EP1969085A1 - Metal silicate halide phosphors and led lighting devices using the same - Google Patents

Metal silicate halide phosphors and led lighting devices using the same

Info

Publication number
EP1969085A1
EP1969085A1 EP06816796A EP06816796A EP1969085A1 EP 1969085 A1 EP1969085 A1 EP 1969085A1 EP 06816796 A EP06816796 A EP 06816796A EP 06816796 A EP06816796 A EP 06816796A EP 1969085 A1 EP1969085 A1 EP 1969085A1
Authority
EP
European Patent Office
Prior art keywords
phosphor
light
lighting device
formula
mlxm21
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06816796A
Other languages
German (de)
French (fr)
Other versions
EP1969085A4 (en
Inventor
Yongchi Tian
Perry Niel Yocom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lightscape Materials Inc
Original Assignee
Sarnoff Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sarnoff Corp filed Critical Sarnoff Corp
Publication of EP1969085A1 publication Critical patent/EP1969085A1/en
Publication of EP1969085A4 publication Critical patent/EP1969085A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the present invention relates to certain metal silicate halide (halosilicate) phosphors, the phosphors having a coating of oxide that renders the phosphor resistant to water-induced degradation, methods of making the phosphors, and light emitting diode- (LED-) based lighting devices modified with the phosphors.
  • halosilicate metal silicate halide
  • phosphors can be used to modify the wavelength of the light output.
  • a light emitting diode (LED) lighting device typically consists of a LED chip ("LED") and a phosphor or a blend of phosphors.
  • the chip emits the primary light with higher photon energy while the phosphor emits a light with lower photon energy upon the excitation of the primary light.
  • the phosphors can be used to modify the wavelength of the primary light. For example, with certain phosphors the emission of an ultraviolet (UV) or blue LED can be modified to produce other visible lights by positioning the phosphors along the emission pathway to convert the primary light to longer wavelengths.
  • UV ultraviolet
  • blue LED can be modified to produce other visible lights by positioning the phosphors along the emission pathway to convert the primary light to longer wavelengths.
  • An appropriate blend of blue-, green- and red-emitting phosphors can be used to modify UV LED emission to white light (i.e., light of white chromaticity). Certain combinations of green- and red- emitting phosphors can be used to modify a blue output of a LED to white light. Yellow emitting phosphors can be mixed with light from a blue LED or a blue emitting phosphor to create light of white chromaticity. Light from other UV or blue emitting devices, such as fluorescent lamps, can be similarly modified by the phosphors. The phosphor described here, when matched with appropriate other light sources, can be used in such applications.
  • the phosphors of the present invention are comprised of at least one halosilicate, also called silicate halide, as a host crystal and certain transition metal ions and rare earth metal ions as activators.
  • the halosilicate is a class of crystals in which both the silicate group and a halide ion are defining elements in determining the crystal structure.
  • the crystal Ca 2 SiO 4 CaCl 2 (see, e.g., V. R. Czaya and G. Bissert,.4ct ⁇ Cryst. B27, 747(1971)), Ca 2 SiO 3 Cl 2 (see, e.g., N. I. Golovastikov and V. F. Kazak, SOv.
  • phosphors that are comprised of silicates and halide ions, but the halide ions exist as dopant, which does not determine the crystal structure but may cause slight modifications, such as, causing expansions or contractions of the lattice.
  • the dopant is present in quantities less than the major defining ions of the halosilicate.
  • Burrus and Nicholson Sr 4 Si 3 O 8 Cl 2 Eu NR NR NR (1971)
  • the present invention is directed to novel halosilicate phosphors and uses thereof in lighting devices including LED-containing lighting devices.
  • the present invention provides a phosphor having a formula selected from:
  • Ml and M2 are each independently at least one metal ion selected from the group consisting OfMg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ and Cd 2+ ;
  • x is a value from about 0.001 to about 1;
  • X is at least one halide ion in ionic form
  • A is at least one activator ion selected from the group consisting Of Eu 2+ , Yb 2+ , Mn 2+ , Bi 3+ , Pb 2+ , Ce 3+ , Nd 3+ , Pr 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ and Yb 3+ ;
  • the phosphor has the formula (Ml x M2 1-x ) 2 LiSiO 4 X:A, and Ml is Sr 2+ , x is 1 and X is fluoride or M2 is Sr 2+ , x is 0 and X is fluoride, then A is not Eu 2+ ; and if the phosphor has the formula (Ml x M2 1-x ) 3 Si0 4 X 2 :A, and Ml is Ca 2+ , x is 1 and X is chloride or M2 is Ca 2+ , x is 0 and X is chloride, then A is not Eu 2+ ; and
  • the phosphor has the formula (Ml x M2 1-x ) 8 Mg(Si0 4 ) 4 X 2 :A, and Ml is Ca 2+ , x is 1 and X is chloride or M2 is Ca 2+ , x is 0 and X is chloride, then A is not Eu 2+ .
  • the phosphor of the present invention has a formula as previously described, where:
  • Ml and M2 are each independently Ca 2+ , Sr 2+ , Ba 2+ or a combination thereof;
  • X is fluoride, chloride, bromide or a combination thereof
  • A is Eu + , Mn + , Ce + or combination thereof.
  • the phosphor of the present invention has a formula as previously described, where:
  • Ml is Ca 2+ ;
  • M2 is Sr 2+ , Ba 2+ or a combination thereof
  • X is fluroide, chloride or a combination thereof
  • A is Eu + , Mn + , Ce + or a combination thereof.
  • the phosphor of the present invention has the formula:
  • x is a value from about 0.01 to about 1.
  • the phosphor of the present invention has the formula:
  • x is a value from about 0.01 to about 1.
  • the phosphor of the present invention has the formula:
  • x is a value from about 0.01 to about 1;
  • X is fluoride, chloride, bromide or a combination thereof
  • A is Eu 2+ , Mn 2+ , Ce 3+ or a combination thereof.
  • the phosphor of the present invention has the formula:
  • x is a value from about 0.01 to about 1;
  • X is fluoride, chloride, bromide or a combination thereof
  • A is Eu 2+ , Mn 2+ , Ce 3+ and a combination thereof.
  • the phosphor of the present invention has the formula:
  • x is a value from about 0.01 to about 1;
  • Eu 2+ is of an amount from about 0.0001 mole to about 0.1 mole of the phosphor.
  • the phosphor of the present invention has the formula:
  • x is a value from about 0.01 to about 1;
  • the present invention further provides a coated phosphor comprising a phosphor of the present invention, as previously described, and at least one layer of a coating on the phosphor, wherein the layer comprises at least one oxide.
  • the coated phosphor of the present invention has a coating that comprises at least two layers of oxide.
  • the present invention further provides a lighting device comprising a phosphor of the present invention.
  • the lighting device comprises:
  • the phosphor is capable of absorbing at least a portion of the light emitted from the light source
  • the phosphor modifies a chromaticity of the portion of the light absorbed from the light source
  • the phosphor emits light of a longer wavelength than that of the light absorbed from the light source.
  • the phosphor of the lighting device of the present invention further comprises a coating that comprises at least one oxide.
  • the lighting device of the present invention produces white light. .
  • the light source of the lighting device of the present invention is a light emitting diode (LED).
  • the LED comprises a quantum well structure having a light emitting layer sandwiched between a p-type clad layer and an n-type clad layer.
  • the p- type clad layer is formed of AI q Ga 1 -q N, wherein 0 ⁇ q ⁇ 1, the n-type clad layer is formed of Al n Ga 1 _ r N, wherein 0 ⁇ r ⁇ 1, and optionally, the p-type clad layer has a band gap that is larger than the band gap of the n-type clad layer.
  • the LED of the lighting device of present invention comprises a light emitting layer containing indium and at least one quantum well structure.
  • the lighting device of the present invention further comprises optionally, at least one quantum well structure that comprises at least one well layer of InGaN and at least one barrier layer of GaN, optionally, at least one quantum well structure that comprises at least one well layer of InGaN and at least one barrier layer of AlGaN, and optionally, at least one quantum well structure that comprises at least one well layer of AlInGaN and at least one barrier layer of AlInGaN, where at least one barrier layer has a band gap energy larger than a band gap energy of at least one well layer and optionally, the well layer has a thickness of at most about 100 angstroms.
  • At least one phosphor of the lighting device of the present has a formula where:
  • Ml and M2 are each independently Ca 2+ , Sr 2+ , Ba 2+ or a combination thereof;
  • X is fluoride, chloride, bromide or a combination thereof
  • A is Eu 2+ , Mn 2+ , Ce 3+ or a combination thereof.
  • At least one phosphor of the lighting device of the present has a formula where:
  • Ml is Ca 2+ ;
  • M2 is Sr 2+ , Ba 2+ or a combination thereof
  • X is fluoride, chloride or a combination thereof
  • At least one phosphor of the lighting device of the present has the formula:
  • x is a value from about 0.01 to about 1;
  • X is fluoride, chloride, bromide or a combination thereof
  • A is Eu 2+ , Mn 2+ , Ce 3+ or a combination thereof.
  • At least one phosphor of the lighting device of the present has the formula:
  • x is a value from about 0.01 to about 1;
  • X is fluoride, chloride, bromide or a combination thereof
  • A is Eu + , Mn 2+ , Ce 3+ or combination thereof.
  • At least one phosphor of the lighting device of the present has the formula:
  • x is a value from about 0.01 to about 1;
  • Eu 2+ is of an amount from about 0.0001 mole to about 0.1 mole of the phosphor.
  • At least one phosphor of the lighting device of the present has a formula:
  • x is a value from about 0.01 to about 1;
  • Eu 2+ is of an amount from about 0.0001 mole to about 0.1 mole of the phosphor.
  • the lighting device of the present further comprises at least one additional phosphor having formula (I):
  • R ⁇ is at least one activator ion selected from the group consisting OfEu 2+ and Mn 2+ ;
  • Y is at least one halide ion in ionic or atomic form or is absent.
  • the lighting device of the present further comprises at least one additional phosphor comprises formula (II):
  • the lighting device of the present further comprises at least one additional phosphor comprises formula (III):
  • the lighting device of the present invention further comprises at least two additional phosphors, wherein: one phosphor comprises formula (II):
  • the lighting device of the present invention emits white light.
  • the lighting device of the present invention comprises:
  • the phosphor is capable of absorbing at least a portion of the light emitted from the light source
  • the phosphor modifies a chromaticity of the portion of the light absorbed from the light source
  • the phosphor emits light of a longer wavelength than that of the light absorbed from the light source
  • the phosphor further comprises at least one layer of a coating that comprises at least one oxide
  • the lighting device produces white light.
  • FIGS. 1-3 show light emitting devices that can be used in the present invention.
  • FIG. 4 shows a LED that can be used in the present invention.
  • FIG. 5 shows emission/excitation spectra for phosphor Example 1 of the present invention.
  • FIG. 6 shows an X-ray diffraction for a phosphor Example 1 of the present invention.
  • FIG. 7 shows emission/excitation spectra for phosphor Example 2 of the present invention.
  • FIG. 8 shows an X-ray diffraction for a phosphor Example 2 of the present invention.
  • activator refers to an ion that determines the wavelength of light emission from the phosphor of which the activator is a part.
  • a “coating,” “oxide coating,” or “coating of oxide” refers to a covering or outside layer(s) comprising (a) at least one oxide (e.g., amorphous or crystalline), (b) lacks optically distinguishable embedded particles, and (c) is sufficiently complete as to provide relative protection against water, such as, a coating that maintains about 80% of a phosphor's original optical performance after exposure to about 85 0 C and about 85% relative humidity for about 16 hours to about 100 hours.
  • Such coatings can contain other elements and compounds, such as, those originating in the coating precursor (i.e., antecedent or predecessor) materials or phosphor particles. Accordingly, “oxide,” as used herein, refers to such materials that comprise metal or semiconductor cations and oxygen, which often is the primary material of the coating.
  • particle refers to an individual crystal of phosphor.
  • grain refers to an agglomeration, aggregation, polycrystalline or polymorph of phosphor particles, where the particles are not easily separated as compared to phosphor particles of a powder.
  • Temperatures described herein for processes involving a substantial gas phase are of the oven or other reaction vessel in question, not of the reactants per se.
  • White light refers to light of certain chromaticity coordinates on the Commission Internationale de l'Eclairage (CIE) 1931 Diagram, which are well-known in the art.
  • the present invention provides, amongst other things, a phosphor according to a formula selected from:
  • Ml and M2 are each independently at least one metal ion selected from the group consisting of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ and Cd 2+ ;
  • x is a value from about 0.001 to about 1;
  • X is at least one halide ion in ionic form
  • A is at least one activator ion selected from the group consisting OfEu 2+ , Yb 2+ , Mn 2+ , Bi 3+ , Pb 2+ , Ce 3+ , Nd 3+ , Pr 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ and Yb 3+ ;
  • the phosphor has the formula (Ml x M2 1-x ) 2 LiSiO 4 X:A, and Ml is Sr 2+ , x is 1 and X is fluoride or M2 is Sr 2+ , x is 0 and X is fluoride, then A is not Eu 2+ ; and
  • the phosphor has the formula (Ml x M2 1-x ) 3 Si0 4 X 2 :A, and Ml is Ca 2+ , x is 1 and X is chloride or M2 is Ca 2+ , x is 0 and X is chloride, then A is not Eu 2+ ; and
  • the phosphor has the formula (Ml x M2 1-x ) 8 Mg(Si0 4 ) 4 X 2 :A, and Ml is Ca 2+ , x is 1 and X is chloride or M2 is Ca 2+ , x is 0 and X is chloride, then A is not Eu 2+ .
  • the activator ion can substitute for a portion (for example and without limitation, about 1% to about 10%) of the metal strontium, barium or calcium in the host crystal lattice. In some embodiments, the activator ion can substitute for about 4% of the metal strontium, barium or calcium in the host crystal lattice.
  • A can be replaced by A', which is the same as A, except that when the activator includes Eu 2+ , at least one additional activator ion is present in an amount effective to change the fluorescence feature (e.g., emission wavelength or bandwidth or both) of the phosphor.
  • A can be replaced by A", which is the same as A, except that when the activator includes Eu 2+ , Mn 2+ or a combination thereof, at least one additional activator ion is present in an amount effective to change the fluorescence feature (e.g., emission wavelength or bandwidth or both) of the phosphor.
  • A can be replaced by A*, which is the same as A, except that when the activator includes Eu 2+ , Pb 2+ , Mn 2+ , Bi 3+ , Ce 3+ , Tb 3+ , Dy 3+ , or a combination thereof, at least one additional activator ion is present in an amount effective to change the fluorescence feature (e.g., emission wavelength or bandwidth or both) of the phosphor.
  • the activator includes Eu 2+ , Pb 2+ , Mn 2+ , Bi 3+ , Ce 3+ , Tb 3+ , Dy 3+ , or a combination thereof.
  • A has a mole percentage of about 0.001% to about 10%.
  • the range of the mole percentage of A is from one of the following lower endpoints (inclusive or exclusive): about 0.001%, about 0.01%, about 0.02%, about 0.05%, about 0.1%, about 0.2%, about 0.5%, about 1%, about 2%, about 3%, about 4% and about 5% mole and from one of the following upper endpoints (inclusive or exclusive): about 0.01%, about 0.02%, about 0.05%, about 0.1%, about 0.2%, about 0.5%, about 1%, about 2%, about 3%, about 4%, about 5% and about 10% mole.
  • the range can be from about 0.01% to about 5% mole. It will be understood by those of ordinary skill in the art that A can in fact substitute for the primary (i.e., principal or main) metal components of the phosphor — nonetheless, the primary metal components, if recited in relative amounts, are recited normalized, as if the combined primary metals were present in formula amounts as would pertain absent A.
  • the emission peak for a phosphor of the present invention is measured with the emission source being lit at about 440 nm ⁇ 100 nm or about 400 nm ⁇ 100 nm.
  • the emission range for a phosphor of the present invention is, for example, and without limitation, from one of the following lower endpoints (inclusive or exclusive) of: about 300 nm, about 301 nm, about 302 nm, about 303 nm, and each one nm increment up to about 799 nm, and from one of the following upper endpoints (inclusive or exclusive) of: about 800 nm, about 799 nm, about 798 nm, about 797 nm, and each one nm down to about 381 nm.
  • the lower endpoint of the emission range is, for example, and without limitation, about 400 nm, about 401 nm, about 402 nm, and each one nm increment up to about
