EP1967799A2 - Sorption cooling element with regulating organ and additional heat source - Google Patents

Sorption cooling element with regulating organ and additional heat source Download PDF

Info

Publication number
EP1967799A2
EP1967799A2 EP08001474A EP08001474A EP1967799A2 EP 1967799 A2 EP1967799 A2 EP 1967799A2 EP 08001474 A EP08001474 A EP 08001474A EP 08001474 A EP08001474 A EP 08001474A EP 1967799 A2 EP1967799 A2 EP 1967799A2
Authority
EP
European Patent Office
Prior art keywords
cooling element
element according
evaporator
working medium
sorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08001474A
Other languages
German (de)
French (fr)
Other versions
EP1967799A3 (en
EP1967799B1 (en
Inventor
Peter Dr. Maier-Laxhuber
Ralf Dr. Schmidt
Reiner Dipl.-Ing. Wörz
Andreas Becky
Gerd Richter
Norbert Weinzierl
Manfred Binnen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeo Tech Zeolith Technologie GmbH
Original Assignee
Zeo Tech Zeolith Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200710010981 external-priority patent/DE102007010981A1/en
Application filed by Zeo Tech Zeolith Technologie GmbH filed Critical Zeo Tech Zeolith Technologie GmbH
Publication of EP1967799A2 publication Critical patent/EP1967799A2/en
Publication of EP1967799A3 publication Critical patent/EP1967799A3/en
Application granted granted Critical
Publication of EP1967799B1 publication Critical patent/EP1967799B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D5/00Devices using endothermic chemical reactions, e.g. using frigorific mixtures
    • F25D5/02Devices using endothermic chemical reactions, e.g. using frigorific mixtures portable, i.e. adapted to be carried personally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/804Boxes

Definitions

  • the invention relates to a sorption cooling element with a control element and with a gas-tight multi-layer film for cooling in which by evaporation of a working fluid and subsequent sorption of the working medium vapor in a sorbent under vacuum cold generated.
  • the evaporator is flexibly designed to be adapted to various cooling tasks.
  • Sorption cooling elements are devices in which a solid adsorbent sorbs a second, boiling at lower temperatures agent, the working medium, in vapor form with heat release (sorption).
  • the working fluid evaporates in an evaporator while absorbing heat. After the adsorbent is saturated, it can be desorbed by supplying heat at a higher temperature (desorption phase). During this process, working fluid evaporates from the adsorbent. The working fluid vapor can be reliquefied and then re-vaporized.
  • Adsorption apparatus for cooling with solid sorbents are from EP 0 368 111 and the DE-OS 34 25 419 known. Sorbent container, filled with sorbents, thereby absorb working agent vapor, which is produced in an evaporator, and sorb it under heat release. The heat of sorption must be removed from the sorbent.
  • the chillers can be used to cool and keep food warm in thermally insulated boxes.
  • the WO 01/10738 A1 describes a self-cooling beverage can with an evaporator inside and a sorber outside the can.
  • the cooling is started by opening a steam channel between evaporator and sorber.
  • the cold generated in the evaporator is discharged through the surfaces of the drink to be cooled within the can.
  • the heat generated in the sorbent is stored in a heat buffer.
  • the self-cooling beverage can is heavily modified over an ordinary can and expensive to manufacture.
  • the US Pat. No. 6,474,100 B1 finally describes a self-cooling cooling element on the outside of a bag for liquids or bulk materials.
  • the sorbent is enclosed in a flexible, multi-layered film.
  • the contact with the hot sorption filling is reduced to a minimum by insulation and flow materials as well as by intervening heat storage masses.
  • the temperature compensation between the hot sorber filling and the cold evaporator, which are opposed over a large area, must be reduced by an elaborate insulation.
  • the DE 10 2005 034297 A1 describes a sorption cooling element with gas-tight film in which a sorbent is filled in a gas-tight sorbent bag, which is cut to start the cooling function by means of cutting tool. A regulation of the cooling capacity is not possible.
  • Object of the invention are inexpensive sorption cooling elements for single use in which the cooling is adjustable.
  • the individual components of a cooling element are sealed in a gas-tight, flexible multi-layer film under vacuum so that the effluent from the liquid working fluid can flow only through the working medium vapor passage and the control element to the sorbent.
  • the deformation forces generated by the external air pressure must be sufficient to nestle the multilayer film around the individual components in such a way that no sidestream remains open for the working medium vapor to bypass the control element.
  • the individual components must therefore not be connected to each other gas-tight. They are only to be inserted into a bag made of the multilayer film and to be fixed until the bag settles firmly under vacuum around the components and only the working medium steam channel remains open.
  • the control element can be easily opened and closed by deforming the multilayer film. Elaborate vacuum feedthroughs are therefore not necessary.
  • the control element can be formed from a valve seat and a matched sealing surface.
  • the regulating member can be opened and closed by the multi-layer film and, if necessary, also be used for power control.
  • no further spring elements are necessary if the flexible film rests on the sealing surface in such a way that the external air pressure can act suitably on the valve.
  • the working medium steam ducts it is advantageous for the working medium steam ducts to use hoses that Although withstand the external pressure, but not an additional pressure, eg generated by a squeezing tool, which acts from the outside on the multi-layer film and squeezes the tube so strong that the flow path is blocked.
  • Another very inexpensive control organ is formed when the sorbent is sealed within a separate bag. If this bag is pierced at the point of contact with the working medium vapor channel by means of a sharp-edged cutting tool, the regulating member is likewise opened.
  • the cutting tool can also be inserted between the multilayer film and the separate bag. For the triggering then the outer film must be deformable at the point in question without even be leaking.
  • the control element may be extended by a thermostatic valve in addition to the actual closure element.
  • the temperature of the evaporator can be maintained at a control temperature.
  • the thermostatic valve releases the path of the working medium vapor to the sorbent, at too low temperatures, the thermostatic valve closes the way.
  • all known elements that pull a change in temperature with a change in temperature are suitable.
  • the most well-known here are stretchers and bi-metals.
  • Memory alloys can also be used to advantage. Bi-metal spirals can be used particularly cost-effectively for the control element. This temperature variations of less than 0.1 Kelvin can be achieved.
  • the cooling elements can be used particularly advantageous for temperature-controlled cooling of transport isolation containers.
  • Isolated transport containers serve e.g. for shipping temperature-sensitive food or pharmaceutical goods between +2 and +8 ° C.
  • insulated transport containers are storable over an arbitrarily long period of time.
  • the thermostatic valve then regulates the interior in a narrow temperature window, regardless of the prevailing outside temperature over several days. Since the insulating container can be made of inexpensive material (for example, polystyrene) can be dispensed with an often expensive return transport.
  • all inner walls of an insulating container can be covered with evaporator surfaces.
  • the interior temperature is then very homogeneous even with strongly fluctuating outside temperatures.
  • the evaporator is constructed flexibly according to the invention, at least one evaporator region can be made foldable. This area can be opened up if necessary and grant full access to the internal volume.
  • spacers are provided, which allow the working medium vapor flow freely from the liquid working fluid and at the same time contact the cold surfaces with good thermal conductivity of the film.
  • flexible plastic spacers are used, which are adapted to the respective cooling task.
  • the prerequisite is that the plastic spacers do not outgas during storage and worsen the vacuum.
  • polycarbonate, polyamide or polypropylene are used as the plastic, since these materials can be heated to higher temperatures and degassed before or during the production process.
  • Spacers made of plastic can be produced inexpensively by known manufacturing processes such as deep drawing, extrusion or thermal blasting.
  • the cargo is cooled by means of ice packs, which must be located within the container. Since these ice packs occupy a multiple of the volume of an evaporator according to the invention, on the one hand the internal volume is significantly reduced, or on the other hand, a larger insulating container necessary. Larger containers in turn have more outer surfaces over which more heat flows into the interior, which in turn must be buffered by larger ice packs.
  • each article can be equipped with cooling elements according to the invention. It is advantageous, for example, the cooling of tents, in which even entire tent walls can be replaced by cooling elements according to the invention.
  • the cooling of patients or injured in a hot environment or to reduce body temperature is just as possible as a use as a cooling vest, cooling suit or respirator. In principle, the place of use will be found everywhere where today cooling batteries or ice rechargeable batteries are used.
  • the cooling elements according to the invention can be stored for any length of time relative to the cooling and ice accumulators and can be adapted to the task to be cooled, since the evaporator is designed to be flexible.
  • Sorbents can reach temperatures of over 100 ° C during the sorption process. For such high temperatures, the multilayer films commonly used in the packaging sector are not always suitable. In particular, the polyethylene layers used for the sealing soften even at 80 ° C and leave the sheath to leak under vacuum. A sealant layer made of polypropylene, however, can withstand significantly higher temperatures. Its melting point is above 150 ° C.
  • multi-layer films having a polyamide layer thickness of 12 to 50 microns, an aluminum layer thickness of 6 to 12 microns and a polypropylene layer thickness of 50 to 100 microns are used. Use find such films z. As for the packaging of foods that are sterilized after packaging for preserving at temperatures above 120 ° C.
  • Inventive multilayer films are z. B. on the company Wipf AG in Volketswil, Switzerland or the company PAWAGmaschineen G.m.b.H., Wolfurt, Austria.
  • cooling elements with a leakage rate of less than 1x10 high -8 mbarl / sec are possible. The shelf life thus reaches several years, without the cooling readiness is impaired.
  • the sorbent used is advantageously zeolite. In its regular crystal structure, this can reversibly absorb up to 36% by mass of water. In the application according to the invention, the technically feasible water absorption is about 20 to 25%. Zeolites still have a considerable water vapor sorption capacity even at relatively high temperatures (above 100 ° C.) and are therefore particularly suitable for the use according to the invention.
  • Zeolite is a crystalline mineral that contains silicon and aluminum oxides in a framework structure.
  • the very regular framework structure contains cavities, in which water molecules can be sorbed with heat release. Within the framework structure, the water molecules are exposed to strong field forces whose strength depends on the amount of water already contained in the framework structure and the temperature of the zeolite. Naturally occurring natural zeolite types absorb significantly less water.
  • Natural zeolites have another advantage.
  • the non-active admixtures are typically 10 to 30%. Although they are not actively involved in the production of refrigeration, they are still heated by the neighboring zeolite crystals. They thus act as an additionally installed, inexpensive heat buffer. The result is that the zeolite filling is less hot and thus sorb additional water vapor at lower temperatures can.
  • Natural zeolite granules consist of broken or crushed fragments and therefore have sharp and pointed geometric shapes that can pierce or cut through the multi-layer films under vacuum and elevated temperatures.
  • Natural zeolites can after their use in cooling elements z. B. be used as soil conditioner, as a liquid binder or to improve the quality of water in stagnant water.
  • the types A, X and Y each in their inexpensive Na form are recommended.
  • the amount of sorbent is to be dimensioned and arranged so that only a minimal pressure drop within the sorbent must be overcome for the incoming water vapor.
  • the pressure drop should be less than 5 mbar, in particular for water as working fluid.
  • the sorbent must provide the inflowing agent vapor sufficient surface for attachment.
  • particularly sorbent granules have been proven. Granule diameters between 2 and 10 mm show the best results.
  • the sorbent is introduced into a plurality of regions connected only via steam flow channels.
  • the individual solid areas can then, if the steam channel is still flexible, move against each other, fold and stack to z. For example, cramped spaces to satisfy and still allow a good air flow around.
  • zeolite powder preformed, dimensionally stable zeolite blocks in which already the flow channels can be incorporated and whose shape is adapted to the desired cooling element geometry.
  • the stable zeolite blocks may have cavities in the region of the working medium vapor channel in order not to obstruct the flow.
  • the sorption heat releases heat of sorption that heats the sorbent.
  • the absorption capacity for water decreases sharply at higher sorbent temperatures. In order to maintain a high cooling capacity over a longer period, it makes sense to cool the sorbent.
  • In direct contact of the sorbent with the multi-layer film resulting heat of sorption can be dissipated unhindered through the film to the outside. As a rule, the heat will be dissipated to the surrounding air. It is also very efficient to cool the sorption container with water.
  • the heat transfer to an air flow from the outside of the sorbent bag is of the same order of magnitude as the heat transfer of a sorbent granulate to the inside of the bag, in principle large film surfaces without ribbing, such as cylinder, plate or tube geometries, are recommended.
  • the sorption containers are to be designed so that the average heat conduction within the sorbent does not exceed 5 cm.
  • a cooling element is stored for an indefinite period at any ambient temperatures.
  • the control element is opened. From this point on, working agent vapor can flow to the sorbent and be deposited by it.
  • the sorbent becomes hot because it liquefies and adsorbs the vapor within its crystal structure.
  • the evaporator cools down and can be used as a source of cold.
  • rapid cooling tasks eg cooling of a liquid
  • the working fluid vapor capacity will therefore be limited because of the hot sorbent temperatures unless admixtures act as heat buffers.
  • the sorbent will be able to give off heat through the multi-layer film and, depending on the application, this heat can also be transferred to a product to be kept warm at a higher temperature level.
  • the thermostat will first close and interrupt the active cooling of the cooling element. As soon as the temperature in the evaporator drops below 0 ° C, when pure water is used, it solidifies and releases the solidification heat at 0 ° C into the interior. If the water filling is sufficiently dimensioned, then the interior temperature will not fall below the freezing point.
  • an aqueous eutectic mixture may be used whose transformation point is set slightly below the control temperature of the thermostat (eg transformation point 3 to 4 ° C and a thermostat control temperature of 5 ° C).
  • a cooling element according to the invention can not only cool at a constant temperature but provide heat of transformation when it falls below this temperature and keep the transported goods at least at the transformation temperature.
  • a separate heat source can also be arranged between the evaporator and the container insulation.
  • this heat source does not need its own regulation, since its excess heat is dissipated by the evaporator through its thermostatic control before the higher temperatures reach the cargo.
  • the output of this heat source should be such that their heat dissipation is sufficient to keep the insulated container at the lowest expected ambient temperatures at least to the required indoor temperature.
  • the heat source also does not have to be arranged homogeneously within the insulated container.
  • the evaporator acts as a steam heater, which distributes the amount of heat absorbed by the heat source over the entire evaporator surface and controls. Water in the thermal contact with the heat source evaporates, condenses within the evaporator structure on cooler surfaces and heats them to the level of the evaporating site. The temperature of the entire evaporator thus remains homogeneous. As soon as the temperature at the thermostat exceeds its control temperature, the control element opens and allows working medium vapor to flow into the sorbent until the control temperature has been reached again.
  • this is excellent electrical heating elements that are powered by entrained batteries or rechargeable batteries.
  • the heating element can also be controlled via an additional, electrical thermostat.
  • the power of these heat sources can be regulated via the air supply (oxygen supply).
  • the air supply can be completely suppressed but be further increased below a limit temperature.
  • both the cooling capacity of the cooling element and the heat capacity of the heat source can be reduced. Without regulation, a once activated heat source would still heat even if the ambient temperature is already well above the desired interior temperature. In these cases, the cooling element would have to dissipate both the heat incident from the outside and the heat of reaction released by the heat source. Since the ambient temperatures can fall or rise several times above and below the required interior temperature during a transport lasting several days, regulation of the heat source makes sense.
  • the air supply to the oxidation process of the heat source can be regulated by means of its own air thermostat which, depending on the ambient temperature, more or less releases the air supply to the heat source.
  • the heat source is advantageously located within the insulating container, distributed on one or more surfaces between the inner Isolierboxwand and evaporator.
  • the air thermostat may include a bimetallic element that closes the outer end of an air duct above a threshold temperature.
  • the airtight bag may be provided with another opening over which is consumed Air can flow into the interior of the insulated container.
  • the air can get over the natural pores of the insulating material to the outside or it will be appropriate outlet openings created that allow the exchange of air and are selectively opened when starting the heating element.
  • the targeted opening of the openings can also be prevented that the heat source is automatically activated during storage time unintentionally at low storage temperatures.
  • the inlet opening and the outlet opening are at different heights.
  • a natural air movement is used and with open air thermostat, supported by thermal buoyancy of the heated air at the heat source, always new oxygen to the stored iron powder to transport.
  • the supply of fresh air through the air thermostat will begin when the ambient temperature falls below the average of the set control temperature. The lower the outside temperature drops, the further the air thermostat should open to increase the power of the heating source.
  • the heat source is therefore preferably arranged between Isolier matterserwand and evaporator surface.
  • the working fluid in the evaporator can be present in unbound form. Usually it is distributed in an absorbent fleece and fixed by hygroscopic forces. Particularly low-priced materials are absorbent papers, as they are used in a great variety for household and industry for the absorption of liquids.
  • the water-storing nonwovens, as well as the spacers made of plastic or natural zeolite, must not outgas under vacuum and higher temperatures.
  • Commercially available microfibers made of polypropylene are particularly suitable for this purpose. These fibers are prepared for water absorption and do not emit the vacuum disturbing gases.
  • the evaporator in the region of the heat source is assigned a slightly larger amount of fleece, so there is also more liquid working fluid for steam heating available.
  • the fleece geometry can be designed in this way; that a decreasing amount of working medium is refilled via the suction effect of the nonwoven material.
  • Another solution opens the fixation of the working fluid in organic binders such. B. Water Lock from Grain Processing Corp. USA. Also advantageous may be the combination of several measures mentioned above.
  • the steam channel can be formed and stabilized by several layers of a plastic net. There remains enough cross section for the flow between the network structure.
  • polypropylene nets higher temperatures can be allowed without gas release.
  • the flexible structure of the nets also optimally adapts to the respective geometries.
  • the evaporator can take on any shape and be made of different materials.
  • the sealing of the multi-layer films usually takes place thermally by pressing hot sealing bars onto the outer film surfaces until the superimposed sealing layers become liquid and fuse together.
  • the welding process can take place within a vacuum chamber under vacuum. In this case, in the vacuum chamber at the same time from the water mass and all other components sucked out all the later adsorption process obstructing gases.
  • a polypropylene spacer advantageously in analogy to the structural material that spans the flow channel in the interior of the cooling element, is inserted between the foil surfaces. Once the evacuation is complete, the foil surfaces, including the spacer, are heated by sealing bars until the sealing layer and the identical material of the spacer merge into one another and enter into a gastight connection upon cooling.
  • FIG. 1 shows cooling element still has its flat shape, as dictated by the manufacturing process.
  • Two suitably cut multi-layer films 7 are stacked with their opposite sealing layers and equipped with the individual components of the cooling element.
  • the upper multilayer film 7 is shown transparent to show the position of the components.
  • the two multilayer films 7 consist of four individual layers bonded together.
  • the films are hermetically sealed (welded) at the peripheral edges 23 via the innermost polypropylene layer.
  • a gas-tight aluminum layer is enveloped in each case by two polyamide layers, which in turn protect the aluminum layer against destruction and allow a graphic printing of the multi-layer film.
  • the evaporator 2 contains two superimposed integral spacers 11 on which six fleece plates 10 are placed.
  • the fleece 10 consists of several layers of a hydrophilic microfiber mat of polypropylene. It is soaked with the working fluid water. The maximum water absorption is limited because of the externally applied pressure on the capillary structure of the microfiber. The filled amount of water is slightly larger than can be absorbed by the amount of sorbent. At low ambient temperatures, the surplus water mass can freeze and keep the interior of the insulation box at 0 ° C during icing.
  • the six nonwoven sheets 10 are spaced at predetermined crease lines 24. Under a nonwoven a thermostatic valve 8 is inserted, from which a working medium vapor channel 4 leads to a control element 3 and from there into the sorbent 1.
  • the working medium steam channel 4 is clamped by a flexible tubing 24 made of plastic, which withstands the external overpressure and is not crushed even when kinking. Under vacuum, the multi-layer film 7 nestles around the internals, that the way to the sorbent 1 for the water vapor only by the thermostatic valve 8, the tubing 24 and the control element 3 is possible.
  • the cut multi-layer films 7 are pre-sealed segment-wise, equipped with the individual components and then welded to a small suction opening 40 in the region of a sealed seam 23.
  • a vacuum pump is docked, the air from the cooling element and possibly released Suction gases.
  • the suction opening 40 through which, in order to keep open the suction channel, a part of a spacer 11 protrudes, heated by means of suitable welding bar so far that the material of the spacer 11 merges with the sealing layer.
  • Fig. 1a shows against the disposable cooler Fig. 1 following variations:
  • the flexible tubing 24 now leads from another point from the evaporator section 2 in the sorbent 1.
  • the sorbent 1 in this case zeolite, has been filled within a separate bag 47 and additionally enclosed by the multilayer films 7.
  • the control element 3 has sharp edges which pierce the envelope of the bag 47 by a strong, external impact on the covering multilayer film 7.
  • the flexible tubing 24 between the evaporator 2 and control element 3 is in this embodiment of a plastic corrugated hose, which holds thanks to its structure even with thin material thickness the external air pressure and still allows an extremely flexible working medium vapor connection.
  • the six nonwoven sheets 10 are contacted at the crease lines 24 by further nonwoven material 57 in order to redistribute the liquid working medium evenly by the suction effect of the material if it should evaporate through a partially acting heat source at the contact points and recondensate in other places.
  • the production of the disposable cooler after Fig. 1a differs from the production method of the disposable cooler Fig. 1 ,
  • the preparation of the bag 47 can be done separately. It does not have to be evacuated and sealed simultaneously with the sealing of the cooling element. Rather, it can be filled, evacuated and sealed in a separate manufacturing step with hot zeolite.
  • the cooling element of the cooled bag 47 is inserted together with the other components between the multi-layer films 7 and aligned with the control member 3 and the flexible hose 34.
  • the evacuation takes place in this example within a vacuum chamber in which all components are removed, including the working fluid water of adhering or contained, gassing residues. Even within the vacuum chamber, the cooling element is welded to the still open sealing seams and removed as a finished unit from the re-flooded vacuum chamber.
  • Fig. 2 shows the evaporator 2 according to Fig. 1 cut along the line AA and in perspective view.
  • the evaporator 2 has been folded into its cubic shape.
  • the spacer 11 and the water-impregnated nonwovens 10 are visible.
  • Everything together is wrapped by the multilayer film 7.
  • the thermostatic valve 8 is inserted between web 10 and spacer 11.
  • about the spacer 11 are all areas of the nonwovens 10 with the thermostatic valve 8 in conjunction.
  • Fig. 3 shows the cooling element according to Fig. 1 in the folded state before insertion into an insulated transport box 12 which can be covered with a cover 25.
  • the transport box 12 has at one edge a free space 26, in which the Häffendarripfkanal 4 can be used.
  • the control element 3 and the sorbent 1 thus come to lie in the outer region of the transport box 12 on a side wall.
  • the six surfaces of the evaporator 2 that are folded into a cuboid occupy the six inner surfaces of the transport box 12.
  • the resulting interior space serves to receive a transport item.
  • the upper evaporator plate 5 is hinged. About them the interior is accessible in full cross section.
  • On two inner walls of the transport box 12 are recesses 27, each of which can receive a heat source 18.
  • the heat sources 18 contain a mixture of iron powder, water, salt, cellulose and activated carbon in an air-permeable casing. When exposed to air, the iron powder oxidizes exothermically. The atmospheric oxygen passes through the porous styrofoam insulation of the transport box 12 to the iron powder and / or additional, thin air channels 28 in the recesses 27.
  • the heat sources 18 provide heating of the interior in the event that the transport box 12 in a respect to the control temperature of the thermostat 8 is too cold environment. The heat development of the heat sources 18 itself remains unregulated. If the heat sources 18 supply more heat than is needed for the interior, the thermostatic valve 8 opens and allows so much steam to flow into the sorbent 1 until the evaporator temperature is within the control range again.
  • the evaporator 2 contains only water and water vapor, the temperature throughout the evaporator 2 remains homogeneous. Of evaporator lots in the, z. B. of the heat sources 18, more heat is incident, water evaporates under heat absorption and in areas from which heat flows to the environment, steam will flow and condense exothermic. Due to the capillary suction effect of the nonwoven material, the water concentration can equalize again.
  • FIG. 5 shows a heat source 48 in a marginally sealed, gas tight foil wrap 49 containing an entrance port 50 and an exit port 51.
  • the heat source 48 contains two paper bag-filled reactive iron powder blends 58 that undergo an exothermic reaction when exposed to oxygen.
  • the flow paths are spanned by a flexible grid 52.
  • the inlet opening 50 is connected in a gas-tight manner to a hose line 53, which can be closed at its outer end by an air thermostat 54.
  • the outlet opening 51 is closed with an adhesive tape 51. It is only deducted to start the heat source 48.
  • the air thermostat 54 may also be closed until its use with an additional sheath (not shown).
  • the heat source is dimensioned so that it can be bent in the middle and thus cover two inner surfaces of an insulated box.
  • Fig. 3b shows the heat source 48 from Fig. 3a inserted in an insulated box 60 in a sectional view.
  • the air thermostat 54 is disposed at a lower corner outside the box 60. It contains a bi-metal spiral, which opens the inlet opening 50 below a temperature of 5 ° C.
  • the tubing 53 forms the gas-tight connection from the external air thermostat 54 through the insulation of the box 60 to the inlet opening 50.
  • the heat source 48 is centrally kinked and covers the bottom and a side wall of the box 60.
  • the flexible grid 52 and the two iron powder mixtures 58 are surrounded by the gas-tight film envelope 49.
  • At the upper end of the heat source 48 is the outlet opening 51. It is still closed with the adhesive tape 55.
  • the adhesive tape 55 To start the heat source 48, the adhesive tape 55 must be removed.
  • the air inlet starts the exothermic reaction and heats the air in the grid, which then rises heated, flows through the outlet opening 51 into the box and flows from there via a small ventilation duct 59 in the lid 61 of the box 60 to the outside and at the same time opened air thermostat 54 new oxygen-rich air via the hose 53 can flow.
  • cooling element On the presentation of a box 60 lining and applied to the heat source 48 cooling element has been omitted.
  • Fig. 4 shows a thermostatic valve 8 in cross section.
  • a rolled into a spiral bi-metal strip 9 is fixedly connected at its inner end 41 with a housing 29 open on one side, while the free end 42 includes a sealing disc 30 which closes the opening 31 of the working medium vapor channel 4 at the control temperature.
  • the opening 31 is formed by a gas-tightly integrated into the housing 29 pipe section 38, on the other end of a plastic hose 14 is pushed.
  • Around the tube 14 in turn nestles the multi-layer film 7, which is sealed gas-tight at the edges 23.
  • the multi-layer film 7 and the tube 14 can be pressed so far in the further course by engaging from outside squeezing (not shown) that the working medium vapor channel 4 can be blocked from the outside.
  • the control element according to the invention is formed in this embodiment by the thermostatic valve 8 and the squeezing. Under the housing 29 of the thermostatic valve 8 is a layer of a plastic network 43. Since the threads 39 of the network 43 overlap at the intersections, remain Häschdampflkanäle also within the network level. Good results are obtained with nets that have a thread thickness of about 2 mm with a thread spacing of about 3 mm. Although the microfiber of the nonwoven fabric is pressed onto the plastic net 43 from one side of the mesh and the flexible multilayer film from the other side, sufficient cross section remains for the working medium vapor. If the cross-section of individual areas is too short, z. B. in the inflow to the thermostatic valve 8, several layers of the plastic mesh 43 can be stacked. The flexibility of the evaporator 2 according to the invention thus remains intact.
  • Fig. 5 shows a control element 3 in a sectional view, which is kept closed by the fact that the external air pressure deforms the multilayer film 7 so far that a disk-shaped sealing surface 16 is pressed onto a sealing seat 17.
  • the sealing seat 17 is again formed by a piece of pipe 32 on the second end of a flexible plastic corrugated hose 13 is attached.
  • the continuation 44 begins in a plastic housing 33 in which the sealing surface 16 can be lifted or unfolded from the sealing seat 17 without hindrance by the multi-layer film 7.
  • the lever force required for folding is applied via a lever rod 34 connected to the sealing surface 16.
  • the lever rod 34 is embedded in a suitably cut side pocket 45 of the multilayer film 7. These side pocket 45 is sealed vacuum-tight at the edges 23. Under vacuum, the sealing surface 16 is pressed by means of the multi-layer film 7 and lever rod 34 to the sealing seat 17. A slight tilting movement on the lever rod 34 from the plane of the drawing deforms the multilayer film 7 so far that the path for the working medium vapor can be released completely or in metered form. With an optimal structure of the control element 3, the sealing surface 16 closes automatically as soon as the tilting force on the lever rod 34 falls away.
  • Fig. 6 shows a further embodiment of a cut and perspective illustrated evaporator 2, which absorbs heat from an air stream to be cooled.
  • the flow channel 37 for the air flow is formed by the evaporator 2 itself and clamped.
  • the originally flat produced evaporator 2 was folded around a centrally applied Häschdampflcanal, which is formed in this embodiment of a perforated corrugated tube 13, after evacuation by 180 °.
  • the originally opposite seal seams 35 and 36 are now directly opposite.
  • the inner Film ends are cut shorter than the outer, the outer ends 22 of the multilayer film 7 can be re-welded and thus hermetically closed.
  • Form flow channel 37 for the air flow At the rear end 46 of the flow channel 37 of the flat air flow is converted into a round flow geometry.
  • the working medium vapor channel is formed by two layers of a net-shaped spacer 11. The webs 10 are in thermal contact with the flow channel 37.
  • Fig. 7 finally shows a sketch of the filled with sorbent area of a cooling element.
  • the multi-layer film 7 is divided into three pockets 19, which communicate with each other only through the working medium vapor channel 4.
  • the working medium steam channel 4 can be formed by a perforated corrugated hose (not shown), which is extremely pressure-stable and at the same time flexible due to its corrugation.
  • the three sorbent bags 19 contain a Zeolith thoroughlyung which is pressure-stable under vacuum but inflexible.
  • the overflow areas 39 where no zeolite is filled, the structure remains flexible thanks to the flexible corrugated hose.
  • the entire cooling element can be folded in order to optimally adapt to the task required in each case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

