EP1976727A1 - Vorrichtung und verfahren zur detektion eines fussgängeraufpralls - Google Patents

Vorrichtung und verfahren zur detektion eines fussgängeraufpralls

Info

Publication number
EP1976727A1
EP1976727A1 EP06830248A EP06830248A EP1976727A1 EP 1976727 A1 EP1976727 A1 EP 1976727A1 EP 06830248 A EP06830248 A EP 06830248A EP 06830248 A EP06830248 A EP 06830248A EP 1976727 A1 EP1976727 A1 EP 1976727A1
Authority
EP
European Patent Office
Prior art keywords
impact
signal
time offset
signals
acceleration sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06830248A
Other languages
English (en)
French (fr)
Inventor
Frank Mack
Sascha Steinkogler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1976727A1 publication Critical patent/EP1976727A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/34Protecting non-occupants of a vehicle, e.g. pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R21/0133Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value by integrating the amplitude of the input signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0136Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01122Prevention of malfunction
    • B60R2021/01184Fault detection or diagnostic circuits
    • B60R2021/0119Plausibility check

Definitions

  • the invention relates to a device and a method for detecting a pedestrian impact according to the preamble of the independent claim.
  • the device according to the invention or the method according to the invention for detecting a pedestrian impact has the advantage that a configuration of at least three acceleration sensors is used, which are attached to the inside of the bumper fascia.
  • an acceleration sensor is arranged on the right and left and the third acceleration sensor in the middle.
  • the method according to the invention or the device according to the invention is characterized by its robustness.
  • impact objects of non-negligible width such as a shopping cart, can be detected, provided that Exceeding the threshold of all three sensors takes place virtually simultaneously or within a very small, possibly time-dependent time interval.
  • the invention is based on the idea to determine the impact location by means of at least three sensors. This is due to the fact that the
  • Propagation speed of deformation and structure-borne noise in the plastic of the bumper fascia is relatively slow. As a result, an acceleration sensor farther from the impact location will later generate the signal as a sensor mounted near the impact location.
  • the respective signals of the acceleration sensors are generated when the signal predetermined or adaptively determined, for example in
  • noise thresholds are for example between 3 and 5g.
  • the signals it is possible for the signals to be generated even when the signals show certain signal characteristics, ie forms. This can be done, for example, in
  • a counter which determines the at least one time offset.
  • This counter can be a timer module, which is arranged in the control unit or it is realized by software technology in a microcontroller in the control unit. In this case, the microcontroller is the evaluation circuit.
  • the time offset is determined from the first two occurring signals, ie the two acceleration sensors which are arranged closest to the point of impact, and the third acceleration sensor is used with its signal for plausibility.
  • the device according to the invention or the inventive method is particularly robust.
  • the signals are weighted according to their occurrence. This takes into account the fact that the sensor that first generates the signal, ie closest to the impact location, generates the signal that is most important for the analysis of the impact or the impact object. This will significantly improve the analysis and weaker signals will not be included in the analysis that much.
  • the signals can advantageously be summed or integrated over time.
  • integration means, such an integration, which is computationally possible.
  • a mass determination or estimation of the impact object can be carried out via the momentum set.
  • this second sum or the second integral can be advantageously used to determine the penetration depth of the impact object into the vehicle.
  • About the depth of penetration can otherwise difficult to distinguish objects, such as soft and heavy as a human being, from hard and light well discriminated. This is because a heavy object penetrates further into the bumper at a given speed than a lighter one.
  • FIG. 2 shows a first block diagram
  • FIG. 3 is an acceleration time diagram
  • Figure 4 is a second block diagram
  • FIG. 5 is a flowchart.
  • Acceleration sensors for detecting a pedestrian impact have already been proposed. This results in the problem of robust separation of tripping and non-tripping cases.
  • an impact offset detection is necessary because the bumper along the vehicle transverse direction changes its rigidity and therefore the signals of the sensors of one and the same impact object at the same speed depends on the offset.