  • the excitation peak range for a phosphor of the present invention is, for example, and without limitation, from one of the following lower endpoints (inclusive or exclusive) of: about 200 nm, about 201 nm, about 202 nm, about 203 nm, and each one nm increment up to about 549 nm and from one of the following upper endpoints (inclusive or exclusive): about 550 nm, about 549 nm, about 548 nm, about 547 nm, and each one nm down to about 201 nm.
  • the present invention further provides the phosphors of the present invention having an oxide coating.
  • a coated phosphor comprises (1) a phosphor of the present invention, and (2) a coating comprising at least one layer, where the layer comprises at least one oxide.
  • the layer(s) of the coating render the phosphor relatively more resistant to water-induced degradation as compared to an uncoated phosphor. That is to say, the layer(s) of the coating increases the resistance of the phosphor to degradation stimulated by water (in all its forms), such as, and without limitation, the coated phosphor maintains about 80% of its original optical performance after exposure to about 85 °C and about 85% relative humidity for about 100 hours.
  • the oxide of the coating of the coated phosphor of the present invention is titanium oxide, aluminum oxide, zirconium oxide, tin oxide, boron oxide, silicon oxide, zinc oxide, germanium oxide, aluminum silicate, Al 8 BSi 3 O 19 (OH), B 2 Al 2 (SiO 4 MOH), ZnAl 2 O 4 , Al 2 SiO 5 , Al 4 (Si0 4 ) 3 , ZrSiO 4 , or combinations thereof.
  • the oxide is titanium oxide, aluminum oxide or silicon oxide.
  • the coating of the coated phosphor of the photoluminescent phosphor of the present invention has at least two layers.
  • each layer independently comprises an oxide chosen from titanium oxide, aluminum oxide, silicon oxide and a combination thereof.
  • one layer of the coating comprises titanium oxide.
  • the coating of the coated phosphor of the photoluminescent phosphor of the present invention is continuous.
  • the oxide layer of the coating of the present invention comprises predominantly (e.g., > about 60%) one type of oxide (as determined by the metal or semiconductor component), e.g., layer of titanium oxide, aluminum oxide, or silicon oxide.
  • the coating of the present invention comprises two or more layers that are predominantly one type of oxide.
  • the layers can be made separately of two or more titanium oxides, aluminum oxides, or silicon oxides.
  • one layer of the coating of the present invention is of silicon oxide, and another is of a titanium oxide or aluminum oxide.
  • the coating of the phosphor of the present invention can be a single layer of one type of oxide, for example, a titanium oxide; or, the coating can be multi-layer, i.e., comprising more than one layer or at least two layers, with the layers, independently of each other, comprising a different type of oxide or oxide combination, for example, one layer can comprise an aluminum oxide and one layer can comprise a silicon oxide.
  • the coating of the phosphor of the present invention can be substantially transparent (such that useful fluorescence is retained) and are typically between about 0.1 micron and about 3.0 microns thick or between about 0.05 micron and about 0.50 micron thick. Coatings that are too thin (e.g., at least less than about 0.005 micron (5 nm) thick) can tend to provide insufficient impermeability to moisture, i.e., the coating fails to provide a phosphor protection from moisture whereby the phosphor degrades and loses its photoluminescence. Coatings that are too thick (e.g., greater than about 3.0 microns thick) can tend to be less transparent and result in reduced brightness of the coated phosphor.
  • the amount of protection provided by the coating of phosphor of the present invention can be measured by the amount of original emission intensity retained over a period of time at about 85 0 C and about 85% humidity.
  • the coated phosphors retain at least about 40%; at least about 45%; at least about 50%; at least about 55%; at least about 60%; at least about 65%; at least about 70%; at lest about 75%; at least about 80% photoluminescence when subjected to these conditions for at least about 30 mins., at least about 1 hour, or at least about 2 hours.
  • the coated phosphors retain at least about 40%; at least about 45%; at least about 50%; at least about 55%; at least about 60%; at least about 65%; at least about 70%; at least about 75%; or at least about 80% of original emission intensity when subjected to these conditions for at least about 4 hours; at least about 8 hour; at least about 12 hours; at least about 16 hours; at least about 24 hours; at least about 48 hours; or at least about 96 hours.
  • a method of coating a phosphor of the present invention with an oxide coating comprising: (a) providing a phosphor of the present invention, and (b) exposing the phosphor to oxide precursors and water to yield at least one layer of coating that renders the phosphor relatively more resistant to water-induced degradation than when it is uncoated.
  • the method of coating coats particles and grains of phosphor.
  • the phosphor particles (and/or grains) are coated by agitating or suspending them so that all sides have substantially equal exposure (i.e., the majority, e.g., about > 50% of the surfaces of the phosphor particles are exposed) to certain coating vapor or liquid during the period of the coating operation.
  • the particles can be suspended in a fluidized bed, or agitated or stirred in a liquid.
  • Gas used to fluidize the particles can include the vapor used to coat the particles.
  • the gas can include an inert gas carrier (i.e., a gas that is non-reactive under normal circumstances) and the coating vapor.
  • Carrier gas can be passed through vessel(s) of predominately (i.e., principally, for the most part or primarily, such as, > about 60%) liquid or solid form precursor to carry away vapor for use in the coating.
  • the vessel(s) and connecting pathways can be heated as needed to maintain sufficient vapor pressure.
  • carrier gas can be passed separately through vessels of the separate precursors and mixed prior to, or in, the coating reaction chamber of a reaction vessel. Relative carrier gas flow rates through the separate vessels can be adjusted to carry the desired amount of precursor in light of vapor pressure or empirical coating results. Water vapor is carried similarly to the reaction vessel, with an amount moderated similarly, as appropriate. ' In liquid-mediated coating methods, any number of dispensing methods can be used to incorporate multiple precursors into the liquid.
  • Coating can be accomplished through a hydrolysis to form a surface oxide, with the hydrolysis occurring in a vapor phase and/or in a liquid phase.
  • An example of the former is chemical vapor deposition (CVD), while of the latter is a sol-gel process.
  • the uncoated phosphor particles can be floated by a carrier gas in a reaction chamber to disperse the particles as substantially single particles (e.g., more than 95 percent (> 95%) of the particles have no association, agglomeration or aggregation).
  • the chamber can be heated to an appropriate temperature given the reactants (e.g., in some implementations, about 200 °C).
  • Coating precursor materials in the vapor phase then are introduced into the chamber. Under the temperature conditions, at least a portion of precursor (e.g., about 20%) is decomposed hydrolytically to form an oxide layer on the surfaces of the phosphor particles, thereby microencapsulating them.
  • a typical hydrolysis that can be used in the present invention is as follows:
  • an uncoated phosphor powder (comprising phosphor particles and/or grains) can be suspended in an inert fluid medium (i.e., a medium having a limited ability to react chemically) containing coating precursor.
  • the powder is stirred such that the particles are dispersed sufficiently so as to form a suspension and have little probability to form an agglomerate.
  • inert fluid medium i.e., a medium having a limited ability to react chemically
  • the reaction is accelerated by an elevated temperature, e.g., about 70 °C.
  • the hydrolysis results in a formation of an oxide coating on the surfaces of the phosphor particles.
  • the following reaction can be used for coating SiO 2 on SCS particles:
  • the method of coating a phosphor comprises a hydrolytic deposition reaction, where the hydrolytic deposition reaction is conducted at a temperature selected (in light of the given phosphor) to retain useful fluorescence (e.g., having an optical performance of about > 80% of its uncoated version).
  • the temperature of a vapor phase deposition can be, for example, from about 25 °C to about 400 0 C.
  • the temperature can be, for example, at least about 25 °C, at least about 50 0 C, at least about 75 0 C, at least about 100 °C, at least about 150 °C, or at least about 200 0 C.
  • the temperature can be, for example, at most about 400 °C, at most about 300 °C, at most about 275 °C, at most about 250 0 C, at most about 225 °C, or at most about 200 °C.
  • the temperature of a liquid phase deposition can be, for example, from about 25 °C to about 90 °C, depending on the reactants, the solvent, and the stability of the phosphor to the temperature.
  • the temperature can be, for example, at least about 25 °C, at least about 30 0 C, at least about 35 0 C, at least about 40 °C, at least about 45 °C, at least about 50 °C, at least about 55 °C, at least about 60 °C, at least about 65 °C, or at least about 70 °C.
  • the temperature can be, for example, at most about 90 °C, at most about 85 °C, at most about 80 °C, at most about 75 0 C, at most about 70 °C, at most about 65 °C, at most about 60 °C, at most about 55 0 C, or at most about 50 °C.
  • the temperature is, of course, lower than the boiling point of the solvent at the operative pressure.
  • Oxides useful in the coating of the coated phosphors of the present invention are, for example, and without limitation, titanium oxides (e.g., TiO 2 ), aluminum oxide (e.g., Al 2 O 3 ), zirconium oxide (e.g., ZrO 2 ), tin oxides (e.g., SnO 2 ), boron oxide (e.g., B 2 O 3 ), silicon oxide (e.g., SiO 2 ), zinc oxide (e.g., ZnO), germanium oxide (e.g., GeO 2 ), tantalum oxide (e.g., Ta 2 O 5 ), niobium oxide (e.g., Nb 2 O 5 ), hafnium oxide (e.g., HfO 2 ), gallium oxide (e.g., Ga 2 O 3 ), and the like.
  • titanium oxides e.g., TiO 2
  • aluminum oxide e.g., Al 2 O 3
  • zirconium oxide e.g.
  • oxides useful in the coatings of the coated phosphors of the present invention include oxides formed with more than one type of cation, for example, aluminum silicate [such as, 3 Al 2 O 3 -2SiO 2 or in mullite form], Al 8 BSi 3 O 19 (OH) [such as, in dunortierite form], B 2 Al 2 (SiO 4 ) 2 (OH) [such as, in euclase form], ZnAl 2 O 4 [such as, in gahnite form], Al 2 SiO 5 [such as, in sillimanite form], ZrSiO 4 [such as, in zircon form], and the like.
  • volatile or appropriately soluble precursors that hydrolytically generate the oxides are used for use in the method of coating a phosphor of the present invention. Such precursors are known in the art.
  • Volatile precursors include, for example, and without limitation, halogenated metals (e.g., titanium tetrachloride (TiCl 4 ) and silicon tetrachloride (SiCl 4 )), alkylated metals (e.g., trimethylaluminum, (A1(CH 3 ) 3 ), trimethylboron (B(CH 3 ) 3 ), tetramethylgermanium, Ge(CH 3 ) 4 and tetraethylzirconium, Zr(C 2 Hs) 4 , mixed halo (i.e., comprising fluroide, chloride, bromide, iodine or astatine) and alkyl derivatives of metals (e.g., dimethylaluminum chloride, diethyldichlorsilane), metal or semiconductor alkoxide (e.g., titanium (IV) methoxide and tetraethylorthosilicate (TEOS)).
  • halogenated metals refers to metal cations and anions of group VII elements of the periodic table of chemical elements that are ionically or valently bonded.
  • alkylated metals refers to metal cations and anions comprising at least one C 1 to C 16 straight or branched moiety, such as, methyl, diethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, hexyl, octyl, nonyl and decyl.
  • alkyl refers to a saturated hydrocarbon group that is unbranched (i.e., straight-chained) or branched (i.e., non-straight chained).
  • Example alkyl groups include methyl (Me), ethyl (Et), propyl (e.g., n- propyl and isopropyl), butyl (e.g., n-butyl, isobutyl, t-butyl), pentyl (e.g., n-pentyl, isopentyl, neopentyl), and the like.
  • an alkyl group can contain from about 1 to about 10, from about 2 to about 8, from about 3 to about 6, from about 1 to about 8, from about 1 to about 6, from about 1 to about 4, from about 1 to about 3 carbon atoms, or from about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms.
  • alkoxide refers to an alkyl-O- moiety, wherein alkyl is as previously defined.
  • Soluble precursors include, for example, metal or semiconductor alkoxides, (e.g. titanium (IV) methoxide and zirconium (FV) butoxide). Such compounds can form oxides by hydrolysis.
  • the present invention further provides a lighting device comprising at least one phosphor of the present invention.
  • the lighting device further comprises a light source.
  • light source refers to a Group III-V semiconductor quantum well-based light emitting diode or a phosphor other than a phosphor of the present invention.
  • the lighting device of the present invention is a white LED lamp.
  • the white LED lamp comprises a LED, two or more phosphors, and is pumped with blue light or near UV light.
  • near UV light refers to light having a wavelength range from about 350 nm to about 420 nm.
  • the white LED lamp delivers a high CRI of at least about 84, a high efficiency of at least about 90% and long lifetimes of at least about 100,000 hours.
  • the lighting device of the present invention comprises at least one LED, which emits light having a wavelength of at least 250 nm, and at least one phosphor of the present invention, which has a formula as described herein, where the phosphor(s) is located between the LED and the light output for the device.
  • the lighting device can further comprise at least one additional phosphor.
  • the additional phosphor(s) can assist in achieving a desired chromaticity.
  • the additional phosphor can have a formula as disclosed in U.S. Patent Application Serial No. 11/149,648 (Y. Tian), i.e., having the formula (I):
  • Bv is at least one divalent alkaline earth metal ion
  • Mv is at least one monovalent alkaline metal ion
  • Tv is at least one trivalent metal ion
  • R ⁇ is at least one activator selected from Eu 2+ and Mn 2+ ions
  • X is at least one halide ion in ionic or atomic form
  • "efficient luminescence” refers to an emission invisible light (wavelength ranging from about 400 nm to about 750 nm) with quantum efficiency higher than about 40%.
  • Y 3 Al 5 O 12 ICe 3+ (YAG), Lu 3 Ga 2 (A10 4 ) 3 : Ce 3+ , La 3 In 2 (A10 4 ) 3 :Ce 3+ , Ca 3 Ga 5 0 12 :Ce 3+ , Sr 3 Al 5 0 12 :Tb 3+ , BaYSiA10 12 :Ce 3+ , CaGa 2 S 4 :Eu 2+ , SrCaSiO 4 :Eu 2+ , ZnS :Cu, CaSi 2 O 2 NiEu 2+ , SrSi 2 O 2 NiEu 2+ , SrSiAl 2 O 3 N 2 IEu 2+ , Ba 2 MgSi 2 O 7 IEu 2+ , Ba 2 SiO 4 IEu 2+ , La 2 O 3 -IlAl 2 O 3 IMn 2+
  • the phosphor(s) are located between the light source and the light output for the device,
  • the light source of the lighting device of the present invention can, for example, comprise a gallium nitride-based LED with a light emitting layer comprising a quantum well structure.
  • the light source can include a reflector located to direct light from the LED or phosphor.
  • the phosphor can be located on the surface of the LED or separate therefrom.
  • the light source can further include a translucent material encapsulating the phosphor and optionally, a portion (for example and without limitation, about 30%) of the emission light of the LED from which the light output emerges.
  • the phosphors of the present invention can be excited by light from a primary source, such as, a semiconductor light source (e.g., a LED) emitting in a wavelength range of about 250 nm to about 500 nm or about 300 nm to about 420 nm, or by light from a secondary light source, such as, emissions from additional phosphor(s) that emit in the wavelength range of about 250 nm to about 500 nm or about 300 nm to about 420 nm.
  • a primary source such as, a semiconductor light source (e.g., a LED) emitting in a wavelength range of about 250 nm to about 500 nm or about 300 nm to about 420 nm
  • a secondary light source such as, emissions from additional phosphor(s) that emit in the wavelength range of about 250 nm to about 500 nm or about 300 nm to about 420 nm.
  • the excitation-induced light is the relevant source light.
  • Devices that use the phosphor of the present invention can include, for example, and without limitation, mirrors, such as, dielectric mirrors, which direct light produced by the phosphors of the present invention to the light output, rather than direct such light to the interior of the device (such as, the primary light source).
  • mirrors such as, dielectric mirrors
  • the semiconductor light source (e.g., a LED chip) of the lighting device of the present invention emits light of at least about 250 nm, at least about 255 nm, at least about 260 nm, and so on in increments of about 1 nm to at least about 500 nm.
  • the semiconductor light source in some embodiments, emits light of at most about 500 nm, at most about 495 nm, at most about 490 nm, and so on, in increments of about 1 nm, to at most about 300 nm.
  • phosphors of the present invention can be dispersed in the lighting device of the present invention with a binder, a solidifier, a dispersant (i.e., a light scattering material), a filler or the like.
  • the binder can be, for example, and without limitation, a light curable polymer, such as, an acrylic resin, an epoxy resin, a polycarbonate resin, a silicone resin, a glass, a quartz and the like.
  • the phosphor of the present invention can be dispersed in the binder by methods known in the art.
