EP1979598B1 - Vorrichtung zum schalten induktiver kraftstoff-einspritzventile - Google Patents

Vorrichtung zum schalten induktiver kraftstoff-einspritzventile Download PDF

Info

Publication number
EP1979598B1
EP1979598B1 EP07704077A EP07704077A EP1979598B1 EP 1979598 B1 EP1979598 B1 EP 1979598B1 EP 07704077 A EP07704077 A EP 07704077A EP 07704077 A EP07704077 A EP 07704077A EP 1979598 B1 EP1979598 B1 EP 1979598B1
Authority
EP
European Patent Office
Prior art keywords
coil
terminal
opening
negative current
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07704077A
Other languages
English (en)
French (fr)
Other versions
EP1979598A1 (de
Inventor
Stephan Bolz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200610025360 external-priority patent/DE102006025360B3/de
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1979598A1 publication Critical patent/EP1979598A1/de
Application granted granted Critical
Publication of EP1979598B1 publication Critical patent/EP1979598B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2072Bridge circuits, i.e. the load being placed in the diagonal of a bridge to be controlled in both directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2079Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit having several coils acting on the same anchor

Definitions

  • the invention relates to a device for switching inductive fuel injection valves according to claim 1 or 6.
  • fuel is injected at periodic intervals even in the exhaust stroke to achieve about the regeneration of a particulate filter in the exhaust system by burning the soot particles.
  • a typical example of this is large-volume, slow-running diesel truck engines, such as 9-liter 6-cylinder engines with maximum operating speeds of about 1800 rpm.
  • the requirements for the smallest injection quantities are also reduced because of the large displacement.
  • the number of injection pulses per injection process is lower because, for example, a pre-injection to reduce the diesel-typical "nailing" can be omitted because of the already quite high running noise of the truck engine.
  • solenoid injectors are in principle suitable for such applications, but require some further development.
  • the closing delay must be reduced.
  • the main obstacle in closing such a standard solenoid valve are the eddy currents in the magnetic material of the valve, which slowly decay after switching off the actuating current and prevent rapid closing of the valve. This behavior defines the minimum valve opening time and thus increases the smallest possible fuel injection quantity.
  • FIG. 1 a known, basic circuit arrangement for operating a coil of a fuel injection valve with PWM (pulse width modulation) operation is shown.
  • the one terminal of the coil L1 is connected by means of a first switching transistor T1 to the positive pole V + of a supply voltage source V and the other terminal by means of a second switching transistor T2 to reference potential GND.
  • the source terminal of the first switching transistor T1 is connected to one terminal of the coil L1, its drain terminal to the positive terminal V +.
  • the source terminal of the second switching transistor T2 is connected to reference potential GND and its drain terminal to the other terminal of the coil L1.
  • a freewheeling diode D1 of the reference potential GND is arranged to conduct current to one terminal of the coil L1 and a Rekuperationsdiode D2 from the other terminal the coil L1 current-conducting to the positive pole V + of the supply voltage source arranged.
  • switching transistor T1 Upon reaching a predetermined upper current setpoint at which the valve opens, switching transistor T1 is switched off by means of the PWM unit PWM and the coil current now flows through the coil L1 via the freewheeling diode D1 and switching transistor T2, wherein it slowly drops. If the current now reaches a lower predetermined desired value, switching transistor T1 is again turned on, whereupon the coil current increases again.
  • both switching transistors T1 and T2 are simultaneously switched nonconducting (with a standard valve with closing spring), whereupon the coil L1 is connected to the supply voltage source via the freewheeling diode D1 and the recuperation diode D2 V discharges and the valve closes.
  • FIG. 2 As described above, in the upper track, the voltage waveform and, in the lower track, the current waveform in the opening coil L1 during the opening period of a standard fuel injection valve.
  • FIG. 3 shows the principle of a bistable fuel injector.
  • the valve needle 1 is mounted displaceably in a housing 4 and shown in the "OPEN" position. It lies on the left iron yoke 2.
  • the left iron yoke 2 encloses the opening coil AB (rectangles A and B with bevel). By a previous actuation current in the opening coil AB, the left iron yoke was magnetized, so that now, when the current subsides, it holds the valve needle 1 in the "OPEN" position.
  • the term "fuel” may also be a "hydraulic medium", wherein instead of a fuel circuit, a hydraulic circuit may be provided, by means of which a fuel injection valve is controlled with hydraulic pressure boosting.
  • an actuating current is now passed through the closing coil C-D, so that the valve needle 1 moves to the right iron yoke 3.
  • the valve needle 1 is held in the "CLOSED" position by the magnetization of the right-hand iron return key 3.
  • outlets b and c are connected to the return lines r, which are designed as a ring line, which reduce the fuel pressure between the outlets b, c and the valve nozzles, not shown, whereby the valve is closed.
  • a bistable valve has two coils, namely an opening and a closing coil
  • the circuit arrangement is after FIG. 1 twice per valve: once to operate the opening coil AB (L1 in FIG. 1 ) and once to operate the closing coil CD.
  • Such methods are for example also off DE 199 21 938 A1 .
  • valve switching times are known to be reduced when in a bistable valve, the magnetic holding forces are eliminated when activating a coil by deliberately clearing the remanence of the other coil, and in a standard valve (with closing spring) - induced by the decaying eddy currents - magnetic holding forces Disabling the coil can be eliminated.
  • FIG. 4 shows a circuit arrangement according to the invention for the PWM operation of a coil, for example, the opening coil L1 of an inductive fuel injection valve.
  • the circuit part (T1, T2, D1, D2) used to control the valve operating current is included in the description FIG. 1 already executed.
  • the one terminal of the coil L1 for example, the opening coil of the valve by means of the first switching transistor T1 to the positive terminal V + of the supply voltage source V and the other terminal connected by means of the second switching transistor T2 to reference potential GND.
  • the source terminal of the first switching transistor T1 is connected to one terminal of the coil L1 - its drain terminal to the positive terminal V +.
  • the source terminal of the second switching transistor T2 is connected to reference potential GND, its drain terminal to the other terminal of the coil L1.
  • the freewheeling diode D1 is arranged to conduct current from the reference potential GND to one terminal of the coil L1 and the recuperation diode D2 is arranged to conduct current from the other terminal of the coil L1 to the positive pole V + of the supply voltage source.
  • the circuit is extended by five transistors T3 to T7, five resistors R1 to R5, a capacitor C1 and a diode D3, as well as the inclusion of the on-board vehicle voltage source Vbat.
  • the third transistor T3 is connected in parallel with the freewheeling diode D1: its source terminal is connected to reference potential GND, its drain terminal to the connection point of freewheeling diode D1 and the one terminal of the coil L1. It serves to connect in the current-conducting state connected to the first switching transistor T1 terminal of the coil L1 with reference potential GND.
  • This current mirror T4-T6 is connected via a first resistor R1 to the positive pole V + of the supply voltage V.
  • the source terminal of the fourth transistor T4 is connected to the other terminal of the coil L1, while the source terminal of the sixth transistor T6 is connected via the series circuit of the seventh transistor T7 and the fifth resistor R5 to reference potential GND.
  • the gate terminals of the third transistor T3 and the seventh transistor T7 are connected to each other and to the output of a control device, which in FIG. 6 7 and 7, respectively, for generating a negative current control negative current control NSC.
  • a capacitor C1 is connected, which is charged by the on-board voltage source Vbat via a protective diode D3 and the current mirror T4-T6 is energized, which is controlled by the seventh transistor T7 connected as a current source.
  • this transistor T3 and also the seventh transistor T7 is non-conducting, so that at the output of the current mirror, through the source terminal of the fourth transistor T4 is formed, too no electricity flows.
  • the circuit is inactive, through the coil L1 no current flows in the negative direction (in the direction from transistor T4 to transistor T3).
  • the third transistor T3 is turned on and connects one terminal of the coil L1 to reference potential GND. At the same time begins to flow through the seventh transistor T7, a current whose magnitude by the value of the fifth resistor R5 and the base voltage (+ 5V) of the seventh transistor T7 minus its base-emitter voltage (5V-0.7V ⁇ 4.3V) is determined.
  • the fifth transistor T5 forms, together with the fourth transistor T4, a complementary Darlington transistor. Accordingly, the main portion of the current I R2 flowing through the second resistor R2 will flow through the fourth transistor T4.
  • capacitor C1 is charged by means of the first resistor R1 to the potential of the supply voltage V + (for example + 48V).
  • V + for example + 48V.
  • R1 is selected to be so high that its current flow is substantially lower than the negative current flowing through the second resistor R2 and the fourth transistor T4. However, the value of R1 must be small enough to allow the capacitor C1 to be charged to the potential V + during the pauses between two consecutive negative current pulses.
  • FIG. 5a shows the voltage and current waveform at the current mirror T4-T6, wherein the upper trace shows the voltage U C1 at the capacitor C1.
  • the voltage U C1 drops until it is clamped at approx. 11.3V.
  • the voltage U C1 rises again to V +.