  • This problem is solved by the device according to the invention or the inventive method by the use of at least three acceleration sensors, which are arranged on the bumper fascia. In this case, the time offset of the signals of the acceleration sensors is evaluated.
  • Figure 1 shows a view of the arrangement of the device according to the invention.
  • an arrangement of three acceleration sensors 10, 12 and 13 is provided on the bumper cover 15, which is largely made of plastic.
  • the acceleration sensors are screwed, for example via holders with the bumper cover 15.
  • Behind the acceleration sensors 10, 12 and 13, a bending beam 14 of the vehicle is provided.
  • the dashed lines indicate the spread of
  • the sensor 10 is the first to provide a signal to
  • the sensor 10 If there is an impact at the point of impact B, the sensor 10 in turn delivers the first signal and thus the start t ⁇ .
  • the sensor 12 provides its signal with the time offset
  • Distance d is the distance from the sensor 12 to the impact point P.
  • the sensor 12 now supplies the first signal and thus the time start t ⁇ .
  • the sensor 10 provides its signal with the time offset
  • Atl3 2 can be used in the offset determination, that is the distance d.
  • Figure 2 illustrates in a block diagram how the signals and the counter cooperate.
  • block 20 for example, upon impact at point A, acceleration sensor 10 generates its signal.
  • the timer 21 is started.
  • the timer measures the time offset AtIl 1 until the sensor 12 generates its signal in block 22.
  • the timer will continue to measure the time offset Atl3 2 in block 23 until the acceleration sensor 13 also generates its signal in block 24.
  • FIG. 3 visualizes this in an acceleration time diagram.
  • the curve 3.1 here represents the acceleration signal of the sensor 10 in the event of an impact at the impact point A.
  • the signal 31 exceeds the noise threshold 30.
  • the timer is started at the instant t.sub. ⁇ . This measures the time offset At 1 to also the signal of the sensor 12, which is designated here by the reference numeral 32, the noise threshold 30 exceeds.
  • the timer continues to count the time offset At 2 until the signal 33 of the sensor 13 exceeds the noise threshold 30.
  • FIG. 4 shows in a further block diagram the device according to the invention.
  • the acceleration sensors 10, 12 and 13 are connected via two-wire lines to a control unit ECU.
  • the acceleration sensors 10, 12 and 13 transmit their data as digital signals, for example by Manchester coding to the
  • Control unit ECU It is possible that the acceleration sensors 10, 12 and 13 already have preprocessing in their components.
  • the acceleration sensors 10, 12 and 13 can already check the noise threshold itself or the test takes over the control unit ECU by means of the microcontroller ⁇ C.
  • the ECU ECU interface modules and other components such as a
  • the microcontroller ⁇ C evaluates the signals of the acceleration sensors 10, 12 and 13 according to the invention and controls pedestrian protection means FGS in dependence thereon. To determine the time offset, the microcontroller ⁇ C uses a timer module 40. Alternatively, it is possible for the timer to be simulated by the microcontroller .mu.C itself by means of software.
  • step 500 the sensor closest to the point of impact generates its signal.
  • signal generation means that the signal is above the predetermined threshold, here the noise threshold.
  • the counter is then started in step 501.
  • the timer module 40 which is started by the microcontroller .mu.C.
  • the sensors 12 and 13 also generate the second and third signals, respectively.
  • the time offset is determined. Based on the time offset, it is possible to determine the impact site and the impact itself. This is done in step 503.
  • the determination of the first integral of the acceleration signal takes place here as an option-this is not necessarily the case-in order to estimate the mass of the impact object via the pulse set, which is carried out in method step 504.
  • the signal the first occurring signal is preferably used.
  • the second integral is formed here in method step 505 in order to determine the penetration depth of the impact object. It is then possible to carry out a characterization of the impact object.
  • the integrals here by means of the Microcontroller ⁇ C are performed, other summation techniques can be used. It should be understood that the integration is meant to be what a computer can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Es wird ein Verfahren bzw. eine Vorrichtung zur Detektion eines Fussgängeraufpralls vorgeschlagen, wobei wenigstens drei Beschleunigungssensoren (10, 12, 13) vorgesehen sind, die jeweils an der Innenseite der Stossfängerverkleidung (15) angebracht sind und jeweils ein Signal erzeugen. Der Fussgängeraufprall wird in Abhängigkeit von einem Zeitversatz zwischen wenigstens zwei der drei Signale detektiert. Anhand des wenigstens einen Zeitversatzes wird der Aufprallort erkannt.