Cooling element is hermetically surrounded by a gas-tight multiple layer film to enclose a regulating unit (3), a steam passage (4) and a vaporizer (2). The vaporizer and the steam passage are flexible and the steam is only able to pass via the regulating unit to an absorbent (1). An independent claim is also included for a method for evacuating a cooling element. Preferred Features: The regulating unit contains a valve (6) which is operated by deforming the multiple layer film and a thermostatic valve. The thermostatic valve contains a regulating body made from a bimetal and is in thermal contact with the steam.

Description

Die Erfindung betrifft ein Sorptions-Kühlelement mit einem Regelorgan und mit einer gasdichten Mehrschicht-Folie zum Kühlen bei welchem durch Verdampfung eines Arbeitsmittels und anschließender Sorption des Arbeitsmitteldampfes in einem Sorptionsmittel unter Vakuum Kälte erzeugt wird. Der Verdampfer ist dabei flexibel aufgebaut, um an diverse Kühlaufgaben angepasst werden zu können.The invention relates to a sorption cooling element with a control element and with a gas-tight multi-layer film for cooling in which by evaporation of a working fluid and subsequent sorption of the working medium vapor in a sorbent under vacuum cold generated. The evaporator is flexibly designed to be adapted to various cooling tasks.

Sorptions-Kühlelemente sind Apparate, in denen ein festes Adsorptionsmittel ein zweites, bei tieferen Temperaturen siedendes Mittel, das Arbeitsmittel, dampfförmig unter Wärmefreisetzung sorbiert (Sorptionsphase). Das Arbeitsmittel verdampft dabei in einem Verdampfer unter Wärmeaufnahme. Nachdem das Adsorptionsmittel gesättigt ist, kann es durch Wärmezufuhr bei höherer Temperatur wieder desorbiert werden (Desorptionsphase). Dabei dampft Arbeitsmittel aus dem Adsorptionsmittel ab. Der Arbeitsmitteldampf kann rückverflüssigt werden und anschließend erneut verdampfen.Sorption cooling elements are devices in which a solid adsorbent sorbs a second, boiling at lower temperatures agent, the working medium, in vapor form with heat release (sorption). The working fluid evaporates in an evaporator while absorbing heat. After the adsorbent is saturated, it can be desorbed by supplying heat at a higher temperature (desorption phase). During this process, working fluid evaporates from the adsorbent. The working fluid vapor can be reliquefied and then re-vaporized.

Adsorptionsapparate zum Kühlen mit festen Sorptionsmitteln sind aus der EP 0 368 111 und der DE-OS 34 25 419 bekannt. Sorptionsmittelbehälter, gefüllt mit Sorptionsmitteln, saugen dabei Arbeitsmitteldampf, welcher in einem Verdampfer entsteht, ab und sorbieren ihn unter Wärmefreisetzung. Die Sorptionswärme muss dabei aus dem Sorptionsmittel abgeführt werden. Die Kühlapparate können zum Kühlen und Warmhalten von Lebensmitteln in thermisch isolierten Boxen eingesetzt werden.Adsorption apparatus for cooling with solid sorbents are from EP 0 368 111 and the DE-OS 34 25 419 known. Sorbent container, filled with sorbents, thereby absorb working agent vapor, which is produced in an evaporator, and sorb it under heat release. The heat of sorption must be removed from the sorbent. The chillers can be used to cool and keep food warm in thermally insulated boxes.

Die WO 01/10738 A1 beschreibt eine selbstkühlende Getränkedose bei der ein Verdampfer innerhalb und ein Sorber außerhalb der Dose angeordnet sind. Die Kühlung wird durch Öffnen eines Dampfkanals zwischen Verdampfer und Sorber gestartet. Die im Verdampfer erzeugte Kälte wird über dessen Oberflächen an das zu kühlende Getränk innerhalb der Dose abgegeben. Die im Sorptionsmittel entstehende Wärme wird in einem Wärmepuffer gespeichert. Die selbstkühlende Getränkedose ist gegenüber einer gewöhnlichen Dose stark modifiziert und in der Herstellung teuer.The WO 01/10738 A1 describes a self-cooling beverage can with an evaporator inside and a sorber outside the can. The cooling is started by opening a steam channel between evaporator and sorber. The cold generated in the evaporator is discharged through the surfaces of the drink to be cooled within the can. The heat generated in the sorbent is stored in a heat buffer. The self-cooling beverage can is heavily modified over an ordinary can and expensive to manufacture.

Weitere, mehr theoretische Ausgestaltungen selbstkühlender Gebinde sind in der WO 99/37958 A1 zusammengestellt. Kostengünstig ist keine der Vorrichtungen umzusetzen und zu fertigen.Further, more theoretical embodiments of self-cooling containers are in the WO 99/37958 A1 compiled. Cost effective is none of the devices implement and manufacture.

Die US 6 474 100 B1 beschreibt schließlich ein selbstkühlendes Kühlelement an der Außenseite eines Beutels für Flüssigkeiten oder Schüttgüter. Das Sorptionsmittel ist dabei in einer flexiblen, mehrlagigen Folie eingeschlossen. Der Kontakt zur heißen Sorptionsfüllung ist durch Isolations- und Strömungsmaterialien sowie durch dazwischenliegende Wärmespeichermassen auf ein Minimum reduziert. Der Temperaturausgleich zwischen der heißen Sorberfüllung und dem kalten Verdampfer, die sich großflächig gegenüberliegen, muss durch eine aufwändige Isolierung reduziert werden.The US Pat. No. 6,474,100 B1 finally describes a self-cooling cooling element on the outside of a bag for liquids or bulk materials. The sorbent is enclosed in a flexible, multi-layered film. The contact with the hot sorption filling is reduced to a minimum by insulation and flow materials as well as by intervening heat storage masses. The temperature compensation between the hot sorber filling and the cold evaporator, which are opposed over a large area, must be reduced by an elaborate insulation.

Die DE 10 2005 034297 A1 beschreibt ein Sorptions-Kühlelement mit gasdichter Folie bei welchem ein Sorptionsmittel in einem gasdichten Sorptionsmittelbeutel eingefüllt ist, der zum Starten der Kühlfunktion mittels Schneidwerkzeug durchtrennt wird. Eine Regelung der Kühlleistung ist damit nicht möglich.The DE 10 2005 034297 A1 describes a sorption cooling element with gas-tight film in which a sorbent is filled in a gas-tight sorbent bag, which is cut to start the cooling function by means of cutting tool. A regulation of the cooling capacity is not possible.

Aufgabe der Erfindung sind kostengünstige Sorptions-Kühlelemente zur einmaligen Verwendung bei welchen die Kühlung regelbar ist.Object of the invention are inexpensive sorption cooling elements for single use in which the cooling is adjustable.

Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale der Ansprüche 1 und 24. Die abhängigen Ansprüche zeigen weitere erfinderische Kühlelemente auf.This object is achieved by the characterizing features of claims 1 and 24. The dependent claims show further inventive cooling elements.