  • the lower trace shows the negative current pulse I L1 .
  • the setpoint of 2A is already reached after 38 ⁇ s.
  • the duration of the negative current pulse should be set to the amount of time that the current in the other coil requires to reach its operating value.
  • the control signal NSC can be obtained in a simple manner. It is sufficient a flip-flop, which can be set at the beginning of the valve activation and in turn can be reset at the first reaching the operating current.
  • FIG. 6 shows a circuit of such a control device in a bistable valve for the negative current through the one coil, for example, the opening coil L1, by the closing signal of the other coil, for example, the closing coil.
  • This circuit consists only of a flip-flop IC1A. With the rising edge of, for example, the closing signal ES for the closing coil, not shown, the flip-flop IC1A (terminal CLK) is set so that its output Q, at which the signal NSC appears, assumes high level.
  • the output of the PWM unit PWM connected to terminal CLR-not of the flip-flop IC1A (see Figures 2 and 4 ) is getting high level at this time. If the current through the closing coil reaches its operating value, then this output switches to low level and thus also deletes the flip-flop IC1A, so that its output signal NSC at the output Q jumps back to low level. Thus, the signal NSC supplied to the base terminal of the transistors T3 and T7 of the circuit for the opening coil L1 has high level as long as the current through the closing coil requires until the first time it reaches its operating value.
  • bistable valve For a bistable valve is for generating the negative current for both the opening and the closing coil depending on a circuit after FIG. 4 and FIG. 6 required. It should be noted that the PWM unit associated with opening the valve controls the negative current pulse in the valve closing coil and the PWM unit associated with closing the valve controls the negative current pulse in the valve opening coil.
  • the time course of operating current and negative current for opening and closing a bistable valve is in FIG. 5b shown schematically.
  • the control of the negative current of the single coil L1 must be at the end of the opening signal EO, as in FIG. 7 shown, done.
  • the negative current is used to cancel the eddy currents, which continue to flow in the magnetic circuit of the standard valve after the current in the opening coil has been switched off and faded off.
  • a negative current should be passed through the opening coil L1 immediately after completion of the valve activation (falling edge of the actuation (opening) signal EO.
  • the circuit after FIG. 7 contains a timer (monoflop IC2) to determine the duration of the negative current pulse through the coil L1 which is triggered by the falling edge of the signal EO inverted by means of an inverter IC4.
  • the negative current is controlled by a signal from the drive electronics, which controls the current flow in the opposite coil.
  • the negative current is controlled by the falling edge of the actuation (opening) signal.
  • the energy required for demagnetization can also be acted upon accelerated. This is useful if the fastest possible start of the valve movement is required.
  • To the negative current is not at a predetermined, largely constant value for a certain period of time, such as FIG. 5a but set as an approximately triangular current pulse with a predetermined maximum value ( FIG. 9b ).
  • the speed of the current increase is determined by the inductance of the coil and the supply voltage V. Also, the peak value of the current is higher than in the first embodiment because the demagnetizing energy is provided in a shorter time.
  • FIG. 4 A circuit diagram for such a circuit arrangement is shown in FIG.
  • the circuit essentially corresponds to the embodiment FIG. 4 , but eliminates resistor R1, capacitor C1, diode D3 and the connection to the on-board voltage source Vbat. Also, the resistors R2 and R3 are directly connected to the positive pole V + of the supply voltage, and a resistor R7 is inserted between the source terminal of the transistor T3 and the ground terminal GND.
  • the current source T4-T6 is now designed by selecting the value ratio of the resistors R2 and R3 for a much higher constant current - for example 8A.
  • the signal Negative-Strom-Control NSC When the signal Negative-Strom-Control NSC is activated by the closing signal, it will - as with FIG. 4 described - the opening coil associated transistor T3 turned on, at the same time by means of transistor T7, the current source T4 to T6. According to the inductance of the coil L1 (opening coil) the current through them will now increase in time ( FIG. 9b , upper lane). This current is observable at the resistor R7 as the voltage negative current sense NSS. If this voltage NSS has reached a predetermined value, then the signal negative current control NSC is controlled to 0V and the current flow is terminated.
  • determined valve switching time is for example from 620 ⁇ s (without degaussing, FIG. 9a ) to 504 ⁇ s (with degaussing current, FIG. 9b ) shortened.
  • the current source T4-6 also has a protective function, since in case of a short circuit of the right terminal of the coil L1 to reference potential of the current from T6 is limited.
  • valve coils are located in the injection valve, not shown, on the engine block of the internal combustion engine outside of the electronic control unit, and a short circuit of the leads to vehicle ground is a common mistake. However, this must not lead to damage to the electronics.
  • the control unit designed for a bistable injector FIG. 11 includes a monoflop IC2, a flip-flop IC1A, a comparator Comp1 and an AND gate IC3A with three inputs.
  • the closing signal ES is connected to the trigger input Ck of the monoflop IC2, to an input of the AND gate IC3A and to the reset input CLR-not of the flip-flop IG1A.
  • the resistor R7 in FIG. 10 tapped signal NSS (negative current sense) is with the noninverting input the comparator Comp1 whose inverting input a reference voltage Vref is supplied.
  • the output of the comparator Comp1 is connected to the trigger input CLK of the flip-flop IC1A.
  • the output Q of the monoflop IC2 is connected to a second input of the AND gate whose third input is connected to the inverting Q-not output of the flip-flop IC1A.
  • the signal curves of in FIG. 11 shown control unit are off FIG. 12 refer to.
  • the closing signal ES has low levels. This level is also applied to the reset input CLR-not of the flip-flop IC1A, so that at its non-inverting output Q is applied a signal negative-current diagnosis NSD with low level. Accordingly, the inverting output Q-not of flip-flop IC1A has high level.
  • the rising edge of the control signal ES clocks the monoflop IC2 whose output Q now assumes high levels for the duration of the monoflop time.
  • the AND gate IC3A combines the signals ES, Q of IC2 and Q-not of IC1A. Since all of these signals are now high, signal NSC at the output of AND gate IC3A goes high with the rising edge of the control signal ES also high level on. The negative current starts to increase.
  • the output of the comparator Comp1 has low level. If the value of NSS exceeds that of Vref, the output of the comparator Comp1 jumps to high level and sets the downstream flip-flop IC1A. Its inverting output Q-Not jumps to low level and switches via the AND gate IC3A the signal NSC to low level, whereby the negative current in the opening coil L1 is turned off. Similarly, the signal NSD jumps to non-inverting output Q to high level.
  • the time constant of the monoflop IC2 is chosen so that the desired value of the negative current is safely achieved, but a thermal overload of the power transistor T4 of the power source is avoided in case of short circuit to reference potential.
  • the downstream flip-flop IC1A is not triggered.
  • the signal NSD at the non-inverting output Q remains at low level.
  • the output Q of the monoflop IC2 goes back to low level and blocks the AND gate IC3A, so that its output signal NSC goes to low level.
  • the control unit is after FIG. 11 added thereto that the opening signal EO before it is the monoflop IC2, the AND gate IC3A and the flip-flop IC1A is inverted by means of an inverter IC4, so that the monoflop IC2 is triggered only by the falling edge of the signal EO ,
  • the circuit arrangement according to FIG. 4 or FIG. 10 for the operation of multiple valves, ie, all (for example, four or six) fuel injectors of an internal combustion engine can be extended without having to increase the number of circuits proportionally. This is achieved by adding additional diodes D7 to D10 in series with the drain of the third transistor T3, additional diodes D4a to D6a and D4b to D6b in series with the source of the transistor T4, and / or another transistor T3b, or another current mirror T4b-T7b, R2b-R5b.
  • the main obstacle when closing are, as already stated, the eddy currents in the magnetic material of the valve, which decay slowly after switching off the actuating current and prevent rapid closing of the valve.
  • steel with a low electrical conductance is used.
  • FIG. 14 shows a schematic representation of a standard solenoid injector with coil S4 and closing spring S3.
  • the coil S4 is surrounded by the iron yoke S5.
  • the valve needle S7 and its associated armature S6 is pressed by the closing spring S3 against a valve seat, not shown, and thus blocks the valve opening, not shown.
  • the armature S6 is attracted against the force of the closing spring S3 and thus the valve is opened.
  • the iron yoke S5 still consists of material with a low electrical conductance.
  • FIG. 14 are the solid field lines 14a (left) with the valve open and the dashed lines 14b (right) shown in the closing process in the temporarily arising field reversal.
  • FIG. 15 shows in principle the formation of temporary, opposite field directions between iron yoke S5 and anchor S6.
  • the lower diagram shows the time course of the applied to the coil negative current pulse during the closing of the injector.
  • the upper diagram shows the field strengths or holding forces resulting from eddy currents.
  • the respective value of the eddy current is associated with a magnetic field strength and thus a holding force.
  • the upper curve 15a shows the course of the field strength in the armature S6, which consists of material with the highest possible electrical conductance, while the lower curve 15b represents the course of the effective field strength in the iron yoke S5 made of material with a low electrical conductance.

