EP1981956A1 - Composition lubrifiante comprenant une dispersion colloïdale de fer et son utilisation dans un moteur pour le traitement des gaz d'echappement - Google Patents

Composition lubrifiante comprenant une dispersion colloïdale de fer et son utilisation dans un moteur pour le traitement des gaz d'echappement

Info

Publication number
EP1981956A1
EP1981956A1 EP07703989A EP07703989A EP1981956A1 EP 1981956 A1 EP1981956 A1 EP 1981956A1 EP 07703989 A EP07703989 A EP 07703989A EP 07703989 A EP07703989 A EP 07703989A EP 1981956 A1 EP1981956 A1 EP 1981956A1
Authority
EP
European Patent Office
Prior art keywords
acid
particles
engine
composition
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07703989A
Other languages
German (de)
English (en)
Inventor
Virginie Harle
Stephan Verdier
Claire Pitois
Gilbert Blanchard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Recherche et Technologies SAS
Original Assignee
Rhodia Recherche et Technologies SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Recherche et Technologies SAS filed Critical Rhodia Recherche et Technologies SAS
Publication of EP1981956A1 publication Critical patent/EP1981956A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/029Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles by adding non-fuel substances to exhaust
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/127Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/18Tall oil acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/16Groups 8, 9, or 10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/50Emission or smoke controlling properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles

Definitions

  • the present invention relates to a lubricating composition comprising a colloidal dispersion and its use in an engine for treating the exhaust gases of this engine. It is known that during the combustion of diesel fuel in a diesel engine, carbonaceous products tend to form soot, which is considered harmful for both the environment and health. We have been looking for a long time at techniques that make it possible to reduce the emission of these soot or carbonaceous particles. The same problem arises for gasoline engines operating in lean burn (lean-burn engines) which also emit such particles.
  • a satisfactory solution now used in mass production is to collect the particles on a filter which is regenerated regularly to prevent clogging.
  • the regeneration of the filter is all the more facilitated that the auto-ignition temperature of the soot is low which can be obtained by introducing a catalyst at the heart of the soot during combustion.
  • This technology known as "Fuel Borne Catalysis" or FBC is also widely used.
  • the sooted soot has a sufficiently low autoignition temperature to be frequently reached during normal engine running or during specific regeneration cycles.
  • the object of the invention is therefore to propose such a new technology.
  • the invention relates to a lubricating composition which is characterized in that it comprises a mixture of: - a lubricating oil;
  • the invention also relates to a method of operating an engine capable of producing exhaust gases containing particles and equipped with an exhaust pipe provided with a particulate filter, in which the particles are trapped on said filter. and the trapped particles are periodically burned, characterized in that in order to catalyze the combustion of said particles, a composition of the type described above is used as the engine lubricating composition.
  • the method of the invention has the advantage of eliminating the presence of a specific reservoir for the soot combustion catalyst and a device for metering it in the fuel unlike the method using the FBC technology.
  • composition of the invention comprises two essential elements: the lubricating oil and the colloidal dispersion.
  • Lubricating oils are well known to those skilled in the art. It can be recalled that these products contain a base oil with lubricating properties.
  • This base oil may be a mineral oil derived from oils, based in particular on paraffins, aromatics or isoparaffins and mixtures of these compounds.
  • the mineral oil can be obtained by vacuum distillation of a crude oil, the distillate obtained is then hydrocracked, hydrotreated and in a second time dewaxed and / or hydroisomerized so as to improve the properties such as viscosity and those of flow. the base oil thus obtained.
  • base oils may also be synthetic oils based on polyalphaolefins or organic esters.
  • the viscosity index of the mineral oils can be, for example, between 90 and 100 (index measured according to the ASTM D2270 standard), that of the hydrotreated products between 120 and 130, and this index can be greater than 140 for the synthetic oils based on of polyalphaolefins and can even reach 200 for those based on organic esters.
  • the lubricating oils further contain various additives which can be classified into three groups: those intended to improve the chemical stability of the oil or to inhibit the effects of degradation products, those which improve the rheological properties and those that protect metal surfaces and have an anti-wear effect.
  • additives based for example on phenols, substituted arylamines or sulfur compounds or also dialkyl-dithiophosphates zinc.
  • detergent additives such as salts of organic acids or of phenols and divalent metals and dispersing additives of the organic surfactant type.
  • the additives of the second group are those which act on the pour point of the oils and are of the oligomeric type possessing alkyl chains, or the so-called anticongelating products of the alkylnaphthalene type, the polyacrylates of long-chain alcohols or else of the alkylated polystyrene type. .
  • This second group also contains additives improving the viscosity index. These additives are based on hydrocarbon polymers (ethylene-propylene copolymers for example) or ester-functional polymers (polymethacrylate type).
  • additives are also anti-foaming products for example based on silicones.
  • the third group of additives includes products with anti-wear effect. They are generally organic products containing sulfur, chlorine or phosphorus, such as dithiophosphoric derivatives or phosphomolybdate derivatives.
  • colloidal dispersion refers in the present description to any system consisting of solid particles of colloidal dimensions based on an iron compound, in stable suspension in a liquid phase, said particles possibly also possibly containing quantities residuals of bound or adsorbed ions such as, for example, nitrates, acetates, citrates or ammoniums.
  • colloidal dimensions is meant dimensions of between about 1 nm and about 500 nm.
  • the particles may more particularly have an average size of at most about 250 nm, in particular at most 100 nm, preferably at most 20 nm and even more preferably at most 15 nm.
  • the iron compound may be either, preferably, completely in the form of colloids, or in the form of colloids and partially in the form of ions.
  • the particles of the dispersion of the invention are based on an iron compound which preferably can be amorphous. This amorphous character can be highlighted by X-ray analysis, the RX diagrams obtained do indeed show in this case no significant peak.
  • At least 85%, more particularly at least 90% and even more particularly at least 95% of the particles are primary particles.
  • primary particle is meant a particle which is perfectly individualized and which is not aggregated with another or more other particles. This characteristic can be demonstrated by examining the dispersion by TEM.
  • the cryo-MET technique can also be used to determine the aggregation state of the elementary particles. It makes it possible to observe by transmission electron microscopy (TEM) samples kept frozen in their natural environment which is either water or organic diluents such as aromatic or aliphatic solvents such as for example Solvesso and Isopar or else certain alcohols such as ethanol. Freezing is carried out on thin films of about 50 nm to 100 nm thick either in liquid ethane for aqueous samples or in liquid nitrogen for others.
  • TEM transmission electron microscopy
  • the particles of the colloidal dispersion used in the context of the invention have a fine particle size. Indeed, they have a d 50 between 1 nm and 5 nm, more particularly between 3 nm and 4 nm.
  • the particles of the colloidal dispersion are suspended in a liquid phase which is here an organic phase.
  • This organic phase may consist of the lubricating base oil described above or it may also be a mixture of this base oil with another organic phase, miscible with this oil.
  • the lubricant composition of the invention can be obtained by mixing the lubricating oil with a previously prepared colloidal dispersion.
  • this dispersion comprises an organic phase which may be a hydrocarbon, more particularly apolar.
  • organic phase examples include aliphatic hydrocarbons such as hexane, heptane, octane, nonane, inert cycloaliphatic hydrocarbons such as cyclohexane, cyclopentane, cycloheptane, aromatic hydrocarbons such as as benzene, toluene, ethylbenzene, xylenes, liquid naphthenes.
  • Isopar or Solvesso type petroleum fractions (trademarks registered by the company EXXON), in particular Solvesso 100 which essentially contains a mixture of methylethyl and trimethylbenzene, Solvesso 150 which contains a mixture of alkylbenzenes, in particular dimethylbenzene and of tetramethylbenzene and Isopar which contains mainly iso- and cyclo-paraffinic hydrocarbons at C-11 and C-12. It can also be made, as other oil cuts, those of Petrolink ® type Petrolink the company or Isane ® type of company Total.
  • Chlorinated hydrocarbons such as chloro- or dichlorobenzene, chlorotoluene can also be used for the organic phase.
  • the aliphatic and cycloaliphatic ethers as well as ketones for example diisopropyl ether, dibutyl ether, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone and mesityl oxide, may be envisaged.