Description

Beschreibung
Titel
Vorrichtung und Verfahren zur Detektion eines Fußgängeraufpralls
Stand der Technik
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Detektion eines Fußgängeraufpralls nach der Gattung des unabhängigen Patentanspruchs.
Aus DE 10348386 Al ist bereits die Verwendung von Beschleunigungssensoren zur
Detektion eines Fußgängeraufpralls bekannt.
Offenbarung der Erfindung
Die erfindungsgemäße Vorrichtung bzw. das erfindungsgemäße Verfahren zur Detektion eines Fußgängeraufpralls haben dem gegenüber den Vorteil, dass eine Konfiguration aus wenigstens drei Beschleunigungssensoren verwendet wird, die an der Innenseite der Stoßfängerverkleidung angebracht sind. Vorzugsweise ist dabei jeweils ein Beschleunigungssensor rechts und links und der dritte Beschleunigungssensor in der Mitte angeordnet. Durch die Auswertung eines Zeitversatzes der auftretenden Signale der drei Beschleunigungssensoren ist vorteilhafter Weise die Detektion des Fußgängeraufpralls an sich und auch die des Aufprallorts in einfacher Weise möglich. Zur Auswertung dieser Beschleunigungssignale wird eine Auswerteschaltung verwendet, die in einem Steuergerät, beispielsweise in einem Airbagsteuergerät angeordnet ist, wobei auch Teile der Auswertung in den Beschleunigungssensoren selbst durchgeführt werden können.
Das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Vorrichtung ist gekennzeichnet durch ihre Robustheit. Außerdem können Aufprallobjekte mit nicht zu vernachlässigender Breite, beispielsweise ein Einkaufswagen, erkannt werden, sofern die Überschreitung der Schwelle von allen drei Sensoren praktisch gleichzeitig stattfindet oder innerhalb eines sehr kleinen, evtl. geschwindigkeitszeitabhängigen Zeitintervalls.
Mit der Erfindung ist es möglich, Auslöse- von Nichtauslösefällen sicher zu unterscheiden.
Der Erfindung liegt der Gedanke zugrunde, den Aufprallort mittels der wenigstens drei Sensoren zu ermitteln. Dies beruht auf der Tatsache, dass die
Ausbreitungsgeschwindigkeit von Deformations- und Körperschall im Kunststoff der Stoßfängerverkleidung relativ langsam ist. Dadurch wird ein Beschleunigungssensor, der weiter vom Aufprallort entfernt ist, später das Signal erzeugen, als ein Sensor, der in der Nähe des Aufprallorts angebracht ist.
Durch die Nähe wenigstens einen der Beschleunigungssensoren zum Aufprallort kann auch das Eindringen des Aufprallobjekts in das Fahrzeug registriert werden. Ein mittlerer
Abstand von 20-30cm vom Beschleunigungssensor zum Aufprallort hat sich als besonders vorteilhaft erwiesen.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen der in den unabhängigen Patentansprüchen angegebenen Vorrichtung bzw. des in den unabhängigen Patentansprüchen angegebenen Verfahrens zur Detektion eines Fußgängeraufpralls möglich.
Besonders vorteilhaft ist, dass die jeweiligen Signale der Beschleunigungssensoren dann erzeugt werden, wenn die Signal vorgegebene oder adaptiv bestimmte, beispielsweise in
Abhängigkeit von der Geschwindigkeit Rauschschwellen überschreiten. Solche Rauschschwellen liegen beispielsweise zwischen 3 und 5g.
Alternativ ist es jedoch möglich, dass die Signale auch dann erzeugt werden, wenn die Signale bestimmte Signalmerkmale, also Formen zeigen. Dies kann beispielsweise in
Abhängigkeit von einem Maximum oder Minimum oder anderen auffälligen Signalformen oder einer bestimmten Größe, wie dem ersten oder zweiten Integral- oder dem Differenzquotienten des Beschleunigungssignals bestimmt werden. Weiterhin ist es vorteilhaft, dass ein Zähler vorgesehen ist, der den wenigstens einen Zeitversatz ermittelt. Dieser Zähler kann ein Timerbaustein sein, der im Steuergerät angeordnet ist oder er wird softwaretechnisch in einem MikroController im Steuergerät realisiert. Dabei ist dann der Mikrocontroller die Auswerteschaltung.
Vorteilhafter Weise wird der Zeitversatz aus den ersten beiden auftretenden Signalen bestimmt, also den beiden Beschleunigungssensoren, die am nächsten zum Aufprallort angeordnet sind, und der dritte Beschleunigungssensor wird mit seinem Signal zur Plausibilisierung verwendet. Damit wird die erfindungsgemäße Vorrichtung bzw. das erfindungsgemäße Verfahren besonders robust.