Erfindungsgemäß werden die Einzelkomponenten eines Kühlelementes in eine gasdichte, flexible Mehrschicht-Folie unter Vakuum so eingesiegelt, dass der aus dem flüssigen Arbeitsmittel abströmende Arbeitsmitteldampf nur durch den Arbeitsmitteldampfkanal und das Regelorgan zum Sorptionsmittel strömen kann. Die durch den äußeren Luftdruck erzeugten Verformungskräfte müssen ausreichen, die Mehrschicht-Folie so um die Einzelkomponenten zu schmiegen, dass für den Arbeitsmitteldampf kein Seitenweg offen bleibt, das Regelorgan zu umgehen. Die Einzelkomponenten müssen somit nicht miteinander gasdicht verbunden werden. Sie sind lediglich in einen aus der Mehrschicht-Folie hergestellten Beutel einzulegen und solange zu fixieren bis sich der Beutel unter Vakuum fest um die Komponenten legt und lediglich der Arbeitsmitteldampfkanal offen bleibt.According to the invention, the individual components of a cooling element are sealed in a gas-tight, flexible multi-layer film under vacuum so that the effluent from the liquid working fluid can flow only through the working medium vapor passage and the control element to the sorbent. The deformation forces generated by the external air pressure must be sufficient to nestle the multilayer film around the individual components in such a way that no sidestream remains open for the working medium vapor to bypass the control element. The individual components must therefore not be connected to each other gas-tight. They are only to be inserted into a bag made of the multilayer film and to be fixed until the bag settles firmly under vacuum around the components and only the working medium steam channel remains open.

Erfindungsgemäß kann das Regelorgan leicht durch Verformen der Mehrschicht-Folie geöffnet und verschlossen werden. Aufwändige Vakuumdurchführungen sind deshalb nicht notwendig.
Besonders vorteilhaft kann das Regelorgan aus einem Ventilsitz und einer darauf abgestimmten Dichtfläche gebildet werden. Über einen Hebelmechanismus kann durch die Mehrschicht-Folie hindurch das Regelorgan geöffnet und geschlossen und falls erforderlich auch zur Leistungsregelung eingesetzt werden.
Um die Dichtfläche auf den Ventilsitz zu pressen sind keine weiteren Federelemente notwendig, wenn die flexible Folie so auf der Dichtfläche anliegt, dass der äußere Luftdruck geeignet auf das Ventil einwirken kann.
According to the invention, the control element can be easily opened and closed by deforming the multilayer film. Elaborate vacuum feedthroughs are therefore not necessary.
Particularly advantageous, the control element can be formed from a valve seat and a matched sealing surface. By means of a lever mechanism, the regulating member can be opened and closed by the multi-layer film and, if necessary, also be used for power control.
In order to press the sealing surface onto the valve seat, no further spring elements are necessary if the flexible film rests on the sealing surface in such a way that the external air pressure can act suitably on the valve.

Vorteilhaft ist es für die Arbeitsmitteldampfkanäle Schläuche einzusetzen, die zwar dem äußeren Überdruck standhalten, nicht aber einem zusätzlichen Druck, z.B. erzeugt von einem Quetschwerkzeug, das von außen auf die Mehrschicht-Folie einwirkt und den Schlauch so stark quetscht, dass der Strömungsweg blockiert wird.
Ein weiteres sehr kostengünstiges Regelorgan wird dann gebildet, wenn das Sörptionsmittel innerhalb eines separaten Beutels eingesiegelt ist. Wird dieser Beutel an der Kontaktstelle zum Arbeitsmitteldampfkanal mittels scharfkantigem Schneidwerkzeug durchstoßen, ist ebenfalls das Regelorgan geöffnet. Das Schneidwerkzeug kann selbstverständlich auch zwischen Mehrschicht-Folie und separatem Beutel eingelegt sein. Für die Auslösung muss dann die äußere Folie an der betreffenden Stelle verformbar sein ohne selbst undicht zu werden.
It is advantageous for the working medium steam ducts to use hoses that Although withstand the external pressure, but not an additional pressure, eg generated by a squeezing tool, which acts from the outside on the multi-layer film and squeezes the tube so strong that the flow path is blocked.
Another very inexpensive control organ is formed when the sorbent is sealed within a separate bag. If this bag is pierced at the point of contact with the working medium vapor channel by means of a sharp-edged cutting tool, the regulating member is likewise opened. Of course, the cutting tool can also be inserted between the multilayer film and the separate bag. For the triggering then the outer film must be deformable at the point in question without even be leaking.

Das Regelorgan kann neben dem eigentlichen Verschlusselement auch um ein Thermostatventil erweitert sein. Mit Hilfe des Thermostatventils kann die Temperatur des Verdampfers auf einer Regeltemperatur gehalten werden. Bei höheren Temperaturen gibt das Thermostatventil den Weg des Arbeitsmitteldampfes zum Sorptionsmittel frei, bei zu tiefen Temperaturen verschließt das Thermostatventil den Weg.
Als Thermostat eignen sich alle bekannten Elemente, die bei einer Temperaturänderung eine Wegänderung nach sich ziehen. Am bekanntesten sind hier Dehnkörper und Bi-Metalle. Auch Memory-Legierungen können vorteilhaft eingesetzt werden. Besonders kostengünstig lassen sich Spiralen aus Bi-Metall für das Regelorgan verwenden. Hiermit sind Temperaturschwankungen von weniger als 0,1 Kelvin erreichbar.
The control element may be extended by a thermostatic valve in addition to the actual closure element. With the help of the thermostatic valve, the temperature of the evaporator can be maintained at a control temperature. At higher temperatures, the thermostatic valve releases the path of the working medium vapor to the sorbent, at too low temperatures, the thermostatic valve closes the way.
As a thermostat, all known elements that pull a change in temperature with a change in temperature are suitable. The most well-known here are stretchers and bi-metals. Memory alloys can also be used to advantage. Bi-metal spirals can be used particularly cost-effectively for the control element. This temperature variations of less than 0.1 Kelvin can be achieved.

Durch den Einbau eines Thermostatventils können die Kühlelemente besonders vorteilhaft zur temperaturgeführten Kühlung von Transport-Isolationsbehältern eingesetzt werden. Isolierte Transportbehälter dienen z.B. zum Versand temperaturempfindlicher Lebensmittel oder pharmazeutischer Waren zwischen +2 und +8 °C. Mit erfindungsgemäßen Kühlelementen ausgerüstete, isolierte Transportbehälter sind über einen beliebig langen Zeitraum lagerfähig. Zum Starten der Kühlfunktion muss lediglich das Regelorgan geöffnet und das zu kühlende Produkt in den Innenraum gepackt werden. Das Thermostatventil regelt daraufhin den Innenraum in einem engen Temperaturfenster, unabhängig von der gerade herrschenden Außentemperatur über mehrere Tage. Da auch der Isolationsbehälter aus preiswertem Material (z.B. Polystyrol) hergestellt sein kann, kann auf einen oftmals teuren Rücktransport verzichtet werden.By installing a thermostatic valve, the cooling elements can be used particularly advantageous for temperature-controlled cooling of transport isolation containers. Isolated transport containers serve e.g. for shipping temperature-sensitive food or pharmaceutical goods between +2 and +8 ° C. Equipped with cooling elements according to the invention, insulated transport containers are storable over an arbitrarily long period of time. To start the cooling function, only the control element has to be opened and the product to be cooled must be packed into the interior. The thermostatic valve then regulates the interior in a narrow temperature window, regardless of the prevailing outside temperature over several days. Since the insulating container can be made of inexpensive material (for example, polystyrene) can be dispensed with an often expensive return transport.

Erfindungsgemäß können alle Innenwände eines Isolierbehälters mit Verdampferflächen belegt werden. Die Innenraumtemperatur ist dann auch bei stark schwankenden Außentemperaturen sehr homogen. Da der Verdampfer erfindungsgemäß flexibel aufgebaut ist, kann zumindest ein Verdampferbereich klappbar gestaltet sein. Dieser Bereich kann bei Bedarf aufgeklappt werden und den vollen Zugriff auf das Innenvolumen gewähren.According to the invention, all inner walls of an insulating container can be covered with evaporator surfaces. The interior temperature is then very homogeneous even with strongly fluctuating outside temperatures. Since the evaporator is constructed flexibly according to the invention, at least one evaporator region can be made foldable. This area can be opened up if necessary and grant full access to the internal volume.

Unter Vakuum müssen alle Strömungskanäle zum Sorptionsmittel erhalten bleiben. Hierfür sind Abstandshalter vorgesehen, die den Arbeitsmitteldampf von der flüssigen Arbeitsmittelmenge ungehindert abströmen lassen und zugleich die kalten Flächen gut wärmeleitend mit der Folie kontaktieren.
Erfindungsgemäß werden hierfür flexible Abstandshalter aus Kunststoff eingesetzt, die der jeweiligen Kühlaufgabe angepasst sind. Voraussetzung ist allerdings, dass die Kunststoff-Abstandshalter während der Lagerzeit nicht ausgasen und das Vakuum verschlechtern. Von Vorteil ist, wenn als Kunststoff Polycarbonat, Polyamid oder Polypropylen zum Einsatz kommen, da diese Werkstoffe vor bzw. während des Fertigungsprozesses auf höhere Temperaturen erhitzt und entgast werden können.
Abstandshalter aus Kunststoff können nach bekannten Fertigungsverfahren wie Tiefziehen, Extrudieren oder Thermoblasen kostengünstig hergestellt werden. Vorteilhafter Weise ist bei dem Herstellprozess darauf Wert zulegen, dass keine später ausgasenden Stoffe wie etwa Weichmacher zugesetzt werden.
Under vacuum, all flow channels to the sorbent must be maintained. For this purpose, spacers are provided, which allow the working medium vapor flow freely from the liquid working fluid and at the same time contact the cold surfaces with good thermal conductivity of the film.
According to the invention flexible plastic spacers are used, which are adapted to the respective cooling task. However, the prerequisite is that the plastic spacers do not outgas during storage and worsen the vacuum. It is advantageous if polycarbonate, polyamide or polypropylene are used as the plastic, since these materials can be heated to higher temperatures and degassed before or during the production process.
Spacers made of plastic can be produced inexpensively by known manufacturing processes such as deep drawing, extrusion or thermal blasting. Advantageously, in the manufacturing process, it is important to ensure that no later outgassing substances such as plasticizers are added.

Bei den heute in Gebrauch befindlichen Thermotransportbehältern wird das Transportgut mittels Eisakkus gekühlt, die innerhalb des Behälters angeordnet sein müssen. Da diese Eisakkus ein Vielfaches des Volumens eines erfindungsgemäßen Verdampfers einnehmen, wird einerseits das Innenvolumen deutlich verkleinert, oder andererseits ein größerer Isolierbehälter notwendig. Größere Behälter haben wiederum mehr Außenflächen über die mehr Wärme in den Innenraum einfließt, die wiederum über größere Eisakkus gepuffert werden muss.In today used thermal transport containers, the cargo is cooled by means of ice packs, which must be located within the container. Since these ice packs occupy a multiple of the volume of an evaporator according to the invention, on the one hand the internal volume is significantly reduced, or on the other hand, a larger insulating container necessary. Larger containers in turn have more outer surfaces over which more heat flows into the interior, which in turn must be buffered by larger ice packs.

Die Anwendungsbereiche sind aber nicht auf isolierte Behältnisse beschränkt. Prinzipiell kann jeder Gegenstand mit erfindungsgemäßen Kühlelementen ausgestattet werden. Vorteilhaft ist z.B. die Kühlung von Zelten, bei welchen sogar ganze Zeltwände durch erfindungsgemäße Kühlelemente ersetzt werden können. Die Kühlung von Patienten oder Verletzten in heißer Umgebung oder zur Reduzierung der Körpertemperatur ist ebenso möglich wie eine Nutzung als Kühlweste, Kühlanzug oder Atemkühler.
Prinzipiell wird der Einsatzort überall dort zu finden sein, wo heute Kühl-Akkus bzw. Eis-Akkus eingesetzt werden. Die erfindungsgemäßen Kühlelemente sind gegenüber den Kühl- und Eis-Akkus beliebig lange lagerfähig und der zu kühlenden Aufgabe anpassbar, da der Verdampfer flexibel gestaltet ist.
The application areas are not limited to insulated containers. In principle, each article can be equipped with cooling elements according to the invention. It is advantageous, for example, the cooling of tents, in which even entire tent walls can be replaced by cooling elements according to the invention. The cooling of patients or injured in a hot environment or to reduce body temperature is just as possible as a use as a cooling vest, cooling suit or respirator.
In principle, the place of use will be found everywhere where today cooling batteries or ice rechargeable batteries are used. The cooling elements according to the invention can be stored for any length of time relative to the cooling and ice accumulators and can be adapted to the task to be cooled, since the evaporator is designed to be flexible.

Sorptionsmittel können beim Sorptionsprozess Temperaturen von über 100 °C erreichen. Für derartig hohe Temperaturen sind die auf dem Verpackungssektor üblicherweise eingesetzten Mehrschicht-Folien nicht immer geeignet. Insbesondere die für die Versiegelung verwendeten Polyethylen-Schichten werden bereits bei 80°C weich und lassen die Hülle unter Vakuum undicht werden. Eine Siegelschicht aus Polypropylen kann hingegen deutlich höheren Temperaturen widerstehen. Ihr Schmelzpunkt liegt bei über 150 °C.Sorbents can reach temperatures of over 100 ° C during the sorption process. For such high temperatures, the multilayer films commonly used in the packaging sector are not always suitable. In particular, the polyethylene layers used for the sealing soften even at 80 ° C and leave the sheath to leak under vacuum. A sealant layer made of polypropylene, however, can withstand significantly higher temperatures. Its melting point is above 150 ° C.

In Kombination mit hohen Temperaturen können scharfe Kanten, Ecken und Spitzen des Sorptionsmittelgranulats in den Folien unzulässige Leckagen hervorrufen. Dieser Gefahr kann durch mindestens eine Polyester- bzw. Polyamidschicht innerhalb der Mehrschicht-Folie begegnet werden. Polyamidfolien sind besonders reiß- und stichfest. Die eigentliche Gasbarriere wird durch eine Lage dünner Metallfolie oder einer metallisierten Schicht sicher gestellt. Bewährt haben sich hierfür dünne Aluminiumfolien mit einer Schichtdicke ab 8 µm. Weniger dicht sind metallisierte Kunststofffolien. Dennoch ist bei kurzen Lagerzeiträumen auch der Einsatz dieser metallisierten Folien möglich, zumal sie gegenüber den Metallfolien preiswerter herzustellen sind.
Die einzelnen Schichten einer Mehrschicht-Folie sind durch Kleber miteinander verbunden. Übliche Kleber enthalten Lösungsmittel, die beim Verkleben nicht restlos aus der Kleberschicht entfernt werden. Über längere Zeiträume, diffundieren diese Lösungsmittel dann durch die innenliegenden Schichten, und beeinträchtigen das Vakuum innerhalb des Kühlelementes. Die Diffusion wird bei höheren Temperaturen, wie sie beim Sorptions- und Herstellungsprozess der Kühlelemente auftreten, verstärkt. Die zum Einsatz kommenden Kleber müssen deshalb ebenfalls für hohe Temperaturen ausgelegt sein.
Vorteilhaft kommen Mehrschicht-Folien mit einer Polyamidschichtdicke von 12 bis 50 µm, einer Aluminiumschichtdicke von 6 bis 12 µm und einer Polypropylenschichtdicke von 50 bis 100 µm zum Einsatz. Verwendung finden derartige Folien z. B. zum Verpackung von Lebensmitteln, die nach dem Abpacken zur Haltbarmachung bei Temperaturen von über 120 °C sterilisiert werden.
In combination with high temperatures, sharp edges, corners and tips of the sorbent granules in the films can cause impermissible leaks. This danger can be counteracted by at least one polyester or polyamide layer within the multi-layer film. Polyamide films are particularly tear and puncture resistant. The actual gas barrier is ensured by a layer of thin metal foil or a metallized layer. For this, thin aluminum foils with a layer thickness from 8 μm have proven suitable. Less dense are metallized plastic films. Nevertheless, with short storage periods, the use of these metallized films is possible, especially since they are cheaper to produce compared to the metal foils.
The individual layers of a multilayer film are bonded together by adhesive. Conventional adhesives contain solvents which are not completely removed from the adhesive layer during bonding. Over long periods of time, these solvents then diffuse through the internal layers, affecting the vacuum within the cooling element. The diffusion is enhanced at higher temperatures, such as occur in the sorption and manufacturing process of the cooling elements. The adhesive used must therefore also be designed for high temperatures.
Advantageously, multi-layer films having a polyamide layer thickness of 12 to 50 microns, an aluminum layer thickness of 6 to 12 microns and a polypropylene layer thickness of 50 to 100 microns are used. Use find such films z. As for the packaging of foods that are sterilized after packaging for preserving at temperatures above 120 ° C.

Erfindungsgemäße Mehrschicht-Folien sind z. B. über die Firma Wipf AG in Volketswil, Schweiz oder der Fa. PAWAG Verpackungen G.m.b.H., Wolfurt, Österreich zu beziehen. Beim Einsatz derartiger Folien sind Kühlelemente mit einer Leckrate von weniger als 1x10 hoch -8 mbarl/sec möglich. Die Lagerfähigkeit erreicht damit mehrere Jahre, ohne dass die Kühlbereitschaft beeinträchtigt wird.Inventive multilayer films are z. B. on the company Wipf AG in Volketswil, Switzerland or the company PAWAG Verpackungen G.m.b.H., Wolfurt, Austria. When using such films cooling elements with a leakage rate of less than 1x10 high -8 mbarl / sec are possible. The shelf life thus reaches several years, without the cooling readiness is impaired.

Das Verschweißen (Versiegeln) von Mehrschicht-Folien zu Beuteln und das Abfüllen von Schüttgut sowie das anschließende Evakuieren sind in der Lebensmittelbranche Stand der Technik.
Unzählige Beutelgrößen und -formen sind dort im Einsatz. Besonders erwähnt seien Standbeutel, Beutel mit Ausgießöffnungen, Beutel mit Kartonagenverstärkung, Aufreißbeutel, Beutel mit Peeleffekt zum leichteren Öffnen und Beutel mit Ventilen. Sie alle können mit Ihren spezifischen Eigenschaften für die erfindungsgemäßen Kühlelemente von Vorteil sein.
The welding (sealing) of multilayer films to bags and the filling of bulk material and the subsequent evacuation are state of the art in the food industry.
Countless bag sizes and shapes are in use there. Particularly noteworthy are stand-up pouches, pouches with pouring openings, pouches with cardboard reinforcement, tear-open pouches, peel-effect pouches for easier opening and pouches with valves. All of them can be advantageous with their specific properties for the cooling elements according to the invention.