  • esters can be envisaged, but they have the disadvantage of risking being hydrolysed. Mention may be made, as esters that may be used, of those resulting from the reaction of acids with C1 to C8 alcohols and in particular the palmitates of secondary alcohols, such as isopropanol. There may be mentioned butyl acetate as an example.
  • the organic phase may be based on a mixture of two or more hydrocarbons or compounds of the type described above.
  • the choice of the organic phase among the examples that have just been given will be based on its compatibility or miscibility with the lubricating oil.
  • the colloidal dispersion comprises an amphiphilic agent.
  • This amphiphilic agent is at least partly in interaction, either by grafting or by electrostatic binding, with the particles of the iron compound.
  • This agent may be more particularly an acid.
  • the acid is more particularly chosen from organic acids which comprise at least 6 carbon atoms, more particularly from 10 to 60 carbon atoms, preferably from 10 to 50 carbon atoms and even more preferably from 15 to 25 carbon atoms. carbon.
  • acids can be linear or branched. They may be aryl, aliphatic or arylaliphatic acids, possibly carrying other functions provided that these functions are stable in the environments where it is desired to use the dispersions according to the present invention.
  • aliphatic carboxylic acids, aliphatic sulfonic acids, aliphatic phosphonic acids, alkylarylsulphonic acids and alkylarylphosphonic acids containing from about 10 to about 40 carbon atoms, whether natural or synthetic can be used, for example, . It is of course possible to use the acids in mixture.
  • carboxylic acids whose carbon chain carries ketonic functions, such as the alpha-substituted pyruvic acids of the ketone function. It can also be alpha-halo carboxylic acids or alpha hydroxycarboxylic acids.
  • the chain attached to the carboxylic group may carry unsaturations.
  • the chain can be interrupted by ether or ester functions provided that the lipophilicity of the carrier chain of the carboxylic group is not greatly impaired.
  • tall oil fatty acids such as tall oil fatty acids, soya oil, tallow, linseed oil, oleic acid, linoleic acid, stearic acid and its isomers, pelargonic acid, capric acid, lauric acid, myristic acid, dodecylbenzenesulfonic acid, 2-ethylhexanoic acid, naphthenic acid, hexoic acid, toluenesulphonic acid, acid toluene phosphonic acid, lauryl sulfonic acid, lauryl phosphonic acid, palmityl sulfonic acid, and palmityl phosphonic acid.
  • amphiphilic agent mention may also be made of polyoxyethylenated alkyl ether phosphates.
  • R 1 , R 2 , R 3 which are identical or different, represent a linear or branched alkyl radical, in particular from 2 to 20 carbon atoms; a phenyl radical; an alkylaryl radical, more particularly an alkylphenyl radical, with in particular an alkyl chain of 8 to 12 carbon atoms; an arylalkyl radical, more particularly a phenylaryl radical;
  • M represents a hydrogen, sodium or potassium atom.
  • the radical R may in particular be a hexyl, octyl, decyl, dodecyl, oleyl or nonylphenyl radical.
  • amphiphilic compound examples include those marketed under the Lubrophos® and Rhodafac® brands sold by Rhodia, and in particular the products below:
  • This molar ratio may be between 0.2 and 1, preferably between 0.4 and 0.8.
  • concentration of the iron dispersion is between 1 and 40% by weight of Fe 2 O 3 iron oxide relative to the total weight of the dispersion.
  • the lubricating composition of the invention can be prepared by mixing a lubricating oil with a colloidal dispersion of an iron compound. This mixing can be done in proportions that are not critical and that can vary in a wide range. By way of example, these proportions may be such that the iron content, expressed as iron metal, originating from the colloidal dispersion in the lubricating composition is at most 6% by weight relative to the entire composition, preferably at most 1%. It is observed that the composition thus obtained is stable, that is to say that there is no decantation of the dispersion and therefore no deposition of the iron particles at the bottom of the tank containing the lubricating composition.
  • the invention also relates to a method of operating an engine which, during its operation, is capable of producing harmful particles, such as soot, and which are found in the exhaust gas. It may be more particularly a diesel engine or a gasoline engine operating in lean mixture.
  • the method of the invention aims to catalyze the combustion of particles or soot trapped on the particulate filter.
  • the iron compound is used as a catalyst for the combustion of such soot and it is provided by the lubricating composition and not by the fuel as in the processes of the prior art.
  • the lubricant composition thus comprising the dispersion of the iron compound, is introduced into the engine oil tank for example during a drain.
  • the lubricant composition thus passes into the engine lubrication circuit. It is found that the iron compound itself introduced by the lubricant composition is found in the soot and can thus contribute to catalyze their combustion.
  • EXAMPLE 1 This example relates to the preparation of a lubricant composition according to the invention.
  • a colloidal dispersion based on iron prepared according to Example 1 of the patent application WO 03/053560 A1.
  • the organic phase of this dispersion is Isopar L and the amphiphilic agent is isostearic acid.
  • the engaged iron nitrate content is adjusted so as to obtain a colloidal dispersion at 10% Fe mass of metal.
  • the X-ray analysis of this dispersion indicates that the particles are amorphous and the Cryo-transmission electron microscopy analysis reveals in the organic phase particles of about 3 nm diameter perfectly individualized.
  • This example relates to a catalytic oxidation of soot test carried out in the presence of a lubricant composition according to the invention.
  • the catalytic properties of soot oxidation are measured by analysis TGA.
  • a Setaram thermobalance equipped with a quartz boat is used in which a sample containing approximately 20 mg of sample is placed.
  • the sample consists of a mixture of 20% by weight of the lubricating composition of Example 1 and 80% mass of carbon black.
  • the carbon black used to simulate the soot emitted by a diesel engine is carbon black marketed by Cabot under the reference Elftex 125.
  • the lubricating composition and carbon black mixture is homogenized through a mixture with a spatula.
  • the dough thus obtained is dried beforehand in a ventilated oven at 60 ° C. and then up to 120 ° C.
  • This example relates to a soot oxidation test carried out in the presence of a lubricant composition of the prior art.
  • the test is carried out according to the same protocol as that of Example 2 but using the pure commercial oil (Total Activa Diesel 10W40).
  • the sample thus evaluated is therefore composed of a mixture of 20% by weight of the pure commercial oil and 80% of carbon black mass.
  • the colloidal iron dispersion of Example 1 is used and 7.1 grams of this dispersion at 10% iron metal mass is added to 170 g of a motor oil (EIf Prestigrade 15W40) in order to obtain a lubricant composition containing 96% mass of this commercial oil and 4% mass of the commercial colloidal dispersion.
  • the iron metal content of this lubricating composition is thus 0.4% by weight.
  • This lubricating composition is then introduced into a partially clogged container, itself placed in a ventilated enclosure maintained at
  • the iron content of the composition in the upper part of the container is then regularly measured by a chemical assay technique (ICP).
  • ICP chemical assay technique
  • Table 2 below gives the iron content of this lubricating composition after various residence times in the chamber at 110 ° C.
  • this lubricant composition is very important given that the iron content does not change during 79 days of continuous heating at 110 ° C. This stability period determined under these conditions can be considered sufficient. to ensure the stability of the lubricant composition between two oil changes of the engine oil circuit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