Abstract

Verfahren und Vorrichtung zum beschleunigten Schalten von induktiven Kraftstoff-Einspritzventilen, wobei die durch Remanenz bei einem bistabilen Ventil (mit Öffnungs- und Schliessspule) oder durch Wirbelströme bei einem Standard-Ventil mit Öffnungsspule und Schließfeder bewirkten magnetischen Halte- kräfte durch einen durch die Spule in zur Richtung des Betriebsstroms entgegengesetzter Richtung fließenden ,,negativen' Strom eliminiert werden. Zum noch schnelleren Schließen des Ventils werden zusätzlich Eisenrückschluss und Anker aus Materialien mit unterschiedlichen elektrischen Leitwerten verwendet.

Description

  • Die Erfindung betrifft eine Vorrichtung zum Schalten induktiver Kraftstoff-Einspritzventile gemäß Anspruch 1 oder 6.
  • Schärfere gesetzliche Emissionsvorgaben und der Zwang zu immer besserer Kraftstoffausnutzung haben in den vergangenen Jahren die Einführung von Hochdruck-Direkt-Einspritz-Systemen für Diesel- und Benzinmotoren entscheidend vorangetrieben, da hierdurch die Qualität der Gemischaufbereitung wesentlich verbessert wird.
  • Merkmale dieser Systeme sind sehr hohe Kraftstoffeinspritzdrücke bis über 2000Bar (Diesel) und über 100Bar (Benzin), sowie die Zuführung des Kraftstoffs in mehreren Teileinspritzungen je Einspritzvorgang.
  • Durch diese Anpassung der Kraftstoffzumessung an die Dynamik des Verbrennungsvorgangs lassen sich eine Fülle von Funktionsverbesserungen erzielen:
    beim Benzinmotor: besserer Wirkungsgrad,
    weniger Rohemissionen;
    beim Dieselmotor: weniger Motorgeräusche (Klopfen),
    weniger Rußpartikel,
    geringere NOx-Erzeugung,
    besseres Kaltstartverhalten.
  • Beim manchen Dieselmotoren wird in periodischen Abständen sogar im Auslasstakt noch Kraftstoff eingespritzt, um etwa die Regeneration eines Partikelfilters im Abgasstrang durch Abbrand der Rußpartikel zu erreichen.
  • Die Fülle dieser Funktionen, die mit modernen Direkt-Einspritzsystemen möglich sind, haben in der Folge eine enormen Verschärfung der Anforderungen an Präzision und Dynamik der Einspritzventile nach sich gezogen. So werden nunmehr Ventilschaltzeiten von 100 bis 500µs gefordert, um bei den hohen Systemdrücken auch kleinste Kraftstoffmengen bis herunter zu wenigen µg mit hoher Genauigkeit und hoher zeitlicher Präzision einspritzen zu können.
  • Dies hat letztlich der Piezotechnologie den Durchbruch ermöglicht, da sie eine wesentlich schnellere und präzisere Ventilbetätigung im Vergleich zur klassischen Solenoidtechnik erlaubt. Sie ist mittlerweile für Diesel-PKW-Motoren Standard geworden.
  • Da die hier verwendete Piezokeramik auf eine Änderung der Steuerspannung spontan mit einer Volumensänderung der eingespritzten Kraftstoffmenge reagiert, ist ein sehr schnelles, fast verzögerungsfreies Betätigen der Einspritzventile möglich. Im Gegensatz dazu muss beim klassischen Solenoidventil zuerst ein Stromfluss in der induktivitätsbehafteten Erregerwicklung aufgebaut werden, der dann, aber erst nach Erreichen eines bestimmten Stromwertes, das Ventil betätigen kann.
  • Allerdings gehen die Vorzüge der Piezotechnologie für Hochdruck-Einspritzventile mit erheblichen Kosten einher, so dass der dringende Bedarf besteht, für weniger anspruchsvolle Hochdruck-Direkt-Einspritz-Systeme auch weiterhin Solenoid-Einspritzventile einzusetzen.
  • Ein typisches Beispiel dafür sind großvolumige, langsam laufende Diesel-LKW-Motoren, wie etwa 6-Zylinder-Motoren mit 9 Litern Hubraum und maximalen Betriebsdrehzahlen von etwa 1800 U/min. Neben der geringen Drehzahl sind wegen des großen Hubraumes auch die Anforderungen an kleinste Einspritzmengen reduziert. Auch die Anzahl der Einspritzimpulse je Einspritzvorgang ist geringer, da z.B. eine Voreinspritzung zur Reduzierung des dieseltypischen "Nagelns" wegen des ohnehin recht hohen Laufgeräusches des LKW-Motors entfallen kann.
  • Untersuchungen haben nun gezeigt, dass Solenoid-Einspritzventile für solche Anwendungen zwar prinzipiell geeignet sind, jedoch einiger Weiterentwicklungen bedürfen. So muss für den Einsatz in Direkt-Einspitzsystemen bei Standard-Solenoidventilen, welche eine Spule (Wicklung) zur magnetischen Öffnung und eine Feder zum Schließen des Ventils aufweisen, die Schließverzögerung verringert werden.
  • Haupthindernis beim Schließen eines derartigen Standard-Solenoidventils sind die Wirbelströme im Magnetmaterial des Ventils, die nach Ausschalten des Betätigungsstromes erst langsam abklingen und ein schnelles Schließen des Ventils verhindern. Dieses Verhalten definiert die minimale Ventilöffnungszeit und vergrößert somit die kleinstmögliche Kraftstoff-Einspritzmenge.
  • Bei bistabilen Einspritzventilen mit zwei Wicklungen und Fixierung des Ventils in der jeweiligen Endposition durch Remanenzkräfte ist eine Verringerung sowohl der Einschaltzeit zum Öffnen des Ventils als auch der Ausschaltzeit zum Schließen des Ventils gefordert.
  • In Figur 1 ist eine bekannte, prinzipielle Schaltungsanordnung zum Betrieb einer Spule eines Kraftstoff-Einspritzventils mit PWM-(Pulsweiten-Modulations)-Betrieb dargestellt. Dort ist der eine Anschluss der Spule L1 mittels eines ersten Schalttransistors T1 mit dem Pluspol V+ einer Versorgungs-Spannungsquelle V und der andere Anschluss mittels eines zweiten Schalttransistors T2 mit Bezugspotential GND verbunden. Der Source-Anschluss des ersten Schalttransistors T1 ist mit dem einen Anschluss der Spule L1 verbunden, sein Drain-Anschluss mit dem Pluspol V+. Der Source-Anschluss des zweiten Schalttransistors T2 ist mit Bezugspotential GND verbunden und sein Drain-Anschluss mit dem anderen Anschluss der Spule L1. Außerdem ist eine Freilaufdiode D1 von Bezugspotential GND stromleitend zum einen Anschluss der Spule L1 hin angeordnet und eine Rekuperationsdiode D2 vom anderen Anschluss der Spule L1 stromleitend zum Pluspol V+ der Versorgungs-Spannungsquelle hin angeordnet.
  • Die Schaltung nach Figur 1 funktioniert folgendermaßen: vor Beginn eines Einschaltvorganges seien beide Schalttransistoren T1, T2 nichtleitend. Bei Einschaltbeginn (Öffnungssignal EO, ansteigende Flanke) werden beide Schalttransistoren T1, T2 stromleitend geschaltet. Dadurch wird an die Spuleninduktivität die Versorgungsspannung V angelegt, beispielsweise V = 48V. Es fließt ein Strom durch die Spule L1, welcher schnell ansteigt.
  • Bei Erreichen eines vorgegebenen oberen Stromsollwerts, bei welchem das Ventil öffnet, wird mittels der PWM-Einheit PWM Schalttransistor T1 nichtleitend geschaltet und der Spulenstrom fließt nun durch die Spule L1 über die Freilaufdiode D1 und Schalttransistor T2, wobei er langsam absinkt. Erreicht der Strom nun einen unteren vorgegebenen Sollwert, so wird Schalttransistor T1 wiederum leitend geschaltet, woraufhin der Spulenstrom abermals ansteigt.
  • Durch wiederholtes Leitend- und Nichtleitendschalten von Schalttransistor T1 kann so der Spulenstrom während der Einschaltdauer des Ventils auf einem annähernd konstanten Wert gehalten werden. Am Ende der Einschaltdauer (abfallende Flanke des Öffnungssignals EO) werden (bei einem-Standard-Ventil mit.Schließfeder) beide Schalttransistoren T1 und T2 gleichzeitig nichtleitend geschaltet, worauf sich die Spule L1 über die Freilaufdiode D1 und die Rekuperationsdiode D2 in die Versorgungs-Spannungsquelle V entlädt und das Ventil schließt.
  • Figur 2 zeigt, wie oben beschrieben, in der oberen Spur den Spannungsverlauf und in der unteren Spur den Stromverlauf in der Öffnungsspule L1 während der Öffnungsdauer eines Standard-Kraftstoff-Einspritzventils.
  • Figur 3 zeigt das Prinzip eines bistabilen Kraftstoff-Einspritzventils. Die Ventilnadel 1 ist in einem Gehäuse 4 verschiebbar gelagert und in der Position "OFFEN" dargestellt. Sie liegt am linken Eisenrückschluss 2 an. Der linke Eisenrückschluss 2 umschließt die Öffnungsspule A-B (Rechtecke A und B mit Abschrägung). Durch einen vorangegangenen Betätigungsstrom in der Öffnungsspule A-B wurde der linke Eisenrückschluss magnetisiert, so dass er jetzt, wenn der Strom abklingt, die Ventilnadel 1 in der Position "OFFEN" hält.
  • In dieser Stellung ist der Weg frei für den unter hohem Druck stehenden Kraftstoff vom Einlass a (in Pfeilrichtung) zu den Auslässen b und c und weiter zu den nicht dargestellten Ventildüsen, die dadurch geöffnet werden. Im Folgenden kann es sich bei dem Begriff "Kraftstoff" auch um ein "HydraulikMedium" handeln, wobei anstelle eines Kraftstoff-Kreislaufs ein Hydraulik-Kreislauf vorgesehen sein kann, mittels welchem ein Kraftstoff-Einspritzventil mit hydraulischer Druckübersetzung gesteuert wird.
  • Zum Schließen des Ventils wird nun ein Betätigungsstrom durch die Schließspule C-D geleitet, so dass sich die Ventilnadel 1 zum rechten Eisenrückschluss 3 bewegt. Nach Abschalten des Schließstromes wird die Ventilnadel 1 durch die Magnetisierung des rechten Eisenrückschlüsses 3 in der Position "GESCHLOSSEN" gehalten.
  • Dadurch wird der Weg vom Einlass a zu den Auslässen b und c gesperrt. Gleichzeitig werden die Auslässe b und c mit den als Ringleitung ausgeführten Rücklaufleitungen r verbunden, welche den Kraftstoffdruck zwischen den Auslässen b, c und den nicht dargestellten Ventildüsen abbauen, wodurch das Ventil geschlossen wird.