  • the phosphor can be suspended in a solvent with the polymer suspended, dissolved or partially dissolved in the solvent, thus forming a slurry, which then can be dispersed on the lighting device and the solvent evaporated therefrom.
  • the phosphor can be suspended in a liquid, such as, a pre-cured precursor to the resin to form a slurry, the slurry then can be dispersed on the lighting device and the polymer (resin) cured thereon.
  • Curing can be, for example, by heat, UV, or a curing agent (such as, a free radical initiator) mixed with the precursor.
  • cure or “curing” refers to, relates to or is a process for polymerizing or solidifying a substance or mixture thereof, often to improve stability or usability of the substance or mixture thereof.
  • the binder used to disperse the phosphor(s) in a lighting device can be liquefied with heat, thereby, a slurry is formed, and then the slurry is dispersed on the lighting device and allowed to solidify in situ.
  • Dispersants include, for example, and without limitation, titanium oxides, aluminum oxides, barium titanates, silicon oxides, and the like.
  • the lighting device of the present invention comprises a semiconductor light source, such as a LED, to either create excitation energy, or to excite another system to thereby provide the excitation energy for the phosphor of the present invention.
  • Devices using the present invention can include, for example, and without limitation, white light producing lighting devices, indigo light producing lighting devices, blue light producing lighting devices, green light producing lighting devices, yellow light producing lighting devices, orange light producing lighting devices, pink light producing lighting devices, red light producing lighting devices, or lighting devices with an output chromaticity defined by the line between the chromaticity of a photoluminescent phosphor of the present invention and that of at least one second light source. Headlights or other navigation lights for vehicles can be made with the lighting devices of the present invention.
  • the lighting devices can be output indicators for small electronic devices, such as cell phones and personal digital assistants (PDAs).
  • the lighting devices of the present invention also can be the backlights of the liquid crystal displays for cell phones, PDAs and laptop computers. Given appropriate power supplies, room lighting can be based on devices of the invention.
  • the warmth (i.e., amount of yellow/red chromaticity) of lighting devices of the present invention can be tuned by selection of the ratio of light from a phosphor of the present invention to light from a second source (including, a second photoluminescent phosphor of the present invention). ⁇
  • Suitable semiconductor light sources for use in the present invention also include those that create light that excites the phosphors of the present invention, or that excites a different phosphor that in turn excites the phosphors of the present invention.
  • the semiconductor light source e.g., a semiconductor chip
  • III- V or II- VI quantum well structures meaning structures comprising compounds that combine elements of the Periodic Table of the Chemical Elements, such as, elements from Group III with those from Group V or elements from Group II with those from Group VI).
  • a blue light or a near UV light emitting semiconductor light source is used.
  • a semiconductor light source of the lighting device of the present invention has at least two different phosphors, and disperses the phosphors separately, superimposing the phosphors as layers instead of dispersing the phosphors together in one matrix.
  • Such layering can be used to obtain a final light emission color by way of a plurality of color conversion processes.
  • the light emission process is: absorption of the light emission of a semiconductor light source by a first phosphor of the present invention, light emission by the first phosphor, absorption of the light emission of the first phosphor by a second phosphor, and the light emission by the second phosphor.
  • the second phosphor is a phosphor of the present invention. In some embodiments, the second phosphor is not a phosphor of the present invention.
  • Figure 4 shows an exemplary layered structure of a semiconductor light source.
  • the semiconductor light source comprises a substrate Sb, such as, for example, a sapphire substrate.
  • a buffer layer B an n-type contact layer NCt, an n-type cladding layer NCd, a multi-quantum well active layer MQW, a p- type cladding layer PCd, and a p-type contact layer PCt are formed in that order as nitride semiconductor layers.
  • the layers can be formed, for example, by organometallic chemical vapor deposition (MOCVD) on the substrate Sb.
  • MOCVD organometallic chemical vapor deposition
  • a light-transparent electrode LtE is formed on the whole surface of the p-type contact layer PCt
  • a p electrode PEl is formed on a part of the light-transparent electrode LtE
  • an n electrode NEl is formed on a part of the n-type contact layer NCt.
  • These layers can be formed, for example, by sputtering or vacuum deposition.
  • the buffer layer B can be formed of, for example, AlN
  • the n-type contact layer NCt can be formed of, for example, GaN.
  • the n-type cladding layer NCd can be formed, for example, of Al 1 -Ga 1-1 N where 0 ⁇ r ⁇ 1
  • the p-type cladding layer PCd can be formed, for example, of AI q Ga 1 - q N where 0 ⁇ q ⁇ 1
  • the p-type contact layer PCt can be formed, for example, of Al 3 Ga 1 -S N wherein 0 ⁇ s ⁇ 1 and s ⁇ q.
  • the band gap of the p-type cladding layer PCd is made larger than the band gap of the n-type cladding layer NCd.
  • the n-type cladding layer NCd and the p-type cladding layer PCd each can have a single-composition construction, or can have a construction such that the above-described nitride semiconductor layers having a thickness of not more than about 100 angstroms and different from each other in composition are stacked on top of each other so as to provide a superlattice structure. When the layer thickness is not more than about 100 angstroms, the occurrence of cracks or crystal defects in the layer can be prevented.
  • the multi-quantum well active layer MQW can be composed of a plurality (i.e., at least two) of InGaN well layers and a plurality of GaN barrier layers.
  • the well layer and the barrier layer can have a thickness of not more than about 100 angstroms, such as, for example, about 60 angstroms to about 70 angstroms, so as to constitute a superlattice structure. Since the crystal of LaGaN is softer than other aluminum-containing nitride semiconductors, such as, AlGaN, the use of InGaN in the layer constituting the active layer MQW can offer an advantage that all the stacked nitride semiconductor layers are less likely to crack.
  • the multi-quantum well active layer MQW can also be composed of a plurality of InGaN well layers and a plurality of AlGaN barrier layers. Or, the multi-quantum well active layer MQW can be composed of a plurality of AlInGaN well layers and a plurality of AlInGaN barrier layers. In this case, the band gap energy of the barrier layer can be made larger than the band gap energy of the well layer.
  • the light source of the present invention comprises a reflecting layer on the substrate Sb side from the multi-quantum well active layer MQW, for example, on the buffer layer B side of the n-type contact layer NCt.
  • the reflecting layer also can be provided on the surface of the substrate Sb remote (i.e., at a distance) from the multi-quantum well active layer MQW stacked on the substrate Sb.
  • the reflecting layer can have a maximum reflectance with respect to light emitted from the active layer MQW and can be formed of, for example, aluminum, or can have a multi-layer structure of thin GaN layers.
  • the provision of the reflecting layer can permit light emitted from the active layer MQW to be reflected from the reflecting layer, can reduce the internal absorption of light emitted from the active layer MQW, can increase the quantity of light output toward above (i.e., going out of the device, or a direction toward the outside world and away from the substrate), and can reduce the incidence of light on the mount for the light source to prevent deterioration.
  • Figures 1-3 Shown in Figures 1-3 are some exemplary structures of the lighting device of the present invention comprised of a LED and phosphors.
  • Figure 1 shows a light emitting device 10 with an LED chip 1 (i.e., primary light source) powered by leads 2, and having phosphor-containing material 4 secured between the LED chip and the final light output 6.
  • a reflector 3 can serve to concentrate light output.
  • a transparent envelope 5 can isolate the LED chip and phosphor from the environment and/or provide a lens.
  • Figure 2 shows a light emitting device 10' with a LED chip 1' powered by leads 2', and having phosphor-containing material 4' secured between the LED chip and the final light output 6', in this case above reflector 3'.
  • the reflector, and the location of the phosphor-containing material away from the LED chip, can serve to concentrate final light output.
  • a transparent envelope 5' can isolate the LED chip and phosphor from the environment and/or provide a lens.
  • the lighting device 20 of Figure 3 has multiple LED chips 11, leads 12, phosphor-containing material 14, and transparent envelope 15.
  • the leads 2, 2', 12 can comprise thin wires supported by a thicker lead frame or the leads can comprise self-supported electrodes and the lead frame can be omitted.
  • the leads provide current to the LED chip, and thus, cause the LED chip to emit radiation.
  • Semiconductor light source-based white light devices can be used, for example, in a self-emission type display for displaying a predetermined pattern or a graphic design on a display portion of an audio system, a household appliance, a measuring instrument, a medical appliance, and the like.
  • Such semiconductor light source-based light devices also can be used, for example, and without limitation, as light sources of a back-light for a liquid crystal diode (LCD) display, a printer head, a facsimile, a copying apparatus, and the like.
  • LCD liquid crystal diode
  • the present invention also provides a method of making a phosphor having a formula selected from:
  • Ml and M2 are each independently at least one metal ion selected from the group consisting OfMg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ and Cd 2+ ;
  • x is a value from about 0.001 to about 1;
  • X is at least one halide ion in ionic form
  • A is at least one activator ion selected from the group consisting Of Eu 2+ , Yb 2+ , Mn 2+ , Bi 3+ , Pb 2+ , Ce 3+ , Nd 3+ , Pr 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ and Yb 3+ ;
  • the phosphor has the formula (Ml x M2 1-x ) 2 LiSiO 4 X:A, and Ml is Sr 2+ , x is 1 and X is fluoride or M2 is Sr 2+ , x is 0 and X is fluoride, then A is not Eu 2+ ; and
  • the phosphor has the formula (Ml x M2 1-x ) 3 Si0 4 X 2 :A, and Ml is Ca 2+ , x is 1 and X is chloride or M2 is Ca 2+ , x is 0 and X is chloride, then A is not Eu 2+ ; and
  • the phosphor has the formula (Ml x M2 1-x ) 8 Mg(Si0 4 ) 4 X 2 :A, and Ml is Ca 2+ , x is 1 and X is chloride or M2 is Ca 2+ , x is 0 and X is chloride, then A is not Eu 2+ ;
  • the method comprising the steps of: 1) providing a metal silicate that is a precursor to the phosphor having a formula shown above;
  • Methods to make the phosphors include, for example, heating a mixture consisting of the constituents of a targeted phosphor, and/or of compounds (precursors) which react to produce such constituents during the heating.
  • the mixture optionally includes a proportion of metal halide (in ionic or atomic form) in excess of that required to be incorporated in the final product.
  • Mixing can be combined with grinding to assure intimate mixture.
  • the heating can be continued for a period of about one hour or more at a temperature of about 600 °C or more, such as, about 800 0 C, about 900 °C, or about 1000 °C.
  • the heating effects a reaction of the mixture to produce activator-containing metal silicate halide.
  • a part of the heating process can be carried out in an inert or reducing atmosphere, to ensure that the activator is present in the targeted oxidation state in the final product.
  • reducing refers to the process in which electrons are added to an atom or ion (as by removing oxygen or adding hydrogen).
  • the product of the heating step of the method of making a phosphor of the present invention is washed to remove excess metal halide (in ionic or atomic form), if present.
  • the mixture produced may consist of compounds which react together during the heating to form at least one metal silicate, together with at least one activator oxide and at least one metal halide in ionic or atomic form.
  • the method of the present invention further includes a second heating, optionally at a higher temperature than the first heating.
  • the method further includes a grinding step in between the first heating and second heating steps.
  • the range of heating temperature has, for example, a lower endpoint (inclusive or exclusive) of about 800 °C, about 801 0 C 5 about 802 °C, about 803 °C, and so on in one °C increment up to about 1199 °C and an upper endpoint (inclusive or exclusive) of about 1200 0 C, about 1199 °C, about 1198 0 C, about 1197 °C, and so on in one 0 C increment down to about 801 °C.
  • the method of the present invention uses a solid solvent.
  • the constituents or precursors, except the halide (ionic or atomic) and optionally, except the activator are heated to form a precursor containing the mineral metal silicate, which lacks the halide component, and which optionally, lacks the activator component.
  • the metal silicate is mixed (such as by grinding) with a metal halide (ionic or atomic) selected to form a liquid at a target temperature.
  • the mixture is heated at the target temperature (which may be a range, i.e., a target temperature range) to obtain the phosphor.
  • the metal halide (ionic or atomic) serves as solvent and provides the halide source.
  • a range of heating temperature in a first heating step has, for example, a lower endpoint (inclusive or exclusive) of about 900 °C, about 901 °C, about 902 °C, about 903 0 C, and so on in one 0 C increments up to about 1299 0 C and an upper endpoint (inclusive or exclusive) of about 1300 °C, about 1299 °C, about 1298 °C, about 1297 0 C, and so on in one °C increments down to about 901°C.
  • the range of the target temperature has, for example, a lower endpoint (inclusive or exclusive) of about 800 °C, about 801 0 C, about 802 °C, about 803 °C, and so on in one 0 C increments up to about 1199 °C and an upper endpoint (inclusive or exclusive) of about 1200 °C, about 1199 °C, about 1198 0 C, about 1197 °C, and so on in one 0 C increments down to about 801 0 C.
  • the resulting metal silicate halide can often be identified by powder x-ray diffraction, even in the presence of the metal halide (ionic or atomic).
  • Useful metal halides include, for example, CaCl 2 , SrCl 2 , BaCl 2 , CaBr 2 , SrBr 2 , BaBr 2 , CaF 2 , SrF 2 , BaF 2 , MgCl 2 , MgBr 2 , MgF 2 or mixtures thereof, and the like.
  • Example 1 Preparation of (Ca 5 Sr) 3 SiO 4 Cl 2 IEu 2+
  • the ingredient powders OfEu 2 O 3 (0.66 g) , SiO 2 (15.02 g) , CaCO 3 (45.0 g) and SrCO 3 (7.38 g) were mixed and milled in a milling jar. The mixed powder then was fired at about 1000 0 C for about 5 hours in an atmosphere of air. The fired powder was cooled and ground. Then, CaCl 2 (20 g) was added to and mixed with the fired powder in a mortar/pestle. The resultant powder then was fired at about 700 0 C in a forming gas (5% H 2 /N 2 ) for about 3 hours.
  • the second fired powder then was mixed with CaCl 2 (10 g) and then fired at about 700 0 C in a forming gas (5% H 2 /N 2 ) for about 3 hours.
  • the fluorescence excitation and emission spectra are shown in Figure 5.
  • the x-ray diffraction (XRD) pattern ( Figure 6) shows that the phosphor has the structure Of Ca 3 SiO 4 Cl 2 .
  • Example 2 Preparation of (Ca,Sr) 8 Mg(SiO 4 ) 4 Cl 2 :Eu 2+
  • Example 1 The final product (about 5 g) of Example 1 was mixed with MgCl 2 (2 g) and fired at about 800 0 C in a forming gas for about 10 hours.
  • the phosphor product was washed with deionized water three times and then dried at about 100 0 C for about 10 hours.
  • the fluorescence excitation and emission spectra of the phosphor are shown in Figure 6.
  • the XRD pattern of the phosphor is shown in Figure 7.
  • FIG. 9 shows the emission spectrum of the LED lamp made with the phosphor blend.
  • a phosphor blend was made by mixing about 0.3 g of CaSiO 3 -(SiO 2 ) n :Eu 2+ ,Mn 2+ , T (red-emitting), about 0.3 g of CaSiO 3 -(SiO 2 ) n :Eu 2+ , I " (blue-emitting) and about 0.5 g of (Ca,Sr) 8 Mg(Si ⁇ 4 ) 4 Cl 2 :Eu 2+ prepared in Example 2 (green-emitting) resulting in a phosphor blend with an R:G:B ratio of 1 : 1.6 : 1.
  • FIG. 10 shows the emission spectrum of the LED lamp made with the phosphor blend.
  • the coated phosphor can be kept at about 85 °C and about 85% relative humidity as a stability test.
  • the fluorescent emission of a test sample of the coated phosphor can be measured at different times. Fluorescent emission of the coated phosphor can be measured using a SPEX-1680 Fluorimeter (ISA Company, Edison, NJ), using a xenon lamp (at about 460 am) to excite the test sample and a photo multiplier to detect the emission.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention relates to certain metal silicate halide (halosilicate) phosphors, the phosphors with an oxide coating, methods of making the phosphors, and light emitting diode- (LED-) based lighting devices modified with the phosphors.

