution is calculated and adjusted stoichiometrically according to the desired final composition of the adsorption composition.
  • a solid is precipitated as a precursor of the adsorption in step b). This is done in the usual way, preferably by increasing the pH of the solution by adding a base, such as by adding sodium hydroxide solution or soda solution.
  • the resulting solid precipitate is usually separated from the supernatant solution prior to drying in step c), such as by filtration or decantation, and washed with water free of soluble constituents such as sodium nitrate.
  • the precipitate is then normally dried before further processing by conventional drying methods.
  • treatment at a slightly elevated temperature for example at least 80.degree. C., preferably at least 100.degree. C. and more preferably at least 120.degree. C., is sufficient over a period of 10 minutes to 12 hours, preferably 20 minutes to 6 Hours, and more preferably 30 minutes to 2 hours.
  • the precipitated and dried precursor of the adsorption composition is optionally subjected to the calcination step d).
  • the calcination temperature used is generally at least 250 ° C, preferably at least 300 ° C and most preferably at least 350 ° C, and generally at most 500 ° C, preferably at most 450 ° C and most preferably at most 410 ° C.
  • the calcination time is generally at least 10 minutes, preferably at least 20 minutes, and more preferably at least 30 minutes, and generally at most 12 hours, preferably at most 6 hours, and most preferably 4 hours at the most.
  • the drying step c) and the calcination step d) can merge directly into each other.
  • the adsorption composition or its precursor in the shaping step e) is processed by conventional shaping methods such as Verstrangen, tableting or pelletizing into shaped articles such as stranded or extruded, tablets or - even spherical - pellets.
  • the adsorption mass or its precursor is optionally subjected to a calcination step f).
  • the calcination conditions to be used in step f) are identical to those of calcination step d).
  • the adsorption composition is subjected to at least one of the two calcination steps d) or f), optionally also both.
  • the adsorption mass precursor is converted into the actual adsorption composition and, as usual, the BET surface area and the pore volume of the adsorption composition are adjusted, as is known, the BET surface area and the pore volume decrease with increasing calcination time and calcination temperature.
  • the content of the adsorption of carbonate (calculated as CO3 2 " ) at most 10 wt .-%, based on the total weight of the calcination product, and their BET surface has a value in the range of at least 40 and at most 100 m 2 / g comprising.
  • the Porenvo- lumen of the adsorption, measured as the water absorption is in the on Kalzinati- set to a value of at least 0.05 ml / g.
  • the adsorption composition according to the invention can also be deposited on a carrier as mentioned above. This is done by customary impregnation or precipitation procedures.
  • a patterning method is known to be a precipitation method in the presence of a support or a carrier precursor.
  • a carrier or carrier precursor is preferably added to the solution prepared in step a) in the precipitation process described above. If the carrier is already present in the form of preformed finished moldings, ie a pure impregnation process eliminates the shaping step e), otherwise the carrier in the course of processing of the precursor of the adsorbent by precipitation, drying, calcination and shaping is formed.
  • a preferred impregnation process for producing the adsorption composition according to the invention is carried out with preformed supports and comprises the following process steps in the order mentioned: a) preparing a solution of the components of the adsorption composition and / or of soluble starting compounds thereof; b) impregnating a preformed carrier with this solution; c) drying the impregnated support; and d) calcination of the soaked and dried carrier,
  • step d wherein after or simultaneously with step d) step
  • step a) of this impregnation process is carried out in the same way as the above-described step a) of the precipitation process.
  • step b) a preformed carrier is soaked in the solution.
  • the preformed carrier has a shape which is selected according to the intended use, for example stringers or extrudates, tablets or - even spherical - pellets.
  • the impregnation is carried out either with supernatant solution or as impregnation with the amount of solution corresponding to the pore volume of the support ("incipient wetness.")
  • the impregnated support in steps c) and d) is dried and calcined in the precipitation process like the precipitate a preformed carrier, thereby eliminating the shaping step.