Weiterhin ist es vorteilhaft, dass die Signale nach ihrem Auftreten gewichtet werden. Damit wird der Tatsache Rechnung getragen, dass der Sensor, der zuerst das Signal erzeugt, also am nächsten am Aufprallort ist, das Signal erzeugt, das am wichtigsten für die Analyse des Aufpralls bzw. des Aufprallobjekts ist. Damit wird die Analyse entscheidend verbessert und schwächere Signale werden nicht so stark in die Analyse eingehen.
Die Signale können vorteilhafter Weise jedoch auch über der Zeit aufsummiert oder integriert werden. Wobei hier Integration bedeutet, eine solche Integration, die rechentechnisch möglich ist. Anhand des ersten Integrals oder dieser ersten Summe kann über den Impulssatz eine Massenbestimmung bzw. Abschätzung des Aufprallobjekts durchgeführt werden. Dabei ändert man das zweite Integral oder eine zweifach aufsummierte Summe, dann kann diese zweite Summe oder das zweite Integral zur Bestimmung der Eindringtiefe des Aufprallobjekts in das Fahrzeug vorteilhafter Weise verwendet werden. Über die Eindringtiefe können ansonsten schwer zu unterscheidende Objekte, beispielsweise weiche und schwere wie ein Mensch, von hart und leichten gut diskriminiert werden. Dies liegt daran, dass ein schwerer Gegenstand bei einer vorgegebenen Geschwindigkeit weiter in den Stoßfänger eindringt als ein leichter.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. - A -
Es zeigen
Figur 1 eine Anordnung gemäß der erfindungsgemäßen Vorrichtung,
Figur 2 ein erstes Blockschaltbild,
Figur 3 ein Beschleunigungszeitdiagramm,
Figur 4 ein zweites Blockschaltbild und
Figur 5 ein Flussdiagramm.
Beschreibung
Es wurden bereits Beschleunigungssensoren zur Detektion eines Fußgängeraufpralls vorgeschlagen. Hierbei ergibt sich das Problem der robusten Trennung von Auslöse- und Nichtauslösefällen. Insbesondere ist dabei eine Aufprall-Offset-Erkennung notwendig, da der Stoßfänger entlang der Fahrzeugquerrichtung seine Steifigkeit ändert und daher die Signale der Sensoren von ein und demselben Aufprallobjekt bei gleicher Geschwindigkeit vom Offset abhängt. Dieses Problem wird durch die erfindungsgemäße Vorrichtung bzw. das erfindungsgemäße Verfahren durch die Verwendung von wenigstens drei Beschleunigungssensoren, die an der Stoßfängerverkleidung angeordnet sind, gelöst. Dabei wird der Zeitversatz der Signale der Beschleunigungssensoren ausgewertet.
Figur 1 zeigt in einer Darstellung die Anordnung der erfindungsgemäßen Vorrichtung.
Dabei ist an der Stoßfängerverkleidung 15, die weitgehend aus Kunststoff gefertigt ist, eine Anordnung von drei Beschleunigungssensoren 10, 12 und 13 vorgesehen. Die Beschleunigungssensoren sind beispielsweise über Halter mit der Stoßfängerverkleidung 15 verschraubt. Hinter den Beschleunigungssensoren 10, 12 und 13 ist ein Biegeträger 14 des Fahrzeugs vorgesehen. Durch die gestrichelten Linien wird die Ausbreitung von
Signalen angedeutet. Zwischen den Sensoren ist der Abstand L vorgesehen.
Liegt nun ein Aufprall am Ort A vor, dann liefert der Sensor 10 als erster ein Signal zur
Zeit tθ. Sensor 12 liefert dann ein Signal mit einem Zeitversatz von Δ?12j = — , wobei L c der Abstand zum Sensor 10 ist und C die Ausbreitungsgeschwindigkeit des Körperschalls im Stoßfänger ist. Der Sensor 13 liefert ein Signal mit dem Zeitversatz t\32 = 2 — . c
Liegt ein Aufprall am Aufprallort B vor, liefert der Sensor 10 wiederum das erste Signal und damit den Beginn tθ. Der Sensor 12 liefert sein Signal mit dem Zeitversatz
Δtl2j = — < — . Der Sensor 13 liefert den Zeitversatz At\32 = < 2— . Der c c c c
Abstand d ist der Abstand vom Sensor 12 zum Aufprallpunkt P.
Bei einem Aufprall beim Aufprallpunkt C liefert der Sensor 12 nunmehr das erste Signal und damit den Zeitbeginn tθ. Der Sensor 10 liefert sein Signal mit dem Zeitversatz
AtH1 = , wobei der Abstand von dem Aufprallpunkt C zum Sensor 10 L-d ist. c
Der Sensor 3 liefert wiederum einen Zeitversatz At\37 = .
Dabei wird angenommen, dass die horizontale Ausdehnung des Aufprallobjekts vernachlässigbar ist. Diese Fälle und die Berechnung des Verhältnisses von AtH1 und