Description

Metal Silicate Halide Phosphors and LED Lighting Devices Using the Same
FIELD OF THE PRESENT INVENTION
[0001] The present invention relates to certain metal silicate halide (halosilicate) phosphors, the phosphors having a coating of oxide that renders the phosphor resistant to water-induced degradation, methods of making the phosphors, and light emitting diode- (LED-) based lighting devices modified with the phosphors.
BACKGROUND OF THE PRESENT INVENTION
[0002] In lighting applications, phosphors can be used to modify the wavelength of the light output. For example, a light emitting diode (LED) lighting device typically consists of a LED chip ("LED") and a phosphor or a blend of phosphors. The chip emits the primary light with higher photon energy while the phosphor emits a light with lower photon energy upon the excitation of the primary light. The phosphors can be used to modify the wavelength of the primary light. For example, with certain phosphors the emission of an ultraviolet (UV) or blue LED can be modified to produce other visible lights by positioning the phosphors along the emission pathway to convert the primary light to longer wavelengths. An appropriate blend of blue-, green- and red-emitting phosphors can be used to modify UV LED emission to white light (i.e., light of white chromaticity). Certain combinations of green- and red- emitting phosphors can be used to modify a blue output of a LED to white light. Yellow emitting phosphors can be mixed with light from a blue LED or a blue emitting phosphor to create light of white chromaticity. Light from other UV or blue emitting devices, such as fluorescent lamps, can be similarly modified by the phosphors. The phosphor described here, when matched with appropriate other light sources, can be used in such applications.
[0003] The phosphors of the present invention are comprised of at least one halosilicate, also called silicate halide, as a host crystal and certain transition metal ions and rare earth metal ions as activators. The halosilicate is a class of crystals in which both the silicate group and a halide ion are defining elements in determining the crystal structure. For example, the crystal Ca2SiO4 CaCl2 (see, e.g., V. R. Czaya and G. Bissert,.4ctø Cryst. B27, 747(1971)), Ca2SiO3Cl2 (see, e.g., N. I. Golovastikov and V. F. Kazak, SOv. Phys Crystallogr., 22(5), 549 (1977)) and Sr2LiSiO4F (see, e.g., A. Akella and D. Keszler, Chem. Mater. 7, 1299, (1995)) are typical halosilicates. In the crystals, the silicate group, e.g., [Si2O7]6" and [SiO4]4" and the halide ions, e.g., Cl" or F", constitute the compound in a definite stoichiometry and determine the crystal structures. In contrast, there are phosphors that are comprised of silicates and halide ions, but the halide ions exist as dopant, which does not determine the crystal structure but may cause slight modifications, such as, causing expansions or contractions of the lattice. The dopant is present in quantities less than the major defining ions of the halosilicate.
[0004] Certain metal silicate halide phosphors have been described, though without describing their suitability for LED applications. See for example:
Ref. Formula λex λem Crystal Structure
Akella and Keszler, Sr2LiSi04F:Eu 380 520 P2!/m, Chem. Mater. 7: 1299 monoclinic (1995)
Burrus and Nicholson, Sr2Si308-2SrCl2:Eu 410 505 Not Reported J. Lumin. 3: 467 (1971) (NR)
US 3,790,490 (Datta et Sr5Si4O10Cl^Eu3Mn 370 green NR α/.)(1974)
Burrus and Nicholson Sr4Si3O8Cl2=Eu NR NR NR (1971)
Burrus and Nicholson Ca3Si04Cl2:Eu (or 370 515 brd P2!/m, (1971); Pb2+ or other monoclinic
GB 1,414,381 (King et activator candidates) α/.) (1973);
Wanmaker and Verriet, Philips Res. Repts. 28: 80 (1973)
Garcia et ah, J. Ba5SiO4Cl6:Eu 410 440 monoclinic, Cc Electrochem. Soc, 126(10): 1734 (1979)
Garcia et ah, J. Ba7Si207Cl8:Eu 420 Y-Gm NR Electrochem. Soc, 126(10): 1734 (1979) Garcia et al, J. Ba5Si206Cl6:Eu 420 Y-Gm NR
Electrochem. Soc, 126(10): 1734 (1979)
[0005] These crystalline materials have been synthesized and their crystal structures have been determined by X-ray diffraction. Certain transition metal ions and rare earth metal ions can be doped as luminescent activators in these crystals.
[0006] Certain metal silicate halide minerals (non-phosphors) have been described. See for example:
Ref. Formula
A. Winkler, et al, Z. Anorg.
AlIg. Chem, 504, 89, (1983) Sr5SiO4Cl6
A. Winkler, et al. (1983). Sr5Si2O7Cl4
A. Winkler, et al. (1983). Sr8Si4O12Cl8
A. Winkler, et al. , Z. Anorg.
AlIg. Chem, 542,131, (1986) Ba7Si2O7Br8
A. Winkler, et al. (1986). Ba15Si6O18Cl
A phosphor comprising these crystals has not been reported.
[0007] Thus, the present invention is directed to novel halosilicate phosphors and uses thereof in lighting devices including LED-containing lighting devices.
SUMMARY OF THE PRESENT INVENTION
[0008] The present invention provides a phosphor having a formula selected from:
a) (MlxM21-x)2LiSiO4X:A;
b) (MlxM21-x)5Si04X6:A;
c) (MlxM21-x)3Si04X2:A;
d) (MlxM21-x)5(Si04)2X2:A;
e) (MlxM21-x)5Si207X4:A; f) (MlxM21-x)10(Si2O7)3X2:A;
g) (MlxM21-x)4Si207X2:A;
h) Ml6M24(Si207)3X2:A;
i) (MlxM21-x)7Si207X8:A;
j) (MlxM21-x)4Si308X2:A;
k) (MlxM21-x)4Si308X4:A;
1) (MlxM21-x)8Si4012X8:A;
m) (MlxM21-x)5Si206X6:A;
n) (MlxM2i-x)15Si6018X8:A;
o) (MlxM21-x)5Si4O10X5:A;
p) (MlxM21-x)10(SiO4)3(SO4)3X2:A;
q) (MlxM21-x)4(SiO4)(SO4)X2:A; and
r) (MlxM21-x)8Mg(Si04)4X2:A,
where:
Ml and M2 are each independently at least one metal ion selected from the group consisting OfMg2+, Ca2+, Sr2+, Ba2+, Zn2+ and Cd2+;
x is a value from about 0.001 to about 1;
X is at least one halide ion in ionic form;
A is at least one activator ion selected from the group consisting Of Eu2+, Yb2+, Mn2+, Bi3+, Pb2+, Ce3+, Nd3+, Pr3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+ and Yb3+;
if the phosphor has the formula (MlxM21-x)2LiSiO4X:A, and Ml is Sr2+, x is 1 and X is fluoride or M2 is Sr2+, x is 0 and X is fluoride, then A is not Eu2+; and if the phosphor has the formula (MlxM21-x)3Si04X2:A, and Ml is Ca2+, x is 1 and X is chloride or M2 is Ca2+, x is 0 and X is chloride, then A is not Eu2+; and
if the phosphor has the formula (MlxM21-x)8Mg(Si04)4X2:A, and Ml is Ca2+, x is 1 and X is chloride or M2 is Ca2+, x is 0 and X is chloride, then A is not Eu2+.
[0009] In some embodiments, the phosphor of the present invention has a formula as previously described, where:
Ml and M2 are each independently Ca2+, Sr2+, Ba2+ or a combination thereof;
X is fluoride, chloride, bromide or a combination thereof; and
A is Eu +, Mn +, Ce + or combination thereof.
[0010] In some embodiments, the phosphor of the present invention has a formula as previously described, where:
Ml is Ca2+;
M2 is Sr2+, Ba2+ or a combination thereof;
X is fluroide, chloride or a combination thereof; and
A is Eu +, Mn +, Ce + or a combination thereof.
[0011] In some embodiments, the phosphor of the present invention has the formula:
(MlxM21-x)3Si04X2:A,
where x is a value from about 0.01 to about 1.
[0012] In some embodiments, the phosphor of the present invention has the formula:
(MlxM21-x)8Mg(Si04)4X2:A,
where x is a value from about 0.01 to about 1.
[0013] In some embodiments, the phosphor of the present invention has the formula:
(CaxSr1-x)3Si04X2:A, where:
x is a value from about 0.01 to about 1;
X is fluoride, chloride, bromide or a combination thereof; and
A is Eu2+, Mn2+, Ce3+ or a combination thereof.
[0014] In some embodiments, the phosphor of the present invention has the formula:
(MlxM21-x)8Mg(Si04)4X2:A,
where:
x is a value from about 0.01 to about 1;
X is fluoride, chloride, bromide or a combination thereof; and
A is Eu2+, Mn2+, Ce3+ and a combination thereof.
[0015] In some embodiments, the phosphor of the present invention has the formula:
(CaxSr1-x)3Si04Cl2:Eu2+,
where:
x is a value from about 0.01 to about 1; and
Eu2+ is of an amount from about 0.0001 mole to about 0.1 mole of the phosphor.
[0016] In some embodiments, the phosphor of the present invention has the formula:
(MlxM21-x)8Mg(SiO4)4X2:Eu2+,
where:
x is a value from about 0.01 to about 1; and
Eu2+ is of an amount from about 0.0001 mole to about 0.1 mole of the phosphor. [0017] The present invention further provides a coated phosphor comprising a phosphor of the present invention, as previously described, and at least one layer of a coating on the phosphor, wherein the layer comprises at least one oxide. In some embodiments, the coated phosphor of the present invention has a coating that comprises at least two layers of oxide.
[0018] The present invention further provides a lighting device comprising a phosphor of the present invention. In some embodiments, the lighting device comprises:
a) a light source that emits light at wavelengths of at least about 300 mn; and
b) at least one phosphor according to the present invention, wherein:
(1) the phosphor is capable of absorbing at least a portion of the light emitted from the light source;
(2) the phosphor modifies a chromaticity of the portion of the light absorbed from the light source; and
(3) the phosphor emits light of a longer wavelength than that of the light absorbed from the light source.
[0019] In some embodiments, the phosphor of the lighting device of the present invention further comprises a coating that comprises at least one oxide.
[0020] In some embodiments, the lighting device of the present invention produces white light. .
[0021] In some embodiments, the light source of the lighting device of the present invention is a light emitting diode (LED). In some such embodiments, the LED comprises a quantum well structure having a light emitting layer sandwiched between a p-type clad layer and an n-type clad layer.
[0022] In some embodiments of the lighting device of the present invention, the p- type clad layer is formed of AIqGa1 -qN, wherein 0 < q < 1, the n-type clad layer is formed of AlnGa1 _rN, wherein 0 < r < 1, and optionally, the p-type clad layer has a band gap that is larger than the band gap of the n-type clad layer.
[0023] In some embodiments, the LED of the lighting device of present invention comprises a light emitting layer containing indium and at least one quantum well structure.
[0024] In some embodiments, the lighting device of the present invention further comprises optionally, at least one quantum well structure that comprises at least one well layer of InGaN and at least one barrier layer of GaN, optionally, at least one quantum well structure that comprises at least one well layer of InGaN and at least one barrier layer of AlGaN, and optionally, at least one quantum well structure that comprises at least one well layer of AlInGaN and at least one barrier layer of AlInGaN, where at least one barrier layer has a band gap energy larger than a band gap energy of at least one well layer and optionally, the well layer has a thickness of at most about 100 angstroms.
[0025] In some embodiments, at least one phosphor of the lighting device of the present has a formula where:
Ml and M2 are each independently Ca2+, Sr2+, Ba2+ or a combination thereof;
X is fluoride, chloride, bromide or a combination thereof; and
A is Eu2+, Mn2+, Ce3+ or a combination thereof.
[0026] In some embodiments, at least one phosphor of the lighting device of the present has a formula where:
Ml is Ca2+;
M2 is Sr2+, Ba2+ or a combination thereof;
X is fluoride, chloride or a combination thereof; and
A is Eu2+, Mn2+, Ce3+ or a combination thereof. [0027] In some embodiments, at least one phosphor of the lighting device of the present has the formula:
(CaxSr1-x)3Si04X2:A,
where:
x is a value from about 0.01 to about 1;
X is fluoride, chloride, bromide or a combination thereof; and
A is Eu2+, Mn2+, Ce3+ or a combination thereof.
[0028] In some embodiments, at least one phosphor of the lighting device of the present has the formula:
(MlxM21-x)8Mg(Si04)4X2:A,
where:
x is a value from about 0.01 to about 1;
X is fluoride, chloride, bromide or a combination thereof; and
A is Eu +, Mn2+, Ce3+ or combination thereof.
[0029] In some embodiments, at least one phosphor of the lighting device of the present has the formula:
(CaxSr1-x)3Si04Cl2:Eu2+,
where:
x is a value from about 0.01 to about 1; and
Eu2+ is of an amount from about 0.0001 mole to about 0.1 mole of the phosphor.
[0030] In some embodiments, at least one phosphor of the lighting device of the present has a formula:
(MlxM21-x)8Mg(SiO4)4X2:Eu2+, wherein:
x is a value from about 0.01 to about 1; and
Eu2+ is of an amount from about 0.0001 mole to about 0.1 mole of the phosphor.
[0031] In some embodiments, the lighting device of the present further comprises at least one additional phosphor having formula (I):
CaSiO3-(SiO2)n:Rε, Y
(I) where:
Rε is at least one activator ion selected from the group consisting OfEu2+ and Mn2+; and
Y is at least one halide ion in ionic or atomic form or is absent.
[0032] In some embodiments, the lighting device of the present further comprises at least one additional phosphor comprises formula (II):
CaSiO3 (SiO2)n:Eu2+, I"
(H) and the additional phosphor emits blue light.
[0033] In some embodiments, the lighting device of the present further comprises at least one additional phosphor comprises formula (III):
CaSiO3 (SiO2)n:Eu2+,Mn2+, I"
(HI) and the additional phosphor emits red light.
[0034] In some embodiments, the lighting device of the present invention further comprises at least two additional phosphors, wherein: one phosphor comprises formula (II):
CaSiO3 (SiO2)n:Eu2+, I",
(H)
and the second phosphor comprises formula (III)
CaSiO3 (SiO2)n:Eu2+,Mn2+, I"
(III).
[0035] In some embodiments, the lighting device of the present invention emits white light.
[0036] In some embodiments, the lighting device of the present invention comprises:
a) a light source that emits light at wavelengths of at least about 300 nm, wherein the light source is a light emitting diode (LED); and
b) at least one phosphor of the present invention, wherein:
(1) the phosphor is capable of absorbing at least a portion of the light emitted from the light source;
(2) the phosphor modifies a chromaticity of the portion of the light absorbed from the light source;
(3) the phosphor emits light of a longer wavelength than that of the light absorbed from the light source; and
(4) optionally, the phosphor further comprises at least one layer of a coating that comprises at least one oxide,
wherein the lighting device produces white light.
BRIEF DESCRIPTION OF THE DRAWINGS
[0037] FIGS. 1-3 show light emitting devices that can be used in the present invention. [0038] FIG. 4 shows a LED that can be used in the present invention.
[0039] FIG. 5 shows emission/excitation spectra for phosphor Example 1 of the present invention.
[0040] FIG. 6 shows an X-ray diffraction for a phosphor Example 1 of the present invention.
[0041] FIG. 7 shows emission/excitation spectra for phosphor Example 2 of the present invention.
[0042] FIG. 8 shows an X-ray diffraction for a phosphor Example 2 of the present invention.
DETAILED DESCRIPTION OF THE PRESENT INVENTION
[0043] As used herein, "activator" refers to an ion that determines the wavelength of light emission from the phosphor of which the activator is a part.
[0044] As used herein, a "coating," "oxide coating," or "coating of oxide" refers to a covering or outside layer(s) comprising (a) at least one oxide (e.g., amorphous or crystalline), (b) lacks optically distinguishable embedded particles, and (c) is sufficiently complete as to provide relative protection against water, such as, a coating that maintains about 80% of a phosphor's original optical performance after exposure to about 85 0C and about 85% relative humidity for about 16 hours to about 100 hours. Such coatings can contain other elements and compounds, such as, those originating in the coating precursor (i.e., antecedent or predecessor) materials or phosphor particles. Accordingly, "oxide," as used herein, refers to such materials that comprise metal or semiconductor cations and oxygen, which often is the primary material of the coating.
[0045] As used herein, "particle" refers to an individual crystal of phosphor.
[0046] As used herein, "grain" refers to an agglomeration, aggregation, polycrystalline or polymorph of phosphor particles, where the particles are not easily separated as compared to phosphor particles of a powder. [0047] Temperatures described herein for processes involving a substantial gas phase are of the oven or other reaction vessel in question, not of the reactants per se.
[0048] "White light," as used herein, refers to light of certain chromaticity coordinates on the Commission Internationale de l'Eclairage (CIE) 1931 Diagram, which are well-known in the art.
[0049] The present invention provides, amongst other things, a phosphor according to a formula selected from:
(a) (MlxM21-x)2LiSiO4X:A;
(b) (MlxM21-x)5Si04X6:A;
(c) (MlxM21-x)3Si04X2:A;
(d) (MlxM21-x)5(Si04)2X2:A;
(e) (MlxM21-x)5Si207X4:A;
(f) (MlxM21-x)10(Si2O7)3X2:A;
(g) (MlxM21-x)4Si207X2:A;
(h) Ml6M24(Si207)3X2:A;
(i) (MlxM21-x)7Si207X8:A;
Q) (MlxM21-x)4Si308X2:A;
(k) (MlxMZLa)4Si3O8X4=A;
(1) (MlxM21-x)8Si4012X8:A;
(m) (MlxM21-x)5Si206X6:A;
(n) (MlxM21-x)15Si6018X8:A;
(o) (MlxM21-x)5Si4O10X5:A;
(p) (MlxM21-x)10(SiO4)3(SO4)3X2:A; (q) (MlxM21-x)4(SiO4)(SO4)X2:A; and
(r) (MlxM21-x)8Mg(Si04)4X2:A,
where:
Ml and M2 are each independently at least one metal ion selected from the group consisting of Mg2+, Ca2+, Sr2+, Ba2+, Zn2+ and Cd2+;
x is a value from about 0.001 to about 1;
X is at least one halide ion in ionic form;
A is at least one activator ion selected from the group consisting OfEu2+, Yb2+, Mn2+, Bi3+, Pb2+, Ce3+, Nd3+, Pr3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+ and Yb3+;
if the phosphor has the formula (MlxM21-x)2LiSiO4X:A, and Ml is Sr2+, x is 1 and X is fluoride or M2 is Sr2+, x is 0 and X is fluoride, then A is not Eu2+; and
if the phosphor has the formula (MlxM21-x)3Si04X2:A, and Ml is Ca2+, x is 1 and X is chloride or M2 is Ca2+, x is 0 and X is chloride, then A is not Eu2+; and
if the phosphor has the formula (MlxM21-x)8Mg(Si04)4X2:A, and Ml is Ca2+, x is 1 and X is chloride or M2 is Ca2+, x is 0 and X is chloride, then A is not Eu2+.
[0050] In some embodiments, the activator ion can substitute for a portion (for example and without limitation, about 1% to about 10%) of the metal strontium, barium or calcium in the host crystal lattice. In some embodiments, the activator ion can substitute for about 4% of the metal strontium, barium or calcium in the host crystal lattice.
[0051] In some embodiments, A can be replaced by A', which is the same as A, except that when the activator includes Eu2+, at least one additional activator ion is present in an amount effective to change the fluorescence feature (e.g., emission wavelength or bandwidth or both) of the phosphor.
[0052] In some embodiments, A can be replaced by A", which is the same as A, except that when the activator includes Eu2+, Mn2+ or a combination thereof, at least one additional activator ion is present in an amount effective to change the fluorescence feature (e.g., emission wavelength or bandwidth or both) of the phosphor.
[0053] In some embodiments, A can be replaced by A*, which is the same as A, except that when the activator includes Eu2+, Pb2+, Mn2+, Bi3+, Ce3+, Tb3+, Dy3+, or a combination thereof, at least one additional activator ion is present in an amount effective to change the fluorescence feature (e.g., emission wavelength or bandwidth or both) of the phosphor.
[0054] In some embodiments of the phosphor of the present invention, A has a mole percentage of about 0.001% to about 10%. In some embodiments, the range of the mole percentage of A is from one of the following lower endpoints (inclusive or exclusive): about 0.001%, about 0.01%, about 0.02%, about 0.05%, about 0.1%, about 0.2%, about 0.5%, about 1%, about 2%, about 3%, about 4% and about 5% mole and from one of the following upper endpoints (inclusive or exclusive): about 0.01%, about 0.02%, about 0.05%, about 0.1%, about 0.2%, about 0.5%, about 1%, about 2%, about 3%, about 4%, about 5% and about 10% mole. For example, the range can be from about 0.01% to about 5% mole. It will be understood by those of ordinary skill in the art that A can in fact substitute for the primary (i.e., principal or main) metal components of the phosphor — nonetheless, the primary metal components, if recited in relative amounts, are recited normalized, as if the combined primary metals were present in formula amounts as would pertain absent A.
[0055] In some embodiments, the emission peak for a phosphor of the present invention is measured with the emission source being lit at about 440 nm ± 100 nm or about 400 nm ± 100 nm. In some embodiments, the emission range for a phosphor of the present invention is, for example, and without limitation, from one of the following lower endpoints (inclusive or exclusive) of: about 300 nm, about 301 nm, about 302 nm, about 303 nm, and each one nm increment up to about 799 nm, and from one of the following upper endpoints (inclusive or exclusive) of: about 800 nm, about 799 nm, about 798 nm, about 797 nm, and each one nm down to about 381 nm. In some embodiments, the lower endpoint of the emission range is, for example, and without limitation, about 400 nm, about 401 nm, about 402 nm, and each one nm increment up to about 799 nm.