L'invention concerne une composition lubrifiante qui est caractérisée en ce qu'elle comprend un mélange d'une huile lubrifiante et d'une dispersion colloïdale qui comprend des particules d'au moins un composé du fer et un agent amphiphile. L'invention concerne aussi un procédé de fonctionnement d'un moteur, notamment diesel, équipé d'un pot d'échappement muni d'un filtre à particules, dans lequel on piège les particules contenues dans les gaz d'échappement sur ledit filtre et on procède périodiquement à la combustion des particules piégées qui est caractérisé en ce qu'en vue de catalyser la combustion desdites particules, on utilise comme composition lubrifiante du moteur la composition ci-dessus.

Description

COMPOSITION LUBRIFIANTE COMPRENANT UNE DISPERSION
COLLOÏDALE DE FER ET SON UTILISATION DANS UN MOTEUR POUR LE
TRAITEMENT DES GAZ D'ECHAPPEMENT
La présente invention concerne une composition lubrifiante comprenant une dispersion colloïdale et son utilisation dans un moteur pour le traitement des gaz d'échappement de ce moteur. On sait que lors de la combustion du gazole dans un moteur diesel, les produits carbonés ont tendance à former des suies, qui sont réputées nocives tant pour l'environnement que pour la santé. On recherche depuis longtemps des techniques qui permettent de réduire l'émission de ces suies ou particules carbonées. Le même problème se pose pour les moteurs essence fonctionnant en mélange pauvre (moteurs lean-burn) qui émettent eux aussi de telles particules.
Une solution satisfaisante et maintenant utilisée en grande série consiste à collecter les particules sur un filtre qui est régénéré régulièrement pour en éviter le colmatage. La régénération du filtre est d'autant plus facilitée que la température d'auto-inflammation des suies est faible ce qui peut être obtenu par introduction d'un catalyseur au cœur même des suies lors de la combustion. Cette technologie, connue sous le nom de « Fuel Borne Catalysis » ou FBC est également largement utilisée. Les suies ainsi additivées présentent une température d'auto-inflammation suffisamment basse pour être fréquemment atteinte pendant une marche normale du moteur ou lors de cycles de régénération spécifiques.
Bien que la technologie FBC soit satisfaisante, il existe toutefois un besoin pour d'autres technologies alternatives de manière à pouvoir disposer de la plus large gamme possible de solutions et à pouvoir ainsi répondre au problème de réduction de l'émission des particules nocives quelles que soient les conditions dans lesquelles se pose ce problème.
L'objet de l'invention est donc de proposer une telle nouvelle technologie. Dans ce but, l'invention concerne une composition lubrifiante qui est caractérisée en ce qu'elle comprend un mélange : - d'une huile lubrifiante;
- d'une dispersion colloïdale qui comprend des particules d'au moins un composé du fer et un agent amphiphile. L'invention concerne aussi un procédé de fonctionnement d'un moteur susceptible de produire des gaz d'échappement contenant des particules et équipé d'un pot d'échappement muni d'un filtre à particules, dans lequel on piège les particules sur ledit filtre et on procède périodiquement à la combustion des particules piégées, caractérisé en ce qu'en vue de catalyser la combustion desdites particules, on utilise comme composition lubrifiante du moteur une composition du type décrit ci-dessus.
Le procédé de l'invention a pour avantage de supprimer la présence d'un réservoir spécifique pour le catalyseur de combustion des suies et d'un dispositif de dosage de celui-ci dans le carburant contrairement au procédé utilisant la technologie FBC.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer. La composition de l'invention comprend deux éléments essentiels : l'huile lubrifiante et la dispersion colloïdale.
Les huiles lubrifiantes sont bien connues de l'homme du métier. On peut rappeler que ces produits contiennent une huile de base à propriété lubrifiante.
Cette huile de base peut être une huile minérale dérivée des pétroles, à base notamment de paraffines, d'aromatiques ou d'isoparaffines et de mélanges de ces composés. L'huile minérale peut être obtenue par distillation sous vide d'un pétrole brut, le distillât obtenu est ensuite hydrocraqué, hydrotraité et dans un second temps déparaffiné et/ou hydroisomérisé de façon à améliorer les propriétés comme la viscosité et celles d'écoulement de l'huile de base ainsi obtenue.
Ces huiles de base peuvent aussi être des huiles de synthèse à base de polyalphaoléfines ou d'esters organiques.
L'indice de viscosité des huiles minérales peut être compris par exemple entre 90 et 100 (indice mesuré selon la norme ASTM D2270), celui des produits hydrotraités entre 120 et 130 et cet indice peut être supérieur à 140 pour les huiles de synthèse à base de polyalphaoléfines et peut même atteindre 200 pour celles à base d'esters organiques.
D'une manière connue aussi, les huiles lubrifiantes contiennent en outre différents additifs que l'on peut classer en trois groupes : ceux destinés à améliorer la stabilité chimique de l'huile ou à inhiber les effets de produits de dégradation, ceux qui améliorent les propriétés rhéologiques et ceux qui protègent les surfaces métalliques et ont un effet anti-usure. Dans le premier groupe on trouve les additifs antioxydants à base par exemple de phénols, d'arylamines substituées ou de composés soufrés ou aussi de dialkyl-dithiophosphates de zinc. On trouve aussi les additifs détergents du type sels d'acides organiques ou de phénols et de métaux divalents et les additifs dispersants du type tensioactifs organiques.
Les additifs du deuxième groupe sont ceux qui agissent sur le point d'écoulement des huiles et sont du type oligomères possédant des chaînes alkyles ou encore les produits dits anticongélants de type alkylnaphtalènes, des polyacrylates d'alcools à longues chaînes ou encore de type polystyrènes alkylés. On trouve aussi dans ce deuxième groupe les additifs améliorant l'indice de viscosité. Ces additifs sont à base de polymères hydrocarbonés (copolymères éthylène-propylène par exemple) ou de polymères à fonction ester (type polyméthacrylate). Enfin, dans ce deuxième groupe d'additifs se trouvent aussi les produits anti-moussants par exemple à base de silicones. Le troisième groupe d'additifs comprend les produits à effet anti-usure. Il s'agit généralement de produits organiques contenant du soufre, du chlore ou du phosphore du type dérivés dithiophosphoriques ou dérivés phosphomolybdates.
Le second élément essentiel de la composition de l'invention est la dispersion colloïdale.
L'expression « dispersion colloïdale» désigne dans la présente description tout système constitué de fines particules solides de dimensions colloïdales à base d'un composé du fer, en suspension stable dans une phase liquide, lesdites particules pouvant, en outre, éventuellement contenir des quantités résiduelles d'ions liés ou adsorbés tels que par exemple des nitrates, des acétates, des citrates ou des ammoniums. Par dimensions colloïdales, on entend des dimensions comprises entre environ 1 nm et environ 500 nm. Les particules peuvent plus particulièrement présenter une taille moyenne d'au plus 250 nm environ, notamment d'au plus 100 nm, de préférence d'au plus 20 nm et encore plus préférentiellement d'au plus 15 nm. On notera que dans de telles dispersions, le composé du fer peut se trouver soit, de préférence, totalement sous la forme de colloïdes, soit sous la forme de colloïdes et partiellement sous la forme d'ions.
La granulométrie dont il est fait état ci-dessus et pour la suite de la description, sauf indication contraire, est déterminée par microscopie électronique à transmission (MET), de manière classique, sur un échantillon préalablement séché et déposé sur une membrane de carbone supportée sur une grille de cuivre. Les particules de la dispersion de l'invention sont des particules d'un composé du fer dont la composition correspond généralement et essentiellement à un oxyde et/ou un hydroxyde et/ou un oxyhydroxyde de fer. Le fer est généralement présent essentiellement à l'état d'oxydation 3. En fonction du procédé utilisé pour la préparation de la dispersion, les particules peuvent contenir en outre un complexant. Ce complexant peut être choisi parmi les acides carboxyliques hydrosolubles présentant une constante de complexation K telle que le pK soit d'au moins 3.