Beim Abfüllen von festem Sorptionsmittel in Beuteln entsteht Staub, der sich an den Folieninnenflächen ablagert. Staub auf den späteren Siegelstellen kann zu Leckagen führen, wenn die Staubschicht gegenüber der Polypropylenschicht zu dick ist. Polypropylenschichtdicken von 50 bis 100 µm reichen aus, um feine Staubkörnchen in die Polypropylenschicht sicher und vakuumdicht einzuschmelzen.When filling solid sorbent in bags, dust forms, which deposits on the inner surfaces of the film. Dust on the subsequent sealing sites can lead to leaks if the dust layer is too thick compared to the polypropylene layer. Polypropylene layer thicknesses of 50 to 100 microns are sufficient to fine Dust granules melt into the polypropylene layer safely and vacuum-tight.

Bei Verwendung erfindungsgemäßer Folien ist es möglich, heißes, scharfkantiges und Staub freisetzendes Sorptionsmittel ohne weitere schützende Zwischenlagen direkt unter Vakuum zu umhüllen und über einen mehrjährigen Zeitraum zu lagern, ohne dass aus dem Folienmaterial selbst oder durch dieses hindurch Fremdgase in das Kühlelement gelangen, welche die Sorptionsreaktion beeinträchtigen oder gar ganz unterbinden.When using films according to the invention, it is possible to wrap hot, sharp-edged and dust-releasing sorbent directly under vacuum without further protective liners and to store it over a period of several years without foreign gases entering the cooling element from the film material itself or through it Impair sorption or even completely stop.

Als Sorptionsmittel kommt vorteilhaft Zeolith zum Einsatz. Dieser kann in seiner regelmäßigen Kristallstruktur bis zu 36 Massen-% Wasser reversibel sorbieren. Bei der erfindungsgemäßen Anwendung beträgt die technisch realisierbare Wasseraufnahme ca. 20 bis 25 %. Zeolithe haben auch bei relativ hohen Temperaturen (über 100° C) noch ein beträchtliches Wasserdampf-Sorptionsvermögen und eignen sich deshalb besonders für den erfindungsgemäßen Einsatz.
Zeolith ist ein kristallines Mineral, das in einer Gerüststruktur Silizium- und Aluminiumoxide enthält. Die sehr regelmäßige Gerüststruktur enthält Hohlräume,
in welchen Wassermoleküle unter Wärmefreisetzung sorbiert werden können. Innerhalb der Gerüststruktur sind die Wassermoleküle starken Feldkräften ausgesetzt, deren Stärke von der bereits in der Gerüststruktur enthaltenen Wassermenge und der Temperatur des Zeolithen abhängt.
In der Natur vorkommende, natürliche Zeolithtypen nehmen deutlich weniger Wasser auf. Pro 100 g natürlicher Zeolith werden nur 7 bis 11 g Wasser sorbiert. Diese reduzierte Wasseraufnahmefähigkeit liegt zum einen an deren spezifischen Kristallstrukturen und zum anderen an nicht aktiven Verunreinigungen des Naturproduktes. Für Kühlelemente, die während einer längeren Kühlperiode auch die Möglichkeit haben, die Sorptionswärme über die Hülle abzugeben, sind deshalb synthetische Zeolithe mit ihrem größeren Sorptionsvermögen zu bevorzugen. Für Kühlelemente mit hoher Kühlleistung und/oder kurzer Kühlzeit, bei der das Sorptionsmittel relativ heiß bleibt, kommen erfindungsgemäß auch natürliche Zeolithe zum Einsatz. Bei hohen Sorptionsmitteltemperaturen sind nämlich synthetische Zeolithe gegenüber den natürlichen nicht mehr im Vorteil. Typischerweise können beide Arten bei gehemmter Abgabe der Sorptionswärme und damit einhergehenden hohen Sorptionsmitteltemperaturen von über 100 °C lediglich 4 bis 5 g Wasserdampf pro 100 g trockener Sorptionsmittelmasse sorbieren. Wirtschaftlich sind für diesen Einsatzfall sogar die natürlichen Vertreter deutlich im Vorteil, da deren Preis erheblich niedriger ist.
Natürliche Zeolithe haben noch einen weiteren Vorteil. Die nichtaktiven Beimengungen liegen typischerweise bei 10 bis 30 %. Sie sind zwar nicht aktiv an der Kälteerzeugung beteiligt, dennoch werden sie von den benachbarten Zeolithkristallen mit aufgeheizt. Sie wirken damit wie ein zusätzlich eingebauter, preiswerter Wärmepuffer. Die Folge ist, dass die Zeolithfüllung weniger heiß wird und damit bei niedrigeren Temperaturen zusätzlichen Wasserdampf sorbieren kann.
The sorbent used is advantageously zeolite. In its regular crystal structure, this can reversibly absorb up to 36% by mass of water. In the application according to the invention, the technically feasible water absorption is about 20 to 25%. Zeolites still have a considerable water vapor sorption capacity even at relatively high temperatures (above 100 ° C.) and are therefore particularly suitable for the use according to the invention.
Zeolite is a crystalline mineral that contains silicon and aluminum oxides in a framework structure. The very regular framework structure contains cavities,
in which water molecules can be sorbed with heat release. Within the framework structure, the water molecules are exposed to strong field forces whose strength depends on the amount of water already contained in the framework structure and the temperature of the zeolite.
Naturally occurring natural zeolite types absorb significantly less water. Per 100 g of natural zeolite, only 7 to 11 g of water are sorbed. This reduced water absorption capacity is due on the one hand to their specific crystal structures and on the other hand to non-active impurities of the natural product. For cooling elements, which also have the opportunity during a longer cooling period to release the heat of sorption via the shell, synthetic zeolites with their greater sorption capacity are therefore to be preferred. For cooling elements with high cooling capacity and / or short cooling time, in which the sorbent remains relatively hot, according to the invention also natural zeolites are used. At high sorbent temperatures, synthetic zeolites are no longer at an advantage over the natural ones. Typically, with inhibited release of the heat of sorption and concomitant high sorbent temperatures of over 100 ° C, both types can sorb only 4 to 5 g of water vapor per 100 g of dry sorbent mass. Economically, even the natural representatives are clearly in the advantage for this application, since the price is considerably lower.
Natural zeolites have another advantage. The non-active admixtures are typically 10 to 30%. Although they are not actively involved in the production of refrigeration, they are still heated by the neighboring zeolite crystals. They thus act as an additionally installed, inexpensive heat buffer. The result is that the zeolite filling is less hot and thus sorb additional water vapor at lower temperatures can.

Natürliches Zeolithgranulat besteht aus gebrochenen bzw. gequetschten Bruchstücken und besitzt deshalb scharfe und spitzige geometrische Formen, die unter Vakuum und erhöhten Temperaturen die Mehrschicht-Folien durchstechen oder durchschneiden können.Natural zeolite granules consist of broken or crushed fragments and therefore have sharp and pointed geometric shapes that can pierce or cut through the multi-layer films under vacuum and elevated temperatures.

Unter den ca. 30 unterschiedlichen, natürlichen Zeolithen sind die folgenden für die erfindungsgemäßen Kühlelemente vorteilhaft einzusetzen: Clinoptilolite, Chabazite, Mordenite und Phillipsite.
In der Natur vorkommende Stoffe können auch ohne Umweltauflagen wieder der Natur zugeführt werden. Natürliche Zeolithe können nach ihrem Einsatz in Kühlelementen z. B. als Bodenverbesserer, als Flüssigkeitsbinder oder zur Verbesserung der Wasserqualität in stehenden Gewässern eingesetzt werden.
Von den synthetischen Zeolithtypen sind die Typen A, X und Y, jeweils in ihrer preisgünstigen Na-Form zu empfehlen.
Among the approximately 30 different natural zeolites, the following are to be used advantageously for the cooling elements according to the invention: clinoptilolites, chabazites, mordenites and phillipsites.
Naturally occurring substances can also be returned to nature without environmental requirements. Natural zeolites can after their use in cooling elements z. B. be used as soil conditioner, as a liquid binder or to improve the quality of water in stagnant water.
Of the synthetic zeolite types, the types A, X and Y, each in their inexpensive Na form are recommended.

Neben der Kombination Zeolith/Wasser sind auch andere feste Sorptionspaarungen für den Einsatz in erfindungsgemäßen Kühlelementen möglich. Besonders erwähnt seien Bentonite und Salze, die ebenfalls mit dem Arbeitsmittel Wasser geeignete Kombinationen darstellen. Auch Aktivkohle kann in Kombination mit Alkoholen eine vorteilhafte Lösung darstellen. Da auch diese Stoffpaarungen im Unterdruck arbeiten, können sie in erfindungsgemäßen Mehrschicht-Ftilien eingeschweißt werden.In addition to the combination of zeolite / water, other solid sorption pairings are also possible for use in cooling elements according to the invention. Particularly noteworthy are bentonites and salts, which also represent suitable combinations with the working medium water. Activated carbon can also be an advantageous solution in combination with alcohols. Since these pairings also work under reduced pressure, they can be welded in multi-layer fabrics according to the invention.

Erfindungsgemäß ist die Sorptionsmittelmenge so zu dimensionieren und so anzuordnen, dass für den einströmenden Wasserdampf nur ein minimaler Druckabfall innerhalb des Sorptionsmittels überwunden werden muss. Dabei sollte der Druckabfall insbesondere bei Wasser als Arbeitsmittel weniger als 5 mbar betragen. Zudem muss das Sorptionsmittel dem zuströmenden Arbeitsmitteldampf ausreichend Oberfläche zur Anlagerung bieten. Um eine gleichmäßige Sorption innerhalb des Sorptionsmittels und einen geringen Druckabfall zu gewährleisten, haben sich besonders Sorptionsmittel-Granulate bewährt. Granulatdurchmesser zwischen 2 und 10 mm zeigen dabei die besten Resultate. Diese sind problemlos abzupacken und bilden nach dem Evakuieren einen harten, druck- und formstabilen Sorptionsmittel-Formkörper, der die beim Evakuieren aufgezwungene Form beibehält. Um dennoch mit den formstabilen Sorptionsmittel-Formkörpern variable Geometrien darstellen zu können, wird erfindungsgemäß das Sorptionsmittel in mehrere, nur über Dampfströmungskanäle verbundene Bereiche eingefüllt. Die einzelnen festen Bereiche lassen sich dann, sofern der Dampfkanal weiterhin flexibel aufgebaut ist, gegeneinander verschieben, falten und stapeln um z. B. beengten Platzverhältnissen genüge zu leisten und dennoch eine gute Luftumströmung zu ermöglichen.According to the invention, the amount of sorbent is to be dimensioned and arranged so that only a minimal pressure drop within the sorbent must be overcome for the incoming water vapor. The pressure drop should be less than 5 mbar, in particular for water as working fluid. In addition, the sorbent must provide the inflowing agent vapor sufficient surface for attachment. In order to ensure a uniform sorption within the sorbent and a low pressure drop, particularly sorbent granules have been proven. Granule diameters between 2 and 10 mm show the best results. These are easy to unpack and form after evacuation a hard, pressure and dimensionally stable sorbent-shaped body, which retains the forced upon evacuation form. In order to still be able to represent variable geometries with the dimensionally stable sorbent moldings, according to the invention the sorbent is introduced into a plurality of regions connected only via steam flow channels. The individual solid areas can then, if the steam channel is still flexible, move against each other, fold and stack to z. For example, cramped spaces to satisfy and still allow a good air flow around.

Vorteilhaft sind auch aus Zeolithpulver vorgeformte, formbeständige Zeolithblöcke, in die bereits die Strömungskanäle eingearbeitet sein können und deren Formgebung der gewünschten Kühlelement-Geometrie angepasst ist. Die stabilen Zeolithblöcke können im Bereich des Arbeitsmitteldampfkanals Hohlräume aufweisen, um die Strömung nicht zu behindern.Also advantageous are zeolite powder preformed, dimensionally stable zeolite blocks, in which already the flow channels can be incorporated and whose shape is adapted to the desired cooling element geometry. The stable zeolite blocks may have cavities in the region of the working medium vapor channel in order not to obstruct the flow.

Bei der Sorptionsreaktion wird Sorptionswärme frei, die das Sorptionsmittel erhitzt. Die Aufnahmefähigkeit für Wasser nimmt bei höheren Sorptionsmitteltemperaturen stark ab. Um eine hohe Kühlleistung über einen längeren Zeitraum aufrecht zu erhalten, ist es sinnvoll, das Sorptionsmittel zu kühlen.
Bei direktem Kontakt des Sorptionsmittels mit der Mehrschicht-Folie kann entstehende Sorptionswärme ungehindert durch die Folie hindurch nach außen abgeführt werden. In aller Regel wird die Wärme an die umgebende Luft abgeleitet werden. Sehr effizient ist es auch, den Sorptionsbehälter mit Wasser zu kühlen.
The sorption heat releases heat of sorption that heats the sorbent. The absorption capacity for water decreases sharply at higher sorbent temperatures. In order to maintain a high cooling capacity over a longer period, it makes sense to cool the sorbent.
In direct contact of the sorbent with the multi-layer film resulting heat of sorption can be dissipated unhindered through the film to the outside. As a rule, the heat will be dissipated to the surrounding air. It is also very efficient to cool the sorption container with water.

Da der Wärmeübergang an eine Luftströmung von der Außenseite des Sorptionsmittel-Beutels in der gleichen Größenordnung liegt wie der Wärmeübergang eines Sorptionsmittel-Granulates an die Innenseite des Beutels, empfehlen sich prinzipiell große Folienoberflächen ohne Berippung, wie beispielsweise Zylinder-, Platten- oder Rohrgeometrien. Da insbesondere Zeolithgranulate eine geringe Wärmeleitung haben, sind die Sorptionsbehälter so auszulegen, dass der durchschnittliche Wärmeleitungsweg innerhalb des Sorptionsmittels 5 cm nicht übersteigt.Since the heat transfer to an air flow from the outside of the sorbent bag is of the same order of magnitude as the heat transfer of a sorbent granulate to the inside of the bag, in principle large film surfaces without ribbing, such as cylinder, plate or tube geometries, are recommended. In particular, since zeolite granules have a low heat conduction, the sorption containers are to be designed so that the average heat conduction within the sorbent does not exceed 5 cm.

Alle Anwendungen sind dadurch gekennzeichnet, dass ein Kühlelement über einen unbestimmten Zeitraum bei beliebigen Umgebungstemperaturen gelagert wird. Zum Startzeitpunkt der Kühlwirkung wird das Regelorgan geöffnet. Arbeitsmitteldampf kann ab diesem Zeitpunkt zum Sorptionsmittel strömen und von diesem angelagert werden. Das Sorptionsmittel wird heiß, da es den Dampf innerhalb seiner Kristallstruktur verflüssigt und adsorbiert. Der Verdampfer kühlt sich ab und kann als Kältequelle genutzt werden. Bei schnell ablaufenden Kühlaufgaben (z.B. Abkühlen einer Flüssigkeit) wird in der Regel der Zeitraum nicht ausreichen, das Sorptionsmittel nennenswert zu kühlen. Die Aufnahmefähigkeit für Arbeitsmitteldampf wird deshalb wegen der heißen Sorptionsmitteltemperaturen begrenzt sein, wenn nicht Beimengungen als Wärmepuffer fungieren.
Bei Kühlelementen mit längerer Kühlzeit wird das Sorptionsmittel Wärme über die Mehrschicht-Folie abgeben können und je nach Anwendungsfall diese Wärme auf höherem Temperaturniveau auch an ein warm zu haltendes Produkt übertragen können.
All applications are characterized in that a cooling element is stored for an indefinite period at any ambient temperatures. At the start of the cooling effect, the control element is opened. From this point on, working agent vapor can flow to the sorbent and be deposited by it. The sorbent becomes hot because it liquefies and adsorbs the vapor within its crystal structure. The evaporator cools down and can be used as a source of cold. In the case of rapid cooling tasks (eg cooling of a liquid), the period of time will generally be insufficient to cool the sorbent appreciably. The working fluid vapor capacity will therefore be limited because of the hot sorbent temperatures unless admixtures act as heat buffers.
For cooling elements with a longer cooling time, the sorbent will be able to give off heat through the multi-layer film and, depending on the application, this heat can also be transferred to a product to be kept warm at a higher temperature level.

Bei Anwendungen im Tiefkühlbereich sind zudem ausreichend dimensionierte Strömungskanäle und gegebenenfalls gefrierpunktserniedrigende Zusätze im Arbeitsmittel zu berücksichtigen. Mit diesen Zusätzen können auch beim Arbeitsmittel Wasser Verdampfungstemperaturen unter Null °C erzielt werden, ohne dass das Wasser vereist.For applications in the deep-freeze area are also sufficiently sized flow channels and optionally freezing point-lowering additives in Work equipment to be considered. With these additives, water evaporation temperatures below zero ° C can be achieved even with the working fluid without the water freezing.