[0056] In some embodiments, the excitation peak range for a phosphor of the present invention is, for example, and without limitation, from one of the following lower endpoints (inclusive or exclusive) of: about 200 nm, about 201 nm, about 202 nm, about 203 nm, and each one nm increment up to about 549 nm and from one of the following upper endpoints (inclusive or exclusive): about 550 nm, about 549 nm, about 548 nm, about 547 nm, and each one nm down to about 201 nm.
[0057] The present invention further provides the phosphors of the present invention having an oxide coating. In some embodiments, a coated phosphor comprises (1) a phosphor of the present invention, and (2) a coating comprising at least one layer, where the layer comprises at least one oxide. The layer(s) of the coating render the phosphor relatively more resistant to water-induced degradation as compared to an uncoated phosphor. That is to say, the layer(s) of the coating increases the resistance of the phosphor to degradation stimulated by water (in all its forms), such as, and without limitation, the coated phosphor maintains about 80% of its original optical performance after exposure to about 85 °C and about 85% relative humidity for about 100 hours.
[0058] In some embodiments, the oxide of the coating of the coated phosphor of the present invention is titanium oxide, aluminum oxide, zirconium oxide, tin oxide, boron oxide, silicon oxide, zinc oxide, germanium oxide, aluminum silicate, Al8BSi3O19(OH), B2Al2(SiO4MOH), ZnAl2O4, Al2SiO5, Al4(Si04)3, ZrSiO4, or combinations thereof. In some embodiments, the oxide is titanium oxide, aluminum oxide or silicon oxide.
[0059] In some embodiments, the coating of the coated phosphor of the photoluminescent phosphor of the present invention has at least two layers. In some embodiments, each layer independently comprises an oxide chosen from titanium oxide, aluminum oxide, silicon oxide and a combination thereof. In some embodiments, one layer of the coating comprises titanium oxide. [0060] In some embodiments, the coating of the coated phosphor of the photoluminescent phosphor of the present invention is continuous.
[0061] In some embodiments, the oxide layer of the coating of the present invention comprises predominantly (e.g., > about 60%) one type of oxide (as determined by the metal or semiconductor component), e.g., layer of titanium oxide, aluminum oxide, or silicon oxide. In some embodiments, the coating of the present invention comprises two or more layers that are predominantly one type of oxide. For example, the layers can be made separately of two or more titanium oxides, aluminum oxides, or silicon oxides. In some embodiments, one layer of the coating of the present invention is of silicon oxide, and another is of a titanium oxide or aluminum oxide.
[0062] In some embodiments, the coating of the phosphor of the present invention can be a single layer of one type of oxide, for example, a titanium oxide; or, the coating can be multi-layer, i.e., comprising more than one layer or at least two layers, with the layers, independently of each other, comprising a different type of oxide or oxide combination, for example, one layer can comprise an aluminum oxide and one layer can comprise a silicon oxide.
[0063] In some embodiments, the coating of the phosphor of the present invention can be substantially transparent (such that useful fluorescence is retained) and are typically between about 0.1 micron and about 3.0 microns thick or between about 0.05 micron and about 0.50 micron thick. Coatings that are too thin (e.g., at least less than about 0.005 micron (5 nm) thick) can tend to provide insufficient impermeability to moisture, i.e., the coating fails to provide a phosphor protection from moisture whereby the phosphor degrades and loses its photoluminescence. Coatings that are too thick (e.g., greater than about 3.0 microns thick) can tend to be less transparent and result in reduced brightness of the coated phosphor.
[0064] In some embodiments, the amount of protection provided by the coating of phosphor of the present invention can be measured by the amount of original emission intensity retained over a period of time at about 85 0C and about 85% humidity. In some embodiments, the coated phosphors retain at least about 40%; at least about 45%; at least about 50%; at least about 55%; at least about 60%; at least about 65%; at least about 70%; at lest about 75%; at least about 80% photoluminescence when subjected to these conditions for at least about 30 mins., at least about 1 hour, or at least about 2 hours. In some embodiments, the coated phosphors retain at least about 40%; at least about 45%; at least about 50%; at least about 55%; at least about 60%; at least about 65%; at least about 70%; at least about 75%; or at least about 80% of original emission intensity when subjected to these conditions for at least about 4 hours; at least about 8 hour; at least about 12 hours; at least about 16 hours; at least about 24 hours; at least about 48 hours; or at least about 96 hours.
[0065] Additionally provided by the present invention is a method of coating a phosphor of the present invention with an oxide coating, the method comprising: (a) providing a phosphor of the present invention, and (b) exposing the phosphor to oxide precursors and water to yield at least one layer of coating that renders the phosphor relatively more resistant to water-induced degradation than when it is uncoated. The method of coating coats particles and grains of phosphor.
[0066] In some embodiments, the phosphor particles (and/or grains) are coated by agitating or suspending them so that all sides have substantially equal exposure (i.e., the majority, e.g., about > 50% of the surfaces of the phosphor particles are exposed) to certain coating vapor or liquid during the period of the coating operation. For example, and without limitation, the particles can be suspended in a fluidized bed, or agitated or stirred in a liquid. Gas used to fluidize the particles can include the vapor used to coat the particles. For example, and without limitation, the gas can include an inert gas carrier (i.e., a gas that is non-reactive under normal circumstances) and the coating vapor. Carrier gas can be passed through vessel(s) of predominately (i.e., principally, for the most part or primarily, such as, > about 60%) liquid or solid form precursor to carry away vapor for use in the coating. The vessel(s) and connecting pathways can be heated as needed to maintain sufficient vapor pressure.
[0067] Where two or more oxide precursors are used in forming the same coating layer, carrier gas can be passed separately through vessels of the separate precursors and mixed prior to, or in, the coating reaction chamber of a reaction vessel. Relative carrier gas flow rates through the separate vessels can be adjusted to carry the desired amount of precursor in light of vapor pressure or empirical coating results. Water vapor is carried similarly to the reaction vessel, with an amount moderated similarly, as appropriate. ' In liquid-mediated coating methods, any number of dispensing methods can be used to incorporate multiple precursors into the liquid.
[0068] Coating can be accomplished through a hydrolysis to form a surface oxide, with the hydrolysis occurring in a vapor phase and/or in a liquid phase. An example of the former is chemical vapor deposition (CVD), while of the latter is a sol-gel process.
[0069] In vapor phase deposition reactions (i.e., a hydrolytic deposition reaction), the uncoated phosphor particles can be floated by a carrier gas in a reaction chamber to disperse the particles as substantially single particles (e.g., more than 95 percent (> 95%) of the particles have no association, agglomeration or aggregation). The chamber can be heated to an appropriate temperature given the reactants (e.g., in some implementations, about 200 °C). Coating precursor materials in the vapor phase then are introduced into the chamber. Under the temperature conditions, at least a portion of precursor (e.g., about 20%) is decomposed hydrolytically to form an oxide layer on the surfaces of the phosphor particles, thereby microencapsulating them. A typical hydrolysis that can be used in the present invention is as follows:
TiCl4 + 2H2O → TiO2 + 4HCl.
[0070] In liquid phase depositions (i.e., a hydrolytic deposition reaction), an uncoated phosphor powder (comprising phosphor particles and/or grains) can be suspended in an inert fluid medium (i.e., a medium having a limited ability to react chemically) containing coating precursor. The powder is stirred such that the particles are dispersed sufficiently so as to form a suspension and have little probability to form an agglomerate. As used herein, "suspension" refers to a colloidal mixture wherein one substance (i.e., the dispersed medium) is finely dispersed within another substance (i.e., the dispersion medium). A small amount of water then can be added to the suspension to initiate hydrolysis. If needed, the reaction is accelerated by an elevated temperature, e.g., about 70 °C. The hydrolysis results in a formation of an oxide coating on the surfaces of the phosphor particles. For example, the following reaction can be used for coating SiO2 on SCS particles:
Si(OC2Hs)4 + 2H2O → SiO2+ 4C2H5OH.
[0071] In some embodiments, the method of coating a phosphor comprises a hydrolytic deposition reaction, where the hydrolytic deposition reaction is conducted at a temperature selected (in light of the given phosphor) to retain useful fluorescence (e.g., having an optical performance of about > 80% of its uncoated version). The temperature of a vapor phase deposition can be, for example, from about 25 °C to about 400 0C. The temperature can be, for example, at least about 25 °C, at least about 50 0C, at least about 75 0C, at least about 100 °C, at least about 150 °C, or at least about 200 0C. The temperature can be, for example, at most about 400 °C, at most about 300 °C, at most about 275 °C, at most about 250 0C, at most about 225 °C, or at most about 200 °C. The temperature of a liquid phase deposition can be, for example, from about 25 °C to about 90 °C, depending on the reactants, the solvent, and the stability of the phosphor to the temperature. The temperature can be, for example, at least about 25 °C, at least about 30 0C, at least about 35 0C, at least about 40 °C, at least about 45 °C, at least about 50 °C, at least about 55 °C, at least about 60 °C, at least about 65 °C, or at least about 70 °C. The temperature can be, for example, at most about 90 °C, at most about 85 °C, at most about 80 °C, at most about 75 0C, at most about 70 °C, at most about 65 °C, at most about 60 °C, at most about 55 0C, or at most about 50 °C. The temperature is, of course, lower than the boiling point of the solvent at the operative pressure.
[0072] Oxides useful in the coating of the coated phosphors of the present invention are, for example, and without limitation, titanium oxides (e.g., TiO2), aluminum oxide (e.g., Al2O3), zirconium oxide (e.g., ZrO2), tin oxides (e.g., SnO2), boron oxide (e.g., B2O3), silicon oxide (e.g., SiO2), zinc oxide (e.g., ZnO), germanium oxide (e.g., GeO2), tantalum oxide (e.g., Ta2O5), niobium oxide (e.g., Nb2O5), hafnium oxide (e.g., HfO2), gallium oxide (e.g., Ga2O3), and the like. Further oxides useful in the coatings of the coated phosphors of the present invention include oxides formed with more than one type of cation, for example, aluminum silicate [such as, 3 Al2O3 -2SiO2 or in mullite form], Al8BSi3O19(OH) [such as, in dunortierite form], B2Al2(SiO4)2(OH) [such as, in euclase form], ZnAl2O4 [such as, in gahnite form], Al2SiO5 [such as, in sillimanite form], ZrSiO4 [such as, in zircon form], and the like. In some embodiments, for use in the method of coating a phosphor of the present invention, volatile or appropriately soluble precursors that hydrolytically generate the oxides are used. Such precursors are known in the art.
[0073] Volatile precursors include, for example, and without limitation, halogenated metals (e.g., titanium tetrachloride (TiCl4) and silicon tetrachloride (SiCl4)), alkylated metals (e.g., trimethylaluminum, (A1(CH3)3), trimethylboron (B(CH3)3), tetramethylgermanium, Ge(CH3)4 and tetraethylzirconium, Zr(C2Hs)4, mixed halo (i.e., comprising fluroide, chloride, bromide, iodine or astatine) and alkyl derivatives of metals (e.g., dimethylaluminum chloride, diethyldichlorsilane), metal or semiconductor alkoxide (e.g., titanium (IV) methoxide and tetraethylorthosilicate (TEOS)). With the aid of vapor water, these compounds can be hydrolyzed to yield their respective oxides. As used herein, "halogenated metals" refers to metal cations and anions of group VII elements of the periodic table of chemical elements that are ionically or valently bonded. As used herein, "alkylated metals" refers to metal cations and anions comprising at least one C1 to C16 straight or branched moiety, such as, methyl, diethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, hexyl, octyl, nonyl and decyl. As used herein, "alkyl" refers to a saturated hydrocarbon group that is unbranched (i.e., straight-chained) or branched (i.e., non-straight chained). Example alkyl groups, without limitation, include methyl (Me), ethyl (Et), propyl (e.g., n- propyl and isopropyl), butyl (e.g., n-butyl, isobutyl, t-butyl), pentyl (e.g., n-pentyl, isopentyl, neopentyl), and the like. In some embodiments of the present invention, an alkyl group can contain from about 1 to about 10, from about 2 to about 8, from about 3 to about 6, from about 1 to about 8, from about 1 to about 6, from about 1 to about 4, from about 1 to about 3 carbon atoms, or from about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms. As used herein, "alkoxide" refers to an alkyl-O- moiety, wherein alkyl is as previously defined. [0074] Soluble precursors include, for example, metal or semiconductor alkoxides, (e.g. titanium (IV) methoxide and zirconium (FV) butoxide). Such compounds can form oxides by hydrolysis.
[0075] The present invention further provides a lighting device comprising at least one phosphor of the present invention. In some such embodiments, the lighting device further comprises a light source. As used herein, "light source" refers to a Group III-V semiconductor quantum well-based light emitting diode or a phosphor other than a phosphor of the present invention.
[0076] In some embodiments, the lighting device of the present invention is a white LED lamp. In some such embodiments, the white LED lamp comprises a LED, two or more phosphors, and is pumped with blue light or near UV light. As used herein, "near UV light" refers to light having a wavelength range from about 350 nm to about 420 nm. In some such embodiments, the white LED lamp delivers a high CRI of at least about 84, a high efficiency of at least about 90% and long lifetimes of at least about 100,000 hours.
[0077] In some embodiments, the lighting device of the present invention comprises at least one LED, which emits light having a wavelength of at least 250 nm, and at least one phosphor of the present invention, which has a formula as described herein, where the phosphor(s) is located between the LED and the light output for the device.
[0078] In some such embodiments, the lighting device can further comprise at least one additional phosphor. The additional phosphor(s) can assist in achieving a desired chromaticity. The additional phosphor can have a formula as disclosed in U.S. Patent Application Serial No. 11/149,648 (Y. Tian), i.e., having the formula (I):
[(BvSiO3)χ(Mv2SiO3)y(Tv2(SiO3)3)z]m (SiO2)n:Rε, X
(I) where x, y and z are each any value such that x + y + z = 1, Bv is at least one divalent alkaline earth metal ion, Mv is at least one monovalent alkaline metal ion, Tv is at least one trivalent metal ion, Rε is at least one activator selected from Eu2+ and Mn2+ ions, X is at least one halide ion in ionic or atomic form, and m is 1 or 0, provided that if m is 1 and provides an amount of silica effective to host efficient luminescence, then n is greater than 3, or if m = 0, then n is 1. As used herein, "efficient luminescence" refers to an emission invisible light (wavelength ranging from about 400 nm to about 750 nm) with quantum efficiency higher than about 40%.
[0079] Other additional phosphors that can be used with phosphors of the present invention include, for example: Y3Al5O12ICe3+ (YAG), Lu3 Ga2(A104)3: Ce3+, La3In2(A104)3:Ce3+, Ca3Ga5012:Ce3+, Sr3Al5012:Tb3+, BaYSiA1012:Ce3+, CaGa2S4:Eu2+, SrCaSiO4:Eu2+, ZnS :Cu, CaSi2O2NiEu2+, SrSi2O2NiEu2+, SrSiAl2O3N2IEu2+, Ba2MgSi2O7IEu2+, Ba2SiO4IEu2+, La2O3-IlAl2O3IMn2+, Ca8Mg(SiO4)4Cl4:Eu2+,Mn2+, (CaM)(Si, Al)12(O, N)16:Eu2+,Tb3+, Yb3+, YBO3:Ce3+,Tb3+, BaMgAl10O17:Eu2+,Mn2+, (Sr, Ca, Ba)(Al, Ga)2S4:Eu2+, BaCaSi7N10IEu2+, (SrBa)3MgSi2O8IEu2+, (SrBa)2P2O7IEu2+, (SrBa)2Al14O25IEu2+, LaSi3N5ICe3+, (BaSr)MgAl10O17IEu2+, and CaMgSi2O7IEu2+.
[0080] In some embodiments of the lighting device of the present invention, the phosphor(s) are located between the light source and the light output for the device,
[0081] In some embodiments, the light source of the lighting device of the present invention can, for example, comprise a gallium nitride-based LED with a light emitting layer comprising a quantum well structure. In some embodiments, the light source can include a reflector located to direct light from the LED or phosphor. In some embodiments, the phosphor can be located on the surface of the LED or separate therefrom. In some embodiments, the light source can further include a translucent material encapsulating the phosphor and optionally, a portion (for example and without limitation, about 30%) of the emission light of the LED from which the light output emerges.
[0082] When used in a lighting device, it will be recognized that the phosphors of the present invention can be excited by light from a primary source, such as, a semiconductor light source (e.g., a LED) emitting in a wavelength range of about 250 nm to about 500 nm or about 300 nm to about 420 nm, or by light from a secondary light source, such as, emissions from additional phosphor(s) that emit in the wavelength range of about 250 nm to about 500 nm or about 300 nm to about 420 nm. Where the excitation light is secondary, in relation to the phosphors of the present invention, the excitation-induced light is the relevant source light. Devices that use the phosphor of the present invention can include, for example, and without limitation, mirrors, such as, dielectric mirrors, which direct light produced by the phosphors of the present invention to the light output, rather than direct such light to the interior of the device (such as, the primary light source).
[0083] In some embodiments, the semiconductor light source (e.g., a LED chip) of the lighting device of the present invention emits light of at least about 250 nm, at least about 255 nm, at least about 260 nm, and so on in increments of about 1 nm to at least about 500 nm. The semiconductor light source, in some embodiments, emits light of at most about 500 nm, at most about 495 nm, at most about 490 nm, and so on, in increments of about 1 nm, to at most about 300 nm.
[0084] In some embodiments, phosphors of the present invention can be dispersed in the lighting device of the present invention with a binder, a solidifier, a dispersant (i.e., a light scattering material), a filler or the like. The binder can be, for example, and without limitation, a light curable polymer, such as, an acrylic resin, an epoxy resin, a polycarbonate resin, a silicone resin, a glass, a quartz and the like. The phosphor of the present invention can be dispersed in the binder by methods known in the art. For example, in some embodiments, the phosphor can be suspended in a solvent with the polymer suspended, dissolved or partially dissolved in the solvent, thus forming a slurry, which then can be dispersed on the lighting device and the solvent evaporated therefrom. In some embodiments, the phosphor can be suspended in a liquid, such as, a pre-cured precursor to the resin to form a slurry, the slurry then can be dispersed on the lighting device and the polymer (resin) cured thereon. Curing can be, for example, by heat, UV, or a curing agent (such as, a free radical initiator) mixed with the precursor. As used herein "cure" or "curing" refers to, relates to or is a process for polymerizing or solidifying a substance or mixture thereof, often to improve stability or usability of the substance or mixture thereof.
[0085] In some embodiments, the binder used to disperse the phosphor(s) in a lighting device can be liquefied with heat, thereby, a slurry is formed, and then the slurry is dispersed on the lighting device and allowed to solidify in situ. Dispersants include, for example, and without limitation, titanium oxides, aluminum oxides, barium titanates, silicon oxides, and the like.