  • Da ein bistabiles Ventil zwei Spulen besitzt, nämlich eine Öffnungs- und eine Schließspule, ist die Schaltungsanordnung nach Figur 1 zweimal je Ventil vorzusehen: einmal zum Betreiben der Öffnungsspule A-B (L1 in Figur 1) und einmal zum Betreiben der Schließspule C-D.
  • Aus DE 100 18 175 A1 ist eine Schaltungsanordnung zum Betrieb eines Hubanker-Aktors für ein Gaswechsel-Ventil bekannt, bei welchem am Ende des Betätigungsvorgangs ein zum Betätigungsstrom gegensinniger Strom durch die Spule geschickt wird, um einen schnelleren Wechsel des Schaltzustandes zu initiieren.
  • Derartige Verfahren sind beispielsweise auch aus DE 199 21 938 A1 , DE 195 26 681 A1 und DE 40 16 816 A1 bekannt.
  • Aufgabe der Erfindung ist es, eine verbesserte Vorrichtung zum beschleunigten Schalten induktiver Kraftstoff-Einspritzventile zu schaffen, welche
    • bei bistabilen Ventilen die Öffnungs- und die Schließverzögerung, und
    • bei Standard-Solenoidventilen (mit Schließfeder) die Schließverzögerung
    verringert.
  • Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung gemäß den Merkmalen von Anspruch 1 oder 6 gelöst.
  • Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.
  • Die Ventilschaltzeiten werden bekannterweise verringert, wenn bei einem bistabilen Ventil die magnetischen Haltekräfte beim Aktivieren einer Spule durch gezieltes Löschen der Remanenz der anderen Spule eliminiert werden, und bei einem Standard-Ventil (mit Schließfeder) die - durch die abklingenden Wirbelströme induzierten - magnetischen Haltekräfte beim Deaktivieren der Spule eliminiert werden.
  • In beiden Fällen ist dazu die Einprägung eines negativen Strompulses in die jeweilige Spule erforderlich, dessen Stromhöhe und zeitlicher Verlauf möglichst genau den magnetischen Erfordernissen des Ventils entsprechen müssen.
  • Ausführungsbeispiele nach der Erfindung werden nachstehend anhand einer schematischen Zeichnung näher erläutert.
  • In der Zeichnung zeigen:
  • Figur 1:
    eine bekannte, prinzipielle Schaltungsanordnung zum PWM-Betrieb eines induktiven Kraftstoff-Ein- spritzventils,
    Figur 2:
    die Spannungs- und Stromverläufe bei PWM-Betrieb des Kraftstoff-Einspritzventils nach Figur 1,
    Figur 3:
    die Detailansicht eines bistabilen Kraftstoff-Ein- spritzventils,
    Figur 4:
    eine erfindungsgemäße Schaltungsanordnung zum PWM- Betrieb eines induktiven Kraftstoff-Ein- spritzventils,
    Figur 5a:
    Spannungs- und Stromverlauf am Stromspiegel der er- findungsgemäßen Schaltungsanordnung,
    Figur 5b:
    den zeitlichen Verlauf von Betriebsstrom und nega- tivem Strom beim Öffnen und Schließen eines bistabilen Ventils.
    Figur 6:
    eine Steuerungseinrichtung für den negativen Strom bei einem bistabilen Kraftstoff-Einspritzventil,
    Figur 7:
    eine Steuerungseinrichtung für den negativen Strom bei einem Standard-Einspritzventil mit Öffnungs- spule und Schließfeder,
    Figur 8:
    eine erfindungsgemäße Schaltungsanordnung zum Be- trieb mehrerer Ventilspulen,
    Figur 9:
    den zeitlichen Verlauf der Ventilschaltbewegungen, ohne (9a) und mit Entmagnetisierungsstrom (9b),
    Figur 10:
    eine weitere Schaltungsanordnung,
    Figur 11:
    eine Steuerungseinheit zur Schaltungsanordnung nach Figur 10,
    Figur 12:
    die Signalverläufe in dieser Steuerungseinheit,
    Figur 13:
    eine Steuerungseinheit zur Schaltungsanordnung nach Figur 10.
    Figur 14:
    eine prinzipielle Darstellung eines Standard- Solenoid-Einspritzventils, und
    Figur 15:
    die Entstehung vorübergehender, entgegengesetzter Feldrichtungen.
  • Figur 4 zeigt eine erfindungsgemäße Schaltungsanordnung zum PWM-Betrieb einer Spule, beispielsweise der Öffnungsspule L1 eines induktiven Kraftstoff-Einspritzventils. Der zur Steuerung des Ventil-Be-triebsstroms verwendete Schaltungsteil (T1, T2, D1, D2) ist in der Beschreibung zu Figur 1 bereits ausgeführt.
  • Wie dort beschrieben, ist der eine Anschluss der Spule L1 beispielsweise der Öffnungsspule des Ventils mittels des ersten Schalttransistors T1 mit dem Pluspol V+ der Versorgungs-Spannungsquelle V und der andere Anschluss mittels des zweiten Schalttransistors T2 mit Bezugspotential GND verbunden. Der Source-Anschluss des ersten Schalttransistors T1 ist mit dem einen Anschluss der Spule L1 verbunden - sein Drain-Anschluss mit dem Pluspol V+. Der Source-Anschluss des zweiten Schalttransistors T2 ist mit Bezugspotential GND verbunden, sein Drain-Anschluss mit dem anderen Anschluss der Spule L1.
  • Die Freilaufdiode D1 ist stromleitend von Bezugspotential GND zum einen Anschluss der Spule L1 hin angeordnet und die Rekuperationsdiode D2 stromleitend vom anderen Anschluss der Spule L1 zum Pluspol V+ der Versorgungs-Spannungsquelle hin angeordnet.
  • Zusätzlich ist die Schaltung um fünf Transistoren T3 bis T7, fünf Widerstände R1 bis R5, einen Kondensator C1 und eine Diode D3 sowie um die Einbeziehung der im Fahrzeug vorhandenen Bordspannungsquelle Vbat erweitert.
  • Der dritte Transistor T3 ist parallel zur Freilaufdiode D1 geschaltet: sein Source-Anschluss ist mit Bezugspotential GND verbunden, sein Drain-Anschluss mit dem Verbindungspunkt von Freilaufdiode D1 und dem einen Anschluss der Spule L1. Er dient dazu, im stromleitenden Zustand den mit dem ersten Schalttransistor T1 verbundenen Anschluss der Spule L1 mit Bezugspotential GND zu verbinden.
  • Die Transistoren T4 bis T6 bilden zusammen mit den Widerständen R2 bis R4 einen komplementären Darlington-Stromspiegel, welcher einen negativen Strom liefert. Dieser Stromspiegel T4-T6 ist über einen ersten Widerstand R1 mit dem Pluspol V+ der Versorgungsspannung V verbunden. Der Source-Anschluss des vierten Transistors T4 ist mit dem anderen Anschluss der Spule L1 verbunden, während der Source-Anschluss des sechsten Transistors T6 über die Reihenschaltung des siebenten Transistors T7 und des fünften Widerstandes R5 mit Bezugspotential GND verbunden ist. Die Gate-Anschlüsse des dritten Transistors T3 und des siebenten Transistors T7 sind miteinander und mit dem Ausgang einer Steuerungseinrichtung, welche in Figur 6 bzw. 7 dargestellt ist, zur Erzeugung eines Steuersignals Negative-Strom-Control NSC für den negativen Strom verbunden.
  • Zwischen dem mit dem Stromspiegel T4-T6 verbundenen Anschluss des ersten Widerstandes R1 und Bezugspotential GND. ist ein Kondensator C1 geschaltet, welcher von der Bordspannungsquelle Vbat über eine Schutzdiode D3 aufgeladen wird und den Stromspiegel T4-T6 mit Energie versorgt, welcher durch den als Stromquelle geschalteten siebenten Transistor T7 gesteuert wird.
  • Solange das Steuersignal NSC am Gate-Anschluss des dritten Transistors T3 Low-Pegel (0V) hat, ist dieser Transistor T3 und auch der siebente Transistor T7 nichtleitend gesteuert, so dass am Ausgang des Stromspiegels, der durch den Source-Anschluss des vierten Transistors T4 gebildet wird, ebenfalls kein Strom fließt. Die Schaltung ist inaktiv, durch die Spule L1 fließt kein Strom in negativer Richtung (in Richtung von Transistor T4 nach Transistor T3).
  • Springt das Steuersignal NSC auf High-Pegel (beispielsweise +5V), so wird der dritte Transistor T3 leitend geschaltet und verbindet den einen Anschluss der Spule L1 mit Bezugspotential GND. Zugleich beginnt durch den siebenten Transistor T7 ein Strom zu fließen, dessen Größe durch den Wert des fünften Widerstandes R5 und die Basisspannung (+5V) des siebenten Transistors T7 abzüglich seiner Basis-Emitter-Spannung (5V-0,7V ≈ 4,3V) bestimmt wird.
  • Des weiteren fließt dieser Strom auch durch den sechsten Transistor T6 und den dritten Widerstand R3, an denen er einen Spannungsabfall erzeugt. Gemäß dem Funktionsprinzip eines Stromspiegels mit Emitterwiderständen (zur Stromgegenkopplung) wird sich zwischen dem Basis-Anschluss des fünften Transistors T5 und dem zweiten Widerstand R2 derselbe Spannungsabfall entwickeln. Wählt man nun den Wert von Widerstand R2 wesentlich geringer als den Wert von R3, so ist dazu ein entsprechend höherer Strom durch R3 erforderlich: I R 2 / I R 3 = R 3 / R 2
    Figure imgb0001
  • Der fünfte Transistor T5 bildet zusammen mit dem vierten Transistor T4 einen komplementären Darlingtontransistor. Entsprechend wird der hauptsächliche Anteil des durch den zweiten Widerstand R2 fließenden Stromes IR2 durch den vierten Transistor T4 fließen.
  • Zur statischen Ansteuerung des vierten Transistors T4, der als MOS-Fet ausgebildet ist, ist kein Stromfluss erforderlich, sondern es muss eine dem Drainstrom und der Steuerkennlinie entsprechende Gate-Source-Spannung eingestellt werden. Wählt man den Wert des vierten Widerstandes R4 so, dass ID(T4) = IR2 (Drainstrom durch T4 = Strom durch den zweiten Widerstand R2) die Bedingung gilt: U GS T 4 / R 4 = I R 3 ,
    Figure imgb0002
    mit UGS(T4) = Gate-Source-Spannung des vierten Transistors T4 und IR3 = Strom durch den dritten Widerstand R3, dann fließen durch die beiden Transistoren T5 und T6 annähernd gleiche Ströme. Dies verbessert die Genauigkeit des Stromübersetzungsverhältnisses IR2/IR3 beim Stromspiegel soweit, dass auch große Übersetzungen von beispielsweise >1000:1 stabil und reproduzierbar dargestellt werden können. Im ausgeführten Beispiel wird mit einem Steuerstrom von beispielsweise 2mA durch Transistor T7 ein Ausgangsstrom von 2A durch Transistor T4 kontrolliert. Die Versorgung des Stromspiegels erfolgt aus dem Kondensator C1.