Insbesondere bei Anwendungen im temperaturgeführten Transport kann es vorkommen, dass die Umgebungstemperaturen unter der Regeltemperatur des Thermostaten liegen. Bei fallenden Temperaturen wird zunächst der Thermostat schließen und die aktive Kühlung des Kühlelementes unterbrechen. Sobald die Temperatur im Verdampfer unter 0°C sinkt, würde bei der Verwendung von reinem Wasser dieses erstarren und die Erstarrungswärme bei 0°C an den Innenraum abgeben. Sofern die Wasserfüllung ausreichend bemessen ist, wird die Innenraumtemperatur dann nicht unter den Gefrierpunkt fallen.
Für Transportaufgaben bei denen 0°C zu tief ist, kann an Stelle von reinem Wasser eine wässrige, eutektische Mischung zum Einsatz kommen, deren Umwandlungspunkt geringfügig unterhalb der Regeltemperatur des Thermostaten eingestellt ist (z.B. Umwandlungspunkt 3 bis 4 °C und einer Thermostat-Regeltemperatur von 5 °C). Bei dieser Konstellation wird somit, solange die Temperatur des Innenraums über der Regeltemperatur des Thermostaten liegt, Arbeitsmitteldampf aus der wässrigen Mischung verdampfen und den Innenraum kühlen. Bei Temperaturen unterhalb des Regelpunktes schließt der Thermostat den Dampfkanal. Sinkt nun die Außentemperatur unter den Umwandlungspunkt und fließt von der Mischung weiterhin Wärme an die Umgebung ab, sinkt die Temperatur im Verdampfer so lange bis die Mischung den Umwandlungspunkt unterschreitet. Die Mischung wandelt sich nunmehr um und gibt Wärme an den Innenraum ab. Bei entsprechender Dimensionierung kann demzufolge ein erfindungsgemäßes Kühlelement nicht nur bei einer konstanten Temperatur kühlen sondern bei Unterschreiten dieser Temperatur Umwandlungswärme bereit stellen und das Transportgut mindestens auf der Umwandlungstemperatur halten.
In particular, in applications in temperature-controlled transport, it may happen that the ambient temperatures are below the control temperature of the thermostat. When the temperature drops, the thermostat will first close and interrupt the active cooling of the cooling element. As soon as the temperature in the evaporator drops below 0 ° C, when pure water is used, it solidifies and releases the solidification heat at 0 ° C into the interior. If the water filling is sufficiently dimensioned, then the interior temperature will not fall below the freezing point.
For transport tasks where 0 ° C is too low, instead of pure water, an aqueous eutectic mixture may be used whose transformation point is set slightly below the control temperature of the thermostat (eg transformation point 3 to 4 ° C and a thermostat control temperature of 5 ° C). In this constellation is thus, as long as the temperature of the interior is above the control temperature of the thermostat evaporate working medium vapor from the aqueous mixture and cool the interior. At temperatures below the control point, the thermostat closes the steam channel. If the outside temperature falls below the transformation point and heat from the mixture continues to flow to the environment, the temperature in the evaporator will drop until the mixture falls below the transformation point. The mixture now transforms and gives off heat to the interior. Accordingly, with appropriate dimensioning, a cooling element according to the invention can not only cool at a constant temperature but provide heat of transformation when it falls below this temperature and keep the transported goods at least at the transformation temperature.

Für Anwendungen bei denen keine Vergrößerung des Verdampfervolumens durch zusätzliche eutektische Mischungen gewünscht ist, kann erfindungsgemäß auch zwischen Verdampfer und Behälterisolierung eine separate Wärmequelle angeordnet werden. Diese Wärmequelle bedarf im einfachsten Fall selbst keiner eigenen Regelung, da deren überschüssige Wärme vom Verdampfer durch dessen thermostatische Regelung abgeführt wird, bevor die höheren Temperaturen das Transportgut erreichen. Die Leistungsabgabe dieser Wärmequelle sollte so bemessen sein, dass deren Wärmeabgabe ausreicht, den isolierten Behälter bei den tiefsten zu erwartenden Umgebungstemperaturen zumindest auf der geforderten Innenraumtemperatur zu halten. Erfindungsgemäß muss die Wärmequelle auch nicht homogen innerhalb des isolierten Behälters angeordnet sein. Es genügt vielmehr eine punktuelle Wärmefreisetzung, da der Verdampfer wie eine Dampfheizung wirkt, welche die von der Wärmequelle aufgenommene Wärmemenge über die gesamte Verdampferfläche verteilt und regelt. Wasser, das im thermischen Kontakt mit der Wärmequelle verdampft, kondensiert innerhalb der Verdampferstruktur an kühleren Oberflächen und erwärmt diese auf das Niveau der verdampfenden Stelle. Die Temperatur des gesamten Verdampfers bleibt somit homogen. Sobald die Temperatur am Thermostat dessen Regeltemperatur übersteigt, öffnet das Regelorgan und lässt solange Arbeitsmitteldampf in das Sorptionsmittel abströmen bis die Regeltemperatur wieder erreicht ist.For applications in which no enlargement of the evaporator volume is desired by additional eutectic mixtures, according to the invention, a separate heat source can also be arranged between the evaporator and the container insulation. In the simplest case, this heat source does not need its own regulation, since its excess heat is dissipated by the evaporator through its thermostatic control before the higher temperatures reach the cargo. The output of this heat source should be such that their heat dissipation is sufficient to keep the insulated container at the lowest expected ambient temperatures at least to the required indoor temperature. According to the invention, the heat source also does not have to be arranged homogeneously within the insulated container. Rather, it is sufficient a selective heat release, since the evaporator acts as a steam heater, which distributes the amount of heat absorbed by the heat source over the entire evaporator surface and controls. Water in the thermal contact with the heat source evaporates, condenses within the evaporator structure on cooler surfaces and heats them to the level of the evaporating site. The temperature of the entire evaporator thus remains homogeneous. As soon as the temperature at the thermostat exceeds its control temperature, the control element opens and allows working medium vapor to flow into the sorbent until the control temperature has been reached again.

Selbstverständlich eignen sich hierfür hervorragend elektrische Heizelemente, die aus mitgeführten Batterien oder Akkus gespeist werden. Bei dieser Wärmequellenart kann das Heizelement auch über einen zusätzlichen, elektrischen Thermostaten geregelt werden.Of course, this is excellent electrical heating elements that are powered by entrained batteries or rechargeable batteries. In this type of heat source, the heating element can also be controlled via an additional, electrical thermostat.

Als separate Wärmequelle sind prinzipiell alle bekannten exotherm verlaufenden chemischen Reaktionen geeignet, die zum Warmhalten von Körpern eingesetzt werden (z. B. offene Flammen, katalytische Verbrennung usw.). Besonders vorteilhaft ist die Oxidation von Eisenpulver mit Luftsauerstoff in Anwesenheit von Wasser, Salzen und Aktivkohle. Diese langsam ablaufende Oxidation verbraucht nur wenig Sauerstoff, der entweder durch die im Allgemeinen porösen Isolierungswände in den Innenraum diffundiert oder aber über geeignet dimensionierte Öffnungen von außen an die Wärmequelle gelenkt wird.As a separate heat source, in principle all known exothermic chemical reactions are suitable, which are used for keeping bodies warm (eg open flames, catalytic combustion, etc.). Particularly advantageous is the oxidation of iron powder with atmospheric oxygen in the presence of water, salts and activated carbon. This slow-running oxidation consumes only a small amount of oxygen, which is either diffused into the interior through the generally porous insulation walls or else directed from the outside to the heat source via suitably dimensioned openings.

Erfindungsgemäß kann die Leistung dieser Wärmequellen über die Luftzufuhr (Sauerstoffzufuhr) geregelt werden. In Zeiten wo keine Wärme notwendig ist, kann die Luftzufuhr ganz unterbunden sein aber bei unterschreiten einer Grenztemperatur immer weiter gesteigert werden. Durch eine Regelung der Luftzufuhr kann sowohl die Kühlkapazität des Kühlelementes als auch die Wärmekapazität der Wärmequelle verringert werden.
Ohne Regelung würde eine einmal aktivierte Wärmequelle auch dann noch heizen, wenn die Umgebungstemperatur schon wieder weit oberhalb der gewünschten Innenraumtemperatur liegt. Das Kühlelement müsste in diesen Fällen sowohl die von außen einfallende Wärme als auch die von der Wärmequelle freigesetzte Reaktionswärme abführen. Da während eines mehrtägigen Transports die Umgebungstemperaturen mehrmals über und unter die geforderte Innenraumtemperatur fallen bzw. steigen können, ist eine Regelung der Wärmequelle sinnvoll.
According to the invention, the power of these heat sources can be regulated via the air supply (oxygen supply). In times when no heat is required, the air supply can be completely suppressed but be further increased below a limit temperature. By controlling the air supply, both the cooling capacity of the cooling element and the heat capacity of the heat source can be reduced.
Without regulation, a once activated heat source would still heat even if the ambient temperature is already well above the desired interior temperature. In these cases, the cooling element would have to dissipate both the heat incident from the outside and the heat of reaction released by the heat source. Since the ambient temperatures can fall or rise several times above and below the required interior temperature during a transport lasting several days, regulation of the heat source makes sense.

Erfindungsgemäß kann die Luftzufuhr zu dem Oxidationsvorgang der Wärmequelle über einen eigenen Luft-Thermostaten geregelt werden, der abhängig von der Umgebungstemperatur die Luftzufuhr zur Wärmequelle mehr oder weniger freigibt. Die Wärmequelle befindet sich vorteilhaft innerhalb des Isolierbehälters, verteilt auf eine oder auch mehrere Flächen zwischen innerer Isolierboxwand und Verdampfer. Der Luft-Thermostat kann ein Bimetall-Element enthalten, das oberhalb einer Grenztemperatur das äußere Ende eines Luftkanals verschließt. Um sauerstoffarme Luft aus dem Innenraum abströmen zu lassen, kann der luftdichte Beutel mit einer weiteren Öffnung versehen sein, über die verbrauchte Luft in den Innenraum des Isolierbehälters abströmen kann. Von dort kann die Luft über die natürlichen Poren des Isoliermaterials nach außen gelangen oder es werden geeignete Austritts-Öffnungen geschaffen, die den Luftaustausch erlauben und beim Starten des Wärmeelementes gezielt geöffnet werden. Durch das gezielte Öffnen der Öffnungen kann auch verhindert werden, dass die Wärmequelle schon während der Lagerzeit ungewollt bei zu tiefen Lagertemperaturen selbsttätig aktiviert wird.
Idealerweise befinden sich die Eintritts-Öffnung und die Austritts-Öffnung auf unterschiedlicher Höhe. In diesem Fall wird eine natürliche Luftbewegung einsetzen und bei geöffnetem Luft-Thermostaten, unterstützt durch thermischen Auftrieb der an der Wärmequelle erwärmten Luftmengen, immer neuen Sauerstoff an das eingelagerte Eisenpulver transportieren.
Idealerweise wird die Zufuhr von frischer Luft durch den Luft-Thermostaten dann einsetzen, wenn die Umgebungstemperatur den Mittelwert der eingestellten Regeltemperatur unterschreitet. Je tiefer die Außentemperatur absinkt, umso weiter sollte der Luft-Thermostat öffnen um die Leistung der Heizquelle zu steigern. Eine exakte Leistungsregelung ist dabei nicht nötig, da die exakte Temperaturregelung das Thermostatventil im Kühlelement übernimmt. Eine zu hohe Leistung der Wärmequelle wird vom Kühlelement abgeführt, bevor das Nutzvolumen davon betroffen würde. Die Wärmequelle ist deshalb vorzugsweise zwischen Isolierbehälterwand und Verdampferfläche angeordnet.
According to the invention, the air supply to the oxidation process of the heat source can be regulated by means of its own air thermostat which, depending on the ambient temperature, more or less releases the air supply to the heat source. The heat source is advantageously located within the insulating container, distributed on one or more surfaces between the inner Isolierboxwand and evaporator. The air thermostat may include a bimetallic element that closes the outer end of an air duct above a threshold temperature. In order to let oxygen-poor air flow out of the interior, the airtight bag may be provided with another opening over which is consumed Air can flow into the interior of the insulated container. From there, the air can get over the natural pores of the insulating material to the outside or it will be appropriate outlet openings created that allow the exchange of air and are selectively opened when starting the heating element. Through the targeted opening of the openings can also be prevented that the heat source is automatically activated during storage time unintentionally at low storage temperatures.
Ideally, the inlet opening and the outlet opening are at different heights. In this case, a natural air movement is used and with open air thermostat, supported by thermal buoyancy of the heated air at the heat source, always new oxygen to the stored iron powder to transport.
Ideally, the supply of fresh air through the air thermostat will begin when the ambient temperature falls below the average of the set control temperature. The lower the outside temperature drops, the further the air thermostat should open to increase the power of the heating source. An exact power control is not necessary because the exact temperature control takes over the thermostatic valve in the cooling element. Too high an output of the heat source is dissipated by the cooling element before the useful volume would be affected. The heat source is therefore preferably arranged between Isolierbehälterwand and evaporator surface.

Nur in seltenen Fällen wird das Arbeitsmittel im Verdampfer in ungebundener Form vorliegen können. Meistens wird es in einem saugfähigen Vlies verteilt und durch hygroskopische Kräfte fixiert. Besonders preisgünstige Materialien sind saugfähige Papiere, wie sie in großer Vielfalt für Haushalt und Industrie zum Aufsaugen von Flüssigkeiten eingesetzt werden. Auch die wasserspeichernden Vliese dürfen, ebenso wie die Abstandshalter aus Kunststoff oder natürlicher Zeolith, unter Vakuum und höheren Temperaturen nicht ausgasen. Besonders geeignet haben sich hierfür handelsübliche Mikrofasern aus Polypropylen. Diese Fasern sind zur Wasseraufnahme präpariert und geben keine das Vakuum störenden Gase ab.
Vorteilhafterweise wird dem Verdampfer im Bereich der Wärmequelle eine etwas größere Vliesmenge zugeordnet, damit dort auch mehr flüssiges Arbeitsmittel für die Dampfbeheizung zur Verfügung steht. Zudem kann die Vliesgeometrie so gestaltet werden; dass eine abnehmende Arbeitsmittelmenge über die Sogwirkung des Vliesmaterials wieder nachgespeist wird.
Eine weitere Lösung eröffnet die Fixierung des Arbeitsmittels in organischen Bindemitteln wie z. B. Water Lock von der Firma Grain Processing Corp. USA. Vorteilhaft kann auch die Kombination mehrerer o. g. Maßnahmen sein.
Only in rare cases, the working fluid in the evaporator can be present in unbound form. Mostly it is distributed in an absorbent fleece and fixed by hygroscopic forces. Particularly low-priced materials are absorbent papers, as they are used in a great variety for household and industry for the absorption of liquids. The water-storing nonwovens, as well as the spacers made of plastic or natural zeolite, must not outgas under vacuum and higher temperatures. Commercially available microfibers made of polypropylene are particularly suitable for this purpose. These fibers are prepared for water absorption and do not emit the vacuum disturbing gases.
Advantageously, the evaporator in the region of the heat source is assigned a slightly larger amount of fleece, so there is also more liquid working fluid for steam heating available. In addition, the fleece geometry can be designed in this way; that a decreasing amount of working medium is refilled via the suction effect of the nonwoven material.
Another solution opens the fixation of the working fluid in organic binders such. B. Water Lock from Grain Processing Corp. USA. Also advantageous may be the combination of several measures mentioned above.

Um den notwendigen Dampflcanalquerschnitt zwischen Verdampfer und Sorptionsmittelfiillung trotz des von außen anstehenden Luftdruckes aufrecht zu erhalten, kann erfindungsgemäß der Dampfkanal durch mehrere Lagen eines Kunststoffnetzes gebildet und stabilisiert werden. Zwischen der Netzstruktur verbleibt dabei genügend Querschnitt für die Strömung. Beim Einsatz von Polypropylennetzen können höhere Temperaturen ohne Gasfreisetzung zugelassen werden. Durch die flexible Struktur der Netze passen sich diese zudem optimal an die jeweiligen Geometrien an.In order to maintain the necessary Dampflcanalquerschnitt between evaporator and Sorptionsmittelfiillung despite the pending from the outside air pressure, According to the invention, the steam channel can be formed and stabilized by several layers of a plastic net. There remains enough cross section for the flow between the network structure. When using polypropylene nets higher temperatures can be allowed without gas release. The flexible structure of the nets also optimally adapts to the respective geometries.

Der Verdampfer kann erfindungsgemäß beliebige Formen annehmen und aus unterschiedlichen Materialien hergestellt sein. Technisch notwendig ist, dass während des Kühlprozesses eine genügend große Öffnung zum Abströmen des Wasserdampfes in den Arbeitsmitteldampfkanal bestehen bleibt, Arbeitsmittel im flüssigen Zustand an der zu kühlenden Stelle verbleibt, ein Mitreißen flüssiger Bestandteile verhindert wird und eine gute thermische Anbindung an das zu kühlende Objekt möglich ist.According to the invention, the evaporator can take on any shape and be made of different materials. Technically, it is necessary that during the cooling process a sufficiently large opening for the outflow of water vapor in the working medium vapor channel remains working fluid remains in the liquid state at the point to be cooled, entrainment of liquid components is prevented and a good thermal connection to the object to be cooled possible is.

Das Versiegeln der Mehrschicht-Folien erfolgt in aller Regel thermisch durch Anpressen heißer Siegelbalken auf die äußere Folienoberflächen bis die aufeinanderliegenden Siegelschichten flüssig werden und miteinander verschmelzen.The sealing of the multi-layer films usually takes place thermally by pressing hot sealing bars onto the outer film surfaces until the superimposed sealing layers become liquid and fuse together.

Der Verschweißungsvorgang kann innerhalb einer Vakuumkammer unter Vakuum erfolgen. In diesem Fall werden in der Vakuumkammer zugleich aus der Wassermasse und allen weiteren Komponenten alle, den späteren Adsorptionsprozess behindernde Gase mit abgesaugt.The welding process can take place within a vacuum chamber under vacuum. In this case, in the vacuum chamber at the same time from the water mass and all other components sucked out all the later adsorption process obstructing gases.

Vorteilhaft ist aber auch, den Beutel ohne Vakuumkammer an einer noch offenen Stelle der Siegelnaht mittels einer Saugvorrichtung zu evakuieren. Um den Absaugkanal offen zu halten, ist zwischen den Folienflächen ein Abstandhalter aus Polypropylen, in vorteilhafter Weise analog zum Strukturmaterial, das den Strömungskanal im Innern des Kühlelementes aufspannt, eingelegt. Sobald die Evakuierung abgeschlossen ist, werden die Folienflächen einschließlich des Abstandhalters durch Siegelbalken erhitzt, bis die Siegelschicht und das identische Material des Abstandhalters ineinander verschmelzen und nach dem Erkalten eine gasdichte Verbindung eingehen.It is also advantageous, however, to evacuate the bag without a vacuum chamber at a still open point of the sealed seam by means of a suction device. In order to keep the suction channel open, a polypropylene spacer, advantageously in analogy to the structural material that spans the flow channel in the interior of the cooling element, is inserted between the foil surfaces. Once the evacuation is complete, the foil surfaces, including the spacer, are heated by sealing bars until the sealing layer and the identical material of the spacer merge into one another and enter into a gastight connection upon cooling.