[0086] In some embodiments, the lighting device of the present invention comprises a semiconductor light source, such as a LED, to either create excitation energy, or to excite another system to thereby provide the excitation energy for the phosphor of the present invention. Devices using the present invention can include, for example, and without limitation, white light producing lighting devices, indigo light producing lighting devices, blue light producing lighting devices, green light producing lighting devices, yellow light producing lighting devices, orange light producing lighting devices, pink light producing lighting devices, red light producing lighting devices, or lighting devices with an output chromaticity defined by the line between the chromaticity of a photoluminescent phosphor of the present invention and that of at least one second light source. Headlights or other navigation lights for vehicles can be made with the lighting devices of the present invention. The lighting devices can be output indicators for small electronic devices, such as cell phones and personal digital assistants (PDAs). The lighting devices of the present invention also can be the backlights of the liquid crystal displays for cell phones, PDAs and laptop computers. Given appropriate power supplies, room lighting can be based on devices of the invention. The warmth (i.e., amount of yellow/red chromaticity) of lighting devices of the present invention can be tuned by selection of the ratio of light from a phosphor of the present invention to light from a second source (including, a second photoluminescent phosphor of the present invention). \
[0087] Suitable semiconductor light sources for use in the present invention also include those that create light that excites the phosphors of the present invention, or that excites a different phosphor that in turn excites the phosphors of the present invention. Such semiconductor light sources can be, for example, and without limitation, GaN (gallium nitride) type semiconductor light sources, In-Al-Ga-N type semiconductor light sources (In;AljGakN, where i + j + k = about 1, where two or more of i, j and k can be 0), BN, SiC, ZnSe, BAlGaN, and BmAlGaN light sources, and the like. The semiconductor light source (e.g., a semiconductor chip) can be based, for example, on III- V or II- VI quantum well structures (meaning structures comprising compounds that combine elements of the Periodic Table of the Chemical Elements, such as, elements from Group III with those from Group V or elements from Group II with those from Group VI). In some embodiments, a blue light or a near UV light emitting semiconductor light source is used.
[0088] In some embodiments, a semiconductor light source of the lighting device of the present invention has at least two different phosphors, and disperses the phosphors separately, superimposing the phosphors as layers instead of dispersing the phosphors together in one matrix. Such layering can be used to obtain a final light emission color by way of a plurality of color conversion processes. For example, the light emission process is: absorption of the light emission of a semiconductor light source by a first phosphor of the present invention, light emission by the first phosphor, absorption of the light emission of the first phosphor by a second phosphor, and the light emission by the second phosphor. In some embodiments, the second phosphor is a phosphor of the present invention. In some embodiments, the second phosphor is not a phosphor of the present invention.
[0089] Figure 4 shows an exemplary layered structure of a semiconductor light source. The semiconductor light source comprises a substrate Sb, such as, for example, a sapphire substrate. For example, a buffer layer B, an n-type contact layer NCt, an n-type cladding layer NCd, a multi-quantum well active layer MQW, a p- type cladding layer PCd, and a p-type contact layer PCt are formed in that order as nitride semiconductor layers. The layers can be formed, for example, by organometallic chemical vapor deposition (MOCVD) on the substrate Sb. Thereafter, a light-transparent electrode LtE is formed on the whole surface of the p-type contact layer PCt, a p electrode PEl is formed on a part of the light-transparent electrode LtE, and an n electrode NEl is formed on a part of the n-type contact layer NCt. These layers can be formed, for example, by sputtering or vacuum deposition.
[0090] The buffer layer B can be formed of, for example, AlN, and the n-type contact layer NCt can be formed of, for example, GaN. [0091] The n-type cladding layer NCd can be formed, for example, of Al1-Ga1-1N where 0 < r < 1, the p-type cladding layer PCd can be formed, for example, of AIqGa1 -qN where 0 < q < 1, and the p-type contact layer PCt can be formed, for example, of Al3Ga1 -SN wherein 0 < s < 1 and s < q. The band gap of the p-type cladding layer PCd is made larger than the band gap of the n-type cladding layer NCd. The n-type cladding layer NCd and the p-type cladding layer PCd each can have a single-composition construction, or can have a construction such that the above-described nitride semiconductor layers having a thickness of not more than about 100 angstroms and different from each other in composition are stacked on top of each other so as to provide a superlattice structure. When the layer thickness is not more than about 100 angstroms, the occurrence of cracks or crystal defects in the layer can be prevented.
[0092] The multi-quantum well active layer MQW can be composed of a plurality (i.e., at least two) of InGaN well layers and a plurality of GaN barrier layers. The well layer and the barrier layer can have a thickness of not more than about 100 angstroms, such as, for example, about 60 angstroms to about 70 angstroms, so as to constitute a superlattice structure. Since the crystal of LaGaN is softer than other aluminum-containing nitride semiconductors, such as, AlGaN, the use of InGaN in the layer constituting the active layer MQW can offer an advantage that all the stacked nitride semiconductor layers are less likely to crack. The multi-quantum well active layer MQW can also be composed of a plurality of InGaN well layers and a plurality of AlGaN barrier layers. Or, the multi-quantum well active layer MQW can be composed of a plurality of AlInGaN well layers and a plurality of AlInGaN barrier layers. In this case, the band gap energy of the barrier layer can be made larger than the band gap energy of the well layer.
[0093] In some embodiments, the light source of the present invention comprises a reflecting layer on the substrate Sb side from the multi-quantum well active layer MQW, for example, on the buffer layer B side of the n-type contact layer NCt. The reflecting layer also can be provided on the surface of the substrate Sb remote (i.e., at a distance) from the multi-quantum well active layer MQW stacked on the substrate Sb. The reflecting layer can have a maximum reflectance with respect to light emitted from the active layer MQW and can be formed of, for example, aluminum, or can have a multi-layer structure of thin GaN layers. The provision of the reflecting layer can permit light emitted from the active layer MQW to be reflected from the reflecting layer, can reduce the internal absorption of light emitted from the active layer MQW, can increase the quantity of light output toward above (i.e., going out of the device, or a direction toward the outside world and away from the substrate), and can reduce the incidence of light on the mount for the light source to prevent deterioration.
[0094] Shown in Figures 1-3 are some exemplary structures of the lighting device of the present invention comprised of a LED and phosphors. Figure 1 shows a light emitting device 10 with an LED chip 1 (i.e., primary light source) powered by leads 2, and having phosphor-containing material 4 secured between the LED chip and the final light output 6. A reflector 3 can serve to concentrate light output. A transparent envelope 5 can isolate the LED chip and phosphor from the environment and/or provide a lens. Figure 2 shows a light emitting device 10' with a LED chip 1' powered by leads 2', and having phosphor-containing material 4' secured between the LED chip and the final light output 6', in this case above reflector 3'. The reflector, and the location of the phosphor-containing material away from the LED chip, can serve to concentrate final light output. A transparent envelope 5' can isolate the LED chip and phosphor from the environment and/or provide a lens. The lighting device 20 of Figure 3 has multiple LED chips 11, leads 12, phosphor-containing material 14, and transparent envelope 15.
[0095] The leads 2, 2', 12 can comprise thin wires supported by a thicker lead frame or the leads can comprise self-supported electrodes and the lead frame can be omitted. The leads provide current to the LED chip, and thus, cause the LED chip to emit radiation.
[0096] It will be understood by those of ordinary skill in the art that there are any number of ways to associate phosphors with a semiconductor light source (e.g., a LED light source) such that light from the semiconductor light source is managed by its interaction with the phosphors. U.S. Published Patent Applications Nos. 2004/0145289 (AJ Ouderkirk et al.) and 2004/0145288 (AJ Ouderkirk et al.) illustrate lighting devices where a phosphor is positioned away from the light output of the semiconductor light sources. U.S. Patent Nos. 6,982,523 (T. Odaki), 6,936,857 (D. Doxsee et al.) and U.S. Published Patent Application No. 2004/00135504 (H. Tamaki et al.) further illustrates, without limitation, lighting devices that can be used in the present invention.
[0097] Semiconductor light source-based white light devices can be used, for example, in a self-emission type display for displaying a predetermined pattern or a graphic design on a display portion of an audio system, a household appliance, a measuring instrument, a medical appliance, and the like. Such semiconductor light source-based light devices also can be used, for example, and without limitation, as light sources of a back-light for a liquid crystal diode (LCD) display, a printer head, a facsimile, a copying apparatus, and the like.
[0098] The present invention also provides a method of making a phosphor having a formula selected from:
(a) (MlxM21-x)2LiSiO4X:A;
(b) (MlxM21-x)5Si04X6:A;
(c) (MlxM21-x)3Si04X2:A;
(d) (MlxM21-x)5(Si04)2X2:A;
(e) (MlxM21-x)5Si207X4:A;
(f) (MlxM21-x)10(Si2O7)3X2:A;
(g) (MlxM21-x)4Si207X2:A;
(h) Ml6M24(Si207)3X2:A;
(i) (MlxM21-x)7Si207X8:A;
G) (MlxM21-x)4Si308X2:A;
(k) (MlxMEi-3O4Si3O8X4IA; (1) (MlxM21-x)8Si4012X8:A;
(m) (MlxM21-x)5Si206X6:A;
(n) (MlxM21-x)15Si6018X8:A;
(o) (MlxM21-x)5Si4O10X5:A;
(p) (MlxM21-x)10(SiO4)3(SO4)3X2:A;
(q) (MlxM21-x)4(SiO4)(SO4)X2:A; and
(r) (MlxM21-x)8Mg(Si04)4X2:A,
where:
. Ml and M2 are each independently at least one metal ion selected from the group consisting OfMg2+, Ca2+, Sr2+, Ba2+, Zn2+ and Cd2+;
x is a value from about 0.001 to about 1;
X is at least one halide ion in ionic form;
A is at least one activator ion selected from the group consisting Of Eu2+, Yb2+, Mn2+, Bi3+, Pb2+, Ce3+, Nd3+, Pr3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+ and Yb3+;
if the phosphor has the formula (MlxM21-x)2LiSiO4X:A, and Ml is Sr2+, x is 1 and X is fluoride or M2 is Sr2+, x is 0 and X is fluoride, then A is not Eu2+; and
if the phosphor has the formula (MlxM21-x)3Si04X2:A, and Ml is Ca2+, x is 1 and X is chloride or M2 is Ca2+, x is 0 and X is chloride, then A is not Eu2+; and
if the phosphor has the formula (MlxM21-x)8Mg(Si04)4X2:A, and Ml is Ca2+, x is 1 and X is chloride or M2 is Ca2+, x is 0 and X is chloride, then A is not Eu2+;
the method comprising the steps of: 1) providing a metal silicate that is a precursor to the phosphor having a formula shown above;
2) providing at least one activator ion from those described above;
3) optionally, providing at least one halide ion in ionic or atomic form;
4) mixing the metal silicate and activator ion with the metal halide ion, which is in ionic or atomic form, to form a mixture; and
heating the mixture to produce the phosphor.
[0099] Methods to make the phosphors include, for example, heating a mixture consisting of the constituents of a targeted phosphor, and/or of compounds (precursors) which react to produce such constituents during the heating. The mixture optionally includes a proportion of metal halide (in ionic or atomic form) in excess of that required to be incorporated in the final product. Mixing can be combined with grinding to assure intimate mixture. The heating can be continued for a period of about one hour or more at a temperature of about 600 °C or more, such as, about 800 0C, about 900 °C, or about 1000 °C. The heating effects a reaction of the mixture to produce activator-containing metal silicate halide. A part of the heating process can be carried out in an inert or reducing atmosphere, to ensure that the activator is present in the targeted oxidation state in the final product. As used herein, the term "reducing" refers to the process in which electrons are added to an atom or ion (as by removing oxygen or adding hydrogen). The product of the heating step of the method of making a phosphor of the present invention is washed to remove excess metal halide (in ionic or atomic form), if present.
[00100] In some embodiments of the method of the present invention, the mixture produced may consist of compounds which react together during the heating to form at least one metal silicate, together with at least one activator oxide and at least one metal halide in ionic or atomic form.
[00101] In some embodiments, the method of the present invention further includes a second heating, optionally at a higher temperature than the first heating. In some such embodiments, the method further includes a grinding step in between the first heating and second heating steps. In some such embodiments, the range of heating temperature has, for example, a lower endpoint (inclusive or exclusive) of about 800 °C, about 801 0C5 about 802 °C, about 803 °C, and so on in one °C increment up to about 1199 °C and an upper endpoint (inclusive or exclusive) of about 1200 0C, about 1199 °C, about 1198 0C, about 1197 °C, and so on in one 0C increment down to about 801 °C.
[00102] In some embodiments, the method of the present invention uses a solid solvent. In some such embodiments, the constituents or precursors, except the halide (ionic or atomic) and optionally, except the activator, are heated to form a precursor containing the mineral metal silicate, which lacks the halide component, and which optionally, lacks the activator component. The metal silicate is mixed (such as by grinding) with a metal halide (ionic or atomic) selected to form a liquid at a target temperature. The mixture is heated at the target temperature (which may be a range, i.e., a target temperature range) to obtain the phosphor. The metal halide (ionic or atomic) serves as solvent and provides the halide source. In some such embodiments, a range of heating temperature in a first heating step has, for example, a lower endpoint (inclusive or exclusive) of about 900 °C, about 901 °C, about 902 °C, about 903 0C, and so on in one 0C increments up to about 1299 0C and an upper endpoint (inclusive or exclusive) of about 1300 °C, about 1299 °C, about 1298 °C, about 1297 0C, and so on in one °C increments down to about 901°C. In some such embodiments, the range of the target temperature has, for example, a lower endpoint (inclusive or exclusive) of about 800 °C, about 801 0C, about 802 °C, about 803 °C, and so on in one 0C increments up to about 1199 °C and an upper endpoint (inclusive or exclusive) of about 1200 °C, about 1199 °C, about 1198 0C, about 1197 °C, and so on in one 0C increments down to about 8010C. The resulting metal silicate halide can often be identified by powder x-ray diffraction, even in the presence of the metal halide (ionic or atomic). Useful metal halides (ionic and atomic) include, for example, CaCl2, SrCl2, BaCl2, CaBr2, SrBr2, BaBr2, CaF2, SrF2, BaF2, MgCl2, MgBr2, MgF2 or mixtures thereof, and the like. EXAMPLES
[00103] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the present invention, and are not intended to limit the scope of what the inventors regard as their invention nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.), but an account for some experimental errors and deviations should be made. Unless indicated otherwise, parts are parts by weight, molecular weight is average molecular weight, and temperature is in degrees Centigrade.
[00104] Example 1: Preparation of (Ca5Sr)3SiO4Cl2IEu2+
[00105] The ingredient powders OfEu2O3 (0.66 g), SiO2 (15.02 g), CaCO3 (45.0 g) and SrCO3 (7.38 g) were mixed and milled in a milling jar. The mixed powder then was fired at about 1000 0C for about 5 hours in an atmosphere of air. The fired powder was cooled and ground. Then, CaCl2 (20 g) was added to and mixed with the fired powder in a mortar/pestle. The resultant powder then was fired at about 700 0C in a forming gas (5% H2/N2) for about 3 hours. The second fired powder then was mixed with CaCl2 (10 g) and then fired at about 700 0C in a forming gas (5% H2/N2) for about 3 hours. The fluorescence excitation and emission spectra are shown in Figure 5. The x-ray diffraction (XRD) pattern (Figure 6) shows that the phosphor has the structure Of Ca3SiO4Cl2.
[00106] Example 2: Preparation of (Ca,Sr)8Mg(SiO4)4Cl2:Eu2+
[00107] The final product (about 5 g) of Example 1 was mixed with MgCl2 (2 g) and fired at about 800 0C in a forming gas for about 10 hours. The phosphor product was washed with deionized water three times and then dried at about 100 0C for about 10 hours. The fluorescence excitation and emission spectra of the phosphor are shown in Figure 6. The XRD pattern of the phosphor is shown in Figure 7.
[00108] Example 3: Preparation of White LED Lamp with
(Ca,Sr)3SiO4Cl2:Eu2+ [00109] A phosphor blend was made by mixing about 0.3 g of
CaSiO3-(SiO2)n:Eu2+,Mn2+, V (red-emitting), about 0.3 g of CaSiO3-(SiO2)n:Eu2+, I" (blue-emitting) and about 0.6 g of the phosphor prepared in Example 1 (green emitting). After mixing, about 0.04 g of the phosphor blend was added to about 0.2 g of silicone resin and mixed to give a slurry containing about 20 wt% of the phosphor blend. On the other hand, a 410 nm-emitting LED chip mounted in a reflector was coated with a layer of clear silicone resin. After the silicone layer was cured, the slurry was applied onto the layer of the cured silicone over the LED and then cured at 150 0C for about 9 hours to provide a LED lamp with a layer of phosphor slurry separate from the LED chip as shown in Figure 2. Figure 9 shows the emission spectrum of the LED lamp made with the phosphor blend. The LED lamp is characterized by chromaticity coordinates x = 0.3167, y = 0.3477, CCT = 6197 K and Ra = 0.83.
Example 4: Preparation of LED Lamp with (Ca,Sr)8(SiO4)4Cl2:Eu2+
[00110] A phosphor blend was made by mixing about 0.3 g of CaSiO3-(SiO2)n:Eu2+,Mn2+, T (red-emitting), about 0.3 g of CaSiO3-(SiO2)n:Eu2+, I" (blue-emitting) and about 0.5 g of (Ca,Sr)8Mg(Siθ4)4Cl2:Eu2+ prepared in Example 2 (green-emitting) resulting in a phosphor blend with an R:G:B ratio of 1 : 1.6 : 1. After mixing, about 0.04 g of the blend was mixed with about 0.2 g of silicone resin to give a slurry containing about 20 wt% of the blend. On the other hand, a 410 nm-emitting LED chip mounted in a reflector was coated with a layer of clear silicone resin. After the silicone layer was cured, the phosphor slurry was applied onto the layer of the cured silicone over the LED and then cured at 150 0C for about 9 hours to give a LED lamp with a layer of phosphor slurry separate from the chip as shown in Figure 2. Figure 10 shows the emission spectrum of the LED lamp made with the phosphor blend. The LED lamp is characterized by chromaticity coordinates x = 0.2692, y = 0.3294, CCT = 9264 K and Ra = 0.69.
[00111] Example 5: Preparation of Oxide Coated Phosphor
[00112] A phosphor of the present invention, such as the phosphor product of Example 1 or 2, can be coated with an oxide coating by suspending about 100 grams of the phosphor in about 340 grams of 2-propanol containing about 34 grams of tetraethoxysilane to form a suspension. The suspension then is sonicated for about 10 minutes. Water (about 24 grams) with a pH = about 8.0 (adjusted with ammonium hydroxide) then is added to the suspension. The suspension then is incubated and stirred for about 16 hours. The solids then are filtered out and dried at about 50 0C for about 4 hours. The resultant powder is baked at about 150 0C under N2 gas for about 1 hour to provide the coated phosphor. Then the coated phosphor can be kept at about 85 °C and about 85% relative humidity as a stability test. The fluorescent emission of a test sample of the coated phosphor can be measured at different times. Fluorescent emission of the coated phosphor can be measured using a SPEX-1680 Fluorimeter (ISA Company, Edison, NJ), using a xenon lamp (at about 460 am) to excite the test sample and a photo multiplier to detect the emission. [00113] This application claims priority benefit of U.S. Provisional Patent Application Serial No. 60/741,982, filed December 2, 2005, and U.S. Patent Application with Serial No. 11/527,835, filed September 27, 2006, each of which is incorporated by reference herein in its entirety.
[00114] Publications and references, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference in their entirety in the entire portion cited as if each individual publication or reference were specifically and individually indicated to be incorporated by reference herein as being fully set forth. Any patent application to which this application claims priority is also incorporated by reference herein in the manner described above for publications and references.
[00115] While this invention has been described with an emphasis upon some embodiments, it will be obvious to those of ordinary skill in the art that variations in the embodiments can be used and that it is intended that the invention can be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications encompassed within the spirit and scope of the invention as defined by the claims that follow.