  • Zu Beginn eines durch das Signal NSC eingeleiteten negativen Strompulses ist Kondensator C1 mittels des ersten Widerstandes R1 auf das Potential der versorgungsspannung V+ (beispielsweise +48V)aufgeladen. Als negativer Strom ist hier ein Strom durch die Öffnungs- oder Schließspule in zur Richtung des Betätigungsstroms entgegengesetzter Richtung definiert.
  • Der Wert von R1 ist dabei so hoch gewählt, dass sein Stromfluss wesentlich geringer ist als der durch den zweiten Widerstand R2 und den vierten Transistor T4 fließende negative Strom. Der Wert von R1 muss jedoch klein genug sein, um ein Aufladen des Kondensators C1 auf das Potential V+ in den Pausen zwischen zwei aufeinander folgenden negativen Strompulsen zu erlauben.
  • Durch den durch den zweiten Widerstand R2 und den vierten Transistor T4 durch die Spule L1 und den dritten Transistor T3 fließenden (negativen) Strom wird nun Kondensator C1 entladen und seine Spannung wird kleiner als die Bordspannung Vbat. Dadurch wird die Schutzdiode D3 leitend und Kondensator C1 auf die Bordspannung Vbat geklemmt. Dadurch wird erreicht, dass zu Beginn eines negativen Strompulses die hohe Versorgungsspannung V+ einen schnellen Stromaufbau in der Spule L1 ermöglicht und im weiteren Verlauf niedrig genug ist, um keine unnötige Verlustleistung im vierten Transistor T4 entstehen zu lassen.
  • Figur 5a zeigt den Spannungs- und Stromverlauf am Stromspiegel T4-T6, wobei die obere Spur die Spannung UC1 am Kondensator C1 zeigt. Mit wachsendem negativem Strompuls IL1 sinkt die Spannung UC1, bis sie bei ca 11,3V geklemmt wird. Nach Beendigung des negativen Strompulses steigt die Spannung UC1 wieder auf V+ an. Die untere Spur zeigt den negativen Strompuls IL1. Der Sollwert von 2A wird bereits nach 38µs erreicht.
  • Bei bistabilen Ventilen hat es sich gezeigt, dass die Dauer des negativen Strompulses auf die Zeitdauer eingestellt werden sollte, welche der Strom in der anderen Spule zum Erreichen seines Betriebswertes benötigt. Dadurch lässt sich auf einfache weise das Steuersignal NSC gewinnen. Es genügt ein Flip-Flop, das zu Beginn der Ventilaktivierung gesetzt und beim ersten Erreichen des Betriebsstromes wiederum zurückgesetzt werden kann.
  • Figur 6 zeigt eine Schaltung einer solchen Steuerungseinrichtung bei einem bistabilen Ventil für den negativen Strom durch die eine Spule, beispielsweise die Öffnungsspule L1, durch das Schließsignal der anderen Spule, beispielsweise der Schließspule.
  • Diese Schaltung besteht lediglich aus einem Flip-Flop IC1A. Mit der ansteigenden Flanke beispielsweise des Schließsignals ES für die nicht dargestellte Schließspule wird das Flip-Flop IC1A (Anschluss CLK) gesetzt, so dass sein Ausgang Q, an welchem das Signal NSC erscheint, High-Pegel annimmt.
  • Der mit Anschluss CLR-Nicht des Flip-Flops IC1A verbundene Ausgang der PWM-Einheit PWM (siehe Figuren 2 und 4) erhält zu diesem Zeitpunkt High-Pegel. Erreicht der Strom durch die Schließspule seinen Betriebswert, so schaltet dieser Ausgang auf Low-Pegel und löscht damit auch das Flip-Flop IC1A, so dass dessen Ausgangssignal NSC am Ausgang Q auf Low-Pegel zurückspringt. Damit hat das dem Basisanschluss der Transistoren T3 und T7 der Schaltung für die Öffnungsspule L1 zugeführte Signal NSC solange High-Pegel, wie der Strom durch die Schließspule bis zum ersten Erreichen seines Betriebswertes benötigt.
  • Für ein bistabiles Ventil ist zur Erzeugung des negativen Stromes sowohl für die Öffnungs- als auch für die Schließspule je eine Schaltung nach Figur 4 und Figur 6 erforderlich. Zu beachten ist, dass die zum Öffnen des Ventils gehörige PWM-Einheit den negativen Strompuls in der Schließspule des Ventils steuert und die zum Schließen des Ventils gehörige PWM-Einheit den negativen Strompuls in der Öffnungsspule des Ventils steuert. Der zeitliche Verlauf von Betriebsstrom und negativem Strom zum Öffnen und Schließen eines bistabilen Ventils ist in Figur 5b schematisch dargestellt.
  • Für ein Standard-Ventil mit Öffnungsspule und Schließfeder muss die Steuerung des negativen Stromes der einzigen Spule L1 am Ende des Öffnungssignals EO, wie in Figur 7 dargestellt, erfolgen.
  • Bei der Steuerungseinheit nach Figur 7 dient der negative Strom zum Löschen der Wirbelströme, die nach dem Ausschalten und Abklingen des Stromes in der Öffnungsspule noch im Magnetkreis des Standard-Ventils weiterfließen. Dazu soll unmittelbar nach Beendigung der Ventilaktivierung (abfallende Flanke des Betätigungs-(Öffnungs) signals EO ein negativer Strom durch die Öffnungsspule L1 geleitet werden.
    Die Schaltung nach Figur 7 enthält dazu ein Zeitglied (Monoflop IC2) zur Bestimmung der Zeitdauer des negativen Strompulses durch die Spule L1, welches von der mittels eines Inverters IC4 invertierten fallenden Flanke des Signals EO getriggert wird.
  • Für ein Standard-Ventil ist nur jeweils eine Schaltung nach Figur 4 und Figur 7 erforderlich.
  • In einer weiteren, vorteilhaften Ausgestaltung der Schaltung nach Figur 4 kann Diode D1 entfallen, wobei die Substratdiode von Transistor T3 deren Funktion, den Freilauf, übernimmt.
  • Die Vorteile der erfindungsgemäßen Schaltung nach Figur 4 sind folgende:
    • es ergibt sich eine zeitlich variable Versorgungsspannung, wodurch die Verlustleistung in der Stromquelle gering gehalten werden kann;
    • die Versorgung des Darlington-Stromspiegels erfolgt aus einem Kondensator, der zunächst auf das Potential der Versorgungsspannung V+ aufgeladen wird, um einen raschen Stromanstieg in der Spuleninduktivität zu erreichen.
  • Für bistabile Ventile mit zwei Betätigungswicklungen erfolgt die Steuerung des negativen Stromes durch ein Signal aus der Antriebselektronik, die den Stromverlauf in der jeweils gegenüberliegenden Spule steuert.
  • Für Standard-Ventile mit Schließfeder erfolgt die Steuerung des negativen Stromes durch die fallende Flanke des Betätigungs-(Öffnungs-) signals.
  • Im weiteren Verlauf des negativen Stromes erfolgt eine Klemmung der Kondensatorspannung auf die Bordspannung Vbat.
  • In einem weiteren, vorteilhaften Ausführungsbeispiel kann die zur Entmagnetisierung erforderliche Energie auch beschleunigt beaufschlagt werden. Dies ist dann sinnvoll, wenn ein möglichst schneller Beginn der Ventilbewegung gefordert ist. Dazu wird der negative Strom nicht mit einem vorgegebenen, weitgehend konstanten Wert für eine bestimmte Zeitdauer, wie Figur 5a zeigt, sondern als annähernd dreieckförmiger Strompuls mit vorgegebenem Maximalwert festgelegt (Figur 9b).
  • Die Geschwindigkeit des Stromanstieges wird dabei durch die Induktivität der Spule und die Versorgungsspannung V bestimmt. Auch ist der Spitzenwert des Stromes höher als bei der ersten Ausführungsform, da die Entmagnetisierungsenergie in kürzerer Zeit erbracht wird.
  • In Figur 9 werden die Ventilschaltzeiten ohne (Figur9a) und mit Entmagnetisierungsstrom (Figur 9b) miteinander verglichen. Dort zeigen jeweils:
    • die obere Spur: den Entmagnetisierungsstrom,
    • die mittlere Spur: die Ventilbewegung, und
    • die untere Spur: das Steuersignal (fallende Flanke).
  • Ein Schaltplan für eine solche Schaltungsanordnung ist in Figur 10 dargestellt. Die Schaltung entspricht im wesentlichen der Ausführung nach Figur 4, jedoch entfallen Widerstand R1, Kondensator C1, Diode D3 und die Anbindung an die Bordspannungsquelle Vbat. Auch sind die Widerstände R2 und R3 direkt mit dem Pluspol V+ der Versorgungsspannung verbunden und zwischen dem Source-Anschluss von Transistor T3 und dem Masseanschluss GND ist ein Widerstand R7 eingefügt.
  • Des weiteren wird nun die Stromquelle T4-T6 durch die Auswahl des Werteverhältnisses der Widerstände R2 und R3 für einen wesentlich höheren Konstantstrom ausgelegt - beispielsweise 8A.
  • Bei Aktivierung des Signals Negative-Strom-Control NSC durch das Schließsignal wird - wie bei Figur 4 beschrieben - der der Öffnungsspule zugeordnete Transistor T3 leitend geschaltet, gleichzeitig mittels Transistor T7 die Stromquelle T4 bis T6. Entsprechend der Induktivität der Spule L1 (Öffnungsspule) wird der Strom durch sie nun zeitlich ansteigen (Figur 9b, obere Spur). Dieser Strom ist am Widerstand R7 als Spannung Negative-Strom-Sense NSS beobachtbar. Hat diese Spannung NSS einen vorgegebenen Wert erreicht, so wird das Signal Negative-Strom-Control NSC auf 0V gesteuert und der Stromfluss damit beendet.
  • Die bei einem gemessenen Ausführungsbeispiel der Schaltung nach Figur 10 ermittelte Ventilschaltzeit wird beispielsweise von 620µs (ohne Entmagnetisierungsstrom, Figur 9a) auf 504µs (mit Entmagnetisierungsstrom, Figur 9b) verkürzt.
    Die Stromquelle T4-6 besitzt auch eine Schutzfunktion, da bei einem Kurzschluss des rechten Anschlusses der Spule L1 nach Bezugspotential der Strom aus T6 begrenzt wird.
  • Die Ventilspulen befinden sich in dem nicht dargestellten Einspritzventil am Motorblock der Brennkraftmaschine außerhalb des elektronischen Steuergerätes, und ein Kurzschluss der Zuleitungen nach Fahrzeugmasse ist ein häufiger Fehler. Dies darf aber nicht zu einer Beschädigung der Elektronik führen.
  • Die Auswertung der Spannung Negative-Strom-Sense NSS sowie die Steuerung des Signals Negative-Strom-Control NSC erfolgt mit einer geeigneten Steuerungseinheit, welche in Figur 11 beschrieben ist.