  • Both a precipitation and an impregnation process require a step to adjust the degree of reduction of the copper-containing fraction. This can be done by setting appropriate process conditions in the calcination (in particular calcination under copper not fully oxidizing atmosphere) or in a separate process step after calcination, in the latter case, the adjustment of the degree of reduction does not necessarily have to take place immediately after calcination.
  • the adjustment of the degree of reduction is carried out by any known method suitable for changing the degree of oxidation of copper. If copper is present predominantly in reduced form, it is reacted with oxygen, copper is present predominantly as copper oxide, with hydrogen.
  • a preferred method is the treatment of the precursor with hydrogen, usually by passing a hydrogen-containing gas, preferably a hydrogen / nitrogen mixture at elevated temperature.
  • the precursor of the adsorption composition it is also possible first to completely reduce the precursor of the adsorption composition according to the invention and then to oxidize to the desired degree of reduction.
  • the complete reduction of the precursor of the adsorption composition is achieved by reducing the copper contained in the adsorption composition to copper metal.
  • this can be done by any reducing agent which can reduce copper from the oxidation stages I or II to the oxidation state O.
  • This can be done with liquid or dissolved reducing agents, in which case it must be dried after the reduction.
  • Much more convenient therefore is the reduction with a gaseous reducing agent, especially the reduction with hydrogen by passing a hydrogen-containing gas.
  • the temperature to be used in this case is generally at least 80 ° C, preferably at least 100 ° C and more preferably at least 1 10 ° C and generally reached at most 200 ° C, preferably at most 160 ° C and most preferably at most 130 ° C.
  • a suitable temperature is for example about 120 ° C.
  • the reduction is exothermic.
  • the amount of reducing agent supplied must be adjusted so that the selected temperature window is not left.
  • the course of the activation can be followed by the temperature measured in the adsorbent bed ("temperature programmed reduction, TPR").
  • a preferred method of reducing the precursor of the adsorption composition is to adjust the desired reduction temperature following a drying step under nitrogen and to add a small amount of hydrogen to the nitrogen.
  • a suitable gas mixture initially contains, for example, at least 0.1% by volume of hydrogen in nitrogen, preferably at least 0.5% by volume and more preferably at least 1% by volume, and at most 10% by volume, preferably at most 8 vol .-% and most preferably at most 5 vol .-%.
  • a suitable value is, for example, 2% by volume. This initial concentration is either maintained or increased to reach and maintain the desired temperature window. The reduction is complete when, despite the constant or increasing level of the reducing agent, the temperature in the bulk of the mass decreases.
  • a typical reduction time is generally at least 1 hour, preferably at least 10 hours and more preferably at least 15 hours, and generally at most 100 hours, preferably at most 50 hours, and most preferably at most 30 hours.
  • the drying of the precursor of the adsorption composition is carried out by heating the precursor to a temperature of generally at least 100 ° C, preferably at least 150 ° C and more preferably at least 180 ° C and generally at most 300 ° C, preferably at most Reached 250 ° C and most preferably at most 220 ° C.
  • a suitable drying temperature is for example about 200 ° C.
  • the precursor is kept at the drying temperature until there are no longer disturbing residues of adhering moisture; this is generally the case for a drying time of at least 10 minutes, preferably at least 30 minutes, and more preferably at least 1 hour, and generally at most 100 hours, preferably at most 10 hours and most preferably at most 4 hours.
  • the drying takes place in a gas stream in order to remove the moisture from the bed. Dry air can be used for this purpose, for example, but it is particularly preferred to flow the bed with an inert gas; nitrogen or argon are particularly suitable here.
  • the degree of reduction by oxidation of the adsorption mass precursor is adjusted to the desired value.
  • This can be done by any known oxidizing agent that can oxidize copper.
  • oxygen is used, in particular air or an oxygen / nitrogen or air / nitrogen mixture ("lean air").
  • a preferred method of oxidizing the precursor of the adsorption composition is to stop the hydrogen supply after reduction, to remove the residual hydrogen with nitrogen from the mixture