Atl32 können bei der Offsetbestimmung, das ist der Abstand d, genutzt werden.
Figur 2 erläutert in einem Blockschaltbild, wie die Signale und der Zähler zusammenwirken. Im Block 20 erzeugt beispielsweise bei Aufprall an der Stelle A der Beschleunigungssensor 10 sein Signal. Damit wird der Timer 21 gestartet. Der Timer misst den Zeitversatz AtIl1 bis der Sensor 12 im Block 22 sein Signal erzeugt. Der Timer wird dann auch im Block 23 weiterhin den Zeitversatz Atl32 messen, bis auch der Beschleunigungssensor 13 im Block 24 sein Signal erzeugt.
Figur 3 visualisiert dies in einem Beschleunigungszeitdiagramm. Die Kurve 3.1 repräsentiert hier das Beschleunigungssignal des Sensors 10 bei einem Aufprall beim Aufprallpunkt A. Zum Zeitpunkt tθ überschreitet das Signal 31 die Rauschschwelle 30. Damit wird zum Zeitpunkt tθ der Timer gestartet. Dieser misst den Zeitversatz At1 bis auch das Signal des Sensors 12, das hier mit dem Bezugszeichen 32 bezeichnet ist, die Rauschschwelle 30 überschreitet. Der Timer zählt jedoch weiterhin den Zeitversatz At2 bis auch das Signal 33 des Sensors 13 die Rauschschwelle 30 überschreitet. Anstatt der Rauschschwelle können auch andere Signalmerkmale verwendet werden, um die Zeiten zu messen. Figur 4 zeigt in einem weiteren Blockschaltbild die erfindungsgemäße Vorrichtung. Die Beschleunigungssensoren 10, 12 und 13 sind über Zweidrahtleitungen mit einem Steuergerät ECU verbunden. Dabei übertragen die Beschleunigungssensoren 10, 12 und 13 ihre Daten als digitale Signale, beispielsweise mittels Manchester-Codierung an das
Steuergerät ECU. Es ist möglich, dass die Beschleunigungssensoren 10, 12 und 13 eine Vorverarbeitung in ihren Bausteinen bereits aufweisen. Die Beschleunigungssensoren 10, 12 und 13 können bereits die Rauschschwelle selber prüfen oder die Prüfung übernimmt das Steuergerät ECU mittels des MikroControllers μC. Der Einfachheit halber sind hier im Steuergerät ECU Interfacebausteine und auch andere Bausteine, wie eine
Zündkreisansteuerung nicht dargestellt, da sie für das Verstehen der Erfindung nicht wesentlich sind. Der Mikrocontroller μC wertet die Signale der Beschleunigungssensoren 10, 12 und 13 erfindungsgemäß aus und steuert in Abhängigkeit davon Fußgängerschutzmittel FGS an. Zur Ermittlung des Zeitversatzes nutzt der Mikrocontroller μC einen Timerbaustein 40. Alternativ ist es möglich, dass der Timer softwaretechnisch durch den Mikrocontroller μC selbst nachgebildet wird.
Anhand der Figur 5, und zwar an dem dargestellten Flussdiagramm wird das erfindungsgemäße Verfahren, das auf der erfindungsgemäßen Vorrichtung gemäß Figur 4 abläuft, näher erläutert. In Verfahrensschritt 500 erzeugt der am Auftreffpunkt nächst liegende Sensor sein Signal. Dabei bedeutet hier Signalerzeugung, dass das Signal über der vorgegebenen Schwelle, hier der Rauschschwelle, liegt. Der Zähler wird sodann in Verfahrensschritt 501 gestartet. Dies wird im Beispiel durch den Timerbaustein 40 realisiert, der durch den Mikrocontroller μC gestartet wird. In Folge des Aufpralls erzeugen auch die Sensoren 12 und 13 jeweils das zweite und das dritte Signal. Mittels des Zählers 40 wird dabei der Zeit-Offset bestimmt. Anhand des Zeitversatzes ist es möglich, den Aufprallort und den Aufprall an sich zu bestimmen. Dies wird in Verfahrensschritt 503 durchgeführt. In Verfahrensschritt 504 erfolgt hier als Option - dies ist nicht notwendiger Weise der Fall - die Bestimmung des ersten Integrals des Beschleunigungssignals, um daraus über den Impulssatz die Masse des Aufprallobjekts abzuschätzen, was in Verfahrensschritt 504 durchgeführt wird. Als das Signal wird vorzugsweise das erste auftretende Signal verwendet. Als eine weitere Option wird hier in Verfahrensschritt 505 das zweite Integral gebildet, um die Eindringtiefe des Aufprallobjekts zu bestimmen. Daran ist es dann möglich, eine Charakterisierung des Aufprallobjekts durchzuführen. Anstatt der Integrale, die hier mittels des Mikrocontrollers μC durchgeführt werden, können auch andere Summationstechniken verwendet werden. Es versteht sich, dass die Integration derart gemeint ist, wie sie ein Rechner durchführen kann.