  • Die für ein bistabiles Einspritzventil ausgeführte Steuerungseinheit nach Figur 11 enthält ein Monoflop IC2, ein Flip-Flop IC1A, einen Komparator Comp1 und ein UND-Glied IC3A mit drei Eingängen. Das Schließsignal ES ist mit dem Triggereingang Ck des Monoflops IC2, mit einem Eingang des UND-Gliedes IC3A und mit dem Reset-Eingang CLR-Nicht des Flip-Flops IG1A verbunden.
  • Das am Widerstand R7 in Figur 10 abgegriffene Signal NSS (Negative-Strom-Sense) ist mit dem nichtinvertierenden Eingang des Komparators Comp1 verbunden, dessen invertierendem Eingang eine Referenzspannung Vref zugeführt wird. Der Ausgang des Komparators Comp1 ist mit dem Triggereingang CLK des Flip-Flops IC1A verbunden.
  • Der Ausgang Q des Monoflops IC2 ist mit einem zweiten Eingang des UND-Gliedes verbunden, dessen dritter Eingang mit dem invertierenden Ausgang Q-Nicht des Flip-Flops IC1A verbunden ist.
  • Am Ausgang des UND-Gliedes IC3A erscheint das Signal NSC (Negative-Strom-Control), und am nichtinvertierenden Ausgang Q des Flip-Flops IC1A erscheint ein Signal NSD (Negative-Strom-Diagnose).
  • Das in Figur 6 bereits beschriebene Steuersignal, beispielsweise das Schließsignal ES steuert auch hier das Einschalten des negativen Stromes für die Öffnungsspule L1. Abgeschaltet wird der negative Strom aber nun bei Erreichen eines vorgegebenen Stromwertes, der aber kleiner sein muss als der Sollwert des Stromes der Stromquelle T4-6.
  • Die Signalverläufe der in Figur 11 gezeigten Steuerungseinheit sind aus Figur 12 zu entnehmen. Zu Beginn habe das Schließsignal ES Low-Pegel. Dieser Pegel liegt auch am Reset-eingang CLR-Nicht des Flip-Flops IC1A an, so dass an dessen nichtinvertierendem Ausgang Q ein Signal Negative-Strom-Diagnose NSD mit Low-Pegel anliegt. Dem entsprechend hat der invertierende Ausgang Q-Nicht von Flip-Flop IC1A High-Pegel.
  • Die ansteigende Flanke des Steuersignals ES taktet das Monoflop IC2, dessen Ausgang Q nun für die Dauer der Monoflop-Zeit High-Pegel annimmt. Das UND-Glied IC3A verknüpft die Signale ES, Q von IC2 und Q-Nicht von IC1A. Da alle diese Signale nun High-Pegel haben, nimmt das Signal NSC am Ausgang von UND-Glied IC3A mit der ansteigenden Flanke des Steuersignals ES ebenfalls High-Pegel an. Der negative Strom beginnt anzusteigen.
  • Dadurch werden die Transistoren T3 und T4 (Figuren 9b und 10) stromleitend, so dass ein Strom durch die Spule L1 (Figur10) zu fließen beginnt. Dieser Strom fließt auch durch Widerstand R7, wobei ein entsprechender Spannungsabfall, Signal Negative-Strom-Sense NSS, entsteht. Komparator Comp1 vergleicht nun diese Spannung NSS mit der Referenzspannung Vref.
  • Ist NSS < Vref, so hat der Ausgang des Komparators Comp1 Low-Pegel. Übersteigt der Wert von NSS den von Vref, springt der Ausgang des Komparators Comp1 auf High-Pegel und setzt das nachgeschaltete Flip-Flop IC1A. Dessen invertierender Ausgang Q-Nicht springt auf Low-Pegel und schaltet über das UND-Glied IC3A das Signal NSC auf Low-Pegel, wodurch der negative Strom in der Öffnungsspule L1 abgeschaltet wird. Ebenso springt das Signal NSD am nichtinvertierenden Ausgang Q auf High-Pegel.
  • Durch Beobachtung des Zeitpunktes, wann bzw. ob dieser Spannungssprung erfolgt, lässt sich eine mögliche Fehlfunktion erkennen. Ebenso kann die Art des Fehlers erkannt werden. Besteht ein Kurzschluss nach Bezugspotential bei einer der Zuleitungen der Spulen, so wird kein Strom durch Widerstand R7 fließen und das Signal NSD bleibt auf Low-Pegel. Dies gilt auch bei einer Leitungsunterbrechung.
  • Es genügt also, das Signal NSD unmittelbar vor Einschalten des Öffnungssignals EO bzw. Schließsignals ES abzufragen.
  • Die Zeitkonstante des Monoflops IC2 ist so gewählt, dass der gewünschte Wert des negativen Stromes sicher erreicht wird, jedoch eine thermische Überlastung des Leistungstransistors T4 der Stromquelle bei Kurzschluss nach Bezugspotential vermieden wird.
  • Hat das Signal NSS (Negative-Strom-Sense) bis zum Ablauf der Zeitkonstante den Wert von Vref nicht überschritten, so wird das nachgeschaltete Flip-Flop IC1A nicht getriggert. Das Signal NSD am nichtinvertierenden Ausgang Q bleibt auf Low-Pegel. Der Ausgang Q des Monoflops IC2 geht wieder auf Low-Pegel und sperrt das UND-Glied IC3A, so dass dessen Ausgangssignal NSC auf Low-Pegel geht.
  • Bei einem bistabilen Ventil werden wieder für die Öffnungsspule und für die Schließspule je eine Schaltung nach Figur 10 und Figur 11 benötigt.
  • Für ein Standard-Ventil mit Schließfeder, deren Steuerungseinheit in Figur13 dargestellt ist, ist die Steuerungseinheit nach Figur 11 dahin ergänzt, dass das Öffnungssignal EO , bevor es dem Monoflop IC2, dem UND-Glied IC3A und dem Flip-Flop IC1A zugeführt wird, mittels eines Inverters IC4 invertiert wird, so dass das Monoflop IC2 erst von der abfallenden Flanke des Signals EO getriggert wird.
  • Wie in Figur 8 für eine Schaltungsanordnung nach Figur 4 gezeigt, kann in einer weiteren, vorteilhaften Ausführung nach der Erfindung die Schaltungsanordnung nach Figur 4 oder Figur 10 zur Betätigung mehrerer Ventile, d.h., aller (beispielsweise vier oder sechs) Kraftstoff-Einspritzventile einer Brennkraftmaschine erweitert werden, ohne die Anzahl der Schaltungen proportional vergrößern zu müssen. Man erreicht dies durch Hinzufügen von zusätzlichen Dioden D7 bis D10 in Reihe mit dem Drain-Anschluss des dritten Transistors T3, von zusätzlichen Dioden D4a bis D6a und D4b bis D6b in Reihe mit dem Source-Anschluss des Transistors T4, und/oder einem weiteren Transistor T3b, bzw. einem weiteren Stromspiegel T4b-T7b, R2b-R5b.
  • Allerdings ist dazu eine zusätzliche, nicht dargestellte Selektionsschaltung erforderlich, die den jeweils gewünschten Strompfad durch geeignete Steuerung von T3, T3b, T7, T7b selektiert.
  • Haupthindernis beim Schließen sind, wie bereits ausgeführt, die Wirbelströme im Magnetmaterial des Ventils, die nach Abschalten des Betätigungsstromes langsam abklingen und ein schnelles Schließen des Ventils verhindern. Man verwendet deshalb in der Regel Stahl mit geringem elektrischem Leitwert.
  • Um die Schließverzögerung bei Standard-Solenoidventilen weiter zu verringern, wird erfindungsgemäß neben der Verwendung eines negativen Strompulses auch von den unterschiedlichen Abklingzeiten von Wirbelströmen in Magnetmaterialien mit unterschiedlichen elektrischen Leitwerten Gebrauch gemacht.
  • Figur 14 zeigt eine prinzipielle Darstellung eines Standard-Solenoid-Einspritzventils mit Spule S4 und Schließfeder S3. Die Spule S4 ist vom Eisenrückschluss S5 umgeben. Die Ventilnadel S7 und der mit ihm verbundene Anker S6 wird von der Schließfeder S3 gegen einen nicht dargestellten Ventilsitz gedrückt und versperrt damit die nicht dargestellte Ventilöffnung. Beim Erregen der Spule S4 wird der Anker S6 gegen die Kraft der Schließfeder S3 angezogen und damit das Ventil geöffnet.
  • Für den Anker S6 wird dazu erfindungsgemäß, entgegen der oben beschriebenen Regel, ein Material mit möglichst hohem elektrischem Leitwert gewählt, um im Anker die Wirbelströme möglichst langsam abklingen zu lassen. Der Eisenrückschluss S5 besteht jedoch wie bisher aus Material mit niedrigem elektrischem Leitwert.
  • Damit ist es möglich, beim Schließen des Ventils mit Anlegen eines negativen Strompulses an die Spule S4 im Eisenrückschluss S5 vorübergehend eine Feldumkehr zu erreichen, während das ursprüngliche Erregerfeld im Anker S6 noch nicht ganz abgeklungen ist.
  • Dadurch ergibt sich im Spalt zwischen Eisenrückschluss und Magnetanker vorübergehend eine abstoßende Kraft zwischen Eisenrückschluss S5 und Magnetanker S6, was den Beginn der Schließbewegung und den Schließvorgang des Ventils deutlich beschleunigt.
  • In Figur 14 sind die durchgezogenen Feldlinien 14a (links) bei geöffnetem Ventil und die gestrichelten Feldlinien 14b (rechts) im Schließvorgang bei der vorübergehend entstehenden Feldumkehr dargestellt.
  • Figur 15 zeigt im Prinzip die Entstehung vorübergehender, entgegengesetzter Feldrichtungen zwischen Eisenrückschluss S5 und Anker S6.
  • Das untere Diagramm zeigt den zeitlichen Verlauf des an die Spule angelegten negativen Strompulses beim Schließvorgang des Einspritzventils.
  • Im oberen Diagramm sind die durch Wirbelströme entstehenden Feldstärken bzw. Haltekräfte dargestellt. Dem jeweiligen Wert des Wirbelstromes ist eine magnetische Feldstärke und damit eine Haltekraft zugeordnet.
  • Die obere Kurve 15a zeigt den Verlauf der im Anker S6 - welcher aus Material mit möglichst hohem elektrischem Leitwert besteht - wirksamen Feldstärke, während die untere Kurve 15b den Verlauf der im Eisenrückschluss S5 - aus Material mit niedrigem elektrischen Leitwert - wirksamen Feldstärke darstellt.
  • Zusätzlich ist noch die Linie 15c dargestellt , welche die Haltekraft der Schließfeder S3 repräsentiert.
  • In dem Moment, in welchem die durch den negativen Strompuls beeinflusste Feldstärke - Kurve 15b - negativ wird und damit ihre Richtung umkehrt, beginnt die abstoßende Kraft zwischen Eisenrückschluss S5 und Anker S6 zu wirken. An der durch einen Doppelpfeil gekennzeichneten Stelle ist diese Kraft am größten.
  • Die Kombination von negativem Strompuls am Ende des Erregerstromes und geeigneter Wahl der magnetischen Materialeigenschaften ergibt also insgesamt eine wesentliche Reduzierung der Abschaltverzögerung bei Standard-Solenoidventilen.