Die Zeichnung zeigt in:

  • Fig. 1 ein erfindungsgemäßes, noch flach liegendes Kühlelement für die Kühlung einer isolierten Transportbox,
  • Fig. 1a ein nahezu baugleiches Kühlelement mit einem separaten Zeolith-Beutel,
  • Fig. 2 den flexiblen Verdampfer aus Fig. 1 in perspektivischer und geschnittener Darstellung,
  • Fig. 3 das Kühlelement nach Fig. 1 zusammen mit einer isolierten Transportbox,
  • Fig. 3a eine Wärmequelle,
  • Fig. 3b eine Wärmequelle innerhalb einer isolierten Box,
  • Fig. 4 ein Thermostatventil,
  • Fig. 5 ein Regelorgan für einen Einwegkühler,
  • Fig. 6 eine weitere Ausgestaltung eines Verdampfers in geschnittener Darstellung und
  • Fig. 7 einen Sorptionsmittel-Bereich mit drei Sorptionsmittel-Taschen.
The drawing shows in:
  • Fig. 1 an inventive, still lying flat cooling element for cooling an insulated transport box,
  • Fig. 1a a nearly identical cooling element with a separate zeolite bag,
  • Fig. 2 the flexible evaporator Fig. 1 in perspective and in section,
  • Fig. 3 the cooling element after Fig. 1 together with an insulated transport box,
  • Fig. 3a a heat source,
  • Fig. 3b a heat source inside an insulated box,
  • Fig. 4 a thermostatic valve,
  • Fig. 5 a regulating device for a disposable cooler,
  • Fig. 6 a further embodiment of an evaporator in a sectional view and
  • Fig. 7 a sorbent section with three sorbent pockets.

Das in Fig. 1 (und Fig. 1a) dargestellte Kühlelement hat noch seine flache Form, wie sie durch den Herstellungsprozess vorgegeben ist. Zwei passend zugeschnittene Mehrschicht-Folien 7 werden mit ihren gegenüberliegenden Siegelschichten aufeinandergelegt und mit den Einzelkomponenten des Kühlelementes bestückt. In der Zeichnung ist die obere Mehrschicht-Folie 7 transparent dargestellt, um die Lage der Komponenten aufzuzeigen. Die beiden Mehrschicht-Folien 7 bestehen aus vier miteinander verklebten Einzelschichten. Über die innerste Polypropylenschicht sind die Folien an den umlaufenden Rändern 23 hermetisch versiegelt (verschweißt). Eine gasdichte Aluminiumschicht wird jeweils von zwei Polyamidschichten eingehüllt, welche die Aluminiumschicht wiederum vor Zerstörung schützen und eine graphische Bedruckung der Mehrschicht-Folie erlauben. Der Verdampfer 2 enthält zwei aufeinander liegende einstückige Abstandshalter 11 auf denen sechs Vlies-Platten 10 aufgelegt sind. Das Vlies 10 besteht aus mehreren Lagen einer hydrophilen Mikrofasermatte aus Polypropylen. Es ist mit dem Arbeitsmittel Wasser getränkt. Die maximale Wasseraufnahme ist wegen des von außen anliegenden Druckes auf die Kapillarstruktur der Mikrofaser begrenzt. Die eingefüllte Wassermenge ist etwas größer, als von der Sorptionsmittelmenge aufgenommen werden kann. Bei tiefen Umgebungstemperaturen kann die überschüssige Wassermasse vereisen und den Innenraum der Isolierbox während der Vereisung auf 0°C halten. Die sechs Vlies-Platten 10 sind an vorgegebenen Knicklinien 24 beabstandet. Unter einem Vlies ist ein Thermostat-Ventil 8 eingelegt, von dem aus ein Arbeitsmitteldampfkanal 4 zu einem Regelorgan 3 und von dort in das Sorptionsmittel 1 führt. Der Arbeitsmitteldampfkanal 4 wird von einer flexiblen Schlauchleitung 24 aus Kunststoff aufgespannt, die dem äußeren Überdruck Stand hält und auch beim Knicken nicht gequetscht wird. Unter Vakuum schmiegt sich die Mehrschicht-Folie 7 so um die Einbauten, dass der Weg zum Sorptionsmittel 1 für den Wasserdampf nur durch das Thermostat-Ventil 8, die Schlauchleitung 24 und das Regelorgan 3 möglich ist.This in Fig. 1 (and Fig. 1a ) shown cooling element still has its flat shape, as dictated by the manufacturing process. Two suitably cut multi-layer films 7 are stacked with their opposite sealing layers and equipped with the individual components of the cooling element. In the drawing, the upper multilayer film 7 is shown transparent to show the position of the components. The two multilayer films 7 consist of four individual layers bonded together. The films are hermetically sealed (welded) at the peripheral edges 23 via the innermost polypropylene layer. A gas-tight aluminum layer is enveloped in each case by two polyamide layers, which in turn protect the aluminum layer against destruction and allow a graphic printing of the multi-layer film. The evaporator 2 contains two superimposed integral spacers 11 on which six fleece plates 10 are placed. The fleece 10 consists of several layers of a hydrophilic microfiber mat of polypropylene. It is soaked with the working fluid water. The maximum water absorption is limited because of the externally applied pressure on the capillary structure of the microfiber. The filled amount of water is slightly larger than can be absorbed by the amount of sorbent. At low ambient temperatures, the surplus water mass can freeze and keep the interior of the insulation box at 0 ° C during icing. The six nonwoven sheets 10 are spaced at predetermined crease lines 24. Under a nonwoven a thermostatic valve 8 is inserted, from which a working medium vapor channel 4 leads to a control element 3 and from there into the sorbent 1. The working medium steam channel 4 is clamped by a flexible tubing 24 made of plastic, which withstands the external overpressure and is not crushed even when kinking. Under vacuum, the multi-layer film 7 nestles around the internals, that the way to the sorbent 1 for the water vapor only by the thermostatic valve 8, the tubing 24 and the control element 3 is possible.

Zur erfindungsgemäßen Herstellung des Kühlelementes werden die zugeschnittenen Mehrschicht-Folien 7 segmentweiße vorgesiegelt, mit den Einzelkomponenten bestückt und sodann bis auf eine kleine Absaugöffnung 40 im Bereich einer Siegelnaht 23 verschweißt. An die Absaugöffnung 40 wird eine Vakuumpumpe angedockt, die aus dem Kühlelement die Luft und eventuell frei werdende Gase absaugt. Im Anschluss daran wird die Absaugöffnung 40 durch die, um den Absaugkanal offen zu halten, ein Teil eines Abstandshalters 11 ragt, mittels geeigneter Schweißbalken soweit erhitzt, dass das Material des Abstandshalters 11 mit der Siegelschicht verschmilzt. Unter bestimmten geometrischen Bedingungen kann es vorteilhaft sein, wenn der Verdampfer 2 und das Sorptionsmittel 1 an separaten Stellen evakuiert werden.For the manufacture of the cooling element according to the invention, the cut multi-layer films 7 are pre-sealed segment-wise, equipped with the individual components and then welded to a small suction opening 40 in the region of a sealed seam 23. To the suction opening 40, a vacuum pump is docked, the air from the cooling element and possibly released Suction gases. Following this, the suction opening 40 through which, in order to keep open the suction channel, a part of a spacer 11 protrudes, heated by means of suitable welding bar so far that the material of the spacer 11 merges with the sealing layer. Under certain geometric conditions, it may be advantageous if the evaporator 2 and the sorbent 1 are evacuated at separate locations.

Fig. 1a zeigt gegenüber dem Einwegkühler aus Fig. 1 folgende Variationen:
Die flexible Schlauchleitung 24 führt nunmehr von einer anderen Stelle aus dem Verdampferbereich 2 in das Sorptionsmittel 1. Das Sorptionsmittel 1, in diesem Fall Zeolith, ist innerhalb eines separaten Beutels 47 abgefüllt worden und zusätzlich von den Mehrschichtfolien 7 umgeschlossen. Zum Herstellen der Dampfverbindung muss der Beutel 47 vom Regelorgan 3 durchstoßen werden. Das Regelorgan 3 hat hierzu scharfe Kanten, die durch einen kräftigen, äußeren Schlag auf die abdeckende Mehrschicht-Folie 7 die Hülle des Beutels 47 durchstoßen. Die flexible Schlauchleitung 24 zwischen Verdampfer 2 und Regelorgan 3 besteht in dieser Ausgestaltung aus einem Kunststoff-Wellschlauch, der Dank seiner Struktur auch bei dünner Materialstärke dem äußeren Luftdruck Stand hält und dennoch eine äußerst flexible Arbeitsmitteldampf-Verbindung erlaubt. Die sechs Vlies-Platten 10 sind an den Knicklinien 24 durch weiteres Vliesmaterial 57 kontaktiert, um das flüssige Arbeitsmittel durch die Sogwirkung des Materials wieder gleichmäßig zu verteilen, falls es durch eine partiell einwirkende Wärmequelle an den Kontaktstellen verdampfen und an anderen Stellen rückkondensieren sollte.
Fig. 1a shows against the disposable cooler Fig. 1 following variations:
The flexible tubing 24 now leads from another point from the evaporator section 2 in the sorbent 1. The sorbent 1, in this case zeolite, has been filled within a separate bag 47 and additionally enclosed by the multilayer films 7. To make the vapor connection of the bag 47 must be pierced by the control element 3. For this purpose, the control element 3 has sharp edges which pierce the envelope of the bag 47 by a strong, external impact on the covering multilayer film 7. The flexible tubing 24 between the evaporator 2 and control element 3 is in this embodiment of a plastic corrugated hose, which holds thanks to its structure even with thin material thickness the external air pressure and still allows an extremely flexible working medium vapor connection. The six nonwoven sheets 10 are contacted at the crease lines 24 by further nonwoven material 57 in order to redistribute the liquid working medium evenly by the suction effect of the material if it should evaporate through a partially acting heat source at the contact points and recondensate in other places.

Auch die Herstellung des Einwegkühlers nach Fig. 1a unterscheidet sich von der Fertigungsmethode des Einwegkühlers nach Fig. 1. Die Herstellung des Beutels 47 kann separat erfolgen. Er muss nicht gleichzeitig mit dem Versiegeln des Kühlelements evakuiert und versiegelt werden. Vielmehr kann er in einem separaten Fertigungsschritt mit heißem Zeolith gefüllt, evakuiert und versiegelt werden. Bei der Endfertigung des Kühlelements wird der erkaltete Beutel 47 zusammen mit den anderen Komponenten zwischen die Mehrschicht-Folien 7 eingelegt und mit dem Regelorgan 3 und der flexiblen Schlauchleitung 34 ausgerichtet. Die Evakuierung erfolgt in diesem Beispiel innerhalb einer Vakuumkammer, in der alle eingelegten Komponenten einschließlich dem Arbeitsmittel Wasser von anhaftenden bzw. enthaltenen, gasenden Reststoffen befreit werden. Noch innerhalb der Vakuumkammer wird das Kühlelement an den noch offenen Siegelnähten verschweißt und als fertige Einheit aus der wieder gefluteten Vakuumkammer entnommen.Also the production of the disposable cooler after Fig. 1a differs from the production method of the disposable cooler Fig. 1 , The preparation of the bag 47 can be done separately. It does not have to be evacuated and sealed simultaneously with the sealing of the cooling element. Rather, it can be filled, evacuated and sealed in a separate manufacturing step with hot zeolite. In the final production of the cooling element of the cooled bag 47 is inserted together with the other components between the multi-layer films 7 and aligned with the control member 3 and the flexible hose 34. The evacuation takes place in this example within a vacuum chamber in which all components are removed, including the working fluid water of adhering or contained, gassing residues. Even within the vacuum chamber, the cooling element is welded to the still open sealing seams and removed as a finished unit from the re-flooded vacuum chamber.

Fig. 2 zeigt den Verdampfer 2 gemäß Fig. 1 entlang der Linie AA geschnitten und in perspektivischer Darstellung. Entlang der Knicklinien 24 ist der Verdampfer 2 in seine kubische Form geklappt worden. An den Schnittflächen sind der Abstandshalter 11 und die mit Wasser getränkten Vliese 10 sichtbar. Alles zusammen wird von der Mehrschicht-Folie 7 umhüllt. Im Bereich der Knickstellen 24 befindet sich kein Vlies 10, sodass sich die obere Mehrschicht-Folie 7 bis auf den Abstandshalter 11 durchdrücken kann, um damit die sich gegenüber der äußeren Folie ergebende Längenkontraktion zu kompensieren. Auf diese Weise kann eine leichte Verformung des Verdampfers 2 ohne Faltenbildung erreicht werden. An der links stehenden Wand des Verdampfers 2 ist das Thermostatventil 8 zwischen Vlies 10 und Abstandshalter 11 eingelegt. Über den Abstandshalter 11 stehen alle Bereiche der Vliese 10 mit dem Thermostatventil 8 in Verbindung. Fig. 2 shows the evaporator 2 according to Fig. 1 cut along the line AA and in perspective view. Along the fold lines 24, the evaporator 2 has been folded into its cubic shape. At the cut surfaces of the spacer 11 and the water-impregnated nonwovens 10 are visible. Everything together is wrapped by the multilayer film 7. In the area of the kinks 24 there is no fleece 10, so that the upper multi-layer film 7 can push through to the spacer 11 in order to compensate for the length contraction resulting from the outer film. In this way, a slight deformation of the evaporator 2 without wrinkling can be achieved. On the left wall of the evaporator 2, the thermostatic valve 8 is inserted between web 10 and spacer 11. About the spacer 11 are all areas of the nonwovens 10 with the thermostatic valve 8 in conjunction.

Fig. 3 zeigt das Kühlelement gemäß Fig. 1 im gefalteten Zustand vor dem Einsetzen in eine isolierte Transportbox 12, die mit einem Deckel 25 abdeckbar ist. Die Transportbox 12 hat an einer Kante einen Freiraum 26, in welchen der Arbeitsmitteldarripfkanal 4 eingesetzt werden kann. Das Regelorgan 3 und das Sorptionsmittel 1 kommen somit in den Außenbereich der Transportbox 12 an einer Seitenwand zu liegen. Die sechs zu einem Quader gefalteten Flächen des Verdampfers 2 bekleiden die sechs Innenflächen der Transportbox 12. Der sich ergebende Innenraum dient zur Aufnahme eines Transportgutes. Die obere Verdampferplatte 5 ist klappbar. Über sie ist der Innenraum im vollen Querschnitt zugänglich. An zwei Innenwänden der Transportbox 12 befinden sich Aussparungen 27, die je eine Wärmequelle 18 aufnehmen können. Die Wärmequellen 18 enthalten in einer luftdurchlässigen Hülle eine Mischung aus Eisenpulver, Wasser, Salz, Zellulose und Aktivkohle. Unter Luftzutritt oxidiert das Eisenpulver exotherm. Der Luftsauerstoff gelangt über die poröse Styropor-Isolierung der Transportbox 12 zum Eisenpulver und/oder über zusätzliche, dünne Luftkanäle 28 in die Aussparungen 27. Die Wärmequellen 18 sorgen für eine Beheizung des Innenraums für den Fall, dass die Transportbox 12 in einer in Bezug auf die Regeltemperatur des Thermostaten 8 zu kalten Umgebung steht. Die Wärmeentwicklung der Wärmequellen 18 selbst bleibt ungeregelt. Wenn die Wärmequellen 18 mehr Wärme liefern als für der Innenraum benötigt wird, öffnet das Thermostatventil 8 und lässt so viel Dampf in das Sorptionsmittel 1 abströmen bis die Verdampfertemperatur wieder im Regelbereich liegt. Da der Verdampfer 2 nur Wasser und Wasserdampf enthält, bleibt die Temperatur im gesamten Verdampfer 2 homogen. Von Verdampfer-Partien in die, z. B. von den Wärmequellen 18, mehr Wärme einfällt, verdampft Wasser unter Wärmeaufnahme und in Partien aus denen Wärme an die Umgebung abfließt, wird Wasserdampf strömen und exotherm kondensieren. Durch die kapillare Sogwirkung des Vliesmaterials kann sich die Wasserkonzentration wieder ausgleichen. Fig. 3 shows the cooling element according to Fig. 1 in the folded state before insertion into an insulated transport box 12 which can be covered with a cover 25. The transport box 12 has at one edge a free space 26, in which the Arbeitsmitteldarripfkanal 4 can be used. The control element 3 and the sorbent 1 thus come to lie in the outer region of the transport box 12 on a side wall. The six surfaces of the evaporator 2 that are folded into a cuboid occupy the six inner surfaces of the transport box 12. The resulting interior space serves to receive a transport item. The upper evaporator plate 5 is hinged. About them the interior is accessible in full cross section. On two inner walls of the transport box 12 are recesses 27, each of which can receive a heat source 18. The heat sources 18 contain a mixture of iron powder, water, salt, cellulose and activated carbon in an air-permeable casing. When exposed to air, the iron powder oxidizes exothermically. The atmospheric oxygen passes through the porous styrofoam insulation of the transport box 12 to the iron powder and / or additional, thin air channels 28 in the recesses 27. The heat sources 18 provide heating of the interior in the event that the transport box 12 in a respect to the control temperature of the thermostat 8 is too cold environment. The heat development of the heat sources 18 itself remains unregulated. If the heat sources 18 supply more heat than is needed for the interior, the thermostatic valve 8 opens and allows so much steam to flow into the sorbent 1 until the evaporator temperature is within the control range again. Since the evaporator 2 contains only water and water vapor, the temperature throughout the evaporator 2 remains homogeneous. Of evaporator lots in the, z. B. of the heat sources 18, more heat is incident, water evaporates under heat absorption and in areas from which heat flows to the environment, steam will flow and condense exothermic. Due to the capillary suction effect of the nonwoven material, the water concentration can equalize again.

Fig. 3a zeigt eine Wärmequelle 48 in einer randversiegelten, gasdichten Folienhülle 49, die eine Eintritts-Öffnung 50 und eine Austritts-Öffnung 51 enthält. Die Wärmequelle 48 enthält zwei in Papierbeutel gefüllte reaktive Eisenpulvermischungen 58, die bei Sauerstoffzutritt eine exotherme Reaktion durchlaufen. Um den Luftzugang zu gewährleisten, sind innerhalb der Folienhülle 49 weitere Strömungswege offen gehalten. Im Ausführungsbeispiel werden die Strömungswege durch ein flexibles Gitter 52 aufgespannt. Die Eintritts-Öffnung 50 ist gasdicht mit einer Schlauchleitung 53 verbunden, die an ihrem äußeren Ende von einem Luft-Thermostat 54 verschlossen werden kann. Die Austritts-Öffnung 51 ist mit einem Klebeband 51 verschlossen. Es wird erst zum Starten der Wärmequelle 48 abgezogen. Der Luft-Thermostat 54 kann ebenfalls bis zu seinem Einsatz mit einer zusätzlichen Hülle (nicht gezeichnet) verschlossen sein. Die Wärmequelle ist so dimensioniert, dass sie mittig geknickt werden kann und somit zwei innere Flächen einer isolierten Box bedecken kann. Fig. 3a FIG. 5 shows a heat source 48 in a marginally sealed, gas tight foil wrap 49 containing an entrance port 50 and an exit port 51. The heat source 48 contains two paper bag-filled reactive iron powder blends 58 that undergo an exothermic reaction when exposed to oxygen. In order to ensure the air access are within the film sleeve 49th other flow paths kept open. In the exemplary embodiment, the flow paths are spanned by a flexible grid 52. The inlet opening 50 is connected in a gas-tight manner to a hose line 53, which can be closed at its outer end by an air thermostat 54. The outlet opening 51 is closed with an adhesive tape 51. It is only deducted to start the heat source 48. The air thermostat 54 may also be closed until its use with an additional sheath (not shown). The heat source is dimensioned so that it can be bent in the middle and thus cover two inner surfaces of an insulated box.