Claims

Ansprüche
1. Vorrichtung zur Detektion eines Fußgängeraufpralls mit: wenigstens drei Beschleunigungssensoren (10, 12, 13) die jeweils an der Innenseite der Stoßfängerverkleidung (15) angebracht sind und jeweils ein Signal erzeugen, einer Auswerteschaltung (μC), die in Abhängigkeit von wenigstens einem Zeitversatz ( At1 , At2 ) zwischen zwei der drei Signale den
Fußgängeraufprall detektiert und einen Aufprallort erkennt.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die wenigstens drei
Beschleunigungssensoren (10, 12, 13) das jeweilige Signal dann erzeugen, wenn das jeweilige Signal eine jeweilige Rauschschwelle (30) überschreitet.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die wenigstens drei Beschleunigungssensoren (10, 12, 13) das jeweilige Signal in Abhängigkeit von einer
Signalform erzeugen.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Zähler (40) vorgesehen ist, der den wenigstens einen Zeitversatz ( At1 , At2 ) ermittelt.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Auswerteschaltung (μC) den wenigstens einen Zeitversatz ( At1 , At2 ) aus den ersten beiden auftretenden Signalen bestimmt und das Signal des dritten Beschleunigungssensors zur Plausibilisierung verwendet.
6. Verfahren zur Detektion eines Fußgängeraufpralls mit folgenden Verfahrensschritten: wenigstens drei Beschleunigungssensoren (10, 12, 13), die jeweils an der Innenseite der Stoßfängerverkleidung (15) angebracht sind, erzeugen jeweils ein Signal; der Fußgängeraufprall wird in Abhängigkeit von wenigstens einem
Zeitversatz zwischen zwei der drei Signale detektiert; anhand des wenigstens einen Zeitversatzes wird der Aufprallort erkannt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das jeweilige Signal erzeugt wird, wenn das jeweilige Signal eine jeweilige Rauschschwelle (30) überschreitet.
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das jeweilige Signal in Abhängigkeit von einer Signalform erzeugt wird.
9. Verfahren nach einem der Ansprüche 6 - 8, dadurch gekennzeichnet, dass der wenigstens eine Zeitversatz ( At1 , At2 ) aus den ersten beiden auftretenden Signalen bestimmt wird und das dritte Signal zur Plausibilisierung verwendet wird.
10. Verfahren nach einem der Ansprüche 6 - 9, dadurch gekennzeichnet, dass die Signale nach ihrem Auftreten gewichtet werden.
11. Verfahren nach einem der Ansprüche 6 - 10, dadurch gekennzeichnet, dass das jeweilige Signal über der Zeit summiert oder integriert wird und dass diese erste
Summe oder dieses erste Integral für eine Massebestimmung eines Aufprallobjekts verwendet wird.
12. Verfahren nach einem der Ansprüche 6 - 11, dadurch gekennzeichnet, dass das jeweilige Signal über der Zeit zweimal summiert oder zweimal integriert wird und dass diese zweite Summe oder dieses zweite Integral zur Bestimmung einer Eindringtiefe des Aufprallobjekts in das Fahrzeug verwendet wird.
EP06830248A 2006-01-11 2006-11-30 Vorrichtung und verfahren zur detektion eines fussgängeraufpralls Withdrawn EP1976727A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006001366.2A DE102006001366B4 (de) 2006-01-11 2006-01-11 Vorrichtung und Verfahren zur Detektion eines Fußgängeraufpralls
PCT/EP2006/069151 WO2007087916A1 (de) 2006-01-11 2006-11-30 Vorrichtung und verfahren zur detektion eines fussgängeraufpralls

Publications (1)

Publication Number Publication Date
EP1976727A1 true EP1976727A1 (de) 2008-10-08

Family

ID=37709494

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06830248A Withdrawn EP1976727A1 (de) 2006-01-11 2006-11-30 Vorrichtung und verfahren zur detektion eines fussgängeraufpralls

Country Status (6)