Claims (11)

  1. Vorrichtung zum Schalten von induktiven Kraftstoff-Einspritzventilen,
    wobei bei einem bistabilen Kraftstoff-Einspritzventil (mit Öffnungs- und Schließspule) die durch Remanenz bewirkten magnetischen Haltekräfte, welche die Ventilnadel (1) in der Schließstellung festhalten, zum beschleunigten Öffnen des Ventils durch einen in der Schließspule erzeugten negativen Strom eliminiert werden, und welche die Ventilnadel (1) in der Offenstellung festhalten, zum beschleunigten Schließen des Ventils durch einen in der Öffnungsspule erzeugten negativen Strom eliminiert werden; und
    wobei bei einem Standard-Kraftstoff-Einspritzventil (mit Öffnungsspule und Schließfeder) die Wirbelströme im Magnetmaterial der Öffnungsspule (L1), die nach Abschalten des Betätigungssignals (EO) entstehen und nur langsam abklingen, durch einen in der Öffnungsspule erzeugten negativen Strom eliminiert werden,
    wobei als negativer Strom ein Strom durch die Öffnungs- oder Schließspule in zur Richtung des Betätigungsstroms entgegengesetzter Richtung definiert ist,
    mit einer Schaltungsanordnung, welche eine von einem Schaltsignal (Enable-Öffnen EO, Enable-Schließen ES) über eine Pulsweiten-Modulations-Einheit (PWM) gesteuerte Spule (L1) eines Kraftstoff-Einspritzventils aufweist,
    deren einer Anschluss mittels eines ersten Schalttransistors (T1) mit dem Pluspol (V+) einer Versorgungs-Spannungsquelle (V) und deren anderer Anschluss mittels eines zweiten Schalttransistors (T2) mit Bezugspotential (GND) verbunden ist,
    wobei der Source-Anschluss des ersten Schalttransistors (T1) mit dem einen Anschluss der Spule (L1), sein Drain-Anschluss mit dem Pluspol (V+) der Versorgungs-Spannungsquelle (V), und sein Gate-Anschluss mit dem Ausgang der PWM-Einheit (PWM) verbunden ist,
    wobei der Source-Anschluss des zweiten Schalttransistors (T2) mit Bezugspotential (GND) und sein Drainanschluss mit dem anderen Anschluss der Spule (L1) verbunden ist,
    wobei eine Freilaufdiode (D1) von Bezugspotential (GND) stromleitend zum einen Anschluss der Spule (L1) hin angeordnet und eine Rekuperationsdiode (D2) vom anderen Anschluss der Spule (L1) stromleitend zum Pluspol (V+) der Versorgungs-Spannungsquelle (V) hin angeordnet ist,
    dadurch gekennzeichnet ,
    dass ein dritter, parallel zur Freilaufdiode (D1) geschalteter Transistor (T3) vorgesehen ist, dessen Source-Anschluss mit Bezugspotential (GND) verbunden ist und dessen Drain-An-schluss mit dem Verbindungspunkt von Freilaufdiode (D1) und dem einen Anschluss der Spule (L1) verbunden ist,
    dass ein komplementärer Darlington-Stromspiegel (Transistoren T4 bis T6, Widerstände R2 bis R4) vorgesehen ist, der über einen ersten Widerstand (R1) mit dem Pluspol (V+) der Versorgungsspannungsquelle (V) verbunden ist,
    wobei der Source-Anschluss des vierten Transistors (T4) mit dem anderen Anschluss der Spule (L1) verbunden ist, und der Source-Anschluss des sechsten Transistors (T6) über die Reihenschaltung eines siebenten Transistors (T7) und eines fünften Widerstandes (R5) mit Bezugspotential (GND) verbunden ist,
    dass die Gate-Anschlüsse des dritten Transistors (T3) und des siebenten Transistors (T7) miteinander verbunden sind, denen ein Steuersignal Negative-Strom-Control (NSC) zuführbar ist,
    dass parallel zur Reihenschaltung aus sechstem Transistor (T6), siebentem Transistor (T7) und fünftem Widerstand (R5) ein Kondensator (C1) geschaltet ist, und
    dass parallel zu dem Kondensator (C1) eine Reihenschaltung aus einer einerseits mit Bezugspotential (GND) verbundenen Bordspannungsquelle (Vbat) und einer zum Kondensator (C1) hin stromleitenden Schutzdiode angeordnet ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass bei einem bistabilen Kraftstoff-Einspritzventil für die Erzeugung des Steuersignals Negative-Strom-Control (NSC) eine Steuerungseinrichtung vorgesehen ist, die ein Flip-Flop (IC1A) aufweist, welches vom Öffnungs- oder Schließsignal (EO, ES) der Öffnungs- oder Schließspule gesetzt und vom Schließsignal der dieser Spule zugeordneten PWM-Einheit (PWM) rückgesetzt wird, wobei zwischen dem Setzten und Rücksetzen des Flip-Flops (IC1A) an deren nichtinvertierendem Ausgang (Q) das Signal Negative-Strom-Control (NSC) erscheint, welches der Schaltungsanordnung der jeweils anderen Spule zugeführt wird.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Steuerung eines bistabilen Kraftstoff-Einspritzventils sowohl für die Öffnungsspule (L1) als auch für die Schließspule je eine Schaltungsanordnung nach Anspruch 1 und je eine Steuereinrichtung nach Anspruch 2 vorgesehen ist.
  4. Vorrichtung nach Anspruch 1; dadurch gekennzeichnet, dass bei einem Standard-Kraftstoff-Einspritzventil für die Erzeugung eines Steuersignals Negative-Strom-Control (NSC) eine Steuerungseinrichtung vorgesehen ist, die eine Reihenschaltung eines Inverters (IC4) und eines Monoflops (IC2) aufweist, wobei das vom Inverter (IC4) invertierte Öffnungs- oder Schließsignal (EO, ES) das Monoflop (IC2) setzt, an dessen nichtinvertierendem Ausgang (Q) während der Standzeit des Monoflops (IC2) das Signal Negative-Strom-Control (NSC) erscheint, welches der Schaltungsanordnung der jeweils anderen Spule zugeführt wird.
  5. Vorrichtung nach Anspruch 1 oder 4, dadurch gekennzeichnet, dass für die Steuerung eines Standard-Kraftstoff-Einspritzventils je eine Schaltungsanordnung nach Anspruch 1 und eine Steuereinrichtung nach Anspruch 4 vorgesehen ist.
  6. Vorrichtung zum Schalten von induktiven Kraftstoff-Einspritzventilen,
    wobei bei einem bistabilen Kraftstoff-Einspritzventil (mit Öffnungs- und Schließspule) die durch Remanenz bewirkten magnetischen Haltekräfte, welche die Ventilnadel (1) in der Schließstellung festhalten, zum beschleunigten Öffnen des Ventils durch einen in der Schließspule erzeugten negativen Strom eliminiert werden, und welche die Ventilnadel (1) in der Offenstellung festhalten, zum beschleunigten Schließen des Ventils durch einen in der Öffnungsspule erzeugten negativen Strom eliminiert werden; und
    wobei bei einem Standard-Kraftstoff-Einspritzventil (mit Öffnungsspule und Schließfeder) die Wirbelströme im Magnetmaterial der Öffnungsspule (L1), die nach Abschalten des Betätigungssignals (EO) entstehen und nur langsam abklingen, durch einen in der Öffnungsspule erzeugten negativen Strom eliminiert werden,
    wobei als negativer Strom ein Strom durch die Öffnungs- oder Schließspule in zur Richtung des Betätigungsstroms entgegengesetzter Richtung definiert ist,
    mit einer Schaltungsanordnung, welche eine von einem Schaltsignal (Enable-Öffnen EO, Enable-Schließen ES) über eine Pulsweiten-Modulations-Einheit (PWM) gesteuerte Spule (L1) eines Kraftstoff-Einspritzventils aufweist,
    deren einer Anschluss mittels eines ersten Schalttransistors (T1) mit dem Pluspol (V+) einer Versorgungs-Spannungsquelle (V) und deren anderer Anschluss mittels eines zweiten Schalttransistors (T2) mit Bezugspotential (GND) verbunden ist,
    wobei der Source-Anschluss des ersten Schalttransistors (T1) mit dem einen Anschluss der Spule (L1), sein Drain-Anschluss mit dem Pluspol (V+) der Versorgungs-Spannungsquelle (V), und sein Gate-Anschluss mit dem Ausgang der PWM-Einheit (PWM) verbunden ist,
    wobei der Source-Anschluss des zweiten Schalttransistors (T2) mit Bezugspotential (GND) und sein Drainanschluss mit dem anderen Anschluss der Spule (L1) verbunden ist,
    wobei eine Freilaufdiode (D1) von Bezugspotential (GND) stromleitend zum einen Anschluss der Spule (L1) hin angeordnet und eine Rekuperationsdiode (D2) vom anderen Anschluss der Spule (L1) stromleitend zum Pluspol (V+) der Versorgungs-Spannungsquelle (V) hin angeordnet ist,
    dadurch gekennzeichnet ,
    dass ein dritter, parallel zur Freilaufdiode (D1) geschalteter Transistor (T3) vorgesehen ist, dessen Source-Anschluss über einen siebenten Widerstand (R7) mit Bezugspotential (GND) verbunden ist, und dessen Drain-Anschluss mit dem Verbindungspunkt von Freilaufdiode (D1) und dem einen Anschluss der Spule (L1) verbunden ist,
    dass ein komplementärer Darlington-Stromspiegel (Transistoren T4 bis T6, Widerstände R2 bis R4) vorgesehen ist,
    wobei der Source-Anschluss des vierten Transistors (T4) mit dem anderen Anschluss der Spüle (L1) verbunden ist, der Source-Anschluss des sechsten Transistors (T6) über die Reihenschaltung eines siebenten Transistors (T7) und eines fünften Widerstandes (R5) mit Bezugspotential (GND) verbunden ist, und die Drain-Anschlüsse des vierten und sechsten Transistors (T4, T6) über je einen Widerstand (R2, R3) mit dem Pluspol (V+) der Versorgungsspannungsquelle (V) verbunden sind,
    dass die Gate-Anschlüsse des dritten Transistors (T3) und des siebenten Transistors (T7) miteinander verbunden sind, denen das Steuersignal Negative-Strom-Control (NSC) zuführbar ist, und
    dass am siebenten Widerstand (R7) ein Signal Negative-Strom-Sense (NSS) abgreifbar ist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet,
    dass bei einem bistabilen Kraftstoff-Einspritzventil für die Erzeugung des Steuersignals Negative-Strom-Control (NSC) eine Steuerungseinrichtung vorgesehen ist, die einen Komparator (Comp1) enthält, dessen nichtinvertierendem Eingang das Signal Negative-Strom-Sense (NSS) und dessen invertierendem Eingang eine Referenzspannung (Vref) zuführbar ist,
    dass ein Flip-Flop (IC1A) vorgesehen ist, dessen Setzeingang (CLK) mit dem Ausgang des Komparators (Comp1) verbunden ist, an dessen nichtinvertierendem Ausgang (Q) ein Signal Negative-Strom-Diagnose (NSD) abgreifbar ist,
    dass ein Monoflop (IC2) und ein UND-Glied mit drei Eingängen (IC3A) vorgesehen sind, wobei
    einem Eingang des UND-Gliedes (IC3A), dem Triggereingang (Ck) des Monoflops (IC2) und dem Reset-Eingang des Flip-Flops (IC1A) Schließsignal (ES) oder das Öffnungssignal (EO) zuführbar ist,
    ein zweiter Eingang des UND-Gliedes (IC3A) mit dem invertierenden Ausgang (Q-Nicht) des Flip-Flops (IC1A) und
    ein dritter Eingang des UND-Gliedes (IC3A) mit dem Aus gang (Q) des Monoflops (IC2) verbunden sind, und am Ausgang des UND-Gliedes (IC3A) das Signal Negative-Strom-Control (NSC) abgreifbar ist.
  8. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet,
    dass bei einem Standard-Kraftstoff-Einspritzventil für die Erzeugung des Steuersignals Negative-Strom-Control (NSC) eine Steuerungseinrichtung nach Anspruch 12 vorgesehen ist, wobei zusätzlich ein Inverter (IC4) vorgesehen ist, in welchem das Schließsignal (ES) invertiert wird, bevor es einem Eingang des UND-Gliedes (IC3A), dem Triggereingang (Ck) des Monoflops (IC2) und dem Reset-Eingang des Flip-Flops (IC1A) zugeführt wird.
  9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass
    - das Signal Negative-Strom-Diagnose (NSD) der Öffnungsspule (L1) vor Einschalten des Öffnungssignals (EO) oder
    - das Signal Negative-Strom-Diagnose (NSD) der Schließspule vor Einschalten des Schließsignals (ES)
    Low-Pegel aufweist, wenn der durch die Öffnungs- oder Schließspule fließende negative Strom
    - vor Ablauf der Monoflop-Standzeit nicht seinen vorgegebenen Wert erreicht, oder
    - bei einer der Zuleitungen zu den Spulen ein Kurzschluss nach Bezugspotential (GND) oder eine Leitungsunterbrechung auftritt.
  10. Vorrichtung nach einem der Ansprüche 1 oder 4 bis 8, dadurch gekennzeichnet, dass bei einem Standard-Kraftstoff-Einspritzventil der Eisenrückschluss (S5) der Spule (S4) und der Anker (S6) aus Materialien mit unterschiedlichen elektrischen Leitwerten gefertigt sind.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der Anker (S6) aus Material mit möglichst hohem elektrischem Leitwert und der Eisenrückschluss (S5) aus Material mit niedrigem elektrischem Leitwert besteht.
EP07704077A 2006-01-24 2007-01-23 Vorrichtung zum schalten induktiver kraftstoff-einspritzventile Expired - Fee Related EP1979598B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006003388 2006-01-24
DE200610025360 DE102006025360B3 (de) 2006-05-31 2006-05-31 Vorrichtung zum Schalten induktiver Kraftstoff-Einspritzventile
PCT/EP2007/050643 WO2007085591A1 (de) 2006-01-24 2007-01-23 Vorrichtung zum schalten induktiver kraftstoff-einspritzventile