Fig. 3b zeigt die Wärmequelle 48 aus Fig. 3a eingelegt in eine isolierte Box 60 in geschnittener Darstellung. Der Luft-Thermostat 54 ist an einer unteren Ecke im Außenbereich der Box 60 angeordnet. Er enthält eine Bi-Metall Spirale, die unterhalb einer Temperatur von 5 °C die Eintritts-Öffnung 50 öffnet. Die Schlauchleitung 53 bildet die gasdichte Verbindung vom außenliegenden Luft-Thermostat 54 durch die Isolierung der Box 60 zur Eintritts-Öffnung 50. Die Wärmequelle 48 ist mittig geknickt und bedeckt den Boden und eine Seitenwand der Box 60. Das flexible Gitter 52 und die beiden Eisenpulvermischungen 58 sind von der gasdichten Folienhülle 49 umgeben. Am oberen Ende der Wärmequelle 48 befindet sich die Austritts-Öffnung 51. Sie ist noch mit dem Klebeband 55 verschlossen. Zum Starten der Wärmequelle 48 muss das Klebeband 55 abgezogen werden. Durch den Luftzutritt startet die exotherme Reaktion und erwärmt die im Gitter befindliche Luft, die daraufhin erwärmt aufsteigt, durch die Austritts-Öffnung 51 in die Box abströmt und von dort über einen kleinen Lüftungskanal 59 im Deckel 61 der Box 60 nach außen abströmt und zugleich bei geöffnetem Luft-Thermostat 54 neue sauerstoffreiche Luft über die Schlauchleitung 53 nachströmen lässt. Auf die Darstellung eines die Box 60 auskleidenden und an der Wärmequelle 48 anliegenden Kühlelementes wurde verzichtet. Fig. 3b shows the heat source 48 from Fig. 3a inserted in an insulated box 60 in a sectional view. The air thermostat 54 is disposed at a lower corner outside the box 60. It contains a bi-metal spiral, which opens the inlet opening 50 below a temperature of 5 ° C. The tubing 53 forms the gas-tight connection from the external air thermostat 54 through the insulation of the box 60 to the inlet opening 50. The heat source 48 is centrally kinked and covers the bottom and a side wall of the box 60. The flexible grid 52 and the two iron powder mixtures 58 are surrounded by the gas-tight film envelope 49. At the upper end of the heat source 48 is the outlet opening 51. It is still closed with the adhesive tape 55. To start the heat source 48, the adhesive tape 55 must be removed. By the air inlet starts the exothermic reaction and heats the air in the grid, which then rises heated, flows through the outlet opening 51 into the box and flows from there via a small ventilation duct 59 in the lid 61 of the box 60 to the outside and at the same time opened air thermostat 54 new oxygen-rich air via the hose 53 can flow. On the presentation of a box 60 lining and applied to the heat source 48 cooling element has been omitted.

Fig. 4 zeigt ein Thermostatventil 8 im Querschnitt. Ein zu einer Spirale aufgerollter Bi-Metall Streifen 9 ist an seinem inneren Ende 41 fest mit einem einseitig offenen Gehäuse 29 verbunden, während das freie Ende 42 eine Dichtscheibe 30 enthält, die bei der Regeltemperatur die Öffnung 31 des Arbeitsmitteldampfkanals 4 verschließt. Die Öffnung 31 wird von einem in das Gehäuse 29 gasdicht eingebundenen Rohrstücks 38 gebildet, auf dessen anderem Ende ein Kunststoff-Schlauch 14 aufgeschoben ist. Um den Schlauch 14 schmiegt sich wiederum die Mehrschicht-Folie 7, die an den Rändern 23 gasdicht versiegelt ist. Die Mehrschicht-Folie 7 und der Schlauch 14 können im weiteren Verlauf durch von außen eingreifende Quetschelemente (nicht gezeichnet) so stark gepresst werden, dass der Arbeitsmitteldampfkanal 4 von außen blockiert werden kann. Zum Starten der Kühlung werden die Quetschelemente entfernt. Durch die Rückstellkräfte des Kunststoff-Schlauches 14 öffnet sich nunmehr der Strömungsweg für den Arbeitsmitteldampf. Das erfindungsgemäße Regelorgan wird in dieser Ausführungsform durch das Thermostatventil 8 und die Quetschelemente gebildet. Unter dem Gehäuse 29 des Thermostatventils 8 befindet sich eine Lage eines Kunststoffnetzes 43. Da sich die Fäden 39 des Netzes 43 an den Kreuzungspunkten überlagern, verbleiben Arbeitsmitteldampflcanäle auch innerhalb der Netzebene. Gute Ergebnisse erzielt man mit Netzen die eine Fadendicke von ca. 2 mm bei einem Fadenabstand von ca. 3 mm aufweisen. Obwohl auf das Kunststoffnetz 43 von einer Netzseite die Mikrofaser des Vlieses und von der anderen Seite die flexible Mehrschicht-Folie angepresst werden, verbleibt genügend Querschnitt für den Arbeitsmitteldampf. Falls der Querschnitt an einzelnen Bereichen zu knapp wird, z. B. im Einströmungsbereich zum Thermostatventils 8, können mehrere Lagen des Kunststoffnetzes 43 übereinander geschichtet werden. Die erfindungsgemäße Flexibilität des Verdampfers 2 bleibt damit dennoch erhalten. Fig. 4 shows a thermostatic valve 8 in cross section. A rolled into a spiral bi-metal strip 9 is fixedly connected at its inner end 41 with a housing 29 open on one side, while the free end 42 includes a sealing disc 30 which closes the opening 31 of the working medium vapor channel 4 at the control temperature. The opening 31 is formed by a gas-tightly integrated into the housing 29 pipe section 38, on the other end of a plastic hose 14 is pushed. Around the tube 14 in turn nestles the multi-layer film 7, which is sealed gas-tight at the edges 23. The multi-layer film 7 and the tube 14 can be pressed so far in the further course by engaging from outside squeezing (not shown) that the working medium vapor channel 4 can be blocked from the outside. To start the cooling, the squeezing elements are removed. By the restoring forces of the plastic hose 14 now opens the flow path for the working medium steam. The control element according to the invention is formed in this embodiment by the thermostatic valve 8 and the squeezing. Under the housing 29 of the thermostatic valve 8 is a layer of a plastic network 43. Since the threads 39 of the network 43 overlap at the intersections, remain Arbeitsmitteldampflkanäle also within the network level. Good results are obtained with nets that have a thread thickness of about 2 mm with a thread spacing of about 3 mm. Although the microfiber of the nonwoven fabric is pressed onto the plastic net 43 from one side of the mesh and the flexible multilayer film from the other side, sufficient cross section remains for the working medium vapor. If the cross-section of individual areas is too short, z. B. in the inflow to the thermostatic valve 8, several layers of the plastic mesh 43 can be stacked. The flexibility of the evaporator 2 according to the invention thus remains intact.

Fig. 5 zeigt ein Regelorgan 3 in geschnittener Darstellung, das dadurch verschlossen gehalten wird, dass der äußere Luftdruck die Mehrschicht-Folie 7 so weit verformt, dass eine scheibenförmige Dichtfläche 16 auf einen Dichtsitz 17 gepresst wird. Der Dichtsitz 17 wird wiederum von einem Rohrstück 32 gebildet auf dessen zweitem Ende ein flexibler Kunststoff-Wellschlauch 13 aufgesteckt ist. Auf die rechtwinkelige Weiterführung 44 des Arbeitsmitteldampfkanals 4 wird ebenfalls ein Wellschlauch 13 aus Kunststoff geschoben. Die Weiterführung 44 beginnt in einem Kunststoff-Gehäuse 33 in welchem die Dichtfläche 16 vom Dichtsitz 17 ohne Behinderung durch die Mehrschicht-Folie 7 abgehoben bzw. aufgeklappt werden kann. Die zum Klappen notwendige Hebelkraft wird über eine mit der Dichtfläche 16 verbundene Hebelstange 34 aufgebracht. Die Hebelstange 34 ist in einer geeignet zugeschnittenen Seitentasche 45 der Mehrschicht-Folie 7 eingebettet. Auch diese Seitentasche 45 ist an den Rändern 23 vakuumdicht versiegelt. Unter Vakuum wird die Dichtfläche 16 mittels der Mehrschicht-Folie 7 und Hebelstange 34 auf den Dichtsitz 17 gepresst. Eine leichte Kippbewegung auf die Hebelstange 34 aus der Zeichnungsebene verformt die Mehrschicht-Folie 7 so weit, dass der Weg für den Arbeitsmitteldampf ganz oder dosiert freigegeben werden kann. Bei optimalem Aufbau des Regelorgans 3 schließt die Dichtfläche 16 selbsttätig sobald die Kippkraft an der Hebelstange 34 wegfällt. Fig. 5 shows a control element 3 in a sectional view, which is kept closed by the fact that the external air pressure deforms the multilayer film 7 so far that a disk-shaped sealing surface 16 is pressed onto a sealing seat 17. The sealing seat 17 is again formed by a piece of pipe 32 on the second end of a flexible plastic corrugated hose 13 is attached. On the rectangular continuation 44 of the working medium vapor channel 4, a corrugated hose 13 is also pushed from plastic. The continuation 44 begins in a plastic housing 33 in which the sealing surface 16 can be lifted or unfolded from the sealing seat 17 without hindrance by the multi-layer film 7. The lever force required for folding is applied via a lever rod 34 connected to the sealing surface 16. The lever rod 34 is embedded in a suitably cut side pocket 45 of the multilayer film 7. These side pocket 45 is sealed vacuum-tight at the edges 23. Under vacuum, the sealing surface 16 is pressed by means of the multi-layer film 7 and lever rod 34 to the sealing seat 17. A slight tilting movement on the lever rod 34 from the plane of the drawing deforms the multilayer film 7 so far that the path for the working medium vapor can be released completely or in metered form. With an optimal structure of the control element 3, the sealing surface 16 closes automatically as soon as the tilting force on the lever rod 34 falls away.

Fig. 6 zeigt eine weitere Ausgestaltung eines geschnitten und perspektivisch dargestellten Verdampfers 2, der Wärme aus einem zu kühlenden Luftstrom aufnimmt. Der Strömungskanal 37 für den Luftstrom wird vom Verdampfer 2 selbst gebildet und aufgespannt. Hierzu wurde der ursprünglich flach hergestellte Verdampfer 2 um einen zentral angelegten Arbeitsmitteldampflcanal, der in dieser Ausgestaltung aus einem gelochten Wellschlauch 13 gebildet wird, nach dem Evakuieren um 180° gefaltet. Die ursprünglich entgegengesetzt liegenden Siegelnähte 35 und 36 liegen sich nunmehr direkt gegenüber. Da die inneren Folienenden kürzer geschnitten sind als die äußeren, können die äußeren Enden 22 der Mehrschicht-Folie 7 nochmals verschweißt werden und auf diese Weise den hermetisch geschlossen. Strömungskanal 37 für den Luftstrom bilden. Am hinteren Ende 46 des Strömungskanals 37 wird der flache Luftstrom in eine runde Strömungsgeometrie überführt.
In der gezeigten Ausgestaltung wird der Arbeitsmitteldampfkanal durch zwei Lagen eines netzförmigen Abstandhalters 11 gebildet. Die Vliese 10 stehen im thermischen Kontakt zum Strömungskanal 37.
Fig. 6 shows a further embodiment of a cut and perspective illustrated evaporator 2, which absorbs heat from an air stream to be cooled. The flow channel 37 for the air flow is formed by the evaporator 2 itself and clamped. For this purpose, the originally flat produced evaporator 2 was folded around a centrally applied Arbeitsmitteldampflcanal, which is formed in this embodiment of a perforated corrugated tube 13, after evacuation by 180 °. The originally opposite seal seams 35 and 36 are now directly opposite. Because the inner Film ends are cut shorter than the outer, the outer ends 22 of the multilayer film 7 can be re-welded and thus hermetically closed. Form flow channel 37 for the air flow. At the rear end 46 of the flow channel 37 of the flat air flow is converted into a round flow geometry.
In the embodiment shown, the working medium vapor channel is formed by two layers of a net-shaped spacer 11. The webs 10 are in thermal contact with the flow channel 37.

Fig. 7 zeigt schließlich skizzenhaft den mit Sorptionsmittel gefüllten Bereich eines Kühlelementes. Die Mehrschicht-Folie 7 ist in drei Taschen 19 unterteilt, die nur durch den Arbeitsmitteldampfkanal 4 miteinander in Verbindung stehen. Der Arbeitsmitteldampfkanal 4 kann durch einen gelochten Wellschlauch (nicht dargestellt) gebildet werden, der durch seine Wellung äußerst druckstabil und zugleich flexibel ist. Die drei Sorptionsmittel-Taschen 19 enthalten eine Zeolithschüttung die unter Vakuum druckstabil aber unflexibel ist. In den Überströmbereichen 39, wo kein Zeolith eingefüllt ist, verbleibt die Struktur dank des flexiblen Wellschlauchs flexibel. An diesen Überströmbereichen 39 kann das komplette Kühlelement gefaltet werden, um sich der jeweils geforderten Aufgabe optimal anpassen zu können. Fig. 7 finally shows a sketch of the filled with sorbent area of a cooling element. The multi-layer film 7 is divided into three pockets 19, which communicate with each other only through the working medium vapor channel 4. The working medium steam channel 4 can be formed by a perforated corrugated hose (not shown), which is extremely pressure-stable and at the same time flexible due to its corrugation. The three sorbent bags 19 contain a Zeolithschüttung which is pressure-stable under vacuum but inflexible. In the overflow areas 39, where no zeolite is filled, the structure remains flexible thanks to the flexible corrugated hose. At these overflow areas 39, the entire cooling element can be folded in order to optimally adapt to the task required in each case.

Claims (24)