Les particules de la dispersion de l'invention sont à base d'un composé du fer qui, de préférence, peut être amorphe. Ce caractère amorphe peut être mis en évidence par analyse RX, les diagrammes RX obtenus ne montrent en effet dans ce cas aucun pic significatif.
Selon une variante de l'invention, au moins 85%, plus particulièrement au moins 90% et encore plus particulièrement au moins 95% des particules sont des particules primaires. On entend par particule primaire une particule qui est parfaitement individualisée et qui n'est pas agrégée avec une autre ou plusieurs autres particules. Cette caractéristique peut être mise en évidence en examinant la dispersion par MET.
On peut aussi utiliser la technique de cryo-MET pour déterminer l'état d'agrégation des particules élémentaires. Elle permet d'observer par microscopie électronique à transmission (MET) des échantillons maintenus congelés dans leur milieu naturel qui est soit de l'eau soit des diluants organiques tels que les solvants aromatiques ou aliphatiques comme par exemple le Solvesso et l'Isopar ou bien certains alcools tel que l'éthanol. La congélation s'effectue sur des films minces d'environ 50 nm à 100 nm d'épaisseur soit dans l'éthane liquide pour les échantillons aqueux soit dans l'azote liquide pour les autres.
Par cryo-MET l'état de dispersion des particules est bien préservé et représentatif de celui présent dans le milieu réel. Cette caractéristique des particules de la dispersion selon la variante qui vient d'être décrite contribue à la stabilité de cette dispersion.
Par ailleurs et selon une variante avantageuse, les particules de la dispersion colloïdale utilisée dans le cadre de l'invention présentent une granulométrie fine. En effet, elles possèdent un d50 compris entre 1 nm et 5 nm, plus particulièrement entre 3 nm et 4 nm.
Comme indiqué plus haut, les particules de la dispersion colloïdale sont en suspension dans une phase liquide qui est ici une phase organique. Cette phase organique peut être constituée par l'huile de base à propriété lubrifiante décrite plus haut ou elle peut être aussi un mélange de cette huile de base avec une autre phase organique, miscible avec cette huile. En effet et comme on le verra plus loin, la composition lubrifiante de l'invention peut être obtenue par mélange de l'huile lubrifiante avec une dispersion colloïdale préalablement préparée. Dans ce cas, cette dispersion comprend une phase organique qui peut être un hydrocarbure, plus particulièrement apolaire.
A titre d'exemple de phase organique, on peut citer les hydrocarbures aliphatiques comme l'hexane, l'heptane, l'octane, le nonane, les hydrocarbures cycloaliphatiques inertes tels que le cyclohexane, le cyclopentane, le cycloheptane, les hydrocarbures aromatiques tels que le benzène, le toluène, l'éthylbenzène, les xylènes, les naphtènes liquides. Conviennent également les coupes pétrolières du type Isopar ou Solvesso (marques déposées par la Société EXXON), notamment Solvesso 100 qui contient essentiellement un mélange de méthyléthyl- et triméthyl-benzène, le Solvesso 150 qui renferme un mélange d'alcoylbenzènes en particulier de diméthylbenzène et de tétraméthylbenzène et l'Isopar qui contient essentiellement des hydrocarbures iso- et cyclo-paraffiniques en C-1 1 et C-12. On peut aussi citer, comme autres coupes pétrolières, celles de type Petrolink® de la société Petrolink ou de type Isane® de la société Total.
On peut mettre en œuvre également pour la phase organique des hydrocarbures chlorés tels que le chloro- ou le dichloro-benzène, le chlorotoluène. Les éthers ainsi que les cétones aliphatiques et cycloaliphatiques comme par exemple l'éther de diisopropyle, l'éther de dibutyle, la méthyléthylcétone, la méthylisobutylcétone, la diisobutylcétone, l'oxyde de mésityle, peuvent être envisagés.
Les esters peuvent être envisagés, mais ils présentent l'inconvénient de risquer d'être hydrolyses. On peut citer comme esters susceptibles d'être utilisés ceux issus de la réaction d'acides avec des alcools en C1 à C8 et notamment les palmitates d'alcools secondaires tel l'isopropanol. On peut mentionner l'acétate de butyle à titre d'exemple.
Bien entendu, la phase organique peut être à base d'un mélange de deux ou plusieurs hydrocarbures ou composés du type décrit ci-dessus. Enfin, comme indiqué plus haut, le choix de la phase organique parmi les exemples qui viennent d'être donnés se fera en fonction de sa compatibilité ou miscibilité avec l'huile lubrifiante.
Par ailleurs, la dispersion colloïdale comprend un agent amphiphile. Cet agent amphiphile est, au moins en partie, en interaction, soit par greffage, soit par liaison électrostatique, avec les particules du composé de fer.
Cet agent peut être plus particulièrement un acide. L'acide est plus particulièrement choisi parmi les acides organiques qui comportent au moins 6 atomes de carbone, encore plus particulièrement de 10 à 60 atomes de carbone, de préférence de 10 à 50 atomes de carbone et encore plus préférentiellement de 15 à 25 atomes de carbone.
Ces acides peuvent être linéaires ou ramifiés. Ils peuvent être des acides aryliques, aliphatiques ou arylaliphatiques, portant éventuellement d'autres fonctions à condition que ces fonctions soient stables dans les milieux où l'on désire utiliser les dispersions selon la présente invention. Ainsi, on peut mettre en œuvre par exemple des acides carboxyliques aliphatiques, des acides sulfoniques aliphatiques, des acides phosphoniques aliphatiques, des acides alcoylarylsulfoniques et des acides alcoylarylphosphoniques possédant environ de 10 à environ de 40 atomes de carbone, qu'ils soient naturels ou synthétiques. Il est bien entendu possible d'utiliser les acides en mélange.
On peut aussi utiliser des acides carboxyliques dont la chaîne carbonée porte des fonctions cétoniques comme les acides pyruviques substitués en alpha de la fonction cétone. Cela peut être également des acides alpha- halogéno carboxyliques ou des acides alpha-hydroxycarboxyliques. La chaîne rattachée au groupe carboxylique peut porter des insaturations. La chaîne peut être interrompue par des fonctions éther ou ester à condition de ne pas trop altérer la lipophilicité de la chaîne porteuse du groupe carboxylique. A titre d'exemple, on peut citer les acides gras de tallol, d'huile de soja, de suif, d'huile de lin, l'acide oléique, l'acide linoléique, l'acide stéarique et ses isomères, l'acide pélargonique, l'acide caprique, l'acide laurique, l'acide myristique, l'acide dodécylbenzènesulfonique, l'acide éthyl-2 hexanoïque, l'acide naphténique, l'acide hexoïque, l'acide toluène sulfonique, l'acide toluène phosphonique, l'acide lauryl sulfonique, l'acide lauryl phosphonique, l'acide palmityl sulfonique, et l'acide palmityl phosphonique.
Comme agent amphiphile on peut également mentionner les alkyl éthers phosphates polyoxyéthylénés. On entend ici les organo-phosphates de formule : R1 -O-(CH2-CH2-O)n-P(OM)2
O ou encore les phosphates de dialcoyle polyoxyéthylénés de formule :
R3-O-(CH2-CH2-O)n-P(OM)
O dans lesquelles :
- R1 , R2, R3, identiques ou différents représentent un radical alkyl linéaire ou ramifié, notamment de 2 à 20 atomes de carbone; un radical phényle; un radical alkylaryl, plus particulièrement un radical alkylphényl, avec notamment une chaîne alkyle de 8 à 12 atomes de carbone; un radical arylalkyle, plus particulièrement un radical phénylaryl;
- n le nombre d'oxyde d'éthylène pouvant aller de 0 à 12 par exemple;
- M représente un atome d'hydrogène, de sodium ou de potassium.
Le radical R peut être notamment un radical hexyle, octyle, décyle, dodécyle, oléyle, nonylphényle. On peut citer comme exemple de ce type de composés amphiphiles ceux commercialisés sous les marques Lubrophos® et Rhodafac® vendu par Rhodia et notamment les produits ci-dessous :
- les poly-oxy-éthylène alkyl (C8-C10) éthers phosphates Rhodafac® RA 600 - le poly-oxyéthylène tridécyl éther phosphate Rhodafac® RS 710 ou RS
410
- le poly-oxy-éthylène oléocétyl éther phosphate Rhodafac® PA 35
- le poly-oxy-éthylène nonylphenyl éther phosphate Rhodafac® PA 17
- le poly-oxy-éthylène nonyl(ramifié) éther phosphate Rhodafac® RE 610. La quantité de l'agent amphiphile présent dans la dispersion peut être défini par le rapport molaire r : r = nombre de mole d'agent amphiphile/nombre de mole de composé de fer