Claims

What is claimed: 1) A phosphor having a formula selected from: a) (MlxM2i-x)2LiSi04X:A; b) (MlxM21-x)5Si04X6:A; c) (MlxM21-x)3Si04X2:A; d) (M1XM21-X)5(SΪO4)2X2:A; e) (MlxM21-x)5Si207X4:A; f) (MlxM21-x)10(Si2O7)3X2:A; g) (MlxM21-x)4Si207X2:A; h) Ml6M24(Si207)3X2:A; i) (MlxM21-x)7Si207X8:A; j) (MlxM21-x)4Si308X2:A; k) (MlxM21-x)4Si308X4:A; 1) (MlxM21-x)8Si4012X8:A; m) (MlxM21-x)5Si206X6:A; n) (MlxM21-x)15Si6018X8:A; o) (MlxM21-x)5Si4O10X5:A; p) (MlxM21-x)10(SiO4)3(SO4)3X2:A; q) (MlxM21-x)4(SiO4)(SO4)X2:A; and r) (MlxM21-x)8Mg(Si04)4X2:A, wherein: Ml and M2 are each independently at least one metal ion selected from the group consisting OfMg2+, Ca2+, Sr2+, Ba2+, Zn2+ and Cd2+; x is a value from about 0.001 to about 1; X is at least one halide ion in ionic form; A is at least one activator ion selected from the group consisting of Eu , Yb , Mn2+, Bi3+, Pb2+, Ce3+, Nd3+, Pr3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+ and Yb3+; if the phosphor has the formula (MlxM21-x)2LiSiθ4X:A, and Ml is Sr2+, x is 1 and X is fluoride or M2 is Sr2+, x is 0 and X is fluoride, then A is not Eu2+; and if the phosphor has the formula (M 1XM2 ^x)3SiO4X2: A, and Ml is Ca2+, x is 1 and X is chloride or M2 is Ca2+, x is 0 and X is chloride, then A is not Eu2+; and if the phosphor has the formula (MlxM21-x)8Mg(Si04)4X2:A, and Ml is Ca2+, x is 1 and X is chloride or M2 is Ca , x is 0 and X is chloride, then A is not Eu . 2) The phosphor of claim 1 , wherein: Ml and M2 are each independently Ca2+, Sr2+, Ba2+ or a combination thereof; X is fluoride, chloride, bromide or a combination thereof; and A is Eu , Mn , Ce or combination thereof. 3) The phosphor of claim 1 , wherein: Ml is Ca2+; M2 is Sr2+, Ba2+ or a combination thereof; X is fluoride, chloride or a combination thereof; and A is Eu2+, Mn2+, Ce3+ or a combination thereof. 4) The phosphor of claim 1 , wherein the phosphor has a formula of: (MlxM21-x)3Si04X2:A, wherein x is a value from about 0.01 to about 1. 5) The phosphor of claim 1 , wherein the phosphor has a formula of: (MlxM21-x)8Mg(Si04)4X2:A, wherein x is a value from about 0.01 to about 1. 6) The phosphor of claim 1, wherein the phosphor has a formula of: (CaxSr1-x)3Si04X2:A, wherein: x is a value from about 0.01 to about 1 ; X is fluoride, chloride, bromide or a combination thereof; and A is Eu2+, Mn2+, Ce3+ or a combination thereof. 7) The phosphor of claim 1 , wherein the phosphor has a formula of: (MlxM21.x)8Mg(Si04)4X2:A, wherein: x is a value from about 0.01 to about 1 ; X is fluoride, chloride, bromide or a combination thereof; and A is Eu2+, Mn2+, Ce3+ and a combination thereof. 8) The phosphor of claim 1 , wherein the phosphor has a formula of: (CaxSr1-x)3Si04Cl2:Eu2+, wherein: x is a value from about 0.01 to about 1 ; and Eu2+ is of an amount from about 0.0001 mole to about 0.1 mole of the phosphor. ) The phosphor of claim 1 , wherein the phosphor has a formula of: (MlxM21-x)8Mg(SiO4)4X2:Eu2+, wherein: x is a value from about 0.01 to about 1; and Eu2+ is of an amount from about 0.0001 mole to about 0.1 mole of the phosphor. 10) A coated phosphor comprising: a) a phosphor according to claim 1 ; b) at least one layer of a coating on the phosphor, wherein the layer comprises at least one oxide. 11) The coated phosphor of claim 1, wherein the coating comprises at least two layers. 12) A lighting device comprising: a) a light source that emits light at wavelengths of at least about 300 nm; and b) at least one phosphor according to claim 1, wherein:
(1) the phosphor is capable of absorbing at least a portion of the light emitted from the light source;
(2) the phosphor modifies a chromaticity of the portion of the light absorbed from the light source;
(3) the phosphor emits light of a longer wavelength than that of the light absorbed from the light source; and
(4) optionally, the phosphor further comprises at least one layer of a coating that comprises at least one oxide.
13) The lighting device of claim 12, wherein the lighting device produces white light. 14) The lighting device of claim 12, wherein the light source is a light emitting diode (LED).
15) The lighting device of claim 14, wherein:
the LED comprises a quantum well structure having a light emitting layer sandwiched between a p-type clad layer and an n-type clad layer.
16) The lighting device of claim 15, wherein:
the p-type clad layer is formed of AIqGa1 _qN, wherein 0 < q < 1;
the n-type clad layer is formed of Al1-Ga1 -rN, wherein 0 < r < 1; and
optionally, the p-type clad layer has a band gap that is larger than the band gap of the n-type clad layer.
17) The lighting device of 16, wherein the LED comprises a light emitting layer containing indium and at least one quantum well structure.
18) The lighting device of according to claim 17, wherein:
optionally, at least one quantum well structure comprises at least one well layer of InGaN and at least one barrier layer of GaN;
optionally, at least one quantum well structure comprises at least one well layer of InGaN and at least one barrier layer of AlGaN; and
optionally, at least one quantum well structure comprises at least one well layer of AlInGaN and at least one barrier layer of AlInGaN;
wherein at least one barrier layer has a band gap energy larger than a band gap energy of at least one well layer and
optionally, the well layer has a thickness of at most about 100 angstroms.
19) The lighting device of claim 12, wherein for the at least one phosphor:
Ml and M2 are each independently Ca2+, Sr2+, Ba2+ or a combination thereof; X is fluoride, chloride, bromide or a combination thereof; and
A is Eu2+, Mn2+, Ce3+ or a combination thereof.
20) The light device of claim 12, wherein for the at least one phosphor:
Ml is Ca2+;
M2 is Sr2+, Ba2+ or a combination thereof;
X is fluoride, chloride or a combination thereof; and
A is Eu2+, Mn2+, Ce3+ or a combination thereof.
21) The lighting device of claim 12, wherein the at least one phosphor has the formula:
(CaxSn-x)3Si04X2:A,
wherein:
x is a value from about 0.01 to about 1;
X is fluoride, chloride, bromide or a combination thereof; and
A is Eu2+, Mn2+, Ce3+ or a combination thereof.
22) The lighting device of claim 12, wherein the at least one phosphor has the formula:
(MlxM21-x)8Mg(Si04)4X2:A,
wherein:
x is a value from about 0.01 to about 1 ;
X is fluoride, chloride, bromide or a combination thereof; and
A is Eu2+, Mn2+, Ce3+ or combination thereof.
23) The lighting device of claim 12, wherein the at least one phosphor has the formula: (CaxSr1-x)3Si04Cl2:Eu2+,
wherein:
x is a value from about 0.01 to about 1; and
Eu2+ is of an amount from about 0.0001 mole to about 0.1 mole of the phosphor.
24) The lighting device of claim 12, wherein the at least one phosphor has the formula:
(MlxM21-x)8Mg(SiO4)4X2:Eu2+,
wherein:
x is a value from about 0.01 to about 1; and
Eu2+ is of an amount from about 0.0001 mole to about 0.1 mole of the phosphor.
25) The lighting device of claim 23, further comprising at least one additional phosphor having formula (I):
CaSiO3-(SiO2)n:Rε, Y
(I) wherein:
Rε is at least one activator ion selected from the group consisting OfEu2+ and Mn2+; and
Y is at least one halide ion in ionic or atomic form or is absent.
26) The lighting device of claim 25, wherein the at least one additional phosphor comprises formula (II):
CaSiO3-(SiO2)n:Eu2+, I"
(H) and the additional phosphor emits blue light.
27) The lighting device of claim 25, wherein the at least one additional phosphor comprises formula (III):
CaSiO3-(SiO2)n:Eu2+,Mn2+, T
(III)
and the additional phosphor emits red light.
28) The lighting device of claim 23, further comprising at least two additional phosphors, wherein:
one phosphor comprises formula (II):
CaSiO3-(SiO2)n:Eu2+, T; and
(H)
the second phosphor comprises formula (III):
CaSiO3-(SiO2)n:Eu2+,Mn2+, I"
(III).
29) The lighting device of claim 28, wherein the lighting device emits white light.
30) A lighting device comprising:
a) a light source that emits light at wavelengths of at least about 300 nm, wherein the light source is a light emitting diode (LED); and
b) at least one phosphor according to claim 1, wherein:
(1) the phosphor is capable of absorbing at least a portion of the light emitted from the light source;
(2) the phosphor modifies a chromaticity of the portion of the light absorbed from the light source; (3) the phosphor emits light of a longer wavelength than that of the light absorbed from the light source; and
(4) optionally, the phosphor further comprises at least one layer of a coating that comprises at least one oxide,
wherein the lighting device produces white light.
EP06816796A 2005-12-02 2006-10-12 Metal silicate halide phosphors and led lighting devices using the same Withdrawn EP1969085A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US74198205P 2005-12-02 2005-12-02
US11/527,835 US8906262B2 (en) 2005-12-02 2006-09-27 Metal silicate halide phosphors and LED lighting devices using the same
PCT/US2006/039907 WO2007064414A1 (en) 2005-12-02 2006-10-12 Metal silicate halide phosphors and led lighting devices using the same

Publications (2)

Publication Number Publication Date
EP1969085A1 true EP1969085A1 (en) 2008-09-17
EP1969085A4 EP1969085A4 (en) 2009-12-02

Family

ID=38092555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06816796A Withdrawn EP1969085A4 (en) 2005-12-02 2006-10-12 Metal silicate halide phosphors and led lighting devices using the same

Country Status (6)

Country Link
US (1) US8906262B2 (en)
EP (1) EP1969085A4 (en)
JP (1) JP5242407B2 (en)
KR (1) KR20080076993A (en)
TW (1) TWI443177B (en)
WO (1) WO2007064414A1 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575697B2 (en) * 2004-08-04 2009-08-18 Intematix Corporation Silicate-based green phosphors
US7276183B2 (en) * 2005-03-25 2007-10-02 Sarnoff Corporation Metal silicate-silica-based polymorphous phosphors and lighting devices
CN101484964A (en) * 2006-05-02 2009-07-15 舒伯布尔斯公司 Method of light dispersion and preferential scattering of certain wavelengths of light for light-emitting diodes and bulbs constructed therefrom
WO2007130359A2 (en) 2006-05-02 2007-11-15 Superbulbs, Inc. Heat removal design for led bulbs
BRPI0711150A2 (en) * 2006-05-02 2011-08-23 Superbulbs Inc plastic led bulb
CN101605867B (en) * 2006-10-03 2013-05-08 渲染材料公司 Metal silicate halide phosphors and led lighting devices using the same
US20080185600A1 (en) * 2007-02-02 2008-08-07 World Properties, Inc. Phosphor particles with plural coatings for LEDs
JP5222600B2 (en) * 2007-04-05 2013-06-26 株式会社小糸製作所 Phosphor
US7781779B2 (en) * 2007-05-08 2010-08-24 Luminus Devices, Inc. Light emitting devices including wavelength converting material
JP5360857B2 (en) * 2007-05-17 2013-12-04 Necライティング株式会社 Green light emitting phosphor, manufacturing method thereof, and light emitting device using the same
US8439528B2 (en) 2007-10-03 2013-05-14 Switch Bulb Company, Inc. Glass LED light bulbs
US7915627B2 (en) * 2007-10-17 2011-03-29 Intematix Corporation Light emitting device with phosphor wavelength conversion
CN101896766B (en) 2007-10-24 2014-04-23 开关电灯公司 Diffuser for LED light sources
JP5369295B2 (en) * 2007-11-08 2013-12-18 住友金属鉱山株式会社 Surface-coated strontium silicate phosphor particles, method for producing the same, and light-emitting diode comprising the phosphor particles
DE102007053285A1 (en) * 2007-11-08 2009-05-14 Merck Patent Gmbh Process for the preparation of coated phosphors
DE102007053770A1 (en) * 2007-11-12 2009-05-14 Merck Patent Gmbh Coated phosphor particles with refractive index matching
US8030839B2 (en) * 2007-11-30 2011-10-04 Nichia Corporation Phosphor activated with europium, light emitting device using the same and method of manufacturing the phosphor
US20090309114A1 (en) * 2008-01-16 2009-12-17 Luminus Devices, Inc. Wavelength converting light-emitting devices and methods of making the same
JP4404166B2 (en) * 2008-03-26 2010-01-27 株式会社村田製作所 Wireless IC device
US8242525B2 (en) * 2008-05-20 2012-08-14 Lightscape Materials, Inc. Silicate-based phosphors and LED lighting devices using the same
KR20100070731A (en) * 2008-12-18 2010-06-28 삼성전자주식회사 Halosilicate phosphors and white light emitting devices including same
JP4873024B2 (en) * 2009-02-23 2012-02-08 ウシオ電機株式会社 Light source device
JP5310087B2 (en) * 2009-02-26 2013-10-09 日亜化学工業株式会社 Phosphor and light emitting device using the same
JP5326777B2 (en) * 2009-04-27 2013-10-30 日亜化学工業株式会社 Phosphor and method for producing the same
CN102666782B (en) 2009-12-21 2016-02-10 株式会社小糸制作所 Fluor and light-emitting device
US8593062B2 (en) * 2010-04-29 2013-11-26 General Electric Company Color stable phosphors for LED lamps and methods for preparing them
CN102906219B (en) * 2010-06-18 2014-05-21 海洋王照明科技股份有限公司 Halosilicate luminescent materials and preparation methods and uses thereof
JP2013541601A (en) 2010-08-26 2013-11-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Silicate based phosphor
TW201226530A (en) * 2010-12-20 2012-07-01 Univ Nat Chiao Tung Yellow phosphor having oxyapatite structure, preparation method and white light-emitting diode thereof
USD762918S1 (en) 2014-05-21 2016-08-02 II Stephen Travis Fitzwater Cordless decorative lamp for interchangeable bases
KR101503797B1 (en) * 2011-02-28 2015-03-19 성균관대학교산학협력단 Phosphor powder prepared by alkali treatment of silicate phosphor containing chlorine and method for preparing the same
KR101388189B1 (en) * 2011-02-28 2014-04-24 성균관대학교산학협력단 Chlorosilicate phosphor and preparing method of the same
US8591069B2 (en) 2011-09-21 2013-11-26 Switch Bulb Company, Inc. LED light bulb with controlled color distribution using quantum dots
KR101356962B1 (en) * 2011-10-17 2014-02-04 한국과학기술원 Oxide Green Phosphor and the Method for Preparing the Same and White LED using the same
CN102492418A (en) * 2011-12-12 2012-06-13 苏州大学 Green emitting phosphor applicable to near ultraviolet light excitation and preparation method thereof
KR101471129B1 (en) * 2012-09-03 2014-12-11 성균관대학교산학협력단 Green phosphor and producing method of the same
CN103013504B (en) * 2012-12-14 2014-12-03 陕西科技大学 Preparation method of single-substrate Ca2SiO3Cl2:xTb<3+> fluorescent powder for white-light LEDs (light-emitting diodes)
CN103074055B (en) * 2013-01-24 2015-07-29 陕西科技大学 A kind of white light LEDs panchromatic fluorescent material and preparation method thereof
KR101434459B1 (en) * 2013-08-20 2014-08-26 한국화학연구원 A novel bromosilicate-based phosphor for near-ultraviolet excited light emitting device
JP6195117B2 (en) 2013-12-03 2017-09-13 パナソニックIpマネジメント株式会社 Acid chloride phosphor, light emitting device, lighting device, and vehicle
KR102337406B1 (en) 2014-12-09 2021-12-13 삼성전자주식회사 Fluoride phosphor, method of manufacturing the same, light emitting device, display apparatus and illumination apparatus
US9890328B2 (en) 2014-12-12 2018-02-13 General Electric Company Phosphor compositions and lighting apparatus thereof
US9537061B2 (en) * 2014-12-12 2017-01-03 General Electric Company Phosphor compositions and lighting apparatus thereof
MY182260A (en) * 2015-06-23 2021-01-18 Gen Electric Phosphor compositions and lighting apparatus thereof
KR102477353B1 (en) 2015-08-06 2022-12-16 삼성전자주식회사 Red phosphor, light emitting device and lighting apparatus
CN105238397B (en) * 2015-11-02 2017-10-13 吉林大学 One kind is based on Pb2+The ultraviolet conversion luminous material of ion
JP6414190B2 (en) * 2016-03-28 2018-10-31 日亜化学工業株式会社 Method for manufacturing phosphor
WO2017169628A1 (en) * 2016-03-30 2017-10-05 ソニー株式会社 Light emitting element, light source device, and projection display device
US9605199B1 (en) * 2016-03-31 2017-03-28 General Electric Company Oxy-bromide phosphors and uses thereof
CN110938427A (en) * 2019-11-29 2020-03-31 湖北大学 Rare earth metal doped alkaline earth metal silicate material, preparation method and application thereof, and light-emitting device
CN112788807B (en) * 2020-12-30 2022-09-13 宁波升谱光电股份有限公司 Integrated LED light source preparation device and method for agricultural pest control
CN116120924B (en) * 2023-02-28 2023-07-18 常熟理工学院 Eu 2+ Activated green luminous fluorescent powder and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608554A (en) * 1994-07-26 1997-03-04 Samsung Display Devices Co., Ltd. LCD having a phosphor layer and a backlight source with a main emitting peak in the region of 380-420nm
WO2000032982A1 (en) * 1998-11-30 2000-06-08 General Electric Company Decorative lighting apparatus with light source and luminescent material
US6294800B1 (en) * 1998-02-06 2001-09-25 General Electric Company Phosphors for white light generation from UV emitting diodes
US20040159846A1 (en) * 2003-02-18 2004-08-19 Doxsee Daniel Darcy White light LED device
WO2006104860A2 (en) * 2005-03-25 2006-10-05 Sarnoff Corporation Metal silicate-silica-based polymorphous phosphors and lighting devices
WO2007018260A1 (en) * 2005-08-10 2007-02-15 Mitsubishi Chemical Corporation Phosphor and light-emitting device using same