Country Link
US (1) US8948961B2 (de)
EP (1) EP1976727A1 (de)
JP (1) JP2009523087A (de)
CN (1) CN101356079B (de)
DE (1) DE102006001366B4 (de)
WO (1) WO2007087916A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007002274B4 (de) 2007-01-16 2019-08-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Offseterkennung einer Kollision für ein Fußgängerschutzsystem
EP2093109B1 (de) * 2008-02-21 2011-02-16 Keihin Corporation Vorrichtung zur Erkennung eines Zusammenstoßes mit einem Fußgänger und System zum Schutz von Fußgängern
DE102008013780B3 (de) * 2008-03-12 2010-07-15 Robert Bosch Gmbh Vorrichtung und Verfahren zur besseren Erkennung einer Art und/oder Schwere einer Kollision eines Fahrzeugs mit einem Gegenstand
DE102008039957A1 (de) 2008-08-27 2010-03-04 Continental Automotive Gmbh Verfahren zur Ermittlung eines Unfallschwerekriteriums mittels eines Beschleunigungssignals und eines Körperschallsignals
DE102009045757A1 (de) * 2009-10-16 2011-04-21 Robert Bosch Gmbh Verfahren und Steuergerät zur Klassifizierung eines Kollisionsverlaufs eines Fahrzeugs
US8463486B2 (en) * 2010-09-27 2013-06-11 Robert Bosch Gmbh Impact sensing and identification system for pedestrian protection device
JP5573788B2 (ja) * 2011-07-12 2014-08-20 株式会社デンソー 走行支援装置
DE102012224451B4 (de) * 2012-12-27 2023-09-28 Robert Bosch Gmbh Verfahren zum Betreiben einer Fahrzeuginsassensicherheitseinrichtung eines Kraftfahrzeug sowie entsprechende Fahrzeuginsassensicherheitseinrichtung
JP5949786B2 (ja) 2014-01-08 2016-07-13 トヨタ自動車株式会社 歩行者衝突検知システム
DE102014201382A1 (de) * 2014-01-27 2015-07-30 Robert Bosch Gmbh Verfahren zum Betreiben eines Fahrerassistenzsystems und Fahrerassistenzsystem
JP6149758B2 (ja) * 2014-02-21 2017-06-21 トヨタ自動車株式会社 歩行者衝突検知システム
US9260072B2 (en) * 2014-03-26 2016-02-16 Ford Global Technologies, Llc Pedestrian protection sensing system for vehicle having metal bumpers
DE102014207626B4 (de) * 2014-04-23 2022-09-15 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen eines Aufprallorts eines Objekts auf einem Fahrzeug
CN104361648B (zh) * 2014-10-10 2017-02-01 江苏科技大学 一种具有信号灯提示其他车辆的行车记录仪及其控制方法
US10427631B1 (en) * 2017-02-13 2019-10-01 Zoox, Inc. Vehicular adaptation for impact mitigation
WO2022038744A1 (ja) * 2020-08-20 2022-02-24 日本電信電話株式会社 衝撃分析方法、特徴量抽出方法、衝撃分析装置、およびプログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583771A (en) * 1994-08-04 1996-12-10 Delco Electronics Corp. Method and apparatus for distinguishing between deployment events and non-deployment events in an SIR system
US6561301B1 (en) * 1998-02-24 2003-05-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Collision discriminating apparatus for vehicles
JP2000255373A (ja) * 1999-03-02 2000-09-19 Mitsubishi Electric Corp 車両衝突検出装置
JP3857029B2 (ja) * 2000-09-19 2006-12-13 本田技研工業株式会社 車両用センサシステム
JP2002178872A (ja) * 2000-12-08 2002-06-26 Toyota Motor Corp 衝突形態判定装置及び乗員保護装置の起動制御装置
CA2433598C (en) 2002-06-25 2009-07-28 Honda Giken Kogyo Kabushiki Kaisha Collision determination system
US7475587B2 (en) * 2003-01-16 2009-01-13 Methode Electronics, Inc Omni-directional crash sensor
DE10308881B3 (de) 2003-02-28 2004-09-02 Siemens Ag Steueranordnung und Verfahren zur Funktionsüberprüfung einer derartigen Steueranordnung für Insassenschutzmittel in einem Kraftfahrzeug
JP3925653B2 (ja) 2003-07-24 2007-06-06 トヨタ自動車株式会社 車両の衝突保護装置
DE10348386A1 (de) 2003-10-17 2005-05-19 Robert Bosch Gmbh Vorrichtung zur Ansteuerung von Personenschutzmitteln
JP4148473B2 (ja) * 2003-10-29 2008-09-10 株式会社デンソー 車両用衝突物体判別装置
DE10357352A1 (de) * 2003-12-09 2005-07-07 Robert Bosch Gmbh Vorrichtung zur Ansteuerung von Personenschutzmitteln
JP4254590B2 (ja) * 2004-03-22 2009-04-15 株式会社デンソー 車両衝突解析システム
JP4394502B2 (ja) * 2004-03-31 2010-01-06 富士重工業株式会社 車両の衝突物判定装置
DE102005012949A1 (de) 2005-03-21 2006-09-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Unterscheiden von Aufprallarten, insbesondere zum Erkennen eines Fußgängeraufpralls, und Bestimmen der Aufprallschwere für ein Sicherheitssystem eines Kraftfahrzeugs
DE102005013595A1 (de) 2005-03-24 2006-09-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erzeugung eines Auslösesignals für eine Insassenschutzvorrichtung
DE102005038591A1 (de) 2005-08-16 2007-02-22 Robert Bosch Gmbh Kontaktsensorik für ein Fahrzeug
DE102005046928A1 (de) 2005-09-30 2007-04-12 Siemens Ag Vorrichtung und Verfahren zur Lokalisierung einer Kollision eines Objektes an einem Kraftfahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007087916A1 *