Ce rapport molaire peut être compris 0,2 et 1 , de préférence entre 0,4 et 0,8. Généralement et à titre d'exemple seulement, la concentration de la dispersion en fer, est comprise entre 1 et 40 % en poids d'oxyde de fer Fe2O3 par rapport au poids total de la dispersion.
A titre d'exemple pour les dispersions colloïdales d'un composé du fer et leur préparation, on pourra se référer à l'ensemble de la description de la demande de brevet WO 03/053560 A1.
La composition lubrifiante de l'invention peut être préparée par mélange d'une huile lubrifiante avec une dispersion colloïdale d'un composé du fer. Ce mélange peut se faire dans des proportions qui ne sont pas critiques et qui peuvent varier dans une large gamme. A titre d'exemple, ces proportions peuvent être telles que la teneur en fer, exprimée en fer métal, provenant de la dispersion colloïdale dans la composition lubrifiante soit d'au plus 6% en masse par rapport à l'ensemble de la composition, de préférence d'au plus 1 %. On observe que la composition ainsi obtenue est stable, c'est-à-dire que l'on ne note pas de décantation de la dispersion et donc pas de dépôt des particules de fer au fond du réservoir contenant la composition lubrifiante. Par ailleurs cette stabilité est maintenue même lorsque la composition lubrifiante est exposée à une température élevée ce qui est le cas lors du fonctionnement du moteur pour lequel la composition est utilisée comme lubrifiant. En outre, on constate d'une manière inattendue que l'utilisation de cette composition dans le fonctionnement du moteur entraîne bien une catalyse de la combustion des suies.
Comme décrit plus haut, l'invention concerne aussi un procédé de fonctionnement d'un moteur qui, lors de son fonctionnement, est susceptible de produire des particules nocives, comme des suies, et qui se retrouvent dans les gaz d'échappement. Il peut s'agir plus particulièrement d'un moteur diesel ou d'un moteur essence fonctionnant en mélange pauvre.
Ce procédé s'applique à un moteur qui, d'une manière connue, est équipé d'une ligne ou pot d'échappement dans lequel est intégré un filtre à particules. Classiquement, ce filtre comprend un filtre de type à paroi filtrante en céramique ou en carbure de silicium à travers lequel circulent les gaz d'échappement. Toutefois il peut également s'agir d'un ou plusieurs tamis en toile métallique ou encore d'un filtre de type mousse en céramique ou en matériau fibreux.
Le procédé de l'invention vise à catalyser la combustion des particules ou suies piégées sur le filtre à particules. Dans le cas de l'invention, le composé du fer est utilisé comme catalyseur pour la combustion de ces suies et il est apporté par la composition lubrifiante et non pas par le carburant comme dans les procédés de l'art antérieur. La composition lubrifiante comprenant donc la dispersion du composé du fer, est introduite dans le réservoir d'huile du moteur par exemple lors d'une vidange. La composition lubrifiante passe ainsi dans le circuit de lubrification du moteur. On constate que le composé du fer même introduit par la composition lubrifiante se retrouve dans les suies et peut contribuer ainsi à catalyser leur combustion.
Bien entendu, il est possible, sans sortir du cadre de la présente invention, de mettre en œuvre le procédé ci-dessus tout en utilisant pour le fonctionnement du moteur un carburant qui contient par ailleurs un catalyseur de combustion des particules ou des suies. Ce catalyseur peut aussi être une dispersion colloïdale telle que décrite plus haut. Il est de même possible de mettre en œuvre le procédé de l'invention dans un système dans lequel le pot d'échappement est équipé d'un filtre à particules catalysé. Ce type de filtre est bien connu, il s'agit d'un filtre dans lequel est incorporé, lors de sa fabrication, un catalyseur d'oxydation des particules ou des suies. Des exemples vont maintenant être donnés.
EXEMPLE 1 Cet exemple concerne la préparation d'une composition lubrifiante selon l'invention.
Pour cette préparation, on utilise une dispersion colloïdale à base de fer préparée selon l'exemple 1 de la demande de brevet WO 03/053560 A1. La phase organique de cette dispersion est de l'Isopar L et l'agent amphiphile est l'acide isostéarique. La teneur en nitrate de fer engagé est ajustée de façon à obtenir une dispersion colloidale à 10% masse de Fe en métal. L'analyse par RX de cette dispersion indique que les particules sont amorphes et l'analyse par Cryo-microscopie électronique à transmission met en évidence dans la phase organique des particules de diamètre environ 3 nm parfaitement individualisées.
On ajoute à cette dispersion une huile commerciale (Total Activa Diesel 10W40) de façon à obtenir une composition lubrifiante contenant 46% masse de cette huile commerciale et 54 % masse de la dispersion colloïdale.
EXEMPLE 2
Cet exemple concerne un test d'oxydation catalytique des suies réalisé en présence d'une composition lubrifiante selon l'invention. Les propriétés catalytiques d'oxydation des suies sont mesurées par analyse thermogravimétrique. On utilise une thermobalance Setaram équipée d'une nacelle en quartz dans laquelle on place un échantillon contenant environ 20 mg d'échantillon.
L'échantillon est constitué d'un mélange de 20% en masse de la composition lubrifiante de l'exemple 1 et 80% masse de noir de carbone. Le noir de carbone utilisé pour simuler les suies émises par un moteur diesel est du noir de carbone commercialisé par la société Cabot sous la référence Elftex 125. Le mélange composition lubrifiante et noir de carbone est homogénéisé grâce à un mélange à la spatule. La pâte ainsi obtenue est préalablement séchée à l'étuve ventillée à 60 °C puis jusque 120°C.
20 mg de l'échantillon ainsi préparé et traité sont introduits dans la nacelle de la thermobalance puis on fait circuler un flux gazeux constitué d'un mélange air/eau dans des proportions volumiques respectives de 87 et 13%. Après un palier de 30 minutes à 150°C, on lance la montée en température jusque 900 °C avec une rampe de 10°C/min et on enregistre la perte de masse de l'échantillon en fonction de la température.
EXEMPLE 3 COMPARATIF
Cet exemple concerne un test d'oxydation des suies réalisé en présence d'une composition lubrifiante de l'art antérieur. L'essai est réalisé selon le même protocole que celui de l'exemple 2 mais en utilisant l'huile commerciale pure (Total Activa Diesel 10W40). L'échantillon ainsi évalué est donc composé d'un mélange de 20% masse de l'huile commerciale pure et 80% masse de noir de carbone.
Les résultats sont données dans le tableau 1 : ils sont exprimés en température de demi-oxydation des suies (T50%(suies)) correspondant à la température requise pour obtenir la moitié de la perte de masse mesurée entre 200 et 900 °C.
Tableau 1
On constate que l'ajout d'huile commerciale pure n'a pas ou peu d'effet sur la température de demi conversion des suies alors que l'emploi d'une composition lubrifiante conforme à l'invention contenant une huile commerciale et une dispersion colloidale contenant du fer permet d'abaisser de façon très significative la température de combustion des suies.
EXEMPLE 4
Dans cet exemple on reprend la dispersion colloidale de fer de l'exemple 1 et on ajoute 7,1 grammes de cette dispersion à 10% masse de fer métal à 170 g d'une huile moteur (EIf Prestigrade 15W40) de façon à obtenir une composition lubrifiante contenant 96% masse de cette huile commerciale et 4 % masse de la dispersion colloïdale commerciale. La teneur en fer métal de cette composition lubrifiante est ainsi de 0,4% poids.
Cette composition lubrifiante est ensuite introduite dans un récipient partiellement bouché, lui-même placé dans une enceinte ventilée maintenue à
1 10°C. On mesure ensuite régulièrement par une technique de dosage chimique (ICP) la teneur en fer de la composition dans la partie haute du récipient.
Le tableau 2 suivant donne la teneur en fer de cette composition lubrifiante après différents temps de séjour dans l'enceinte à 110°C.
Tableau 2
On constate donc que la stabilité thermique de cette composition lubrifiante est très importante compte tenu que la teneur en fer n'évolue pas pendant 79 jours de chauffage continu à 1 100C. Cette durée de stabilité déterminée dans ces conditions peut être considérée comme suffisante pour assurer la stabilité de la composition lubrifiante entre deux vidanges du circuit huile moteur.