  • Temperature, total amount of oxygen and duration of treatment must be optimized by routine experimentation with determination of the degree of reduction for each individual case, for example a typical suitable gas mixture containing at least 0.2 vol.
  • a typical oxidation time is generally at least 15 minutes hours, preferably at least 30 minutes and more preferably at least 45 minutes, and generally at most 2 hours, preferably at most 90 minutes, and most preferably at most 75 minutes. For example, it is oxidized for one hour.
  • 2 500 Nl / l * h are well suited.
  • the set temperature is generally at least 0 ° C, preferably at least 10 ° C and more preferably at least 20 ° C and generally at most 60 ° C, preferably at most 50 ° C and most preferably at most 40 ° C.
  • room temperature is well suited.
  • Adsorptionsmassen-shaped bodies are filled for their use in a usually called “adsorber”, sometimes called “reactor” container in which they are brought into contact with the stream to be purified.
  • the finished adsorption composition is preferably dried before use for the adsorption of CO (optionally again) to remove traces of adhering moisture and to increase the adsorption capacity.
  • the drying of the finished adsorption composition is carried out in the same way as the drying of its precursor described above.
  • the setting of the degree of reduction and the drying in the adsorber is carried out, since otherwise a great deal of effort is required to protect the ready-to-use activated adsorption when filling in the adsorber from air and moisture.
  • the adsorption composition according to the invention is ready for use.
  • the adsorptive process according to the invention is a process for removing carbon monoxide from streams by adsorption, which comprises contacting the carbon monoxide-containing stream with an adsorption compound which contains copper, zinc and zirconium oxides and which in turn is characterized is that the copper-containing portion thereof has a degree of reduction, expressed as a weight ratio of metallic copper to the sum of metallic copper and copper oxides, calculated as CuO, of at least 90% and at most 97% ..
  • the adsorptive process according to the invention is characterized by Use of the adsorption composition of the invention characterized.
  • An advantage of the adsorptive process according to the invention is its applicability to material streams which are either oxygen-free, present at a temperature which is insufficient for the customary catalytic conversion of carbon monoxide with oxygen to carbon dioxide, or interfere with further use of carbon dioxide or oxygenates.
  • each stream of material can be freed of contaminants by carbon monoxide, for example inert gas streams (nitrogen, helium, neon, krypton, xenon and / or argon) or carbon monoxide.
  • hydrogen streams such as alkanes (methane, ethane, propane, butane, their mixtures, isomers and isomer mixtures) or alkenes (also called "olefins") such as ethene, propene, 1-butene, 2-butene, 1, 3-butadiene and / or styrene.
  • the adsorption composition according to the invention in a non-adsorptive manner for the removal of carbon monoxide.
  • the stream to be liberated from carbon monoxide also contains oxygen in addition to carbon monoxide, is present at a sufficiently high temperature for the catalytic conversion of oxygen with carbon monoxide, and does not interfere with carbon dioxide or oxygenates in its further use.
  • carbon monoxide can be converted from carbon monoxide and oxygen-containing streams by catalytic reaction of carbon monoxide with oxygen on the adsorption composition of the invention used as a catalyst to carbon dioxide and thus removed from the stream.
  • carbon monoxide can be removed from carbon monoxide-containing material streams by reacting carbon monoxide with an adsorption composition according to the invention containing copper (I) and / or copper (II) oxide to form metallic copper to form carbon dioxide from the material stream. It is equally possible to remove oxygen from streams by absorption on the metallic copper-containing adsorption composition of the invention to form copper (I) oxide and / or copper (II) oxide, or in the presence of hydrogen by copper-catalyzed formation of water.
  • copper-containing compositions can also adsorbent with the invention not only carbon monoxide, oxygen and the latter also hydrogen, but also other with copper or copper oxide-reactive impurities such as elemental mercury and / or mercury, sulfur, antimony and / or arsenic-containing compounds be removed from streams.
  • the adsorption composition according to the invention can be used in all known processes in which copper-containing solids are used catalytically, absorptively or as reactants.
  • the adsorptive process according to the invention is preferably used for removing carbon monoxide from alkene streams, in particular for removing carbon monoxide from alkene streams, which are usually in liquid form.