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB864343A (en) 1956-07-06 1961-04-06 Ass Elect Ind Improvements in luminescent materials
GB1087655A (en) 1965-04-14 1967-10-18 Gen Electric Co Ltd Improvements in or relating to luminescent materials
DE10028266A1 (en) * 2000-06-09 2001-12-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Luminescent material used for emitting green light is of the thiogallate class
US3790490A (en) * 1971-03-03 1974-02-05 Gen Electric Europium and manganese activated strontium chlorosilicate phosphor
GB1414381A (en) 1973-01-01 1975-11-19 Gen Electric Co Ltd Luminescent materials
JPS57166529A (en) 1981-04-07 1982-10-14 Omron Tateisi Electronics Co Method and device for measuring temperature
US5140163A (en) * 1987-08-17 1992-08-18 Agfa-Gevaert, N.V. Reproduction of X-ray images with photostimulable phosphor
JPH11510968A (en) 1996-06-11 1999-09-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Visible light emitting display including ultraviolet light emitting diode and ultraviolet excited visible light emitting phosphor and method of manufacturing the device
DE19638667C2 (en) * 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mixed-color light-emitting semiconductor component with luminescence conversion element
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP2001513828A (en) * 1997-02-24 2001-09-04 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Oxygen-containing fluorescent powder, method for producing the fluorescent powder, and apparatus using the fluorescent powder
DE59814117D1 (en) * 1997-03-03 2007-12-20 Philips Intellectual Property WHITE LUMINESCENCE DIODE
US5958591A (en) * 1997-06-30 1999-09-28 Minnesota Mining And Manufacturing Company Electroluminescent phosphor particles encapsulated with an aluminum oxide based multiple oxide coating
US6255670B1 (en) * 1998-02-06 2001-07-03 General Electric Company Phosphors for light generation from light emitting semiconductors
US6278135B1 (en) * 1998-02-06 2001-08-21 General Electric Company Green-light emitting phosphors and light sources using the same
US6252254B1 (en) * 1998-02-06 2001-06-26 General Electric Company Light emitting device with phosphor composition
EP1099258B1 (en) * 1998-06-30 2013-08-14 OSRAM Opto Semiconductors GmbH Light source for generating visible light
US5959316A (en) * 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
KR100702273B1 (en) * 1998-09-28 2007-03-30 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Lighting system
US6366018B1 (en) * 1998-10-21 2002-04-02 Sarnoff Corporation Apparatus for performing wavelength-conversion using phosphors with light emitting diodes
US6429583B1 (en) * 1998-11-30 2002-08-06 General Electric Company Light emitting device with ba2mgsi2o7:eu2+, ba2sio4:eu2+, or (srxcay ba1-x-y)(a1zga1-z)2sr:eu2+phosphors
US6373188B1 (en) * 1998-12-22 2002-04-16 Honeywell International Inc. Efficient solid-state light emitting device with excited phosphors for producing a visible light output
TW498102B (en) * 1998-12-28 2002-08-11 Futaba Denshi Kogyo Kk A process for preparing GaN fluorescent substance
US6273589B1 (en) * 1999-01-29 2001-08-14 Agilent Technologies, Inc. Solid state illumination source utilizing dichroic reflectors
US6212213B1 (en) * 1999-01-29 2001-04-03 Agilent Technologies, Inc. Projector light source utilizing a solid state green light source
US6351069B1 (en) * 1999-02-18 2002-02-26 Lumileds Lighting, U.S., Llc Red-deficiency-compensating phosphor LED
US6155699A (en) 1999-03-15 2000-12-05 Agilent Technologies, Inc. Efficient phosphor-conversion led structure
TW455908B (en) * 1999-04-20 2001-09-21 Koninkl Philips Electronics Nv Lighting system
US6811813B1 (en) 1999-05-19 2004-11-02 Sarnoff Corporation Method of coating micrometer sized inorganic particles
US6686691B1 (en) * 1999-09-27 2004-02-03 Lumileds Lighting, U.S., Llc Tri-color, white light LED lamps
KR100683364B1 (en) 1999-09-27 2007-02-15 필립스 루미리즈 라이팅 캄파니 엘엘씨 A light emitting diode device that produces white light by performing complete phosphor conversion
US6696703B2 (en) * 1999-09-27 2004-02-24 Lumileds Lighting U.S., Llc Thin film phosphor-converted light emitting diode device
JP4350232B2 (en) 1999-10-05 2009-10-21 株式会社朝日ラバー Fluorescent coating manufacturing support method and manufacturing support system thereof
DE19952932C1 (en) * 1999-11-03 2001-05-03 Osram Opto Semiconductors Gmbh LED white light source with broadband excitation
EP1104799A1 (en) * 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
US6513949B1 (en) * 1999-12-02 2003-02-04 Koninklijke Philips Electronics N.V. LED/phosphor-LED hybrid lighting systems
RU2214073C2 (en) 1999-12-30 2003-10-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Кристаллы и Технологии" White light source
DE10001189A1 (en) 2000-01-14 2001-07-19 Philips Corp Intellectual Pty Liquid crystal color picture screen has liquid crystal layer between substrate with blue radiation source, e.g. blue-light-emitting diode and substrate with phosphor layer
TW480744B (en) * 2000-03-14 2002-03-21 Lumileds Lighting Bv Light-emitting diode, lighting device and method of manufacturing same
JP4406490B2 (en) * 2000-03-14 2010-01-27 株式会社朝日ラバー Light emitting diode
US6603258B1 (en) * 2000-04-24 2003-08-05 Lumileds Lighting, U.S. Llc Light emitting diode device that emits white light
US6501100B1 (en) 2000-05-15 2002-12-31 General Electric Company White light emitting phosphor blend for LED devices
US6621211B1 (en) * 2000-05-15 2003-09-16 General Electric Company White light emitting phosphor blends for LED devices
DE10026435A1 (en) * 2000-05-29 2002-04-18 Osram Opto Semiconductors Gmbh Calcium-magnesium-chlorosilicate phosphor and its application in luminescence conversion LEDs
KR100784573B1 (en) * 2000-05-29 2007-12-10 파텐트-트로이한트-게젤샤프트 퓌어 엘렉트리쉐 글뤼람펜 엠베하 Led-based white-light emitting lighting unit
US6577073B2 (en) * 2000-05-31 2003-06-10 Matsushita Electric Industrial Co., Ltd. Led lamp
DE10036940A1 (en) * 2000-07-28 2002-02-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Luminescence conversion LED
WO2002011173A1 (en) * 2000-07-28 2002-02-07 Osram Opto Semiconductors Gmbh Luminescence conversion based light emitting diode and phosphors for wavelength conversion
US6544438B2 (en) * 2000-08-02 2003-04-08 Sarnoff Corporation Preparation of high emission efficiency alkaline earth metal thiogallate phosphors
AT410266B (en) * 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh LIGHT SOURCE WITH A LIGHT-EMITTING ELEMENT
US6417019B1 (en) * 2001-04-04 2002-07-09 Lumileds Lighting, U.S., Llc Phosphor converted light emitting diode
US6685852B2 (en) * 2001-04-27 2004-02-03 General Electric Company Phosphor blends for generating white light from near-UV/blue light-emitting devices
US6616862B2 (en) * 2001-05-21 2003-09-09 General Electric Company Yellow light-emitting halophosphate phosphors and light sources incorporating the same
US6596195B2 (en) * 2001-06-01 2003-07-22 General Electric Company Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
US6632379B2 (en) * 2001-06-07 2003-10-14 National Institute For Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
FR2826016B1 (en) * 2001-06-13 2004-07-23 Rhodia Elect & Catalysis COMPOUND BASED ON AN ALKALINE EARTH, SULFUR AND ALUMINUM, GALLIUM OR INDIUM, METHOD FOR PREPARING SAME AND USE THEREOF AS LUMINOPHORE
EP2017901A1 (en) * 2001-09-03 2009-01-21 Panasonic Corporation Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting DEV
DE10147040A1 (en) 2001-09-25 2003-04-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source
JP3993854B2 (en) 2001-10-01 2007-10-17 松下電器産業株式会社 Semiconductor light emitting element and light emitting device using the same
CN1585812A (en) * 2001-11-14 2005-02-23 沙诺夫公司 Red photoluminescent phosphors
AU2003221442A1 (en) * 2002-03-22 2003-10-08 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
JP2003306674A (en) 2002-04-15 2003-10-31 Sumitomo Chem Co Ltd Fluorescent material for white led, and white led using the same
US20030222268A1 (en) 2002-05-31 2003-12-04 Yocom Perry Niel Light sources having a continuous broad emission wavelength and phosphor compositions useful therefor
TW563261B (en) 2002-06-07 2003-11-21 Solidlite Corp A method and of manufacture for tri-color white LED
US6809471B2 (en) 2002-06-28 2004-10-26 General Electric Company Phosphors containing oxides of alkaline-earth and Group-IIIB metals and light sources incorporating the same
US7768189B2 (en) * 2004-08-02 2010-08-03 Lumination Llc White LEDs with tunable CRI
US7224000B2 (en) 2002-08-30 2007-05-29 Lumination, Llc Light emitting diode component
US7800121B2 (en) * 2002-08-30 2010-09-21 Lumination Llc Light emitting diode component
US20050218781A1 (en) 2002-09-09 2005-10-06 Hsing Chen Triple wavelengths light emitting diode
US20050218780A1 (en) 2002-09-09 2005-10-06 Hsing Chen Method for manufacturing a triple wavelengths white LED
EP1413618A1 (en) * 2002-09-24 2004-04-28 Osram Opto Semiconductors GmbH Luminescent material, especially for LED application
EP1413619A1 (en) * 2002-09-24 2004-04-28 Osram Opto Semiconductors GmbH Luminescent material, especially for LED application
JP4263453B2 (en) * 2002-09-25 2009-05-13 パナソニック株式会社 Inorganic oxide and light emitting device using the same
JP2004127988A (en) * 2002-09-30 2004-04-22 Toyoda Gosei Co Ltd White light emitting device
US6717353B1 (en) * 2002-10-14 2004-04-06 Lumileds Lighting U.S., Llc Phosphor converted light emitting device
US7118438B2 (en) * 2003-01-27 2006-10-10 3M Innovative Properties Company Methods of making phosphor based light sources having an interference reflector
US7245072B2 (en) * 2003-01-27 2007-07-17 3M Innovative Properties Company Phosphor based light sources having a polymeric long pass reflector
US7312560B2 (en) * 2003-01-27 2007-12-25 3M Innovative Properties Phosphor based light sources having a non-planar long pass reflector and method of making
US7091661B2 (en) * 2003-01-27 2006-08-15 3M Innovative Properties Company Phosphor based light sources having a reflective polarizer
US20040145312A1 (en) * 2003-01-27 2004-07-29 3M Innovative Properties Company Phosphor based light source having a flexible short pass reflector
US7091653B2 (en) * 2003-01-27 2006-08-15 3M Innovative Properties Company Phosphor based light sources having a non-planar long pass reflector
US7157839B2 (en) * 2003-01-27 2007-01-02 3M Innovative Properties Company Phosphor based light sources utilizing total internal reflection
US7210977B2 (en) * 2003-01-27 2007-05-01 3M Innovative Properties Comapny Phosphor based light source component and method of making
US6982523B2 (en) * 2003-01-28 2006-01-03 Kabushiki Kaisha Fine Rubber Kenkyuusho Red light emitting phosphor, its production and light emitting device
KR100511562B1 (en) * 2003-01-29 2005-09-02 한국화학연구원 Composition and Preparation method of yellow silicates phosphor for white LED and AM LCD
WO2004079798A2 (en) * 2003-03-04 2004-09-16 Sarnoff Corporation Efficient, size-selected green-emitting phosphors
US7368179B2 (en) * 2003-04-21 2008-05-06 Sarnoff Corporation Methods and devices using high efficiency alkaline earth metal thiogallate-based phosphors
US7125501B2 (en) 2003-04-21 2006-10-24 Sarnoff Corporation High efficiency alkaline earth metal thiogallate-based phosphors
US6982045B2 (en) 2003-05-17 2006-01-03 Phosphortech Corporation Light emitting device having silicate fluorescent phosphor
US7250715B2 (en) * 2004-02-23 2007-07-31 Philips Lumileds Lighting Company, Llc Wavelength converted semiconductor light emitting devices
JP2005272831A (en) * 2004-02-27 2005-10-06 Sumitomo Chemical Co Ltd Method for producing silicate phosphor
US7592192B2 (en) 2004-03-05 2009-09-22 Konica Minolta Holdings, Inc. White light emitting diode (white LED) and method of manufacturing white LED
US7573072B2 (en) * 2004-03-10 2009-08-11 Lumination Llc Phosphor and blends thereof for use in LEDs
US7586127B2 (en) * 2004-03-29 2009-09-08 Stanley Electric Co., Ltd. Light emitting diode
US7488990B2 (en) 2004-04-02 2009-02-10 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Using multiple types of phosphor in combination with a light emitting device
US7229573B2 (en) 2004-04-20 2007-06-12 Gelcore, Llc Ce3+ and Eu2+ doped phosphors for light generation
JP2006012770A (en) 2004-05-27 2006-01-12 Hitachi Ltd Light-emitting device and image display device using this light-emitting device
KR20070034005A (en) 2004-06-23 2007-03-27 로무 가부시키가이샤 White light emitting device and its manufacturing method
EP1769050B1 (en) * 2004-07-06 2013-01-16 Lightscape Materials Inc. Efficient, green-emitting phosphors, and combinations with red-emitting phosphors
US20060181192A1 (en) * 2004-08-02 2006-08-17 Gelcore White LEDs with tailorable color temperature
US7453195B2 (en) * 2004-08-02 2008-11-18 Lumination Llc White lamps with enhanced color contrast
US7311858B2 (en) * 2004-08-04 2007-12-25 Intematix Corporation Silicate-based yellow-green phosphors
US7390437B2 (en) * 2004-08-04 2008-06-24 Intematix Corporation Aluminate-based blue phosphors
US7267787B2 (en) * 2004-08-04 2007-09-11 Intematix Corporation Phosphor systems for a white light emitting diode (LED)
US20060027785A1 (en) * 2004-08-04 2006-02-09 Intematix Corporation Novel silicate-based yellow-green phosphors
US7575697B2 (en) * 2004-08-04 2009-08-18 Intematix Corporation Silicate-based green phosphors
US20060049414A1 (en) * 2004-08-19 2006-03-09 Chandran Ramachandran G Novel oxynitride phosphors
CN101010413B (en) 2004-09-07 2010-08-25 住友化学株式会社 Phosphor, phosphor paste and light-emitting device
KR100638619B1 (en) * 2004-09-23 2006-10-26 삼성전기주식회사 Phosphor blends for converting wavelength and light emitting device using the same
US7321191B2 (en) * 2004-11-02 2008-01-22 Lumination Llc Phosphor blends for green traffic signals
JP5245222B2 (en) * 2005-08-10 2013-07-24 三菱化学株式会社 Phosphor and light emitting device using the same
CN101605867B (en) * 2006-10-03 2013-05-08 渲染材料公司 Metal silicate halide phosphors and led lighting devices using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608554A (en) * 1994-07-26 1997-03-04 Samsung Display Devices Co., Ltd. LCD having a phosphor layer and a backlight source with a main emitting peak in the region of 380-420nm
US6294800B1 (en) * 1998-02-06 2001-09-25 General Electric Company Phosphors for white light generation from UV emitting diodes
WO2000032982A1 (en) * 1998-11-30 2000-06-08 General Electric Company Decorative lighting apparatus with light source and luminescent material
US20040159846A1 (en) * 2003-02-18 2004-08-19 Doxsee Daniel Darcy White light LED device
WO2006104860A2 (en) * 2005-03-25 2006-10-05 Sarnoff Corporation Metal silicate-silica-based polymorphous phosphors and lighting devices
WO2007018260A1 (en) * 2005-08-10 2007-02-15 Mitsubishi Chemical Corporation Phosphor and light-emitting device using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007064414A1 *

Also Published As

Publication number Publication date
KR20080076993A (en) 2008-08-20
JP5242407B2 (en) 2013-07-24
TW200732454A (en) 2007-09-01
JP2009517525A (en) 2009-04-30
US20070125982A1 (en) 2007-06-07
US8906262B2 (en) 2014-12-09
TWI443177B (en) 2014-07-01
WO2007064414A1 (en) 2007-06-07
EP1969085A4 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
US8906262B2 (en) Metal silicate halide phosphors and LED lighting devices using the same
US7713442B2 (en) Metal silicate halide phosphors and LED lighting devices using the same
US20070125984A1 (en) Phosphors protected against moisture and LED lighting devices
EP1861884B1 (en) Metal silicate-silica-based polymorphous phosphors and lighting devices
US8242525B2 (en) Silicate-based phosphors and LED lighting devices using the same
EP1769050B1 (en) Efficient, green-emitting phosphors, and combinations with red-emitting phosphors
TWI502052B (en) Silicophosphate phosphors
CN101336279A (en) Metal silicate halide phosphors and led lighting devices using the same
CN101336479A (en) Phosphors protected against moisture and led lighting devices
US20060017041A1 (en) Nitride phosphors and devices
US20110279016A1 (en) Carbonitride based phosphors and light emitting devices using the same
CN102939355A (en) Oxycarbonitride phosphors and light emitting devices using the same
CN101652451A (en) Preparation is used for the method for the twinkler of being made up of ortho-silicate of pcLED
Dutta et al. Inorganic phosphor materials for solid state white light generation
KR100737928B1 (en) Alumina coated silicate phosphors comprising europium, preparation method thereof, and light emitting devices using these phosphors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LIGHTSCAPE MATERIALS INC.

A4 Supplementary search report drawn up and despatched

Effective date: 20091102

17Q First examination report despatched

Effective date: 20100216

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150716