Publications (2)

Publication Number Publication Date
EP1979598A1 EP1979598A1 (de) 2008-10-15
EP1979598B1 true EP1979598B1 (de) 2011-03-23

Family

ID=38124038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07704077A Expired - Fee Related EP1979598B1 (de) 2006-01-24 2007-01-23 Vorrichtung zum schalten induktiver kraftstoff-einspritzventile

Country Status (4)

Country Link
US (1) US7832378B2 (de)
EP (1) EP1979598B1 (de)
DE (1) DE502007006767D1 (de)
WO (1) WO2007085591A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090114864A1 (en) * 2007-11-05 2009-05-07 Eaton Corporation Failsafe fuel doser solenoid valve using a reversible electrical coil assembly
DE102009032521B4 (de) * 2009-07-10 2016-03-31 Continental Automotive Gmbh Bestimmung des Schließzeitpunkts eines Kraftstoffeinspritzventils basierend auf einer Auswertung der Ansteuerspannung
WO2012040285A1 (en) * 2010-09-23 2012-03-29 International Engine Intellectual Property Company, Llc Method of controlling the operation of an intensifier piston in a fuel injector
KR101252094B1 (ko) 2011-01-11 2013-04-12 호남대학교 산학협력단 솔레노이드 구동 제어기
JP2013021454A (ja) * 2011-07-08 2013-01-31 Sony Corp 撮像装置及び固体撮像装置の保護装置
EP2568155B1 (de) 2011-09-09 2018-11-14 Continental Automotive GmbH Ventilanordnung und Einspritzventil
US8723614B2 (en) * 2011-09-22 2014-05-13 Continental Automotive Systems, Inc. Trigger activated adjustable pulse width generator circuit for automotive exhaust after-treatment and injection
DE102012014800A1 (de) * 2012-07-26 2014-05-15 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schaltungsanordnung zur Erfassung einer Art eines Magnetventils
JP5761144B2 (ja) * 2012-09-13 2015-08-12 株式会社デンソー 燃料噴射制御装置
US10072596B2 (en) * 2013-11-15 2018-09-11 Sentec Ltd Control unit for a fuel injector
US9777864B2 (en) * 2014-09-10 2017-10-03 Continental Automotive Systems, Inc. Method and device for controlling a solenoid actuator
DE102015209566B3 (de) * 2015-05-26 2016-06-16 Continental Automotive Gmbh Ansteuerung von Kraftstoffinjektoren bei Mehrfacheinspritzungen
DE102017205884A1 (de) * 2017-04-06 2018-10-11 Continental Automotive Gmbh Verfahren zum Schalten eines Stromes in einem Elektromagneten eines schaltbaren Magnet-Ventils sowie elektronische Schaltung, Magnet-Ventil, Pumpe und Kraftfahrzeug
US11835006B2 (en) * 2021-02-26 2023-12-05 Denso Corporation Fuel injection control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2284037A1 (fr) * 1974-09-09 1976-04-02 Peugeot & Renault Procede et dispositif de commande d'un injecteur electromagnetique
JPS5749059A (en) * 1980-09-08 1982-03-20 Toshiba Corp Driving circuit of injector
DE4016816C2 (de) 1990-05-25 1999-10-07 Bosch Gmbh Robert Elektromagnetisches Wegeventil mit einer Stelleinrichtung
DE19526681B4 (de) 1995-07-21 2006-06-22 Fev Motorentechnik Gmbh Verfahren zur zeitgenauen Steuerung der Ankerbewegung eines elektromagnetisch betätigbaren Stellmittels
DE19921938A1 (de) 1998-06-15 1999-12-16 Fev Motorentech Gmbh Verfahren zur Erhöhung der Abwurfgeschwindigkeit des Ankers an einer elektromagnetisch betätigbaren Stelleinrichtung
DE10018175A1 (de) 2000-04-12 2001-10-25 Bayerische Motoren Werke Ag Schaltungsanordnung zum Betrieb eines hochdynamischen elektromagnetischen Hubanker-Aktors

Also Published As

Publication number Publication date
EP1979598A1 (de) 2008-10-15
WO2007085591A1 (de) 2007-08-02
US20090126692A1 (en) 2009-05-21
DE502007006767D1 (de) 2011-05-05
US7832378B2 (en) 2010-11-16

Similar Documents

Publication Publication Date Title
EP1979598B1 (de) Vorrichtung zum schalten induktiver kraftstoff-einspritzventile
DE102005044886B4 (de) Vorrichtung und Verfahren zum Erkennen eines Endes einer Bewegung eines Ventilkolbens in einem Ventil
EP2386021A1 (de) Verfahren zum betreiben eines kraftstoffeinspritzsystems
DE1451956A1 (de) Brennstoffeinspritzeinrichtung fuer Brennkraftmaschinen
DE2828678A1 (de) Verfahren und einrichtung zum betrieb eines elektromagnetischen verbrauchers, insbesondere eines einspritzventils in brennkraftmaschinen
WO2011003704A1 (de) BESTIMMUNG DES SCHLIEßZEITPUNKTS EINES KRAFTSTOFFEINSPRITZVENTILS BASIEREND AUF EINER AUSWERTUNG DER ANSTEUERSPANNUNG
DE2830834A1 (de) Elektronisches brennstoffeinspritzsystem
DE102005050338A1 (de) Verfahren zum Überprüfen eines Ventils
DE10304083A1 (de) Antriebssystem für ein Einspritzventil und Verfahren zur Steuerung des Antriebssystems
WO2009077254A1 (de) Verfahren zum betreiben einer einspritzvorrichtung
WO2007118750A1 (de) Verfahren zur steuerung wenigstens eines magnetventils
WO2012059304A1 (de) Verfahren zum betreiben eines schaltgliedes
DE10315282B4 (de) Schaltungsanordnung und Verfahren zur Ansteuerung eines bistabilen Magnetventils
EP0246357B1 (de) Verfahren zur Ansteuerung eines Einspritzventils
EP1895675A2 (de) Kommunikationsvorrichtung und Datenübertragungsverfahren
DE102008006530A1 (de) Steuerungssystem und Arbeitsverfahren für ein Steuerungssystem
DE102006025360B3 (de) Vorrichtung zum Schalten induktiver Kraftstoff-Einspritzventile
DE4018320C2 (de) Ansteuerschaltung für einen elektromagnetischen Verbraucher
DE102013206674A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines Mengensteuerventils
DE19735560B4 (de) Verfahren und Vorrichtung zur Steuerung eines Verbrauchers
DE3544564A1 (de) Schaltung zum steuern und anzeigen des betriebes von treibstoffinjektoren
DE102014200184A1 (de) Verfahren und Schaltungsanordnung zur Ansteuerung von Einspritzventilen, insbesondere einer fremdgezündeten Brennkraftmaschine
EP0945610A2 (de) Verfahren und Vorrichtung zum Schalten einer Induktivität
EP0720770A1 (de) Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen verbrauchers
DE10140093A1 (de) Verfahren und Vorrichtung zum Ansteuern eines Magnetventils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

RBV Designated contracting states (corrected)

Designated state(s): DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 502007006767

Country of ref document: DE

Date of ref document: 20110505

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007006767

Country of ref document: DE

Effective date: 20110505

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007006767

Country of ref document: DE

Effective date: 20111227

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180131

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190124

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007006767

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007006767

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131