  • Liquid alkenes typically do not have the temperature necessary for the catalytic removal of carbon monoxide by reaction with oxygen, apart from the use of unusually high pressures, and oxygenation would interfere with the subsequent use for polymerization.
  • the adsorptive process according to the invention is particularly suitable for removing carbon monoxide from propene, 1-butene, 2-butene, 1,3-butadiene, butene mixtures, butene / butadiene mixtures or styrene in order to reduce the carbon monoxide content to that for "polymer grade".
  • Olefins allowable values to lower.
  • Embodiment is removed adsorptively with the novel process carbon monoxide from liquid propene.
  • the adsorptive process according to the invention makes it possible to remove carbon monoxide from material streams. It is particularly suitable for the removal of carbon monoxide from streams which is generally at least 0.001 ppm (for gases VoIppm, for liquids wt ppm), preferably at least 0.01 ppm, and generally at most 1000 ppm, preferably at most 100 ppm and most preferably not more than 10 ppm of carbon monoxide.
  • the stream of carbon monoxide to be liberated in the adsorber is passed over the bed of the adsorption mass molding according to the invention.
  • the temperature is not or only slightly critical for the adsorptive process of the invention from a technical point of view. Typical temperatures are in the range of at least -270 ° C, preferably at least -100 ° C and most preferably at -40 ° C, and at most 300 ° C, preferably at most 200 ° C and most preferably at most 100 ° C. Conveniently, the temperature is not influenced separately, but worked at the temperature that has to be treated material flow.
  • the amount of adsorption in the adsorber is therefore chosen in an individual case so that on the one hand the desired degree of depletion and on the other hand, a tolerable short operating time of an adsorber between two regenerations of Adsorption mass can be achieved.
  • at least two adsorber are provided, of which at least one can be acted upon to be purified material flow, while the adsorption mass is regenerated in at least one other. This is a routine optimization task for a person skilled in the art.
  • the maximum absorption capacity of carbon monoxide adsorption mass contained therein is sooner or later reached, so that it must be regenerated.
  • the stream to be purified is first turned off, preferably it is passed into a parallel, filled with fresh or regenerated adsorbent adsorbent.
  • the adsorption mass to be regenerated is then regenerated. This is done by desorption. It is irrelevant whether, before the desorption, the adsorbed carbon monoxide catalytically reacts with possibly adsorbed oxygen or purely chemically by reaction with existing in the adsorbent copper oxide to carbon dioxide or otherwise, such as with any existing hydrogen to methanol or methane, and then these reaction products Desorbed, essential is the restoration of the adsorption capacity of the adsorption.
  • the desorption is carried out by passing a fluid, preferably a gas, by raising the temperature or by a combination of these measures.
  • a fluid preferably a gas
  • the adsorber is flowed through with the adsorption material to be regenerated with a gas and heated.
  • the gas may be inert, such as nitrogen, methane or argon, but it is also possible to use hydrogen, in which case the CO is converted to methanol or methane.
  • the desorption temperature is generally set to a value of at least 50 ° C, preferably at least 100 ° C and more preferably at least 150 ° C and generally at most 500 ° C, preferably at most 450 ° C and most preferably at most 400 ° C set.
  • a desorption temperature of about 300 ° C is suitable.
  • the duration of the regeneration is typically generally at least 1 hour, preferably at least 10 hours and more preferably at least 15 hours, and generally at most 100 hours, preferably at most 50 hours, and most preferably at most 30 hours.
  • nitrogen is used for desorption, which is generally oxygen in an amount of at least 1 ppm. preferably at least 5 ppm and more preferably at least 10 ppm and generally at most 300 ppm, preferably at most 250 ppm and more preferably at most 200 ppm.
  • the actual desorption can also be initiated with the removal of remaining material stream to be purified from the adsorber by rinsing the adsorber, expediently with the gas stream used for desorption at normal temperature.
  • the adsorbent mass is generally ready for reuse immediately. In individual cases - especially if the desired degree of reduction has changed too much - it may be advisable or necessary to subject the adsorption mass to a renewed adjustment of the degree of reduction.