Kühlelement mit einem Sorptionsmittel (1), das unter Vakuum ein dampfförmiges Arbeitsmittel sorbieren kann, das von einem flüssigen Arbeitsmittel in einem Verdampfer (2) abdampft und mit einem Regelorgan (3) in einem Arbeitsmitteldampfkanal (4) zwischen Sorptionsmittel (1) und Verdampfer (2),
dadurch gekennzeichnet, dass
das gesamte Kühlelement von einer gasdichten Mehrschicht-Folie (7) hermetisch umhüllt ist,
die Mehrschicht-Folie (7) flexibel gestaltet ist und unter Unterdruck so das Regelorgan (3), den Arbeitsmitteldampfkanal (4) und den Verdampfer (2) umschließt, dass Verdampfer (2) und Arbeitsmitteldampfkanal (4) flexibel bleiben und der Arbeitsmitteldampf nur über das Regelorgan (3) zum Sorptionsmittel strömen kann.
Cooling element with a sorption agent (1) which can sorb a vaporous working medium under vacuum, which evaporates from a liquid working medium in an evaporator (2) and with a control element (3) in a working medium vapor channel (4) between sorbent (1) and evaporator ( 2)
characterized in that
the entire cooling element is hermetically enclosed by a gas-tight multilayer film (7),
the multilayer film (7) is designed to be flexible and under vacuum so the control element (3), the working medium vapor channel (4) and the evaporator (2) surrounds that evaporator (2) and working medium vapor channel (4) remain flexible and the working medium vapor only over the control element (3) can flow to the sorbent.
Kühlelement nach Anspruch 1,
dadurch gekennzeichnet, dass
das Regelorgan (3) ein Ventil (6) enthält, das durch Verformen der Mehrschicht-Folie (7) betätigbar ist.
Cooling element according to claim 1,
characterized in that
the control member (3) includes a valve (6) operable by deforming the multilayer film (7).
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
das Regelorgan (3) ein Thermostatventil (8) enthält.
Cooling element according to one of the preceding claims,
characterized in that
the control element (3) contains a thermostatic valve (8).
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
das Thermostatventil (8) im Verdampfer (2) angeordnet ist.
Cooling element according to one of the preceding claims,
characterized in that
the thermostatic valve (8) in the evaporator (2) is arranged.
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
das Thermostatventil (8) einen Regelkörper aus Bi-Metall (9) enthält und im thermischen Kontakt zum flüssigen Arbeitsmittel steht.
Cooling element according to one of the preceding claims,
characterized in that
the thermostatic valve (8) contains a control body made of bi-metal (9) and is in thermal contact with the liquid working fluid.
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
das Sorptionsmittel (1) Zeolith und das Arbeitsmittel Wasser enthält.
Cooling element according to one of the preceding claims,
characterized in that
the sorbent (1) zeolite and the working fluid contains water.
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
der Verdampfer (2) ein Vlies (10) enthält aus dem das Arbeitsmittel abdampfen kann und einen Abstandhalter (11), der zwischen Vlies (10) und Mehrschicht-Folie (7) Arbeitsmitteldampfkanäle (4) bildet.
Cooling element according to one of the preceding claims,
characterized in that
the evaporator (2) contains a fleece (10) from which the working fluid can evaporate and a spacer (11) which forms between the fleece (10) and multi-layer film (7) working medium steam channels (4).
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
der flexible Verdampfer (2) mehrere Innenwände eines thermisch isolierten Behälters (12) bedeckt.
Cooling element according to one of the preceding claims,
characterized in that
the flexible evaporator (2) covers a plurality of inner walls of a thermally insulated container (12).
Kühlelement nach Anspruch 8,
dadurch gekennzeichnet, dass
mindestens eine Fläche des Verdampfers (2) klappbar ausgeführt ist.
Cooling element according to claim 8,
characterized in that
at least one surface of the evaporator (2) is designed to be foldable.
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
das flüssige Arbeitsmittel Substanzen enthält, die den Erstarrungspunkt auf +2 bis +4 °C verschieben.
Cooling element according to one of the preceding claims,
characterized in that
the liquid working fluid contains substances which shift the solidification point to +2 to +4 ° C.
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
der Arbeitsmitteldampfkanal (4) einen flexiblen Wellschlauch (13) enthält.
Cooling element according to one of the preceding claims,
characterized in that
the working medium vapor channel (4) contains a flexible corrugated hose (13).
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
der Arbeitsmitteldampfkanal (4) ein Schlauchstück (14) enthält, das durch äußere Quetschelemente gequetscht werden kann, um die Strömung des Arbeitsmitteldampfes zu unterbinden.
Cooling element according to one of the preceding claims,
characterized in that
the working medium vapor channel (4) contains a piece of tubing (14) which can be squeezed by external squeezing elements to inhibit the flow of the working medium vapor.
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
das Regelorgan (3) eine Dichtfläche (16) enthält, die von der Mehrschicht-Folie (7) auf einen Dichtsitz (17) gepresst wird.
Cooling element according to one of the preceding claims,
characterized in that
the control member (3) includes a sealing surface (16) which is pressed by the multi-layer film (7) onto a sealing seat (17).
Kühlelement nach Anspruch 8,
dadurch gekennzeichnet, dass
ein thermisch isolierter Behälters (12, 60) über eine Wärmequelle (18, 48) verfügt, die seinen Innenraum bei tieferen Umgebungstemperaturen erwärmt.
Cooling element according to claim 8,
characterized in that
a thermally insulated container (12, 60) via a heat source (18, 48) which heats its interior at lower ambient temperatures.
Kühlelement nach Anspruch 14,
dadurch gekennzeichnet, dass
die Wärmequelle (18, 48) Eisenpulver enthält, das bei Zutritt von Luftsauerstoff eine exotherme Reaktion unterhält.
Cooling element according to claim 14,
characterized in that
the heat source (18, 48) contains iron powder which maintains an exothermic reaction upon the admission of atmospheric oxygen.
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
die Wärmequelle (48) von einer gasdichten Folienhülle (49) umgeben ist und der Zutritt von Luftsauerstoff über einen Luft-Thermostat (54) geregelt wird.
Cooling element according to one of the preceding claims,
characterized in that
the heat source (48) is surrounded by a gas-tight film envelope (49) and the access of atmospheric oxygen is controlled via an air thermostat (54).
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
der Luft-Thermostat (54) bei Umgebungstemperaturen unterhalb der geforderten Nutzraumtemperatur geöffnet ist und frische Luft zum Eisenpulver strömen lässt und bei Umgebungstemperaturen oberhalb der Nutzraumtemperatur keine frische Luft einströmen lässt.
Cooling element according to one of the preceding claims,
characterized in that
the air thermostat (54) is open at ambient temperatures below the required working chamber temperature and allows fresh air to flow to the iron powder and does not allow fresh air to flow in at ambient temperatures above the useful room temperature.
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
die gasdichte Folienhülle (49) neben einer Eintritts-Öffnung (50) auch eine Austritts-Öffnung (51) für sauerstoffarme Luft aufweist.
Cooling element according to one of the preceding claims,
characterized in that
the gas-tight film envelope (49) next to an inlet opening (50) also has an outlet opening (51) for low-oxygen air.
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
die Austritts-Öffnung (51) während der Lagerzeit verschlossen ist und zum Start der Wärmequelle (48) geöffnet wird.
Cooling element according to one of the preceding claims,
characterized in that
the outlet opening (51) is closed during storage and is opened to start the heat source (48).
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
die isolierte Box 60 einen Lüftungskanal 59 zum Austritt sauerstoffarmer Luft enthält.
Cooling element according to one of the preceding claims,
characterized in that
the insulated box 60 contains a ventilation duct 59 for the discharge of oxygen-poor air.
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
das Sorptionsmittel (1) in mehreren Partien (19) innerhalb der Mehrschicht-Folie (7) angeordnet ist und die Partien (19) gegeneinander beweglich bleiben und über flexible Arbeitsmitteldampflcanäle (4) vom Arbeitsmitteldampf erreichbar sind.
Cooling element according to one of the preceding claims,
characterized in that
the sorbent (1) is arranged in several parts (19) within the multi-layer film (7) and the parts (19) remain movable relative to each other and can be reached via flexible working fluid flow channels (4) from the working medium vapor.
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
der Arbeitsmitteldampfkanal (4) aus flexiblen Kunststoffnetzen (20) gebildet wird, die einen ausreichenden Querschnitt für die Arbeitsmitteldampfströmung offen halten.
Cooling element according to one of the preceding claims,
characterized in that
the working medium vapor channel (4) is formed from flexible plastic nets (20) which maintain a sufficient cross section for the working medium vapor flow.
Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
an der Mehrschicht-Folie (7) im Außenbereich des Verdampfers (2) ein Luftkanal (21) vorgesehen ist, über den in den Verdampfer (2) Wärme aufgenommen werden kann.
Cooling element according to one of the preceding claims,
characterized in that
on the multilayer film (7) in the outer region of the evaporator (2) an air channel (21) is provided, via which in the evaporator (2) heat can be absorbed.
Verfahren zum Evakuieren eines Kühlelement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass
die Mehrschicht-Folie (7) im Bereich einer Siegelnaht einen Abstandhalter (11) aus Polypropylen enthält über den eine Vakuumpumpe den Innenraum des Kühlelements evakuiert und dass nach dem Evakuieren der Abstandhalter (11) soweit erhitzt wird, dass er mit der Siegelschicht der Mehrschicht-Folie (7) verschmilzt und ein gasdichtes, evakuiertes Kühlelement bildet.
Method for evacuating a cooling element according to one of the preceding claims,
characterized in that
the multi-layer film (7) in the region of a sealed seam contains a spacer (11) made of polypropylene via which a vacuum pump evacuates the interior of the cooling element and that after evacuation the spacer (11) is heated to such an extent that it is in contact with the sealing layer of the multilayer Foil (7) melts and forms a gas-tight, evacuated cooling element.
EP08001474A 2007-03-05 2008-01-26 Sorption cooling element with regulating organ and additional heat source Not-in-force EP1967799B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710010981 DE102007010981A1 (en) 2007-03-05 2007-03-05 Cooling element for cooling a transport box is hermetically surrounded by a gas-tight multiple layer film to enclose a regulating unit, a steam passage and a vaporizer
DE200710057748 DE102007057748A1 (en) 2007-03-05 2007-11-30 Sorption cooling element with control element and additional heat source

Publications (3)

Publication Number Publication Date
EP1967799A2 true EP1967799A2 (en) 2008-09-10
EP1967799A3 EP1967799A3 (en) 2011-05-18
EP1967799B1 EP1967799B1 (en) 2012-11-21

Family

ID=39479381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08001474A Not-in-force EP1967799B1 (en) 2007-03-05 2008-01-26 Sorption cooling element with regulating organ and additional heat source

Country Status (4)

Country Link
US (1) US8074470B2 (en)
EP (1) EP1967799B1 (en)
JP (1) JP5294655B2 (en)
SG (1) SG145659A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012003544U1 (en) * 2012-04-11 2013-07-12 Hohenstein Institut für Textilinnovation Gmbh Hypothermia device for the human or animal body
EP2439467A3 (en) * 2010-10-05 2013-11-13 ZEO-TECH Zeolith Technologie GmbH Sorption cooling element
EP2728281A1 (en) * 2011-06-28 2014-05-07 Fujitsu Limited Adsorption heat pump using sheet valve, and information processing system
WO2014131679A1 (en) * 2013-02-28 2014-09-04 Dometic Holding Ab Cooling system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006616A2 (en) * 2007-06-19 2008-12-24 ZEO-TECH Zeolith Technologie GmbH Flexible sorption cooling element
CN106133464A (en) * 2014-01-31 2016-11-16 可口可乐公司 System and method for vacuum cooled beverage
US20210310711A1 (en) 2019-05-31 2021-10-07 Gobi Technologies Inc. Temperature-controlled sorption system
JP7448908B2 (en) 2019-05-31 2024-03-13 ゴビ テクノロジーズ インコーポレイテッド thermal regulation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3425419A1 (en) 1984-07-10 1986-01-23 Fritz Dipl.-Ing. Kaubek ADIABATIC HEATING AND COOLING PROCEDURES AND PORTABLE DEVICES ACCORDING TO THE ADSORPTION PRINCIPLE
EP0368111A2 (en) 1988-11-08 1990-05-16 ZEO-TECH Zeolith Technologie GmbH Sorption refrigeration system
WO1999037958A1 (en) 1998-01-24 1999-07-29 The University Of Nottingham Heat transfer device
WO2001010738A1 (en) 1999-08-04 2001-02-15 Crown Cork & Seal Technologies Corporation Self-cooling can
US6474100B1 (en) 2001-04-25 2002-11-05 Thermal Products Development Inc. Evacuated sorbent assembly and cooling device
DE102005034297A1 (en) 2005-02-25 2006-08-31 Zeo-Tech Zeolith-Technologie Gmbh Cooling unit for use in food industry, has sorbent material sealed into sorbent-containing pouch having multilayer sheeting material with metallic layer or metallized layer for allowing vacuo to sorb vaporous working medium

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3464486A (en) * 1967-09-19 1969-09-02 Hooker Chemical Corp Configuration of sealed heat storage modules
US3912005A (en) * 1971-12-01 1975-10-14 Kelvinator Inc Liner assembly
DE3207656A1 (en) 1982-02-15 1983-08-25 Hieronimi, Ulrich, 8000 München SORPTION APPARATUS AND METHOD FOR THEIR OPERATION
JPS5935764A (en) * 1982-08-24 1984-02-27 松下電器産業株式会社 Refrigerator
JPS6016981U (en) * 1983-07-13 1985-02-05 松下電器産業株式会社 refrigerator
DE3342985A1 (en) 1983-11-28 1985-06-13 Fritz Dipl.-Ing. Kaubek CONTINUOUSLY SORPTION APPARATUS AND METHOD FOR THEIR OPERATION
DE3347700C2 (en) 1983-12-31 1994-07-07 Zeolith Tech Zeolite molding with high heat conduction and process for its production
DE3413349C2 (en) 1984-04-09 1986-09-25 Fritz Dipl.-Ing. Kaubek Method and device for heating with a periodic adsorption storage heat pump
DE3521484A1 (en) 1985-06-14 1986-12-18 Fritz Dipl.-Ing. Kaubek ADSORPTION COOLER
US4703629A (en) * 1986-12-15 1987-11-03 Moore Roy A Solar cooling apparatus
US4886178A (en) * 1988-04-27 1989-12-12 Air Products And Chemicals, Inc. Method and apparatus for packaging, shipping and using poisonous liquids
DE3837880A1 (en) 1988-11-08 1990-05-10 Zeolith Tech REFRIGERATED TANK FOR A SORPTION APPARATUS
DE3901558A1 (en) 1989-01-20 1990-07-26 Zeolith Tech SORPTION CONTAINER FOR SOLID SORPTION AGENTS
US5018960A (en) * 1990-01-12 1991-05-28 Wenger Manufacturing, Inc. Flaking roll apparatus
DE4003107A1 (en) 1990-02-02 1991-08-08 Zeolith Tech ICE PRODUCER ACCORDING TO THE SORPTION PRINCIPLE
DE4121131A1 (en) 1991-06-26 1993-01-07 Zeolith Tech SORPTION AGENT CONTAINER AND SORPTION METHOD WITH REGENERATIVE HEAT EXCHANGER
DE4126960A1 (en) 1991-08-14 1993-02-18 Zeolith Tech SORPTION APPARATUS FOR COOLING AND / OR HEATING
DE4138114A1 (en) 1991-11-19 1993-05-27 Zeolith Tech COOLING DEVICE AND COOLING METHOD FOR COOLING A MEDIUM WITHIN A VESSEL
ATE147499T1 (en) 1992-07-06 1997-01-15 Zeolith Tech COOLING SYSTEM WITH A VACUUM TIGHT FLUID STEAM COLLECTION LINE
DE4243816A1 (en) 1992-12-23 1994-06-30 Zeolith Tech Sorbent cartridge
DE4243817A1 (en) 1992-12-23 1994-06-30 Zeolith Tech Sorption system adapter and method of using this adapter
JP2866203B2 (en) 1994-09-12 1999-03-08 エレクトロルックス・レジャー・アプライアンシィーズ・アー・ゲー Sorption refrigeration unit
DE29713879U1 (en) 1997-08-05 1997-10-02 Nemis Establishment, Vaduz Spacers
JP3292686B2 (en) * 1997-09-02 2002-06-17 サンデン株式会社 Cold storage
WO2000028498A1 (en) * 1998-11-12 2000-05-18 Smith Micro Software Inc. Computer system with motion-triggered alarm procedure
US6341491B1 (en) 1999-01-25 2002-01-29 Bass Public Limited Company Heat transfer device
DE19922848A1 (en) 1999-05-19 2000-11-23 Zeolith Tech Device and method for cooling a liquid in a container
DE10016352A1 (en) 2000-04-03 2001-10-04 Zeolith Tech Sorption cooler
DE10020560A1 (en) * 2000-04-27 2001-10-31 Zeolith Tech Sorption container arrangement with flexible cover
DE10028030A1 (en) 2000-06-09 2001-12-13 Zeolith Tech Sorption device for heating and cooling gas flows
US6688132B2 (en) * 2001-06-06 2004-02-10 Nanopore, Inc. Cooling device and temperature-controlled shipping container using same
US6591630B2 (en) * 2001-08-17 2003-07-15 Nanopore, Inc. Cooling device
DE10250510A1 (en) 2002-10-29 2004-05-19 Zeo-Tech Zeolith-Technologie Gmbh Adsorption cooling device with buffer storage
DE10303292A1 (en) * 2003-01-28 2004-07-29 Zeo-Tech Zeolith-Technologie Gmbh Mobile cooling container has zeolite absorption system connecting to chamber through back pressure valve with fans in absorption and storage chambers
US20040157018A1 (en) * 2003-02-10 2004-08-12 Lyublinski Efim Ya Systems and methods for heat activated vapor phase delivery
EP2006616A2 (en) * 2007-06-19 2008-12-24 ZEO-TECH Zeolith Technologie GmbH Flexible sorption cooling element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3425419A1 (en) 1984-07-10 1986-01-23 Fritz Dipl.-Ing. Kaubek ADIABATIC HEATING AND COOLING PROCEDURES AND PORTABLE DEVICES ACCORDING TO THE ADSORPTION PRINCIPLE
EP0368111A2 (en) 1988-11-08 1990-05-16 ZEO-TECH Zeolith Technologie GmbH Sorption refrigeration system
WO1999037958A1 (en) 1998-01-24 1999-07-29 The University Of Nottingham Heat transfer device
WO2001010738A1 (en) 1999-08-04 2001-02-15 Crown Cork & Seal Technologies Corporation Self-cooling can
US6474100B1 (en) 2001-04-25 2002-11-05 Thermal Products Development Inc. Evacuated sorbent assembly and cooling device
DE102005034297A1 (en) 2005-02-25 2006-08-31 Zeo-Tech Zeolith-Technologie Gmbh Cooling unit for use in food industry, has sorbent material sealed into sorbent-containing pouch having multilayer sheeting material with metallic layer or metallized layer for allowing vacuo to sorb vaporous working medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2439467A3 (en) * 2010-10-05 2013-11-13 ZEO-TECH Zeolith Technologie GmbH Sorption cooling element
EP2728281A1 (en) * 2011-06-28 2014-05-07 Fujitsu Limited Adsorption heat pump using sheet valve, and information processing system
EP2728281A4 (en) * 2011-06-28 2015-03-25 Fujitsu Ltd Adsorption heat pump using sheet valve, and information processing system
DE202012003544U1 (en) * 2012-04-11 2013-07-12 Hohenstein Institut für Textilinnovation Gmbh Hypothermia device for the human or animal body
WO2014131679A1 (en) * 2013-02-28 2014-09-04 Dometic Holding Ab Cooling system

Also Published As

Publication number Publication date
SG145659A1 (en) 2008-09-29
US8074470B2 (en) 2011-12-13
JP2008215808A (en) 2008-09-18
EP1967799A3 (en) 2011-05-18
EP1967799B1 (en) 2012-11-21
US20080216508A1 (en) 2008-09-11
JP5294655B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
EP1967799B1 (en) Sorption cooling element with regulating organ and additional heat source
DE102007057748A1 (en) Sorption cooling element with control element and additional heat source
DE102005034297A1 (en) Cooling unit for use in food industry, has sorbent material sealed into sorbent-containing pouch having multilayer sheeting material with metallic layer or metallized layer for allowing vacuo to sorb vaporous working medium
DE69411377T2 (en) CHEMICAL REACTOR, REFRIGERATOR AND CONTAINER EQUIPPED WITH THIS REACTOR AND REAGENT CARTRIDGE THEREFOR
DE3425419C2 (en) Adiabatic heating and cooling devices based on the adsorption principle
EP1746365A2 (en) Sorption cooling element with gasproof film
EP1416233B1 (en) Adsorption refrigerator with heat accumulator
WO2012069048A2 (en) Vacuum container for removing foreign gases from an adsorption chiller
EP3693687A2 (en) Adsorption cooling
EP2006616A2 (en) Flexible sorption cooling element
EP3497383B1 (en) Transport container
EP1519125A2 (en) Method and apparatus for a fast solidification of water containing substances
AT501614B1 (en) HEAT EXCHANGERS AND TEMPERATURE CONTAINERS WITH HEAT EXCHANGERS
DE102008015677A1 (en) Self-warming heating unit has closed casing, which has sorbent in inner space, where sorbent runs exothermic reaction in contact with water or water vapor and has bag filled with water
WO2018029522A1 (en) Transport container
US20080199372A1 (en) Thermochemical Reactor for a Cooling and/or Heating Apparatus
DE102009023985A1 (en) Waste heat recovery device
JPH11190584A (en) Refrigerator
EP1150077B1 (en) Sorption container with flexible casing
DE102007050134A1 (en) Flexible sorption cooling elements
DE102010047371A1 (en) Sorption cooling elements
EP2489963A2 (en) Solar-operated sorption apparatus
DE60038729T2 (en) PREPARATION OF MATERIALS FOR REFRIGERATING
DE102019118977A1 (en) Adsorber cooling
DE60126501T2 (en) VACUUM SORPTION ARRANGEMENT AND COOLING DEVICE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20110601

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 585293

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008008674

Country of ref document: DE

Effective date: 20130117

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130222

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130321

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008008674

Country of ref document: DE

Effective date: 20130822

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 585293

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140211

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150121

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20150121

Year of fee payment: 8

Ref country code: CH

Payment date: 20150107

Year of fee payment: 8

Ref country code: DE

Payment date: 20150122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150122

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080126

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008008674

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160126

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160126

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160802

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160126