Claims

REVENDICATIONS
1 - Composition lubrifiante, caractérisée en ce qu'elle comprend un mélange :
- d'une huile lubrifiante;
- d'une dispersion qui comprend des particules d'un composé du fer et un agent amphiphile.
2- Composition selon la revendication 1 , caractérisée en ce qu'au moins 85% des particules du composé du fer sont des particules primaires.
3- Composition selon la revendication 1 ou 2, caractérisée en ce que les particules présentent un d50 compris entre 1 et 5 nm, de préférence entre 3 et 4 nm.
4- Composition selon l'une des revendications précédentes, caractérisée en ce que l'agent amphiphile est un acide.
5- Composition selon la revendication 4, caractérisée en ce que l'acide précité est un acide carboxylique comportant de 10 à 60 atomes de carbone, plus particulièrement de 15 à 25 atomes de carbone.
6- Composition selon l'une des revendications 4 ou 5, caractérisée en ce que l'acide est choisi parmi les acides gras de tallol, d'huile de soja, de suif, d'huile de lin, l'acide oléique, l'acide linoléique, l'acide stéarique et ses isomères, l'acide pélargonique, l'acide caprique, l'acide laurique, l'acide myristique, l'acide dodécylbenzènesulfonique, l'acide éthyl-2 hexanoïque, l'acide naphténique, l'acide hexoïque, l'acide toluène sulfonique, l'acide toluène phosphonique, l'acide lauryl sulfonique, l'acide lauryl phosphonique, l'acide palmityl sulfonique, et l'acide palmityl phosphonique.
7- Composition selon l'une des revendications précédentes, caractérisée en ce que la teneur en fer, exprimée en fer métal, provenant de la dispersion colloïdale dans la composition lubrifiante est d'au plus 6% en masse par rapport à l'ensemble de la composition, de préférence d'au plus 1 %. 8- Procédé de fonctionnement d'un moteur susceptible de produire des gaz d'échappement contenant des particules et équipé d'un pot d'échappement muni d'un filtre à particules, dans lequel on piège les particules sur ledit filtre et on procède périodiquement à la combustion des particules piégées, caractérisé en ce qu'en vue de catalyser la combustion desdites particules, on utilise comme composition lubrifiante du moteur une composition selon l'une des revendications précédentes.
9- Procédé selon la revendication 8, caractérisé en ce que le moteur est un moteur diesel ou un moteur essence fonctionnant en mélange pauvre.
10- Procédé selon la revendication 8 ou 9, caractérisé en ce qu'il est mis en œuvre avec un moteur fonctionnant avec un carburant qui contient un catalyseur de combustion des particules ou avec un moteur équipé d'un pot d'échappement qui comprend un filtre à particules catalysé.
EP07703989A 2006-01-30 2007-01-18 Composition lubrifiante comprenant une dispersion colloïdale de fer et son utilisation dans un moteur pour le traitement des gaz d'echappement Withdrawn EP1981956A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0600840A FR2896806B1 (fr) 2006-01-30 2006-01-30 Composition lubrifiante comprenant une dispersion colloidale de fer et son utilisation dans un moteur pour le traitement des gaz d'echappement
PCT/EP2007/050494 WO2007085562A1 (fr) 2006-01-30 2007-01-18 Composition lubrifiante comprenant une dispersion colloïdale de fer et son utilisation dans un moteur pour le traitement des gaz d'echappement