Abstract

Le monoxyde de carbone présent dans des flux de substances est éliminé par adsorption sur une masse d'adsorption contenant des oxydes de cuivre, de zinc et de zirconium, masse dont la fraction contenant le cuivre présente un degré de réduction, exprimé en rapport pondéral du cuivre métallique à la somme cuivre métallique + oxydes de cuivre calculés en CuO, d'au moins 90 % et d'au maximum 97 %.
EP07704406A 2006-02-14 2007-02-07 Masse d'adsorption et procédé pour éliminer le co présent dans des flux de substances Withdrawn EP1986773A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07704406A EP1986773A2 (fr) 2006-02-14 2007-02-07 Masse d'adsorption et procédé pour éliminer le co présent dans des flux de substances

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06101648 2006-02-14
EP07704406A EP1986773A2 (fr) 2006-02-14 2007-02-07 Masse d'adsorption et procédé pour éliminer le co présent dans des flux de substances
PCT/EP2007/051148 WO2007093532A2 (fr) 2006-02-14 2007-02-07 Masse d'adsorption et procédé pour éliminer le co présent dans des flux de substances

Publications (1)

Publication Number Publication Date
EP1986773A2 true EP1986773A2 (fr) 2008-11-05

Family

ID=38283990

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07704406A Withdrawn EP1986773A2 (fr) 2006-02-14 2007-02-07 Masse d'adsorption et procédé pour éliminer le co présent dans des flux de substances

Country Status (7)

Country Link
US (1) US20090098036A1 (fr)
EP (1) EP1986773A2 (fr)
JP (1) JP2009526628A (fr)
CN (1) CN101384355A (fr)
RU (1) RU2008136690A (fr)
WO (1) WO2007093532A2 (fr)
ZA (1) ZA200807783B (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547733B (zh) 2006-12-01 2014-01-22 巴斯夫欧洲公司 吸附组合物和从料流中除去co的方法
US8597407B2 (en) * 2008-12-17 2013-12-03 Basf Se Method for removing contaminants from gas flows containing water
CN111122793B (zh) * 2020-01-09 2022-08-05 宁波博之越环境科技有限公司 空气质量多组分气体颗粒物在线分析仪
CN117548111A (zh) * 2023-10-25 2024-02-13 广东绿峰能源科技有限公司 一种天然气制氢用催化剂及其制备方法与应用