Also Published As

Publication number Publication date
WO2007087916A1 (de) 2007-08-09
DE102006001366A1 (de) 2007-07-12
US20100191401A1 (en) 2010-07-29
DE102006001366B4 (de) 2019-03-07
US8948961B2 (en) 2015-02-03
JP2009523087A (ja) 2009-06-18
CN101356079A (zh) 2009-01-28
CN101356079B (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
EP1976727A1 (de) Vorrichtung und verfahren zur detektion eines fussgängeraufpralls
EP2066534B1 (de) Vorrichtung und verfahren zur ansteuerung von personenschutzmittel
DE10245780B4 (de) Vorrichtung zur Aufprallerkennung mittels Körperschall in einem Fahrzeug
DE102012201646B4 (de) Verfahren und Vorrichtung zur Bestimmung einer Kollisionsgeschwindigkeit bei einer Kollision eines Fahrzeugs
EP1863682B1 (de) Verfahren zur erzeugung eines auslösesignals für eine fussgängerschutzvorrichtung
DE102017207442A1 (de) Verfahren und Vorrichtung zum Klassifizieren von Objekten im Umfeld eines Kraftfahrzeuges
DE102007048884A1 (de) Verfahren und Steuergerät zur Ansteuerung von Personenschutzmitteln bei einem Seitenaufprall für ein Fahrzeug
EP1732786A1 (de) Verfahren und vorrichtung zum erkennen eines fussgängeraufpralls
EP1444116B1 (de) Verfahren zur aktivierung einer sicherheitseinrichtung
DE10141886A1 (de) Verfahren zur Bestimmung einer Auslösezeit für Rückhaltemittel in einem Fahrzeug
DE10348386A1 (de) Vorrichtung zur Ansteuerung von Personenschutzmitteln
DE102010009216B4 (de) Verfahren zum Steuern eines Insassenschutzsystems
WO2009049814A1 (de) Verfahren zum herstellen eines kollisionsschutzsystems für ein kraftfahrzeug
DE10342128A1 (de) Verfahren und Abstandserfassungsvorrichtung zum Bestimmen des Abstandes zwischen mindestens einer Sensoreinrichtung und einem Objekt
EP3096161A1 (de) Verfahren zum erkennen von dauerstörern und/oder fremdschallstörern und entsprechende vorrichtung
DE10317638A1 (de) Anordnung zur Aufprallerkennung
DE102006040651A1 (de) Verfahren und Vorrichtung zur Detektion einer Kollision
DE102006024667B4 (de) Vorrichtung und Verfahren zur Detektion eines Fußgängeraufpralls
DE10311524A1 (de) Verfahren zur Auslösung von Rückhaltemitteln
DE102005023183B4 (de) Verfahren und Vorrichtung zur Überschlagserkennung eines Fahrzeugs
WO2006012816A1 (de) Vorrichtung und verfahren zur erzeugung eines auslösekriteriums für ein aufprallschutzsystem eines fahrzeugs
DE102005024052A1 (de) Verfahren und Vorrichtung zum gesteuerten Auswählen von vorausschauenden Sensoren für ein Fußgängerschutzsystem eines Kraftfahrzeugs
DE102012218280A1 (de) Verfahren und Vorrichtung zur Latenzzeitoptimierung bei einer Abstandsmessung mittels mehrerer Sensoren
DE102004011587A1 (de) Kontaktsensor eines Fahrzeugs
DE102008043234B4 (de) Verfahren und Steuergerät zum Bestimmen einer Kollisionsgeschwindigkeit zwischen einem Fahrzeug und einem Objekt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20090415

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160601