Publications (1)

Publication Number Publication Date
EP1981956A1 true EP1981956A1 (fr) 2008-10-22

Family

ID=36975551

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07703989A Withdrawn EP1981956A1 (fr) 2006-01-30 2007-01-18 Composition lubrifiante comprenant une dispersion colloïdale de fer et son utilisation dans un moteur pour le traitement des gaz d'echappement

Country Status (5)

Country Link
US (1) US20090156439A1 (fr)
EP (1) EP1981956A1 (fr)
CN (1) CN101374933A (fr)
FR (1) FR2896806B1 (fr)
WO (1) WO2007085562A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL236704B1 (pl) 2014-11-19 2021-02-08 Inst Nafty I Gazu Panstwowy Inst Badawczy Stabilizowany modyfikator spalania do lekkich olejów opałowych
EP3620502A1 (fr) * 2018-09-10 2020-03-11 Carl Bechem Gmbh Composition destiné à la production d'une composition lubrifiante
FR3108621B1 (fr) * 2020-03-25 2022-07-22 Total Marketing Services Utilisation de polymère d’alkyle métacrylate pour réduire les émissions de particules

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1561082A (en) * 1975-08-16 1980-02-13 British Aircraft Corp Ltd Lubrication of bearings
US4264344A (en) * 1980-02-06 1981-04-28 General Motors Corporation Diesel engine exhaust particulate trap
JPH07112564B2 (ja) * 1987-09-28 1995-12-06 日新製鋼株式会社 ステンレス鋼の熱間圧延用潤滑剤
DE3809307A1 (de) * 1988-03-19 1989-09-28 Veba Oel Ag Motorschmieroel fuer dieselmotoren und verfahren zum betreiben eines dieselmotors
GB2248068A (en) * 1990-09-21 1992-03-25 Exxon Chemical Patents Inc Oil compositions and novel additives
DE4133137A1 (de) * 1991-10-07 1992-04-23 Bernd Fischer Verfahren zur katalytischen unterstuetzung der partikeloxidation bei dieselmotoren, insbesondere solchen mit partikelfilter oder katalysator
NZ506052A (en) * 1998-01-15 2002-10-25 Ass Octel Fuel additives comprising a combination of an iron containing species and a calcium or stronium containing species
US6689424B1 (en) * 1999-05-28 2004-02-10 Inframat Corporation Solid lubricant coatings produced by thermal spray methods
US20020088214A1 (en) * 2001-01-05 2002-07-11 Sherwood Walter J. Filter system for small engines
FR2833862B1 (fr) * 2001-12-21 2004-10-15 Rhodia Elect & Catalysis Dispersion colloidale organique de particules de fer, son procede de preparation et son utilisation comme adjuvant de carburant pour moteurs a combustion interne
US20030176301A1 (en) * 2002-03-13 2003-09-18 Barnes John F. Lubricant for two-cycle engines
US7119044B2 (en) * 2003-06-11 2006-10-10 Delphi Technologies, Inc. Multiple washcoats on filter substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007085562A1 *

Also Published As

Publication number Publication date
FR2896806A1 (fr) 2007-08-03
CN101374933A (zh) 2009-02-25
WO2007085562A1 (fr) 2007-08-02
FR2896806B1 (fr) 2008-03-14
US20090156439A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
EP1989407B1 (fr) Procede de fonctionnement d un moteur utilisant une composition lubrifiante comprenant une dispersion colloïdale d ' une terre rare pour catalyser la combustion des suies
CA2470410C (fr) Dispersion colloidale organique de particules de fer, son procede de preparation et son utilisation comme adjuvant de carburant pour moteurs a combustion interne
EP2670966B1 (fr) Dispositif de distribution d'un additif
EP2655574B1 (fr) Utilisation de dispersions de particules de fer comme additif de carburant
WO2012084838A1 (fr) Dispersion organique de particules à base de fer sous forme cristallisée
FR2913431A1 (fr) Procede de fonctionnement d'un moteur diesel en vue de faciliter la regeneration d'un filtre a particules sur la ligne d'echappement
EP2655573B1 (fr) Additif carburant à base d'une dispersion de particules de fer et d'un détergent polyester ammonium.
CA2521092C (fr) Dispersion colloidale d'un compose d'une terre rare comprenant un agent anti-oxydant et son utilisation comme adjuvant de gazole pour moteurs a combustion interne
FR2969654A1 (fr) Composition d'additif carburant a base d'une dispersion de particules de fer et d'un detergent
EP1981956A1 (fr) Composition lubrifiante comprenant une dispersion colloïdale de fer et son utilisation dans un moteur pour le traitement des gaz d'echappement
CA2539480C (fr) Utilisation d'une dispersion colloidale organique de cerium et d'un element choisi parmi le rhodium et le palladium comme adjuvant de gazoles pour moteurs a combustion interne
EP4065671B1 (fr) Utilisation de composés alkyl phénol comme additifs de détergence pour essences
WO2019086385A1 (fr) Utilisation d'une dispersion colloïdale comme additif de regeneration d'un gpf
FR3054223A1 (fr) Copolymere et son utilisation comme additif detergent pour carburant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HARLE, VIRGINIE

Inventor name: PITOIS, CLAIRE

Inventor name: VERDIER, STEPHAN

Inventor name: BLANCHARD, GILBERT

17Q First examination report despatched

Effective date: 20120301

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161130