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL156117B (nl) * 1968-06-17 1978-03-15 Stamicarbon Werkwijze voor het zuiveren van etheen en/of propeen.
US3676516A (en) * 1970-05-18 1972-07-11 Phillips Petroleum Co Purification of ethylene or propylene streams containing carbon monoxide
US4173090A (en) * 1978-05-11 1979-11-06 High Standard, Inc. Cylinder-locking device for revolvers
FR2560531B1 (fr) * 1984-03-02 1988-04-08 Inst Francais Du Petrole Procede de fabrication de catalyseurs contenant du cuivre, du zinc, de l'aluminium et au moins un metal du groupe forme par les terres rares et le zirconium et utilisation des catalyseurs obtenus pour les reactions mettant en jeu un gaz de synthese
US4593148A (en) * 1985-03-25 1986-06-03 Phillips Petroleum Company Process for removal of arsine impurities from gases containing arsine and hydrogen sulfide
EP0234745B1 (fr) * 1986-01-29 1991-06-12 Dyson Refractories Limited Catalyseurs
FR2595689B1 (fr) * 1986-03-17 1988-11-04 Inst Francais Du Petrole Procede de fabrication d'un melange d'alcools primaires a partir de gaz de synthese en presence d'un catalyseur contenant du cuivre, du cobalt, du zinc et au moins un metal alcalin et/ou alcalino-terreux
GB8610196D0 (en) * 1986-04-25 1986-05-29 Ici Plc Sulphur compounds removal
GB8714539D0 (en) * 1987-06-22 1987-07-29 Ici Plc Catalysts
US4917711A (en) * 1987-12-01 1990-04-17 Peking University Adsorbents for use in the separation of carbon monoxide and/or unsaturated hydrocarbons from mixed gases
US5155077A (en) * 1991-09-03 1992-10-13 Ford Motor Company Catalyst for purification of lean-burn engine exhaust gas
US5589151A (en) * 1993-12-31 1996-12-31 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the preparation of high-purity liquid nitrogen
AU1873195A (en) * 1994-02-07 1995-08-21 Exxon Chemical Patents Inc. Removal of carbon monoxide from hydrocarbon streams
MY129140A (en) * 1994-11-07 2007-03-30 Shell Int Research Process and a catalyst for the direct hydrogenation of carboxylic esters
FR2735990B1 (fr) * 1995-06-30 1997-08-14 Air Liquide Procede et dispositif pour la preparation d'un flux substantiellement epure en l'une au moins des impuretes oxygene et monoxyde de carbone
FR2751243B1 (fr) * 1996-07-22 1998-08-21 Air Liquide Elimination o2/co d'un gaz inerte par adsoption sur oxyde metallique poreux
DE19848595A1 (de) * 1998-10-21 2000-04-27 Basf Ag Hochtemperaturstabile Katalysatoren zur Zersetzung von N¶2¶0
JP2000143209A (ja) * 1998-11-05 2000-05-23 Idemitsu Kosan Co Ltd 一酸化炭素の転化方法および触媒
DE19950325A1 (de) * 1999-10-19 2001-04-26 Basf Ag Spinellmonolith-Katalysator und Verfahren zu seiner Herstellung
DE10124962A1 (de) * 2001-05-21 2002-12-05 Basf Ag Katalysatoren für die Reinigung von Ethylen
DE10241529A1 (de) * 2002-09-05 2004-03-11 Basf Ag Adsorptionsmasse und Verfahren zur Entfernung von Kohlenmonoxid aus Stoffströmen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007093532A3 *

Also Published As

Publication number Publication date
CN101384355A (zh) 2009-03-11
WO2007093532A3 (fr) 2007-11-22
US20090098036A1 (en) 2009-04-16
JP2009526628A (ja) 2009-07-23
WO2007093532A2 (fr) 2007-08-23
RU2008136690A (ru) 2010-03-20
ZA200807783B (en) 2010-01-27

Similar Documents

Publication Publication Date Title
EP1986772B1 (fr) Masse d'adsorption et procédé pour éliminer le co présent dans des flux de matière
EP1536886B1 (fr) Masse d'adsorption et procede de suppression du monoxyde de carbone contenu dans des flux de matiere
EP2035118B1 (fr) Procédé permettant d'éliminer du co de flux de matière
EP0983794B1 (fr) Catalyseur et procédé de purification de flux de matières
DE60110079T2 (de) Katalysator zum abbau von distickstoffoxid sowie methode zur durchführung von verfahren, welche die bildung von distickstoffoxid beinhalten
EP2097159A1 (fr) Matière adsorbante et procédé d'enlèvement de co dans des flux de substances
KR20130114133A (ko) 구리, 아연 및 지르코늄 옥사이드 함유 흡착 조성물의 활성화 방법
WO2007147781A1 (fr) Masse absorbante et procédé d'extraction de mercure
EP1986773A2 (fr) Masse d'adsorption et procédé pour éliminer le co présent dans des flux de substances
WO2010069851A1 (fr) Procédé d'élimination d'impuretés de courants gazeux contenant de l'eau
WO1994018118A1 (fr) Catalyseur sans chrome a base d'oxyde de fer pour la conversion de monoxyde de carbone
DE102005061322A1 (de) Verfahren zur Entfernung von Kohlenmonoxid aus Stoffströmen
WO1998041597A1 (fr) Procede de purification de flux de matieres
KR20130114134A (ko) 구리, 아연 및 지르코늄 함유 흡착 조성물의 재생 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080915

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100901